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Chapter 1

Practicals

This set of practicals will very briefly introduce you to the classical concepts of incidence,
mortality and prevalence (with which you are presumably familiar), and then introduce you
to:

e data structures from population surveys and registers
e theoretical concepts of rates

e practical use of concepts on data

The main example will be a dataset that resembles the Danish National Diabetes Register.
The section with solutions contain subsections that are numbered in parallel to the
exercises, so the solutions corresponding to section 1.2 is in section 3.2 etc.

1.0 Diabetes monitoring

Scenario: You are the NCD Unit Leader of a small developing country, or a province/state
of a large developing country.) A wealthy foundation has donated a 3 million USD start-up
grant, with 5 years continued funding of 1 million USD per year to enhance diabetes
monitoring in your country.

e What type of system would you propose? (i.e.., surveys, health systems data;
registries) Why?

e Describe the general architecture of your system.
e What types of data would you collect?

e What would be your primary indicators/definitions for risk factors, DM cases,
complications, covariates?

1.1 Classical concepts

The following is a brief overview of the basic concepts, amended with exercises in
derivation of the measures from the National Danish Diabetes Register. The exercises are
given first in general terms, and then in more technical terms for those who wish to pursue
the calculations in practice.
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1.2 Prevalence

Some use the word prevalence for the number of affected people, and specifically refer to
the prevalence proportion when talking about the fraction of persons affected. Here we
shall use the term “prevalence” for the fraction of persons affected.

Prevalence always refers to a specified point in time — a specific date.

empirical prevalence of a disease in a population is the fraction of the population that
suffers from the disease at the specified date.

theoretical prevalence of a disease in a population is the probability that a randomly
chosen person from the population suffers from the disease at the specified date.

At first glance these two look pretty much the same, but when we qualify the concepts by,
say, age, differences emerge:

The emprirical prevalence necessarily requires that the population be divided in
age-classes to enable the calculation of fractions for each age-class.

The theoretical prevalence lends itself to statistical modeling; it is possible to specify
mathematically how the probability of being diseased depends on age, so that we have an
expression for the probability (that is the prevalence) for any age, say 63.7 or 71.3 years.

1.2.1 Practical

We will use a simulated version of the Danish National Diabetes Register (all dates are
randomly moved £7 days, so no persons exist in reality).

Dates are coded in years, so that 1 January 2006 is coded 2006.0, 1 July 2006 is coded
2006.5 and 31 December 2006 as 2006.997. This is how the first few of the almost 500,000
records look:

sex doBth doDM doIns doDth
1 F 1899.984 1990.052 NA 1991.475
2 F 2000.006 2005.738 2005.773 NA
3 F 2000.002 2008.628 2008.679 NA
4 F 1900.985 1993.489 NA 1994.130
5 M 2001.011 2001.019 NA NA
6 M 2001.990 2005.763 2005.865 NA
7 M 1903.009 1992.683 NA 1994 .454
8 M 1902.997 1993.209 NA 2001.495
9 M 1903.016 1990.517 NA 1991.185
10 F 1902.988 2002.438 NA 2003.621

1. How would you go about estimating the number of prevalent cases in Denmark as of
1 January 2005 if you had access to this dataset?

2. The dataset dr.dta is a Stata dataset with a modified version of the Danish National
Diabetes Register which is also available as R-dataset, dr.Rda. Both are available in
the folder http://bendixcarstensen.com/Epi/Courses/IDEG2015/data/.

Read the dataset either with Stata or with R; with R it looks like this:

library( Epi )

clear()

# load( url("http://bendixcarstensen.com/Epi/Courses/IDEG2015/data/dr.Rda") )
# save( dr, file="../data/dr.Rda" )

load( file="../data/dr.Rda" )

str( dr )

summary ( dr )

VVVVVVyV
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3. How many prevalent cases of diabetes were there in Denmark as of 1 January 20057

If you do not use a computer for this, indicate how you would use the data to obtain
the number. Do similarly for the remaining questions.

4. How many men and women?
5. How many in each 5-year age-class?
6. How many in each 1-year age-class?

7. The size of the Danish population as of 1 January 1971-2013 by sex and 1-year
age-classes is in the dataset Ndk available at the course website; the first few lines
look like this:

> # load( file=url("http://bendixcarstensen.com/Epi/Courses/IDEG2015/data/Ndk.Rda") )
> ### The local vsrions on this computer:

> load( file="../data/Ndk.Rda" )

> head( Ndk )

P N
1971 35839
1971 34108
1971 36302
1971 34153
1971 37855
1971 35609

sSex

OO WN =
mMTETMETR
NNFR, P, OO

Supposing you have access to population data from Denmark how would you
compute the prevalence — that is the proportion of the population affected?

8. What are the age-specific prevalences in, say, 5-year classes?
9. How do the prevalence look as a function of age?
10. How does the prevalences look if we use 1-year age-classes?

11. How would you go about modeling prevalence as a smooth function of age?

What would the analysis data set look like? And what kind of statistical model
would be applicable and relevant?

The modeling of prevalences also illustrates the contrast between the empirical and
theoretical prevalences; the former are necessarily tied to a particular grouping of the
population; for example by sex and/or age, whereas the latter refer to any combination of
sex and age; after modelling we can in principle refer to the prevalence of DM in women
aged 68.3 years or 73.6 years.

1.3 Incidence

The incidence (rate) of DM is defined as the number of new cases of DM that occur in a
population in a predefined period of time. Of course the number of new DM cases is
approximately twice as large if the population you look at is twice as large, but also if you
look at the same population for two instead of one year; so the relevant denominator must
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be proportional both to the number of persons considered and the length of time
considered. This is the population follow-up time — the person-years.

The total number of person-years in the population may be approximated from
population counts at fixed dates, normally by taking averages of population counts at two
time points multiplied by the distance between the time points.

As in the case of prevalence we distinguish between the empirical and theoretical
incidence rates:

empirical incidence rate refers to a given time-period (and age-interval), and is defined as
the number of new cases relative to the population risk time (person-years) in the
time-period.

theoretical incidence rate is defined at any point in time (and age) as the probability of
seeing an event (DM diagnosis, for example) in a susceptible person in a small period
of time relative to the length of this period.

Note that both empirical and theoretical incidence rates have a dimension of time™!,
namely events, respectively probability per time. While empirical incidence rates
necessarily refer to a specific time-period, the theoretical incidence rate is defined for any

point in time and can vary continuously by time.

1.3.1 Practical

1. How would you find the number of newly diagnosed cases in age 60-64 (incl.) in the
year 2006 from the Danish National Diabetes Register?

2. In order to compute the (empirical) incidence rate we also need the person-years in
the Danish population. This is available in the dataset Ydk from the folder
("http://bendixcarstensen.com/Epi/Courses/IDEG2015/data”). The first few lines
look like this:

1971 37139.17
1971 35128.83
1971 36133.67
1971 34223.00
1971 37113.00
1971 34926.33

DO WN =
mMTETMETR
NNFR, PP, OO >

3. How would you go about deriving the age-specific rates in 2006, in 5-year age-classes
and by sex?

4. There is no particular reason to choose 5-year intervals; we could as before use 1-year
intervals, as population figures are actually available for these.
How do you think a graph of age-specific rates would look?

5. How would you go about fitting a model with a smooth age-effect for the incidence
rates? Specifically, what kind of data would be needed?


(
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1.3.2 Caveat: people only get DM once

In the calculations above we have used the total population risk time as denominator, even
though more than 10% of the population over 60 years of age have diabetes. This means
that the rates of diabetes are underestimated because persons with diabetes are not at risk
of getting diabetes; and we shoudl only include the susceptibles in th edenominayor. Thus
the person-years should only be computed for persons without diabetes. One way of doing
this is to compute the person-years among diabetes patients and subtract it from to total
population person-years.

6. As an example we used the incidence in 2006. How would you compute the
person-years among all diabetes patients contributing during 2006, and subdivide it
by age class?

7. How large a percentage of the population risk time is among persons with DM.

8. Now re-estimate the the age-specific incidence rates using the correct denominator
and compare the two.

1.4 Mortality and survival

When we are talking about mortality rates, we have the same considerations as before
regarding empirical and theoretical rates, but as a special feature of mortality we might
also be interested in survival.

Survival is defined as the probability, S(t) of being alive after some specified length of
time, t. This is a cumulative measure that requires an origin, that is, ¢ must be defined as
time sitnce some origin.

In the case of diabetes it will normally be time since diagnosis of diabetes. The survival
is a function of the mortality rates, so in order to compute the survival function at different
times after diagnosis, we must know the mortality rates as a function of time since
diagnosis.

Mortality rates however, is naturally also dependent on age — possibly both on age at
diagnosis of DM as well as current age. The latter is the sum of age at diagnosis and the
time since diagnosis (duration). So we are facing the problem of describing mortality by
time since diagnosis of DM, age at diagnosis of DM as well by the sum of the two. The
linear effects of the three variables cannot be separated, but the non-linear effects can.

9. As a start, compute mortality rates among diabetes patients, say during the year
2006. Above we computed the person-years among diabetes patients by age and sex
in 2006 in 1-year intervals, in order to subtract these from the total population
person-years. But the person-years among DM patients will also be the denominator
(person-years) for the mortality. So we just need the number of deaths among
diabetes patients classified by age (at death) and sex — how would you compute that
from the dataset?

We can then show the number of cases, person-years, and rates per 1000 PY:

10. Plot the mortality rates as a function of age.
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11.

12.

How would you make a model that showed mortality rates as a smooth function of
age?

We could also look at mortality as a function of duration of DM. However this would
really only make sense if we controlled for age in some way. So for the sake of the
argument do the calculation of duration-specific mortality for persons diagnosed in
age 60 in the entire period after 1995.

How would you extract data (deaths and person-years) for this? How do the
mortality rates look as a function of DM duration?

1.4.1 Survival

We can devise a so called life-table survival curve from mortality rates; if the mortality in
an interval is A\ and the interval length is ¢ the probability of dying in the interval is
approximately Al — provided that the death probability is not too large (the correct
expression is 1 — exp(—Af)). Thus, the probability of surviving the interval is 1 — A/.

So the probability of surviving the first interval (that starts at time 0) is 1 — Aof. The
probability or surviving the next is 1 — A\ — or more precisely, the conditional probability
of surviving the second interval given that the person already survived the first one. Hence
the probability of surviving till the end of the second interval is (1 — A\o¢) x (1 — A1f). So
we have S(0) =1, S(1) =1 — X\ol, S(2) = (1 — Ao¥) x (1 — A\i¥), etc.

13.

14.

15.

Based on the mortality rates for 1-year intervals of DM duration, how would you
calculate the (actuarial) survival curve? In particular indicate at what values of
duration you compute the survival probability.

An alternative way of computing the survival function(s) is to use the Kaplan-Meier
estimator, which requires that we define an observed survival time for each person, as
well as an indicator of whether follow-up (the survival time) ended by censoring or
death.

How would you construct a dataset for this type of analysis?
What we did was to compute the mortality in 1-year interval of diabetes duration for
patients diagnosed in age 60 (that is between their 60" and 61 birthdays). We could

of course repeat the exercise for persons diagnosed in ages 50, 51, ..., 99 to get an
impression of how mortality and survival depend on age at diagnosis.

Can you think of a more comprehensive way to address this type of question?

And of what types of questions on mortality rates and survival you really would like
to address?

The practical implementation of this is out of the scope of this stream, but in a special
section on “Mortality, age at diagnosis, duration and current age” in the solutions chapter,
some of these issues are addressed.



Chapter 2

Basic concepts in survival and
demography

The following is a condensed overview of concepts central to handling follow-up data; the
target audience for this section is

e epidemiologists who wants a handy overview of the mathematical relationships
between the theoretical concepts

e statisticians (and probabilists, mathematicians) who want to get an overview of how
the various concepts in probability translates to epidemiological concepts

The following is a summary of relations between various quantities used in analysis of
follow-up studies. They are ubiquitous in the analysis and reporting of results. Hence it is
important to be familiar with all of them and the relation between them.

2.1 Probability

Survival function:

S(t) = P {survival at least till ¢}
= P{T>t}=1-P{T<t}=1-F(t)

Conditional survival function:

S(t|tentry) = P {survival at least till ¢| alive at tenry }
= S(t)/S(tentry)

Cumulative distribution function of death times (cumulative risk):

F(t) = P {death before t}
P{T <t} =1-5()

Density function of death times:

f(t) = limP{deathin (t,t+h)} /h = }lllin Fit+ h})L = F() = F'(t)

h—0 0
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Intensity:
At) = }llirr(l)P {event in (t,t + h] | alive at t} /h
Pl - F@) _ S0
h—0 S(t)h S(t)
— lim St+h)—St)  dlogS(t)
TS0 SO dt

The intensity is also known as the hazard function, hazard rate, mortality /morbidity
rate or simply “rate”.

Note that f and \ are scaled quantities, they have dimension time™!.

Relationships between terms:

~ dlog S(t)

T - 0

S(t) = exp (— /O t)\(u) du) = exp(—A(t))

The quantity A(t) = f(f A(s)ds is called the integrated intensity or the cumulative
rate. It is not an intensity (rate), it is dimensionless, despite its name.
dlog(S(t)) _ _S'() _ _F'() _ f(t)

At) = 1 TSt 1-F@) SO

The cumulative risk of an event (to time t) is:
t
F(t) = P {Event before time t} = / Mu)S(u)du=1—85(t)=1—e*®
0

For small |z| (< 0.05), we have that 1 —e™" & x, so for small values of the integrated
intensity:
Cumulative risk to time ¢ ~ A(¢) = Cumulative rate

2.2 Statistics

Likelihood contribution from follow up of one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P {event at tylentry at t,} = P {survive (o, ;)| alive at t5} x
P {survive (t1,t9)| alive at t1} x
P {survive (o, t3)| alive at to} X
P {event at t4| alive at t3}
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Each term in this expression corresponds to one empirical rate'

(d,y) = (#deaths, #risk time), i.e. the data obtained from the follow-up of one
person in the interval of length y. Each person can contribute many empirical rates,
most with d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d,y):
/(\) = dlog(\) — Ay

This is under the assumption that the rate () is constant over the interval that the
empirical rate refers to.

Log-likelihood for several persons. Adding log-likelihoods from a group of persons
(only contributions with identical rates) gives:

Dlog(\) — XY,

where Y is the total follow-up time, and D is the total number of failures.

Note: The Poisson log-likelihood for an observation D with mean \Y is:
Dlog(\Y) =AY = Dlog(\) + Dlog(Y) — \Y

The term D log(Y) does not involve the parameter A, so the likelihood for an
observed rate can be maximized by pretending that the no. of cases D is Poisson
with mean \Y. But this does not imply that D follows a Poisson-distribution. It is
entirely a likelihood based computational convenience. Anything that is not
likelihood based is not justified.

A linear model for the log-rate, log(A) = X3 implies that
AY = exp(log(A) +log(Y)) = exp(X 8 + log(Y))

Therefore, in order to get a linear model for log(\) we must require that log(Y")
appear as a variable in the model for D ~ (AY') with the regression coefficient fixed
to 1, a so-called offset-term in the linear predictor.

2.3 Competing risks

Competing risks: If there is more than one, say 3, causes of death, occurring with
(cause-specific) rates A1, A9, Az, that is:

Ac(a) = lim P {death from cause c in (a,a + h] | alive at a} /b, ¢=1,2,3
h—0

The survival function is then:

S(a) = exp (— /0 ") + Aou) + Ag(u) du)

! This is a concept coined by BxC, and so is not necessarily generally recognized.
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because you have to escape all 3 causes of death. The probability of dying from cause
1 before age a (the cause-specific cumulative risk) is:

P {dead from cause 1 at a} = /a A(u)S(u)du # 1 —exp (— /a A1 (u) du)
0 0

The term exp(— f; A1(u) du) is sometimes referred to as the “cause-specific survival”,
but it does not have any probabilistic interpretation in the real world. It is the
survival under the assumption that only cause 1 existed and that the mortality rate
from this cause was the same as when the other causes were present too.

Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes
1, 2 and 3 respectively:

1=S5(a)+ /Oa A1 (u)S(u) du + /a Ao (u)S(u) du + /a A3(u)S(u)du, Va

0 0

Subdistribution hazard Fine and Gray defined models for the so-called subdistribution
hazard. Recall the relationship between between the hazard () and the cumulative
risk (F):
dlog(S(a)) dlog(1 — F(a))
B da T da
When more competing causes of death are present the Fine and Gray idea is to use
this transformation to the cause-specific cumulative risk for cause 1, say:

AMa) =

fu(a) = — dlog(ld—a Fi(a))

This is what is called the subdistribution hazard, it depends on the survival function
S, which depends on all the cause-specific hazards:

Fi(a) = P{dead from cause 1 at a} = / Ar(uw)S(u) du
0

The subdistribution hazard is merely a transformation of the cause-specific
cumulative risk. Namely the same transformation which in the single-cause case
transforms the cumulative risk to the hazard.

2.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age
(a) integrated with respect to the distribution of age at death:

EL = /ooaf(a)da
0

where f is the density of the distribution of lifetimes.
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The relation between the density f and the survival function S is f(a) = —5'(a), so
integration by parts gives:

EL = /Oooa(—S’(a)) da = — [aS(a)}:o + /000 S(a)da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
definition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) = /OO S(u)/S(a)du

Lifetime lost due to a disease is the difference between the expected residual lifetime for
a diseased person and a non-diseased (well) person at the same age. So all that is
needed is a(n estimate of the) survival function in each of the two groups.

LL(a) = / SWell(”)/SWell(a) - SDiseased(u)/SDiseased(a) du

Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease
in question or not. That is whether we will include the possibility of a well person
getting ill and subsequently die. This does not show up in the formulae, but is a
decision required in order to devise an estimate of Swen.

Lifetime lost by cause of death is using the fact that the difference between the
survival probabilities is the same as the difference between the death probabilities. If
several causes of death (3, say) are considered then:

S(a) =1 — P{dead from cause 1 at a}
— P {dead from cause 2 at a}
— P {dead from cause 3 at a}

and hence:

Swen (@) — Spiseased(@) = P {dead from cause 1 at a|Diseased}
+ P {dead from cause 2 at a|Diseased}
+ P {dead from cause 3 at a|Diseased }
— P {dead from cause 1 at a|Well}
— P {dead from cause 2 at a|Well}
— P {dead from cause 3 at a|Well}

So we can conveniently define the lifetime lost due to cause 2, say, by:
LLs(a) = / P {dead from cause 2 at u|Disecased & alive at a}

— P {dead from cause 2 at u|Well & alive at a} du
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These quantities have the property that their sum is the total years of life lost due to
the disease:
LL(G) = LLl(CL) + LLQ(CL) + LLg(CL)

The terms in the integral are computed as (see the section on competing risks):
P {dead from cause 2 at z|Diseased & alive at a} = / A2 pis(1) Spis (1) / Spis (@) du

P {dead from cause 2 at x|Well & alive at a} = / Ao wen (1) Swen (1) / Swen (@) du



Chapter 3

Solutions

3.2 Prevalence

Some use the word prevalence for the number of affected people, and specifically refer to
the prevalence proportion when talking about the fraction affected. Here we shall use the
term “prevalence” for the fraction affected.

Prevalence always refers to a specified point in time:

empirical prevalence of a disease in a population is the fraction of the population that
suffers from the disease

theoretical prevalence of a disease in a population is the probability that a randomly
chosen person from the population suffers from the disease

At first glance these two look pretty much the same, but when we qualify the concepts by,
say, age, differences emerge.

The empirical prevalence necessarily requires that the population be divided in
age-classes to enable the calculation of fractions.

The theoretical prevalence lends itself to statistical modeling; it is possible to specify
mathematically how the probability of being diseased depends on age, so that we have a
probability (that is the prevalence) for any age, say 63.7 years.

3.2.1 Practical

The dataset dr.dta is a Stata dataset with a modified version of the Danish National
Diabetes Register (all dates are randomly moved +7 days, so no persons exist in reality).
It is also available as R-dataset, dr.Rda. Both are available in the folder
http://bendixcarstensen.com/Epi/Courses/IDEG2015/data/dr.dta.

Dates are coded in years, so that 1 January 2006 is coded 2006.0, 1 July 2006 is coded
2006.5 and 31 December 2006 as 2006.997.

1. How would you go about estimating the number of prevalent cases in Denmark as of
1 January 2005 if you had access to this dataset?

You will need all persons that both have a date of diagnosis before 1.1.2005 and who
is not dead at that date.

14
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2. We read the dataset either with Stata or with R using:

> library( Epi )

> # load( url ("http://bendixcarstensen. com/Epi/Courses/IDEG2015/data/dr.Rda") )
> ### The local version on this computer

> load( file="../data/dr.Rda" )

> str( dr )

'data.frame': 497232 obs. of 5 variables:
$ sex : Factor w/ 2 levels "M","F": 2222111112 ...
$ doBth:Class 'cal.yr' mnum [1:497232] 1900 2000 2000 1901 2001
$ doDM :Class 'cal.yr' mnum [1:497232] 1990 2006 2009 1993 2001
$ doIns:Class 'cal.yr' num [1:497232] NA 2006 2009 NA NA ...
$ doDth:Class 'cal.yr' mnum [1:497232] 1991 NA NA 1994 NA ...
> head( dr )
sex doBth doDM doIns doDth
1 F 1899.984 1990.052 NA 1991.475
2 F 2000.006 2005.738 2005.773 NA
3 F 2000.002 2008.628 2008.679 NA
4 F 1900.985 1993.489 NA 1994.130
5 M 2001.011 2001.019 NA NA
6 M 2001.990 2005.763 2005.865 NA
> summary( dr )
sex doBth doDM dolns doDth
M:257840 Min. 11889 Min. 11942 Min. 11994 Min. 11990
F:239392 1st Qu.:1927 1st Qu.:1995 1st Qu.:1995 1st Qu.:1998
Median :1939 Median :2002 Median :2002 Median :2003
Mean 11940 Mean :2001 Mean :2002 Mean :2003
3rd Qu.:1951 3rd Qu.:2008 3rd Qu.:2007 3rd Qu.:2008
Max. 12011 Max. :2012 Max. 12012 Max. 12012
NA's : 375954 NA's :310870

3. The prevalent cases at 1 January 2005 are those diagnosed before 2005, and who died
later than 2005 (or did not die). The second form of the calculation here computes
the exit date using pmin:
> with( dr, table( doDM<2005 & (doDth>2005|is.na(doDth)), exclude=NULL ) )

FALSE TRUE  <NA>
292757 204475 0
4. How many men and women?
The further calculations is best made by selecting only those persons that were alive
with diabetes at the 1 January 2005, (the data frame pr2005):
> pr2005 <- subset( dr, doDM<2005 & (doDth>2005|is.na(doDth)) )
> ( ptt <- with( pr2005, table(sex) ) )
sex
M F
104171 100304
5. How many in each age-class?

Here we use the function floor that throws away decimals — when we divide the age
at 2005 (2005-doBth) by 5 and remove the decimals and subsequently multiply by 5
we get numbers 0, 5, 10, ...indicating the lower end of each age category:
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> with( pr2005, table( floor((2005-doBth)/5)*5, sex ) )

sex
M F
0 48 60
5 231 232

10 503 480
15 675 596
20 760 817
25 1291 1652
30 1914 2813
35 3055 3954
40 4706 4567
45 6725 5452
50 9263 6807
55 14363 9903
60 15521 11054
65 14007 11274
70 11923 11596
75 9446 11032
80 6155 9697
85 2675 5489
90 779 2320
95 119 477
100 12 31
105 0 1

6. In the Epi package is the dataset N.dk with the size of the Danish population as of 1
January 1971-2013 by sex and 1-year age-classes. The coding of sex is numeric, so we
change it to factor as in the register dataset:

> data( N.dk )
> head( N.dk )

sex A P N
1 1 0 1971 35839
2 2 0 1971 34108
3 1 1 1971 36302
4 2 1 1971 34153
5 1 2 1971 37855
6 2 2 1971 35609

> str( N.dk )

'data.frame': 8600 obs. of 4 variables:
$sex: num 1212121212 ...
$A :num 0011223344 ...

$ P : num 1971 1971 1971 1971 1971

$ N : num 35839 34108 36302 34153 37855 ...

- attr(x, "Contents")= chr "Population size as of 1 January in Denmark"

> N.dk <- transform( N.dk,
+ sex = factor( sex, labels=c("M","F") ) )
> xtabs( N ~ sex, data=subset( N.dk, P==2005 ) )

sex
M F
2677292 2734113

so there are 2,677,292 men in Denmark as of 1 January 2005.

The overall prevalence of diabetes among men and women is computed by taking the
number of men and women with diabetes and dividing it by the total number of
persons in the population.
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> ( pop <- xtabs( N ~ sex, data=subset( N.dk, P==2005 ) ) )

sex
M F
2677292 2734113

> round( ptt / pop * 100, 1 )

sex
M F
3.9 3.7

so the prevalence of diabetes overall was 3.9 and 3.7 percent respectively in men and
and women.

7. What are the age-specific prevalences in, say, 5-year classes?

We make a tabulation of the number of persons by age and sex, and do the same
with the number of DM patients from the register, but we only take the first 20
age-classes (0-4,5-9,...,95-99) as these are the ones that are represented in the
population figures.

Note that we compute the persons’ ages at the 1 January 2005 (which is coded as
2005.0).

> pop <- xtabs( N ~ I(floor(A/5)*5) + sex, data=subset( N.dk, abs(P-2005)<0.1 ) )
> ptt <- with( pr2005, table( floor((2005-doBth)/5)*5, sex ) )[1:20,]
> cbind( ptt, pop )

M F M F
0 48 60 167882 160174
5 231 232 176410 167652
10 503 480 177531 168497
15 675 596 156371 148211
20 760 817 147943 144598
256 1291 1652 173681 172033
30 1914 2813 193537 190643
35 3055 3954 210636 203290
40 4706 4567 204212 197524
45 6725 5452 187173 182720
50 9263 6807 180774 179027
55 14363 9903 195417 193559
60 15521 11054 158478 160929
65 14007 11274 116440 124845
70 11923 11596 88207 103568
75 9446 11032 68065 90507
80 6155 9697 45263 75487
85 2675 5489 20839 44530
90 779 2320 7147 20756
95 119 477 1286 5563

> round( (ptt / pop) * 100, 2 )

sex

M F
0 0.03 0.04
5 0.13 0.14
10 0.28 0.28
15 0.43 0.40
20 0.51 0.57
25 0.74 0.96
30 0.99 1.48
35 1.45 1.95
40 2.30 2.31
45 3.59 2.98
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50 5.12 3.80
556 7.35 5.12
60 9.79 6.87
65 12.03 9.03

70 13.52 11.20
75 13.88 12.19
80 13.60 12.85
85 12.84 12.33
90 10.90 11.18
95 9.25 8.57

8. How do the prevalence look as a function of time?

We have the two column matrices ptt and pop with diabetes cases and population
size as of 1 January 2006, so we can plot the ratio of these against the mid-point of
the age-intervals. But formally what is assumed is that age-specific prevalences are
constant in 5-year age-classes:

> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( seq(2.5,97.5,5), (ptt/pop)*100,

+ type="1", 1ty=1, lwd=3, col=c("blue","red"),
+ xlab="Age (years)", ylab="Prevalence (})", las=1, yaxs="i", ylim=c(0,15) )
> matplot( seq(0,100,5), ((ptt/pop)*100)[c(1:20,20),],
+ type="s", 1ty=1, lwd=3, col=c("blue","red"),
+ xlab="Age (years)", ylab="Prevalence (})", las=1, yaxs="i", ylim=c(0,15) )
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Figure 3.1: Age-specific prevalence of diabetes at 1 January 2005 in 5-year age-classes in
Denmark. The left plot is just connecting the midpoints of the age-classes; the right hand
plot shows the formally assumed model with constant prevalence in each 5-year class.

9. How does the prevalences look if we use 1-year age-classes?
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This is just the same calculations, replacing 5 by 1 (leaving it a bit superfluous,
though) and almost the same code for the plot:

> pop <- xtabs( N ~ floor(A) + sex, data=subset( N.dk, abs(P-2005)<0.1 ) )
> ptt <- with( pr2005, table( floor(2005-doBth), sex ) )[1:100,]
> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( seq(0.5,99.5,1), (ptt/pop)*100,
+ type="1", 1ty=1, lwd=3, col=c("red","blue"),
+ xlab="Age (years)", ylab="Prevalence (})", las=1, yaxs="i", ylim=c(0,15) )
> matplot( seq(0,100,1), ((ptt/pop)*100)[c(1:100,100),],
+ type="s", 1ty=1, lwd=3, col=c("red","blue"),
+ xlab="Age (years)", ylab="Prevalence (})", las=1, yaxs="i", ylim=c(0,15) )
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Figure 3.2: Age-specific prevalence of diabetes at 1 January 2005 in 1-year age-classes in
Denmark.

From figure 3.2 we get broadly the same picture as from 3.1, but the curves are not
“credible”.

This is illustrates the differences between the empirical prevalences and the
theoretical prevalences. From a biological/clinical point of view we would of course
expect that the prevalence were a smooth function of time, pretty much as
approximated by the left hand curve in figure 3.1.

10. How would you go about showing prevalence as a smooth function of age?

It would be more logical to describe the original data by a smooth curve. Formally,
this would require that we knew the exact ages for every person in the Danish
population as of 1 January 2005 as well as the diabetes status; we could then model
the 2.5 mill. 0/1 variables for men by a binomial model with some smooth age-effect.
But we do not have access to these data, so we use the 1-year age classified data for
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the register and the population. We are then formally making an assumption that
prevalences are constant in 1-year age-classes, but we impose restrictions on
relationship between the prevalences in the different age-classes.

The advantage of this is that we get a more credible relationship between (estimated
theoretical) prevalence and age, and in particular one that we can reasonably use for
any age, not only the midpoints of the intervals.

In practice this is done by fitting a binomial model with a smooth effect of age to the
table of prevalent cases and total population using the age-midpoints. In R we need
two-column matrix of affected and unaffected as response variable, so the second
column must be computed as the population size minus the number of patients:

> A <- 0:99+0.5

> prM <- cbind(ptt[,"M"],popl[,"M"]-ptt[,"M"])

> prF <- cbind(ptt[,"F"],popl[,"F"]-ptt[,"F"])

> m.pr <- glm( prM ~ Ns(A,knots=seq(10,95,,9)), family=binomial )
> f.pr <- glm( prF ~ Ns(A,knots=seq(10,95,,9)), family=binomial )

Ns is a so called natural spline (restricted cubic spline) that specifies a smooth
function of A.

From this model we can make predictions; in principle for any point on the age-scale,
but in this case it suffices to do it at the midpoint of the age-categories in order to
get a smoothly looking curve.

> nd <- data.frame( A=0:99+0.5 )
> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( nd$A, cbind( ci.pred(m.pr,nd)[,1],
ci.pred(f.pr,nd)[,1] )*100,
type="1", 1ty=1, lwd=3, col=c("blue",'"red"),
xlab="Age (years)", ylab="Prevalence (})", las=1, yaxs="i", ylim=c(0,15) )
matplot( nd$A, cbind( ci.pred(m.pr,nd)[,1],
ci.pred(f.pr,nd)[,1] )*100,
type="s", 1ty=1, lwd=3, col=c("blue","red"),
xlab="Age (years)", ylab="Prevalence (})", las=1, yaxs="i", ylim=c(0,15) )

+ 4+ + VvV ++ o+

The modeling of prevalences also illustrates the contrast between the empirical and
theoretical prevalences; the former are necessarily tied to a particular grouping of the
population; for example by sex and/or age, whereas the latter refer to any combination of
sex and age; we can in principle refer to the prevalence of DM in women aged 68.3 years:

> ci.pred( f.pr, data.frame(A=68.3) )

Estimate 2.5Y% 97.5%

1 0.09386903 0.09283319 0.09491521

This number cannot be derived as an empirical fraction from data; it is a prediction from a
statistical model. It is our best guess at the probability that a woman aged 68.3 evaluated
on 1 January 2005 has diabetes. The model is biologically plausible because the prediction
for ages 68.2 and 68.4 are quite similar:

> ci.pred( f.pr, data.frame(A=c(68.2,68.3,68.4)) )

1 0.
2 0.
3 0.

Estimate 2.5% 97.5%
09344671 0.09241412 0.09448963
09386903 0.09283319 0.09491521
09429069 0.09325122 0.09534053
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Figure 3.3: Fitted age-specific prevalences from a binomial model with restricted cubic splines.
The left panel is the predicted theoretical prevalence, the right hand plot is the formally fitted

model with constant prevalence in each 1-year category and restrictions on the relationship
between these.

We see that we expect that women slightly older has a prevalence (i.e. probability of being
affected) that is slightly higher too.

The modeling of prevalences also illustrates the contrast between the empirical and
theoretical prevalences; the former are necessarily tied to a particular grouping of the
population; for example by sex and/or age, whereas the latter refer to any combination of
sex and age; after modelling we can in principle refer to the prevalence of DM in women
aged 68.3 years or 73.6 years.

3.3 Incidence

The incidence (rate) of DM is defined as the number of new cases of DM that occur in a
population in a predefined period of time. Of course the number of new DM cases is
approximately twice as large if the population you look at is twice as large, but also if you
look at the same population for two instead of one year; so the relevant denominator must
be proportional both to the number of persons considered and the length of time
considered. This is the population follow-up time — the person-years.

Enumeration of person-years among diabetes patients is a non-trivial task, but the total
number of person-years in the population may be approximated from population counts at
fixed dates, normally by taking averages of population size between two time points
multiplied by the distance between the time points.

As in the case of prevalence we distinguish between the empirical and theoretical
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incidence rates:

empirical incidence rate refers to a given time-period (and possibly also age-interval), and
is defined as the number of new cases relative to the population risk time
(person-years) in the time-period.

theoretical incidence rate is defined at any point in time as the probability of seeing an
event (DM diagnosis, for example) in a small period of time relative to the length of
this period.

3.3.1 Practical

1. How would you find number of newly diagnosed cases in age 60-64 (incl.) in the year
2006 from the Danish National Diabetes Register.

We load the diabetes register as before, and compute the number of newly diagnosed
cases in age 60-64 (incl.) in the year 2006:

> load( file="../data/dr.Rda" )
> nrow( subset( dr, floor(doDM)==2006 &

+ (doDM-doBth)>=60 &
+ (doDM-doBth)< 65 ) )
[1] 3480

2. The person-years in the Danish population is available in the dataset Ydk:

> # load( file=url("http://bendixcarstensen.com/Epi/Courses/IDEG2015/data/Ydk.Rda" )
> load( file="../data/Ydk.Rda" )
> str( Ydk )

'data.frame': 8400 obs. of 4 variables:

$ sex: Factor w/ 2 levels "M","F": 1 212121212 ...
$A :num 0011223344 ...

$ P : num 1971 1971 1971 1971 1971 ...

$Y : num 37139 35129 36134 34223 37113 ...

> head( Ydk )

P Y
1971 37139.17
1971 35128.83
1971 36133.67
1971 34223.00
1971 37113.00
1971 34926.33

sex

DO WN -
mMEmEr=
NN, OO

The person-years data is actually classified by single years and sex, but we just add
them up:

> subset( Ydk, A>=60 & A<65 & P==2006 )
sex A P Y

7121 M 60 2006 40160.17
7122 F 60 2006 39678.17
7123 M 61 2006 38069.33
7124 F 61 2006 37952.83
7125 M 62 2006 35100.50
7126 F 62 2006 35562.67
7127 M 63 2006 32311.67
7128 F 63 2006 32980.00
7129 M 64 2006 29321.67
7130 F 64 2006 30069.83
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> sum( subset( Ydk, A>59 & A<65 & P==2006 )$Y )

[1] 351206.8

Thus the incidence rate of diabetes among persons aged 60-64 is

> 3480 / 351206.8
[1] 0.009908692

per 1 person-year, or, if we want it per 1000 person-years

> 3480 / 351.2068
[1] 9.908692

so roughly speaking 1% per year.

3. This figure is for a single 5-year age-class and for both sexes. If we want the

age-specific rates in 2006, in 5-year age-classes and by sex, we need a table of cases
and person-years. Note that the count of cases is a table of how many records we

have, whereas the person-years is a summation of the variable Y:

> ( D <- with( subset(dr,floor (doDM)==2006),
table( floor((doDM-doBth)/5)*5, sex ) ) )

85
90
95
100

M
26
41
79
55
73

107
178
352
597
882
1307
1659
2038
1583
1195
950
634
245
70
12

0

F

29
38
85
101
101
158
275
317
608
614
894
1152
1442
1342
1175
1096
834
470
153
31

2

> (Y <- xtabs( Y ~ I(floor(A/5)*5)

I(floor(A/5) * 5)

0

5

10
15
20
25
30
35
40
45

sex

166333.
.833
180623.
163695.
149068.
164809.
191372.
.833
212268.
.833

173061

200951

188801

M
333

833
000
000
667
167

000

158679.
164956.
171379.
154952.
144681.
163738.
189887 .
194950.
205365.
184550.

+ sex, data=subset (Ydk,P==2006) ) )

833
500
833
667
333
500
167
833
000
167
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50
55
60
65
70
75
80
85
90
95

181232.
186422.
174963 .
121788.
91038.
68313.
45502.
22305.

7295.

1413.

333
833
333
167
500
833
167
833
500
667

179168.
186106.
176243 .
129678.
105248.
88990.
73541.
47119.
20757.

6093.

000
500
500
000
833
167
667
833
833
667

The register data has a few incident cases over 100 years, so we must cut those off
before we look at the incidence rates. We multiply by 1000 in order to get rates per

1000 PY:

> D <-D[1:20,]

> round( inc <- D/Y * 1000, 1 )

sex

N
%]
O~NPNFRPOOOOOOO

OO OOWOFOOODONNVLOOTTITWkrNDN R
O WWHRRPRPLPOOOOO

P PR OWWNWNNOWOOLYPONNOINNT

e
O~NO R, NEF O

We can then plot the incidence rates, using both the interval midpoints and, for the
sake of illustration, the formally fitted constant rates in each interval:

> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( seq(2.5,97.5,5), inc,

++ +V o+ o+ o+

lOg=”y",

type="s ",
lOg=”y",

type="1", 1ty=1, lwd=3, col=c("blue",'"red"),
xlab="Age (years)",
ylab="Incidence rate of DM 2006 (per 1000 PY)" )
matplot( seq(0,100,5), inc[c(1:20,20),]1,
1ty=1, 1wd=3, col=c("blue","red"),
xlab="Age (years)",
ylab="Incidence rate of DM 2006 (per 1000 PY)" )

4. There is however no particular reason to choose 5-year intervals; we could as before
use 1-year intervals, as population figures are actually available for these:

D <- D[1:100,]

vV VYV +yVv

D <- with( subset (dr,floor (doDM)==2006),
table( floor(doDM-doBth), sex ) )
Y <- xtabs( Y ~ floor(A) + sex, data=subset (Ydk,P==2006) )

round( cbind( D, Y, inc <- D/Y * 1000), 2 )
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Figure 3.4: Empirical incidence rates of DM in Denmark for 2006 in 5-year age classes. Left
panel is the midpoint of the age-classes connected, right panel is the model formally fitted
using constant incidence rates in 5-year intervals.

M F M F M F
0 3 4 33241.00 31659.83 09 13
1 1 9 33124.50 31747.33 03 28
2 5 4 33302.00 31816.83 15 13
3 9 6 33277.17 31637.00 27 19
4 8 6 33388.67 31818.83 24 19
5 3 8 34074.67 32635.83 09 25
6 8 4 34384.67 32917.33 23 12
7 5 10 34339.50 32736.00 15 31
8 10 3 34876.00 33093.33 29 09
9 15 13 35387.00 33574.00 .42 39

10 12 21 36174.83 34256.00
11 22 13 36841.83 35012.67
12 5 25 36306.33 34582.83
13 24 15 359568.33 34055.00
14 16 11 35342.50 33473.33
15 10 19 34474.83 32697.17
16 12 18 33893.50 32146.83
17 12 14 32854.83 31138.17
18 15 24 31633.00 29848.50
19 6 26 30838.83 29122.00
20 8 13 30429.17 29061.83
21 18 23 29754.83 28763.33
22 8 17 29232.50 28514.50
23 20 23 29630.17 28893.33
24 19 25 30021.33 29448.33
256 16 22 30851.17 30663.00
26 21 28 32235.33 32096.00
27 24 30 33258.83 33115.83
28 24 32 33840.67 33637.83
29 22 46 34623.67 34225.83
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26
37
30
41
44
53
51

380
388
451
429
408
362
348
312
328
305
290
250
239

53

55

65

47

55

51

51

57

79

79
135
115
135
101
122
101
136
112
125
140
153
171
166
203
201
192
223
248
215
274
293
298
286
295
270
280
258
266
254
284
243
243
210
244
235
246
221
215
221
193
218
172

36809.
38003.
37945.
38888.
39725.
38852.
38024.
38910.
41073.
44090.
44961.
43806.
42871.
41174.
39453.
38890.
38074.
37292.
37264.
37281.
37160.
36385.
36201.
36085.
35399.
35495.
35652.
36450.
38503.
40322.
40160.
38069.
35100.
32311.
29321.
26801.
25460.
24371.
23235.
21919.
20640.
19323.
18106.
16935.
16033.
15281.
14468.
13816.
12874.
11873.
11074.
10139.
9121.
7989.
T7178.
6433.
5267.
4246.
3525.
2834.
2265.
1801.
1417.
1046.
764.
518.

36572.
37998.
37683.
38574.
39058.
37949.
37125.
37584.
39666.
42624 .
43465.
42233.
41363.
39942.
38360.
37886.
37173.
36515.
36451.
36522.
36407.
35929.
35931.
35818.
35081.
35338.
35865.
36519.
38410.
39974.
39678.
37952.
35562.
32980.
30069.
27891.
26660.
25764.
25220.
24141.
22868.
21878.
20842.
20092.
19567.
18938.
18292.
17803.
17306.
16650.
16252.
15703.
14918.
13699.
12967 .
12529.
10708.
8992.
7991.
6897 .
5842.
4958.
4143.
3279.
2533.
1944 .
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96 6 11 350.67 1421.00 17.11 7.74
97 2 3 224.50 984.50 8.91 3.05
98 1 1 149.83 743.50 6.67 1.34
99 0 2 170.50 1000.00 0.00 2.00

> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( seq(0.5,99.5,1), inc,

+ type="1", 1lty=1, lwd=3, col=c("blue","red"),
+ log="y", xlab="Age (years)",
+ ylab="Incidence rate of DM 2006 (per 1000PY)" )
> matplot( seq(0,100,1), inc[c(1:100,100),],
+ type="s", 1ty=1, lwd=3, col=c("blue","red"),
+ log="y", xlab="Age (years)",
+ ylab="Incidence rate of DM 2006 (per 1000PY)" )
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Figure 3.5: Empirical incidence rates of DM in Denmark for 2006 in 1-year age classes. Left
panel is the midpoint of the age-classes connected, right panel is the model formally fitted
using constant incidence rates in 1-year intervals.

Clearly the empirical rates in 1-year classes gives a very poor approximation to the
age-specific rates; one would assume that these were a smooth function of age.

5. How would you go about fitting a model with a smooth age-effect for the incidence
rates?

We can fit a model that smooths the incidence rates. Unlike the prevalence data
which were simple binomial (DM yes/no), the incidence rates are rate data. Under
the assumption that rates are constant in intervals the model is a Poisson model,
with the number of incident cases as outcome, and the log of the person-years as
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offset!. For the splines and predictions we need some functions from the Epi package,
so we must load this first:

> library( Epi )

> A <- 0:99+0.5

>d <= D[,"M"] ; y <= Y[,"M"] ;

> m.inc <- glm( d ~ Ns(A,knots=seq(10,95,,9)), offset=log(y), family=poisson )
> d <- D[, ranJ , y. <- Y[, HFHJ ,

> f.inc <- glm( d ~ Ns(A,knots=seq(10,95,,9)), offset=log(y), family=poisson )

As before, Ns is a so called natural spline (restricted cubic spline) that specifies a
smooth function of A.

From this model we can make predictions; in principle for any point on the age-scale,
but in this case it suffices to do it at the midpoint of the age-categories in order to
get a smoothly looking curve. Note that we also need to specify y as a variable in the
prediction frame in order to get the rates in prespecified units (in this case per 1000
PY).

> nd <- data.frame( A=0:99+0.5, y=1000 )
> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( nd$A, cbind( ci.pred(m.inc,nd)[,1],
ci.pred(f.inc,nd)[,1] ),
type="1", 1ty=1, lwd=3, col=c("blue","red"),
xlab="Age (years)", ylab="Incidence of DM (per 1000 PY)", las=1, log="y" )
matplot( nd$A, cbind( ci.pred(m.inc,nd)[,1],
ci.pred(f.inc,nd)[,1] ),
type="s", 1ty=1, lwd=3, col=c("blue","red"),
xlab="Age (years)", ylab="Incidence of DM (per 1000 PY)", las=1, log="y" )

+ 4+ + VvV + + 4+

The data points used for fitting the models has one observation per one-year
age-class, and hence must necessarily assume that the rates are constant in 1-year
classes, but the model places restrictions on the relationship between the rates in
each interval. The left graph in figure 3.6 shows the theoretical rates that on would
infer from the model, whereas the right hand graph shows the formally fitted rates as
being constant in each age-class.

3.3.2 Caveat: people only get DM once

In the calculations above we have used the total population risk time as denominator, even
though more than 10% of the population over 60 years of age have diabetes. This mean
that the rates of diabetes are underestimated because the person with diabetes are not at
risk of getting diabetes. Thus the person-years should only be computed for persons
without diabetes. One way of doing this is to compute the person-years among diabetes
patients and subtract it from to total population person-years.

6. As an example we used the incidence in 2006; so we should compute the person-years
among all diabetes patients contributing during 2006, and subdivide it by age class.

LA formally correct expression is that the likelihood for the rate parameter A\ based on data (DY) is
proportional to a likelihood for a Poisson variate D as observation and a mean equal to the rate (A) multiplied
by the person-years (Y). Note in particular that this does not imply an assumption that the data are Poisson
distributed; there is not a one-to-one correspondence between models and likelihoods; two different models
may have the same likelihood.



Solutions to practicals 3.3 Incidence 29

10.04 10.0

(&)

o
|

Ul

o
|

n
o
1
N
o
|

=

o
|

=

o
|

Incidence of DM (per 1000 PY)
Incidence of DM (per 1000 PY)

o

3y
1

|

3y
|

0.2- 0.2-

[ I I I I 1 [ I I I I 1
0 20 40 60 80 100 0 20 40 60 80 100

Age (years) Age (years)

Figure 3.6: Fitted age-specific incidence rates from a Poisson model with restricted cubic
splines. The left panel is the predicted theoretical incidence rates, the right hand plot is the
formally fitted model with constant incidence rate in each 1-year category and restrictions
on the relationship between these.

Programming-wise this is done by using a loop over sex and over age-classes. For
each age-class we compute the last date of observation and subtract the first date of
observation, but only within the calendar year 2006, that is from the date coded
2006.0 to the date coded 2007.0:

dmY <- Y * 0
for( sx in c("M","F") )
for( aa in 1:100 )
dmY[aa,sx] <- with( subset(dr,sex==sx),
sum( pmax( 0, pmin(2007,doBth+aa ,doDth,na.rm=TRUE) -
pmax (2006, doBth+aa-1,doDM ) ) ) )

++++VyV

We save this for later use:

> save( dmY, file="../data/dmY.Rda" )

7. We can see how large a percentage of the population risk time is among persons with
DM:

> round( 100*t (dmY/Y), 1 )

floor(A)
sex 0
M 0.0 O.
F 0.0 O.
floor(A)
sex 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
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M 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6
F 0.4 0.5 0.5 0.5 0.6 0.5 0.6 0.7 0.7
floor(A)
sex 34 35 36 37 38 39 40 41 42
M 1.2 1.3 1.4 1.6 1.6 1.8 1.9 2.2 2.4
F 1.7 1.8 1.9 2.1 2.2 2.2 2.3 2.5 2.6
floor(A)
sex 51 52 53 54 55 56 57 58 59
M 5.2 5.4 5.9 6.2 6.6 7.1 7.7 8.3 8.8
F 3.9 4.3 4.4 45 4.8 5.2 5.6 5.8 6.1
floor(A)
sex 68 69 70 71 72 73 74 75 76

[N
D O
=
oo
=
~N O

79 80 81 82 83 84

M 13.5 13.9 14.2 15.1 15.1 15.2 15.0 14.8 15.0 15.3 15.0 15.2 15.3 15.1 14.5 14.5 15.0
F 10.2 10.7 11.3 11.8 12.4 12.2 12.8 13.2 13.1 13.6 13.5 13.5 13.5 13.8 13.5 13.7 13.9

floor(A)
sex 85 86 87 388 89 90

91 92 93
M 14.7 14.3 13.5 13.6 12.5 13.1 12.6 11.8 11.2 9.
F 13.9 14.0 13.5 13.3 12.7 12.2 12.4 12.6 12.1 10.

So this is not at all a negligible fraction — and these fractions are quite close to the
age-specific prevalences at the midpoint of 2006.

The moral here is that the risk time should only be computed among those who are
at risk of the event. In many cancer studies, the fraction of the population alive with
a given cancer is quite small so this correction is of little practical importance; but as

we saw for diabetes, the correction is substantial.

> A <- 0:99+0.5

> d <- D[, ”M”J ;Y <- Y[, "M”J _ de[, "M”J
> M

> d <- D[, ”F"J 5y <- Y[, HF”J — de[, an]
> F

8. We therefore re-estimate the the age-specific rate using the correct denominator:

.inc <- glm( d ~ Ns(A,knots=seq(10,95,,9)), offset=log(y), family=poisson )

.inc <- glm( d ~ Ns(A,knots=seq(10,95,,9)), offset=log(y), family=poisson )

...and make a plot of the correctly estimated incidence rates (as well as the old ones

for comparison.)

> nd <- data.frame( A=0:99+0.5, y=1000 )

> par( mfrow=c(1,2), bty="n", las=

> matplot( nd$A, cbind( ci.pred(M.
ci.pred(F.
ci.pred(m.
ci.pred(f.

matplot( nd$A, cbind( ci.pred (M.

1)

inc,nd) [,1],
inc,nd) [,1],
inc,nd) [,1],
inc,nd)[,1] ),

inc,nd) [, 1],

++++F+V A+ +F

ci.pred(F.inc,nd)[,1],
ci.pred(m.inc,nd)[,1],
ci.pred(f.inc,nd)[,1] ),

type="1", 1ty=1, lwd=c(3,3,1,1), col=c("blue","red"),
xlab="Age (years)", ylab="Incidence of DM (per 1000 PY)", las=1, log="y" )

type="1", 1ty=1, lwd=c(3,3,1,1), col=c("blue","red"),
xlab="Age (years)", ylab="Incidence of DM (per 1000 PY)", las=1 )

From figure 3.7 we see that the correction of the rates is quite substantial; it is largely
in the order of magnitude of the age-specific prevalences, that is at the peak some

15%.
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Figure 3.7: Fitted age-specific incidence rates from a Poisson model with restricted cubic
splines. The thick lines are estimates based on the correct follow-up time among persons
without diabetes, the thin lines are based on the person-years for the entire population (which
is wrong). The left panel is with a logarithmic y-azis; the right hand panel shows the same
curves but on an untransformed scale.

3.4 Mortality and survival

When we are talking about mortality rates, we have the same considerations as before
regarding empirical and theoretical rates, but as a special feature of mortality we might
also be interested in survival.

Survival is defined as the probability, S(t) of being alive after some specified length of
time, t. This is a cumulative measure that requires an origin, that is, ¢ must be defined as
time since some origin.

In the case of diabetes it will normally be time since diagnosis of diabetes. The survival
is a function of the mortality rates, so in order to compute the survival function at different
times after diagnosis, we must know the mortality rates as a function of time since
diagnosis.

Mortality rates however, is naturally also dependent on age — possibly both on age at
diagnosis of DM as well as current age. The latter is the sum of age at diagnosis and the
time since diagnosis (duration). So we are facing the problem of describing mortality by
time since diagnosis of DM, age at diagnosis of DM as well by the sum of the two. The
linear effects of the three variables cannot be separated, but the non-linear effects can.

1. As a start we can compute mortality rates among diabetes patients, say during the
year 2006. Above we computed the person-years among diabetes patients by age and
sex in 2006 in 1-year intervals, in order to subtract these from the total population



32

Solutions IDEG 2015 - Adv Epi

person-years. But this will also be the denominator (person-years) for the mortality.
So we just need the number of deaths among diabetes patients classified by age (at
death) and sex:

> library( Epi )

> # load( url("http://bendixcarstensen.com/Epi/Courses/IDEG2015/data/dr.Rda") )
> ### The local version on this computer

> load( file="../data/dr.Rda" )

> load( file="../data/dmY.Rda" )

> dd <- with( subset( dr, floor(doDth)==2006 ),

+ table( floor(doDth-doBth), sex ) )

> str( dd )

'table' int [1:88, 1:21 0110201102 ...
- attr(*, "dimnames")=List of 2

.. $ : chr [1:88] "O" "12" "18" "20"

..$ sex: chr [1:2] "M" "F"

> dmD <- dmY * O # devise a table of Os with same structure as the person-years
> for( aa in intersect( dimnames(dd )[[1]], # fill in deaths where they are

+ dimnames (dmD) [[1]] ) )

+ dmD[aa,] <- dd[aa,]

We can then show the number of cases, person-years, and rates per 1000 PY:

> cbind( dmD, round( dmY, 1 ), round( 1000*dmD/dmY, 2 ) )

M F M F M F
0 o 2 0.6 0.9 0.00 2263.80
1 0 O 2.2 5.2 0.00 0.00
2 0 0 10.0 14.7 0.00 0.00
3 0 O 17.1 16.4 0.00 0.00
4 0 0 31.4 26.4 0.00 0.00
5 0O O 25.4 36.5 0.00 0.00
6 0 0 34.7 40.8 0.00 0.00
7 0 0 41.3 51.1 0.00 0.00
8 0O O 52.6 57.0 0.00 0.00
9 0 0 72.6 60.8 0.00 0.00
10 0 O 85.4 85.3 0.00 0.00
11 0O O 97.3 92.0 0.00 0.00
12 1 0 120.0 111.8 8.33 0.00
13 0 0 115.8 129.1 0.00 0.00
14 0 O 129.6 114.7 0.00 0.00
15 0 0 131.9 122.0 0.00 0.00
16 0 0 137.7 121.6 0.00 0.00
17 0 0 146.4 137.9 0.00 0.00
18 1 0 157.8 142.4 6.34 0.00
19 0 0 159.4 148.5 0.00 0.00
20 O 1 149.7 154.7 0.00 6.46
21 2 0 159.8 167.8 12.51 0.00
22 0 1 142.5 147.8 0.00 6.76
23 1 0 158.2 181.1 6.32 0.00
24 1 0 166.4 201.8 6.01 0.00
25 0 1 198.0 219.7 0.00 4.55
26 2 0 217.1 241.8 9.21 0.00
2r 3 0 238.0 292.7 12.60 0.00
28 1 1 289.0 354.5 3.46 2.82
29 1 1 291.2 420.7 3.43 2.38
30 0 O 337.3 465.1 0.00 0.00
31 2 1 369.9 535.5 5.41 1.87
32 2 0 388.3 575.7 5.15 0.00
33 1 0 399.5 644.9 2.50 0.00
34 2 2 463.3 670.0 4.32 2.98
35 2 0 503.5 697.2 3.97 0.00
36 3 2 519.7 691.1 5.77 2.89
37 6 1 608.6 777.8 9.86 1.29
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The above table shows that the mortality rates are very variable, particularly in the

younger ages, due to the small number of deaths.
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2. We can plot the mortality rates in two different ways as we did for the incidence
rates:

> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( 0:99+0.5, 1000*dmD/dmY,

+ type="1", 1ty=1, lwd=c(3,3,1,1), col=c("blue","red"),
+ xlab="Age (years)", ylab="Mortality of DM patients (per 1000 PY)",
+ ylim=c( 1, 500), las=1, log="y" )
> matplot( 0:99+0.5, 1000*dmD/dmY,
+ type="1", 1ty=1, lwd=c(3,3,1,1), col=c("blue","red"),
+ xlab="Age (years)", ylab="Mortality of DM patients (per 1000 PY)",
+ ylim=c( 0, 500), las=1 )
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Figure 3.8: Age-specific mortality rates in Danish DM patients in 2006. The plot on the
log-scale is leaving out rates that are numerically equal to 0.

3. As we did for the incidence rates, it is also possible to make a smooth model for how
mortality depends on age:

<- 0:99+0.5
<- de[, HMHJ ;Y <- de[, "M”J ;
.mort <- glm( d ~ Ns(A,knots=seq(10,95,,9)), offset=log(y), family=poisson )
<- dmD[,"F"] ; y <- dmY[,"F"] ;
.mort <- glm( d ~ Ns(A,knots=seq(10,95,,9)), offset=log(y), family=poisson )
nd <- data.frame( A=0:99+0.5, y=1000 )
par( mfrow=c(1,2), bty="n", las=1 )
matplot( nd$A, cbind( ci.pred(m.mort,nd)[,1],
ci.pred(f.mort,nd)[,1] ),
type="1", 1ty=1, lwd=3, col=c("blue","red"), ylim=c(0.5,500),
xlab="Age (years)", ylab="Mortality among DM patients (per 1000 PY)", las=1, log="y
matplot( nd$A, cbind( ci.pred(m.mort,nd)[,1],
ci.pred(f.mort,nd)[,1] ),
type="s", 1ty=1, lwd=3, col=c("blue","red"), ylim=c(0.5,500),
xlab="Age (years)", ylab="Mortality among DM patients (per 1000 PY)", las=1, log="y

HABR Qs
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Figure 3.9: Fitted age-specific mortality rates from a Poisson model with restricted cubic
splines. The left panel is the predicted theoretical incidence rates, the right hand plot is the
formally fitted model with constant incidence rate in each 1-year category and restrictions
on the relationship between these.

> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( nd$A, cbind( ci.pred(m.mort,nd),
ci.pred(f.mort,nd) ),
type="1", 1ty=1, lwd=c(3,1,1),
col=rep(c("blue", "red"),each=3), ylim=c(0.5,500),
xlab="Age (years)", ylab="Mortality among DM patients (per 1000 PY)", las=1, log="y
matplot( nd$A, cbind( ci.pred(m.mort,nd),
ci.pred(f.mort,nd) ),
type="s", 1ty=1, lwd=c(3,1,1),
col=rep(c("blue", "red"),each=3), ylim=c(0.5,500),
xlab="Age (years)", ylab="Mortality among DM patients (per 1000 PY)", las=1, log="y

+ 4+ + +V+ o+ o+ o+

From figure 3.10 it is clear that modeling may also produce unrealistic results; the
mortality curves for women in the youngest ages are based on very few deaths below
age 25 (see above for a listing of deaths observed). This also means that the
approximations underlying the calculations of the confidence intervals are not valid,
so that the confidence intervals shown in figure 3.10 are invalid for ages under 40. So
there is no basis for claiming that women have higher mortality in the very young
ages — it is based on two deaths among 0-old girls.

4. We could also look at mortality as a function of duration of DM. However this would
really only make sense if we controlled for age in some way. So for the sake of the

argument we do the calculation for persons diagnosed in age 60 in the period after
1995:
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Figure 3.10: Fitted age-specific mortality rates from a Poisson model with restricted cubic
splines. Thin lines indicate 95% confidence intervals. The left panel is the predicted theoret-
ical incidence rates, the right hand plot is the formally fitted model with constant incidence
rate in each 1-year category and restrictions on the relationship between these.

> dr60 <- subset( dr, floor(doDM-doBth)== 60 &
+ doDM >1995 )
> D60 <- with( dr60, table( floor(doDth-doDM), sex ) )

Thus we have the number of deaths among persons diagnosed in age 60 by single year
of follow-up. It then remains to enumerate the person-years in these duration classes:

> Y60 <- D60 * 0
> for( sx in dimnames(Y60)[[2]] )
+ for( dd in dimnames(Y60)[[1]] )
+ Y60[dd,sx] <- with( subset( dr60, sex==sx ),
+ sum( pmax( pmin (2012, # end of FU
+ doDth, # in duration dd
+ doDM+as .numeric(dd)+1,
+ na.rm=TRUE) -
+ (doDM+as.numeric(dd)), # start of FU
+ 0 ) ) ) # discard negative FU
> cbind( D60, round(Y60,1), round(1000%D60/Y60,1) )
M F M F M F
0 178 117 5323.4 3821.6 33.4 30.6
1 121 61 4749.5 3446.6 25.5 17.7
2 99 59 4220.9 3109.0 23.5 19.0
3 97 48 3744.7 2773.2 25.9 17.3
4 81 43 3280.8 2453.7 24.7 17.5
5 96 39 2832.6 2137.8 33.9 18.2
6 72 33 2402.2 1861.3 30.0 17.7
7 89 41 1950.7 1560.2 45.6 26.3
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8 58 31 1572.6 1261.4 36.9 24.6
9 37 26 1221.6 1004.3 30.3 25.9
10 39 15 957.8 797.7 40.7 18.8
11 43 18 740.2 640.4 58.1 28.1
12 25 19 552.6 487.0 45.2 39.0
13 28 18 383.2 335.6 73.1 53.6
14 14 13 244.1 207.0 57.3 62.8
15 6 2 137.2 118.0 43.7 17.0
16 4 2 40.6 37.2 98.4 53.7

We can illustrate the mortality as a function of diabetes duration:

> par( mfrow=c(1,2), bty="n", las=1 )
> matplot( 0:16+0.5, 1000*D60/Y60,

+ type="1", 1ty=1, lwd=3, col=c("blue","red"),
+ xlab="Diabetes duration (years)", ylab="Mortality of DM patients (per 1000 PY)",
+ ylim=c( 10, 120), las=1, log="y" )
> matplot( 0:16+0.5, 1000%D60/Y60,
+ type="1", 1ty=1, lwd=3, col=c("blue","red"),
+ xlab="Diabetes duration (years)", ylab="Mortality of DM patients (per 1000 PY)",
+ ylim=c( 0, 120), las=1 )
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Figure 3.11: Mortality among Danish 60 year old diabetes patients diagnosed 1995-2011 as
a function of duration of diabetes. Left panel is with a logarithmic y-axis, right panel with
untransformed y-axis.

We see in figure 3.11 that the mortality rates are very variable for longer durations of
diabetes, due to the very small number of deaths.

3.4.1 Swurvival

We can devise a so called life-table survival curve from the mortality rates; if the mortality
in an interval is A\ and the interval length is ¢ the probability of dying in the interval is
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approximately Al — provided that the death probability is not too large (the correct
expression is 1 — exp(—Af)). Thus, the probability of surviving the interval is 1 — A/,

So the probability of surviving the first interval (that starts at time 0) is 1 — Agl. The
probability or surviving the next is 1 — A\{¢ — or more precisely, the conditional probability
of surviving the second interval given that the person already survived the first one. Hence
the probability of surviving till the end of the second interval is (1 — A\of) x (1 — A1f). So
we have S(0) =1, S(1) =1 — Aol, S(2) = (1 — Aol) x (1 — A\ 0), ete.

5. So we have the mortality rates as D60/Y60 in units of deaths per 1 person-year, and
since the intervals we have been using are 1-year intervals, the numbers can also be
taken as the 1-year death probabilities for each interval. Thus we can compute the
(conditional) survival probabilities and the survival function as:

> ( p60 <- 1 - D60/Y60 )

sex

M F
.9665625 0.9693842
.9745237 0.9823014
.9765453 0.9810227
.9740970 0.9826913
.9753110 0.9824754
.9661094 0.9817572
.9700272 0.9822702
.9543746 0.9737208
.9631180 0.9754235
.9697122 0.9741110
.9592825 0.9811961
.9419072 0.9718911
.9547620 0.9609833
.9269371 0.9463654
.9426528 0.9371992
.9562704 0.9830491
.9015634 0.9462515

> ( S60 <- rbind( 1, apply( p60, 2, cumprod ) ) )

M F
1.0000000 1.0000000
0.9665625 0.9693842
0.9419381 0.9522275
0.9198452 0.9341568
0.8960185 0.9179877
0.8738967 0.9019004
0.8442798 0.8854472
0.8189743 0.8697484
0.7816083 0.8468921
0.7527811 0.8260784
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

OCoO~NOOPdWNREO
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.7299810 0.8046921
.7002580 0.7895607
.6595780 0.7673671
.6297401 0.7374269
.5837294 0.6978753
.5502542 0.6540482
.5261918 0.6429616
.4743952 0.6084034

6. An alternative way of computing the survival function(s) is to use the Kaplan-Meier
estimator, which requires that we define an observed survival time for each person, as
well as an indicator of whether follow-up (the survival time) ended by censoring or
death. For illustration we plot the two approaches next to each other:



Solutions to practicals 3.4 Mortality and survival 39

VV++VVH+H++VV+++4+Vvy

par( mfrow=c(1,2) )

matplot( 0:17, S60,
type="1", 1ty=1, lwd=3, col=c("blue","red"),
xlab="Diabetes duration (years)",
ylab="Survival of 60 year old DM patients",
ylim=c(0,1), las=1, yaxs="i", xaxs="i" )

library( survival )

dr60 <- transform( dr60, st

pmin( doDth-doDM,
2012-doDM,
na.rm=TRUE ),
dd = !is.na( doDth ) )
km <- survfit( Surv( st, dd ) ~ sex, data=dr60 )
plot( km, col=c("blue","red"), mark.time=FALSE, lwd=3,
xlab="Diabetes duration (years)",
ylim=c(0,1), las=1, yaxs="i" )
matlines( 0:17, S60, type="1", 1ty=1, 1wd=3, col=c("blue","red") )
matlines( 0:17, S60, type="1", 1ty=1, lwd=1, col="white" )
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Figure 3.12: Left: Actuarial survival curve for Danish diabetes patients diagnosed in age 60.
Right: Kaplan-Meier survival curves overlaid with the actuarial curves.

From figure ?7 it is evident that the two methods in large data sets like this gives the
same results. Even if mortality rates are very variable as a function of time since DM
diagnosis, the survival curves seem more stable — this is a consequence of the fact
that the survival function is a cumulative measure.

. What we did was to compute the mortality in 1-year interval of diabetes duration for
patients diagnosed in age 60 (that is between their 60" and 61 birthdays). We could
of course repeat the exercise for persons diagnosed in ages 50, 51, ..., 99 to get an
impression of how mortality and survival depend on age at diagnosis.

To illustrate how age at diagnosis and time since diagnosis simultaneously influence
mortality we need a proper model for the mortality. However it would be prudent
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first to contemplate how to report the mortality of DM patients both as a function of
age and duration of diabetes.

One possibility would be to show the mortality as a function of the patients’ current
age, but draw a separate curve for each age at diagnosis. So for persons diagnosed at
age 50 we would show the mortality as a curve that starts at age 50, and gives the
mortality by increasing duration of diabetes and hence also by increasing age. Similar
curves could then be drawn for persons diagnosed at age 55, 60 etc. to give an
impression of how age at diagnosis and duration of diabetes influence mortality.

The practical implementation of this is out of the scope of this stream, but in the next
section is shown how it can be done. The main purpose being to illustrate the type of
results achieved.

3.5 Mortality, age at diagnosis, duration and current
age

In order to manipulate follow-up of DM patients we set up a Lexis object to handle it. A
Lexis object is merely a data frame for follow-up data that allows us easily to keep track of
multiple timescales (and multiple states)

> load( file="../data/dr.Rda" )
> library( Epi )

> Lx <- Lexis( entry = list( per = doDM,

+ age = doDM-doBth,

+ dur =0 ),

+ exit = list( per = pmin(doDth,2012,na.rm=TRUE) ),

+ exit.status = factor( !is.na(doDth), labels=c("Alive",'"Dead") ),
+ data = subset( dr, doDM>1995 ) )

NOTE: entry.status has been set to "Alive" for all.

Each record in this Lexis object represents the follow-up of a single person; person no, 8
has been followed 7.5 years from 1996.97 or age 88.98.

> subset( Lx, lex.id==8 )

per age dur lex.dur lex.Cst lex.Xst lex.id sex doBth doDM doIns
36 1996.97 88.97916 0 7.54202  Alive Dead 8 F 1907.991 1996.97 1998.725
doDth
36 2004.512

We can also summarize how much follow-up time is available in total:

> summary( Lx )
Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 275868 95614 371482 95614 2198768 371482

In order to model mortality by varying age and duration, we must subdivide follow-up of
persons in small intervals and assign an age, a date and a duration to each interval. We can
then fit a model for mortality as a function of the variables.

We subdivide data using splitLexis:

> system.time(

+ Sx <- splitLexis( Lx, #[1:50000,],

+ breaks=c(0:12/4,4:20),
+ time.scale="dur" ) )
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user system elapsed
41.338 0.505 41.837

> summary( Sx )

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 5022194 95614 5117808 95614 2198768 371482

Thus we see that the number of events and the total risk time is the same as before, but
the number of records has increased from 371,482 (one record per person) to 5,117,808 (one
record per follow-up interval).

> addmargins( table( table( Sx$lex.id ) ) )

1 2 3 4 5 6 7 8 9 10 11 12

156568 12690 12198 10730 9634 9014 9569 9385 8654 8204 8466 8847

13 14 15 16 17 18 19 20 21 22 23 24

32232 28805 26019 23664 23219 21612 18667 15671 13595 11863 10396 8597
25 26 Sum

7639 6454 371482

The 5 mill. records in the dataset represent the follow-up of the 371,482 persons with a
diagnosis of diabetes after 1995; each person has a differing no of records, for example
32,232 persons have 13 records, 6,454 have 26 records and 12,198 have 3 records.

We can illustrate this by listing the records belonging to individual no. 8; we see that the
three time-scales as well as the interval lengths (lex.dur) vary during follow-up.

> subset( Sx, lex.id==8 )[,-16]
lex.id per age dur lex.dur lex.Cst lex.Xst sex doBth doDM dolIns

91 8 1996.97 88.97916 0.00 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

92 8 1997.22 89.22916 0.25 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

93 8 1997.47 89.47916 0.50 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

94 8 1997.72 89.72916 0.75 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

95 8 1997.97 89.97916 1.00 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

96 8 1998.22 90.22916 1.25 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

97 8 1998.47 90.47916 1.50 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

98 8 1998.72 90.72916 1.75 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

99 8 1998.97 90.97916 2.00 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

100 8 1999.22 91.22916 2.25 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

101 8 1999.47 91.47916 2.50 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

102 8 1999.72 91.72916 2.75 0.2500000 Alive Alive F 1907.991 1996.97 1998.725

103 8 1999.97 91.97916 3.00 1.0000000 Alive Alive F 1907.991 1996.97 1998.725

104 8 2000.97 92.97916 4.00 1.0000000 Alive Alive F 1907.991 1996.97 1998.725

105 8 2001.97 93.97916 5.00 1.0000000 Alive Alive F 1907.991 1996.97 1998.725

106 8 2002.97 94.97916 6.00 1.0000000 Alive Alive F 1907.991 1996.97 1998.725

107 8 2003.97 95.97916 7.00 0.5420202 Alive Dead F 1907.991 1996.97 1998.725
doDth

91 2004.512

92 2004.512

93 2004.512

94 2004.512

95 2004.512

96 2004.512

97 2004.512

98 2004.512

99 2004.512

100 2004.512
101 2004.512
102 2004.512
103 2004.512
104 2004.512
105 2004.512
106 2004.512
107 2004.512
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Each record can be made to represent a term in the total likelihood for a model of
mortality for patients as a function of age at diagnosis (age—dur), current age (age),
duration dur and calendar time per. The model assumes that mortality is constant in each
of the small intervals, but places a restriction on the size of the mortality in each interval;
it is a continuous function of age, duration and age at diagnosis.

As a small utility we load a function that shrinks the size of the glm objects without
influencing the ability to predict from the model.

> source( "shrink.glm.R" )
> system.time(
+ mml <- glm( lex.Xst=="Dead" ~ Ns( age, knots=seq(10,90,,5)) +
+ Ns( dur, knots=c(0,1,3,10)) +
+ Ns( I(age-dur), knots=seq(40,90,,5) ),
+ offset = log(lex.dur),
+ family = poisson, model=FALSE, y=FALSE,
+ data = subset( Sx, sex=="M" ) ) )
> mf1 <- update( mml, data = subset( Sx, sex=="F" ) )
> mml <- shrink.glm( mml )
> mfl1 <- shrink.glm( mfl )
> save( Sx, mml, mfl, file="tmp.Rda" )
name mode class lg/dim size (K)
1 dr list data.frame 497232 5 17483.2
2 1ls function function 1 18.9
3 Lx list Lexis data.frame 371482 12 30477 .4
4 mf1l list glm 1m 22 539252.8
5 mml list glm 1m 22 580391.0
6 shrink.glm function function 1 10.1
7 Sx list Lexis data.frame 5117808 12 399833.3

Once these models have been fitted separately for men and woman we can predict the
mortality rates (per 1000 PY) for persons diagnosed at ages 40, 45, ..., 75 years of age for
durations 0-16 years (which is the range of duration in the dataset).

Note that we do not bother too much about the parametrization — the model is
overparametrized because of the linear relationship between the variables. We are only
interested in the prediction (and they are correct, despite the warnings):

rep(C(NA,SeQ(O, 16’ 150)) ,8) >
adg = rep(8:15%5,each=51),
lex.dur = 1000 )[-1,]
nd$age <- nd$adg + nd$dur
head( nd )
dur adg lex.dur age
.0000000 40 1000 40.00000
.3265306 40 1000 40.32653
.6530612 40 1000 40.65306
.9795918 40 1000 40.97959
.3061224 40 1000 41.30612
.6326531 40 1000 41.63265
prm <- ci.pred( mml, nd )
prf <- ci.pred( mf1, nd )
par( mfrow=c(1,2), bty="n", las=1 )
matplot( nd$age, cbind( prm, prf ),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
10g=”y",
xlab="Age at follow-up",
ylab="Mortality among DM patients" )
matplot( nd$age, cbind( prm, prf ),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
xlab="Age at follow-up",
ylab="Mortality among DM patients" )

\

nd <- data.frame( dur
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Figure 3.13: Predicted mortality rates among Danish diabetes patients diagnosed 1995-2011
in different ages. FEstimates are from a model with smooth effects of current age, duration
and age at diagnosis. Blue curves are for men, red curves for women.

From the figure 3.13 it is seen that duration has a dramatic effect on mortality, but only
during the first two years; mortality drops by a factor of almost 2 during these first years,
and then picks up at the usual age-pace, although there is an indication that women
diagnosed at younger ages (below 60) seem to have a smaller mortality than women
diagnosed later in life (at comparable ages, that is).

3.5.0.1 Interaction

The modeling can be used to explore:
e whether the duration effect is age-dependent and
e whether the effect of age at diagnosis is confounded by calendar time.

Hence we expand the model with calendar time, using 2005 as reference point, and with a
simple interaction between duration and age at diagnosis:

> system.time(
+ mm2 <- update( mml, .
+

user system elapsed
78.425 4.109 92.319

> system.time(
+ mf2 <- update( mfl, . ~ .
+

+

Ns( per, knots=1995+seq(2,15,,4), ref=2005 )
Ns( dur, knots=c(0,1,10)):Ns( I(age-dur), knots=seq(40,90,,3) ) ) )

+

+

Ns( per, knots=1995+seq(2,15,,4), ref=2005 )
Ns( dur, knots=c(0,1,10)):Ns( I(age-dur), knots=seq(40,90,,3) ) ) )

+

user system elapsed
67.780 1.076 73.805
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> # shrink the objects

> mm2 <- shrink.glm( mm2 )

> mf2 <- shrink.glm( mf2 )

> nd <- cbind( nd, per=2005 )

We can show the calendar time effect as estimated relative to 2005:

p.pt <- seq(1995,2012,,50)
Cp <- Ns( p.pt, knots=1995+seq(2,15,,4), ref=2005 )
RRm <- ci.exp( mm2, subset="per", ctr.mat=Cp )
RRf <- ci.exp( mf2, subset='"per", ctr.mat=Cp )
matplot( p.pt, cbind(RRm,RRf),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
xlab="Date of follow-up", ylim=c(0.5,2), log="y",
ylab="Mortality RR (reltive to 2005) among DM patients" )
abline( h=1 )
abline( h=c(5:15/10,2), v=1995:2012, col=gray(0.8) )
matlines( p.pt, cbind(RRm,RRf),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1" )
points( 2005, 1, pch=1, cex=1.3, lwd=5 )
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Figure 3.14: Mortality rate-ratio for men and women respectively, relative to 2005

From figure 3.14 we see that there is a reduction in mortality among diabetes patients of
some 40% over the period, from 1.3 to 0.75 for men and from 1.2 to 0.8 for women.

When we re-do the prediction of the mortality as a function of age, we can do it in a
simplified way by fixing the date to 2005, by including calendar time in the prediction, by
making a prediction for persons diagnosed in different ages at year 1998 (say) as in figure
3.15:
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nd$per <- 2005
prm <- ci.pred( mm2, nd )
prf <- ci.pred( mf2, nd )
par( mfrow=c(2,2) )
matplot( nd$age, cbind( prm, prf ),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
10g=”y",
xlab="Age at follow-up",
ylab="Mortality among DM patients (2005)" )
matplot( nd$age, cbind( prm, prf ),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
xlab="Age at follow-up",
ylab="Mortality among DM patients (2005)" )
nd$per <- 1998+nd$dur
prm <- ci.pred( mm2, nd )
prf <- ci.pred( mf2, nd )
matplot( nd$age, cbind( prm, prf ),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
log=”y",
xlab="Age at follow-up",
ylab="Mortality among DM patients (diag 1998)" )
matplot( nd$age, cbind( prm, prf ),
lwd=c(3,1,1), 1ty=1,
col=rep(c("blue", "red"),each=3), type="1",
xlab="Age at follow-up",
ylab="Mortality among DM patients (diag 1998)" )

+ 4+ ++V+++++VVVV+H+++V+++++VVVVY

In figure 3.15 we see that the conclusion about the effect of age at diagnosis depends on
whether we evaluate it with or without a varying period effect.

It is however very clear that there is a markedly higher mortality in the first year or so
after diagnosis — presumably an artifact because some very ill persons are diagnosed with
diabetes as consequence of other illness, and therefore over-represented among newly
diagnosed patients.

If we fix the calendar time, we see that the long-term effect of age at diagnosis among
women is negligible; the mortality in different ages is virtually the same regardless of the
age at diagnosis. Men, however have higher mortality the younger they are diagnosed.

If we evaluate the joint effect of age, duration and calendar time we see no effect of age
at diagnosis for men, but that women diagnosed with DM in young ages have smaller
mortality than women diagnosed at older age — when compared at the same age.

The calendar time effect we saw in figure 3.14 was roughly log-linearly decreasing by
calendar time, slightly steeper for men than for women. Therefore, the difference from the
upper to the lower panels in figure 3.15 is that the curves are tilted a bit downward;
slightly more for men that for women.

Thus if we are willing to accept an overall decrease in mortality unrelated to diabetes, we
will base conclusion on the top panel and conclude that the younger men are at diabetes
diagnosis, the higher their mortality at a given age, whereas age at diagnosis has very little
effect for women.
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Figure 3.15: Mortality of diabetes patients diagnosed in ages 40, 45, ..., 75. The top panels
are using 2005 as fived calendar time, the lower panels showing patients diagnosed in at
1.1.1998 following patients over calendar time.
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