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Chapter 0O

Introduction

This is a set of notes put together for the LEAD Symposium on May 6", preceding the
EDEG 2017 meeting in Dubrovnik, Croatia.

The first chapter is an explanation of the concept of life lost to a disease, with an
emphasis on the necessary probability theory, and a description of the tools for calculation
of life lost available in the Epi package for R.

The second chapter is a practical exercise that you are supposed to work through (with
appropriate help from the faculty). It falls in two parts; the first is a simple case based on a
set of empirical mortality and diabetes incidence rates; the second part of the exercise
chapter is an illustration of how to use modeling to get a more detailed and credible picture
of the changes in the years of life lost over the last 20 years in Denmark.

The third chapter is merely a reference card of the essential concepts used in description
of occurrence rates in cohort studies, notably in population-wide studies.

Symposium timetable

10:00-10:10 Introductions (Dorte Vistisen)

10:10-11:00 Years of life lost (BxC):
— prerequisites, assumptions definitions
— introduction to practical calculations

11:00-12:00 Practicals (BxC + faculty)
- Based on “real” Danish data you will do calculations of
YLL using R and end up with estimates of years of life
lost to diabetes in Denmark.

12:00-12:15 Coffee break
12:15-12:45 Review of practicals (BxC)

Installing R and Epi

The symposium contains a practical that requires you to use R, hence you should install R
on your computer; get it at https://cran.r-project.org/, you may want to use R-studio
which is also free: https://www.rstudio.com/. Finally, once you have started R you
should install the Epi package, for example by writing the following at the command line::


https://cran.r-project.org/
https://www.rstudio.com/
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> install.packages( "Epi" )
> library( Epi)
> sessionInfo()

The last command should show you that you have the latest version of R (version 3.4.0)
and version 2.12 of the Epi package

If you already have Epi installed you may want to update it if you do not have version
2.12, by doing:

> update.packages( "Epi" )
> library( Epi)
> sessionInfo()



Chapter 1

Survival and years of life lost

This chapter contains a lot of integrals, and integrals are known to be scary or mysterious

to many. But you should keep in mind that integrals are just a convenient notation for the
area under a curve. The curve being the function inside the integration. This is explained

briefly at the start of the exercises, so do not dispair.

1.1 Years of life lost (YLL)

2

The general concept in calculation of “years lost to...” is the comparison of the expected
lifetime between two groups of persons; one without and one with disease (in this example
DM). The expected lifetime is the area under the survival curve, so basically the exercise
requires that two survival curves that are deemed relevant be available.

The years of life lost is therefore just the area between the survival curves for those
“Well”, Sy (t), and for those “Diseased”, Sp(t):

YLL = / T Sw(t) — Sp(t) dt

The time ¢ could of course be age, but it could also be “time after age 50” and the survival
curves compared would then be survival curves conditional on survival till age 50, and the
YLL would be the years of life lost for a 50-year old person with diabetes as comapred to a
50-year old person without.

If we are referring to the expected lifetime we will more precisely use the label expected
residual life time, ERL.

1.2 Constructing the survival curves

The survival fora person aged 50, say, with diabetes is computed from the mortality rates
for persons wth diabetes in ages 50 or more.

YLL can be computed in two different ways, depending on the way the survival curve
and hence the expected lifetime of a person without diabetes is computed:

e Assume that the “Well” persons are immune to disease — using only the non-DM
mortality rates throughout for calculation of expected life time.
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e Assume that the “Well” persons can acquire the disease and thereby see an increased
mortality, thus involving all three rates shown in figure 1.1.

The former gives a higher YLL because the comparison is to persons assumed immune to
DM — it is assumed that they will never move to the DM state and see a higher mortality.
The latter gives a more realistic picture of the comparison of group of persons with and
without diabetes at a given age that can be interpreted in the real world.

The differences can be illustrated by figure 1.1; the immune approach corresponds to an
assumption of A(t) = 0 in the calculation of the survival curve for a person in the “Well”
state.

Calculation of the survival of a diseased person already in the “DM” state is unaffected
by assumptions about A.

Well —> DM

VY, Hbm

v v

Dead Dead(DM)

Figure 1.1: Iliness-death model describing diabetes incidence and -mortality in a population.

1.2.1 Total mortality — a shortcut?

A practical crude shortcut could be to compare the ERL in the diabetic population to the
ERL for the entire population (that is use the total mortality ignoring diabetes status).
Note however that this approach also counts the mortality of persons that acquired the
disease earlier, thus making the comparison population on average more ill than the
population we aim at, namely those well at a given time, which only then become more
gradually ill.
How large these effects are must be empirically explored, as we shall do later.

1.2.2 Disease duration

In the exposition above there is no explicit provision for the effect of disease duration, but
if we were able to devise mortality rates for any combination of age and duration, this
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could be taken into account.

There are however severe limitations in this as we in principle would want to have
duration effects as long as the age-effects — in principle for all combinations (a, d) where
d <100 — A, where A is the age at which we condition. So even if we were only to compute
ERL from age, say, 40 we would still need duration effects up to 60 years (namely to age
100).

The incorporation of duration effects is in principle trivial from a computational point of
view, but we would be forced to entertain models predicting duration effects way beyond
what is actually observed disease duration in any practical case.

1.2.3 Computing integrals

The practical calculations of survival curves, ERL and YLL involves calculation of

(cumulative) integrals of rates and functions of these as we shall see below. This is easy if

we have a closed form expression of the function, so its value may be computed at any time

point — this will be the case if we model rates by smooth parametric functions.
Computing the (cumulative) integral of a function is done as follows:

e Compute the value of the function (mortality rate for example) at the midpoints of a
sequence of narrow equidistant intervals — for example one- or three month intervals
of age, say.

e Take the cumulative sum of these values multiplied by the interval length — this will
be a very close approximation to the cumulative integral evaluated at the end of each
interval.

e If the intervals are really small (like 1/100 year), the distinction between the value at
the middle and at the end of each interval becomes irrelevant.

Note that in the above it is assumed that the rates are given in units corresponding to the
interval length — or more precisely, as the cumulative rates over the interval.

1.3 Survival functions in the illness-death model

The survival functions for persons in the “Well” state can be computed under two
fundamentally different scenarios, depending on whether persons in the “Well” state are
assumed to be immune to the disease (A(a) = 0) or not.

1.3.1 Immune approach

In this case both survival functions for person in the two states are the usual simple
transformation of the cumulative mortality rates:

Swla) = e (— [vtwan), o) = e (= [uo(u)au)

1.3.1.1 Conditional survival functions

If we want the conditional survival functions given survival to age A, say, they are just:

Sw(alA) = Sw(a)/Sw(A),  Sp(alA) = Sp(a)/Sp(A)
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1.3.2 Non-immune approach

For a diseased person, the survival function in this states is the same as above, but the
survival function for a person without disease (at age 0) is (see figure 1.1):

S(a) = P{Well}(a) + P{DM}(a)

In the appendix of the paper [2] is an indication of how to compute the probability of being
in any of the four states shown in figure 1.1, which I shall repeat here:

In terms of the rates, the probability of being in the “Well” box is simply the probability
of escaping both death (at a rate of up (a)) and diabetes (at a rate of A(a)):

P{Well} (a) = exp (- /0 () + /\(u)> du

The probability of being alive with diabetes at age a, is computed given that diabetes
occurred at age s (s < a) and then integrated over s from 0 to a:

P{DM} (a) = / P{survive to s, DM diagnosed at s}
0
x P{survive with DM from s to a} ds

= [3rem (= [t + Ay aa)
X exp (— / (1) du) ds

Sometimes we will use a version where the mortality among diabetes patients depend both
on age a and duration of diabetes, d, up(a,d), in which case we get:

a

P{DM} (a) / A(s) exp (— /0 i (1) + A(w) du>

0

X exp (—/ wp(u,u — s) du) ds

because the integration variable u is the age-scale and the second integral refers to
mortality among persons diagnosed at age s, that is, with duration u — s at age u.

The option of using duration-dependent mortality rates among diseased individuals is
not implemented yet.

1.3.2.1 Conditional survival functions

Unlike the immune approach, the conditional survival function in the more realistic case is
not just a ratio of the unconditional survival function to its value at the conditioning age,
A, say. This would amount to conditioning on being merely alive at age A, but what we
want is to condition on being in the “Well” state at age A.

The formulae for the conditional probabilities of being either in “Well” or “DM”, given
being in “Well” at age A are basically replicates of the unconditional, albeit with changes in
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integration limits:

P{Well[Well at A} (a) = exp (— /A () + )\(u)) du

P{DM|Well at A} (a) / A(s) exp <— / o () + Aw) du)

A A

X exp (—/ wp(u,u—$) du) ds

The calculation of these conditional survival functions is implemented but not allowing for
duration-dependence. Thus it is only implemented assuming pp(a,d) = up(a).

a

1.4 Practical implementation

There are functions that wraps these formulae up for practical use, available in the Epi
package — here is a printout of the documentation:

erl Compute survival functions from rates and expected residual lifetime in an
illness-death model as well as years of life lost to disease.

Description

These functions compute survival functions from a set of mortality and disease incidence rates in an
illness-death model. Expected residual life time can be computed under various scenarios by the erl
function, and areas between survival functions can be computed under various scenarios by the y11
function. Rates are assumed supplied for equidistant intervals of length int.

Usage
survli( int, mu , age.in = 0, A = NULL )
erlli( int, mu , age.in = 0 )
surv2( int, muW, muD, lam, age.in = 0, A = NULL )

erl( int, muW, muD, lam=NULL, age.in = 0, A = NULL,
immune = is.null(lam), yl1=TRUE, note=TRUE )

y11( int, muW, muD, lam=NULL, age.in = O, A = NULL,
immune = is.null(lam), note=TRUE )

Arguments

int Scalar. Length of intervals that rates refer to.

mu Numeric vector of mortality rates at midpoints of intervals of length int

muW Numeric vector of mortality rates among persons in the "Well” state at midpoints of
intervals of length int. Left endpoint of first interval is age.in.

muD Numeric vector of mortality rates among persons in the "Diseased” state at
midpoints of intervals of length int. Left endpoint of first interval is age.in.

lam Numeric vector of disease incidence rates among persons in the "Well” state at

midpoints of intervals of length int. Left endpoint of first interval is age.in.

age.in Scalar indicating the age at the left endpoint of the first interval.
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A Numeric vector of conditioning ages for calculation of survival functions.

immune Logical. Should the years of life lost to the disease be computed using assumptions
that non-diseased individuals are immune to the disease (1am=0) and that their
mortality is yet still muW.

note Logical. Should a warning of silly assumptions be printed?
y1ll Logical. Should years of life lost be included in the result?
Details

The mortality rates given are supposed to refer to the ages age.in+(i-1/2)*int, i=1,2,3,....

The units in which int is given must correspond to the units in which the rates mu, muW, muD and lam
are given. Thus if int is given in years, the rates must be given in the unit of events per year.

The ages in which the survival curves are computed are from age.in and then at the end of
length(muW) (length(mu)) intervals each of length int.

The age.in argument is merely a device to account for rates only available from a given age. It has two
effects, one is that labeling of the interval endpoint is offset by this quantity, thus starting at age.in,
and the other that the conditioning ages given in the argument A will refer to the ages defined by this.

The immune argument is FALSE whenever the disease incidence rates are supplied. If set to TRUE, the
years of life lost is computed under the assumption that individuals without the disease at a given age
are immune to the disease in the sense that the disease incidence rate is 0, so transitions to the
diseased state (with presumably higher mortality rates) are assumed not to occur. This is a slightly
peculiar assumption (but presumably the most used in the epidemiological literature) and the resulting
object is therefore given an attribute, NOTE, that point this out. The default of the surv2 function is to
take the possibility of disease into account in order to potentially rectify this.

Value

survl and surv2 return a matrix whose first column is the ages at the ends of the intervals, thus with
length(mu)+1 rows. The following columns are the survival functions (since age.in), and conditional
on survival till ages as indicated in A, thus a matrix with length(A)+2 columns. Columns are labeled
with the actual conditioning ages; if A contains values that are not among the endpoints of the
intervals used, the nearest smaller interval border is used as conditioning age, and columns are named
accordingly.

survl returns the survival function for a simple model with one type of death, occurring at intensity
mu.

surv2 returns the survival function for a person in the "Well” state of an illness-death model, taking
into account that the person may move to the "Diseased” state, thus requiring all three transition rates
to be specified. The conditional survival functions are conditional on being in the "Well” state at ages
given in A.

erll returns a three column matrix with columns age, surv (survival function) and erl (expected
residual life time) with length (mu)+1 rows.

erl returns a two column matrix, columns labeled "Well” and ”Dis”, and with row-labels A. The entries
are the expected residual life times given survival to A. If y11=TRUE the difference between the columns
is added as a third column, labeled "YLL”.

Author(s)

Bendix Carstensen, <b@bxc.dk>

See Also

ci.cum
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Examples

library( Epi )
data( DMlate )
# Naive Lexis object

Lx <- Lexis( entry = list( age = dodm-dobth ),
exit = list( age = dox -dobth ),
exit.status = factor( !is.na(dodth), labels=c("DM","Dead") ),
data = DMlate )

# Cut follow-up at insulin inception

Lc <- cutlexis( Lx, cut = Lx$doins-Lx$dob,
new.state "DM/ins",

IIDMII )

precursor.states
summary( Lc )
# Split in small age intervals
Sc <- splitLexis( Lc, breaks=seq(0,120,2) )
summary( Sc )

# Overview of object
boxes( Sc, boxpos=TRUE, show.BE=TRUE, scale.R=100 )

# Knots for splines
a.kn <- 2:9%10

# Mortality among DM
mW <- glm( lex.Xst=="Dead" ~ Ns( age, knots=a.kn ),
offset = log(lex.dur),
family = poisson,
data = subset(Sc,lex.Cst=="DM") )

# Mortality among insulin treated
ml <- update( mW, data = subset(Sc,lex.Cst=="DM/ins") )

# Total motality
mT <- update( mW, data = Sc )

# Incidence of insulin inception
1I <- update( mW, lex.Xst=="DM/ins" ~ . )

# From these we can now derive the fitted rates in intervals of 1 year's
# length. In real applications you would use much smaller interval like
# 1 month:

# int <- 1/12

int <- 1

# Prediction frame to return rates in units of cases per 1 year
# - we start at age 40 since rates of insulin inception are largely
# indeterminate before age 40
nd <- data.frame( age = seq( 40+int, 110, int ) - int/2,
lex.dur = 1)
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"response" )
"response" )
"response" )

muW <- predict( mW, newdata = nd, type
muD <- predict( mI, newdata = nd, type
lam <- predict( 1I, newdata = nd, type

# Compute the survival function, and the conditional from ages 50 resp. 70
sl <- survl( int, muD, age.in=40, A=c(50,70) )
round( s1, 3 )

s2 <- surv2( int, muW, muD, lam, age.in=40, A=c(50,70) )
round( s2, 3 )

# How much is YLL overrated by ignoring insulin incidence?
round( YLL <- cbind(

y11( int, muW, muD, lam, A
y11( int, muW, muD, lam, A

40 ),
40, immune=TRUE ) ), 2 )[seq(1,51,10),]

41:90, age.in
41:90, age.in

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
matplot( 40:90, YLL,

type="1", 1lty=1, 1lwd=3,

ylim=c(0,10), yaxs="i", xlab="Age" )



Chapter 2

Exercises

2.1 Introduction

This is an exercise in R, to show you how to use mortality rates to construct survival
curves and how to compute the area between them — the years of life lost to a disease.

The rates we use as basis for the following calculations are derived from a reconstructed
version of the NDR, covering the period 1996-01-01 through 2015-12-31.

2.1.1 Integrals in practice

Computing the integrals that we see in the formulae is the same as computing the area
under the curves.

Computing the area under the curve ([ f(z)dz) is in practice done by subdividing the
z-axis in small intervals and calculating the value of the function f at the midpoint of each
interval. This is then multiplied by the width of each interval, and the contributions added.
Done.

It works out a little simpler if all intervals have the same width; then you can just add
the function values at the midpoints and then multiply the sum with the (common) width
of the intervals.

Either way, it is equivalent to the use of the so-called “trapezoidal rule”.

All you need is therefore a dataset with two variables, width and fval, each observation
representing one interval. The area under the curve (the integral) is then

> sum( width * fval )

This is what is exploited in the functions erl and y11, but the important feature to
recognize is that you need values of mortality /incidence rates at equidistant points in time
(at the midpoints of the intervals).

2.2 Mortality and incidence rates

First load the Epi package which has the relevant dataset(s) and epidemiological functions:

> library( Epi )
> print( sessionInfo(), 1=F )

11
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R version 3.4.0 (2017-04-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

Matrix products: default
BLAS: /usr/lib/libblas/libblas.so0.3.0
LAPACK: /usr/lib/lapack/liblapack.so0.3.0

attached base packages:
[1] utils datasets graphics grDevices stats methods  base

other attached packages:

[1] Epi_2.12
loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 MASS_7.3-45 compiler_3.4.0 Matrix_1.2-6
[5] plyr_1.8.4 parallel_3.4.0 survival_2.41-3 etm_0.6-2
[9] Rcpp_0.12.5 splines_3.4.0 grid_3.4.0 numDeriv_2014.2-1

[13] lattice_0.20-33

1. We load in the dataset of DM and population mortality and incidence in Denmark,
DMepi:

> data( DMepi )
> str( DMepi )

'data.frame': 4000 obs. of 8 variables:

sex : Factor w/ 2 levels "M","F": 1 212121212 ...
:num 0011223344 ...
: num 1996 1996 1996 1996 1996 ...
:num 1 947726594 ...

.nD: num 28 19 23 197 8886 7 ...

.nD: num 35454 33095 36451 34790 35329 ...

.DM: num 00O O0OO0OO0OO0OO0O0O0O0 ...

.DM: num 0.476 3.877 4.92 7.248 12.474 ...

PF P P PP PHBHH
< O < 0OMXYJ®>

> summary( DMepi )

sex A P X D.nD
M:2000 Min. : 0.00 Min. :1996 Min. : 0.00 Min. : 0.
F:2000 1st Qu.:24.75 1st Qu.:2001 1st Qu.: 12.00 1st Qu.: 14.
Median :49.50 Median :2006 Median : 43.00 Median : 102.
Mean :49.50 Mean :2006 Mean : 82.39 Mean : 238.
3rd Qu.:74.25 3rd Qu.:2010 3rd Qu.:138.00 3rd Qu.: 408.
Max. :99.00 Max. :2015 Max. :542.00 Max. :1164.

Y.nD D.DM Y.DM
Min. : 48.78 Min. : 0.00 Min. : 0.
1st Qu.:17053.30 1st Qu.: 0.00 1st Qu.: 134.
Median :32144.99 Median : 10.00 Median : 486.
Mean :26451.65 Mean : 37.84 Mean : 839.
3rd Qu.:35851.41 3rd Qu.: 67.00 3rd Qu.:1278.
Max. :45254 .35 Max. :215.00 Max. :5300.

[oNeoNeoN NoNe]

O > 0100 01O

A detailed description of the data can be obtained from:

> ?DMepi
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2. The dataset DMepi contains no. of incident DM cases, deaths and person-years for
persons with and without diabetes:

For each combination of sex, age (A — 100 levels, 0-99) and period (P — 20 levels,
1996-2015) in 1 year groups, we have the person-years in the “Well” (Y.nD) and the
“DM” (Y.DM) states, as well as the number of deaths from these (D.nD, D.DM) and the
number of incident diabetes cases from the “Well” state (X), the top of the dataset is:

> head( DMepi )

sex A P X D.nD Y.nD D.DM Y.DM
1 M O 1996 1 28 35453.65 0 0.4757016
2 F 0 1996 9 19 33094.86 0 3.8767967
3 M1 1996 4 23 36450.73 0 4.9199179
4 F 11996 7 19 34789.99 0 7.2484600
5 M2 1996 7 7 35328.92 0 12.4743326
6 F 2 1996 2 8 33673.43 0 8.0951403

3. In order to compute the years of life lost to diabetes we need the survival functions
for persons with and without diabetes. These are derived from age-specific incidence
and mortality rates. So we first have a look at the mortality and the incidence rates.

For the sake of simplicity we first restrict to a singe sex and a particular year, in this
illustration we use women and the year 2015, but choose you own.

To do the calculations we must sort the dataset by the age, A. The function order
tells you in which order you should take the elements of a vector to have it sorted, so
order (A) is the order in which we want the rows:

> w15 <- subset( DMepi, sex=="F'" & P==2015 )
> w15 <- wilb[order(w15$4),]
> head( wib )

sex A P X D.nD Y.nD D.DM Y.DM
3802 F 0 2015 O 8 27692.48 0 0.000000
3804 F 1 2015 4 2 27558.64 0 3.532512
3806 F 2 2015 10 4 28204.69 0 9.576318
3808 F 3 2015 7 1 28916.24 0 14.725530
3810 F 4 2015 4 3 30704.35 0 13.488022
3812 F 5 2015 7 3 31504.41 0 22.655031

4. We can then compute the relevant incidence and mortality rates for women in 2015,
including the total population mortality rate. The transform function does the job
of adding variables to a dataset:

> w15 <- transform( w15, mW = D.nD / Y.nD,

+ iW = X / Y.nD,

+ mD = pmax(0,D.DM / Y.DM,na.rm=TRUE),
+ mT = (D.nD+D.DM)/(Y.nD+Y.DM) )

The reason for the pmax () construction is that some units have Y.DM equal to 0, and
hence generate NAs for the rates. But we want a 0 and not an NA for those.
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> str( wib

)

'data.frame':

$

$ A : num

$ P : num

$ X : num

$ D.nD: num

$ Y.nD: num

$ D.DM: num O
$ Y.DM: num O
$mW : num 2
$ iW : num O
$mD : num O
$mT : num 2
> summary( w15 )
sex A
M: O Min.

F:100 1st Qu.:

Median
Mean
3rd Qu.
Max.
D.DM
Min. 0.00
1st Qu.: 0.00
Median : 12.50
Mean 42,71
3rd Qu.: 78.50
Max. :171.00
mD
Min. 0.000000
1st Qu.:0.000000
Median :0.007897
Mean :0.053352
3rd Qu.:0.036594
Max. 0.539797

100 obs

of 12 variables:

P X
: 0.00 Min. 12015 Min. . 0.
24.75 1st Qu.:2015 1st Qu.: 16.
:49.50 Median :2015 Median : 35.
:49.50 Mean :2015 Mean . 76.
:74.25 3rd Qu.:2015 3rd Qu.:152.
:99.00 Max. 12015 Max. :269.
Y.DM mW
Min. 0.0 Min. 0.000029
1st Qu.: 246.2 1st Qu.:0.000179
Median : 749.3 Median :0.001809
Mean :1157.1 Mean :0.035719
3rd Qu.:2012.0 3rd Qu.:0.017944
Max. :3560.4 Max. 0.374763
mT
Min. 0.0000297
1st Qu.:0.0001779
Median :0.0020369
Mean :0.0373181
3rd Qu.:0.0202001
Max. 0.3854294

7

7

00
00
50
81
50
00

sex : Factor w/ 2 levels "M","F": 2222222222 ...
0123456789 ...
2015 2015 2015 2015 2015 ...
0410747 108 7 17 ...
8241332141

27692 27559 28205 28916 30704 ...
0000000O0O0 ...
3.563 9.58 14.73 13.49 ...

.89e-04 7.26e-05 1.42e-04 3.46e-05 9.
0.000145 0.000355 0.000242 0.00013 ...
0000000O0O0 ...
.89e-04 7.26e-05 1.42e-04 3.46e-05 9.

e-05 ...

e-05 ...

D.

Min.

1st Qu.:
Median :

Mean

3rd Qu.

Max.

iWw

Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

nD
1.
6.
72.
1212,
:387.
:823.

[oNeN NeoNeoNe]

.0000000
.00056274
.0029587
.0032738
.0056458
.0081590

Y.nD

Min.

1st Qu.

Median
Mean

3rd Qu.

Max.

So we now have 4 new variables, representing incidence rates of DM, mortality rates
for person with and without DM and

5. We can plot the four different rates on a log-scale to get an overview:

> with( w15, matplot( A, cbind( mW, mD, mT, iW)*1000,
log="y", lwd=3, type="1", 1ty=1,
col=c("red","blue","limegreen", "black") ) )
> text( rep(5,4), 500%0.6°¢c(3,1,2,4), c("mort Well","mort DM","mort Total","DM inc"),
col=c("red","blue","limegreen", "black"), adj=0 )

+
+

+

The mortality rates among non-DM persons are slightly smaller than the total
population mortality. Another feature is the distinctly wiggly feature of the curves.
We shall return to this.

6. We can compute the corresponding survival functions using the survi1 function, that
takes a vector of mortality rates as input, assuming that they refer to midpoints of
intervals of the same length (argument int), first interval starting from 0.

563

120889
132238
127406
134814
141804
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Figure 2.1: Empirical mortality and incidence rates for women in Denmark 2015.

with( w15, matplot( survi( 1,
cbind( survi( 1,

survi( 1,

mW )[,1],
mW )[,2],
mD )[,2],
mT )[,2] ),

lwd=3, type="1l", 1lty=1, yaxs="i", ylim=0:1,

>
+
+ survi( 1,
+
+
+ col=c("red", "blue", "limegreen") ) )

Among these survival functions, only the green really has a proper interpretation as
the survival probability of a person from the general population.

The red curve is the survival of a person without diabetes under the assumptions of
1) diabetes will never occur 2) the mortality rate is the same as among those who can
get diabetes during the time before contracting the disease.

Finally, the blue curve is the expected survival of a person with diabetes at birth,
assuming that mortality rates do not depend on age at onset or duration of diabetes.
The rates used for the calculation are mortality rates for persons with diabetes,
regardless of the age in which the person acquired diabetes, so this assumption is
highly dubious. If we instead compute conditional survival functions, given that the
person is, say, H0 years old, we are more likely to get an interpretable survival
function.
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Figure 2.2: Survival curves for persons with and without DM and for the total population.

7. We can repeat the exercise for conditional survival given being alive at 50 years:

> with( w15, survi( 1, mW, A=50 ) )[17:23,]

yaxs="1i",

ylim=0:1,

xlab="Age", ylab="Conditional survival given age 50",
col=c("red", "blue", "limegreen"), xlim=c(50,100) ) )

age AO A50
17 16 0.9984714 1
18 17 0.9982920 1
19 18 0.9982621 1
20 19 0.9982331 1
21 20 0.9980611 1
22 21 0.9978735 1
23 22 0.9978192 1
> with( w15, matplot( survi( 1, mW, A=50 )[,1],
+ cbind( survi( 1, mW, A=50 )[,3],
+ survi( 1, mD, A=50 )[,3],
+ survi( 1, mT, A=50 )[,3] ),
+ 1wd=3, type="1", lty=1,
+
+
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Figure 2.3: Conditional survival curves. The years of life lost to DM (at age 50) is the area
between the blue survival curve for persons with DM and a curve for persons without DM
(red, immunity!) or the total population mortality (green).

8. Finally we compute the survival function for a well person, taking into account the
possibility of getting DM on the way and thus have a higher mortality. This rather
hairy computation is implemented in the function surv2 which of course must be
supplied with mortality rates for persons with and without diabetes as well as the
incidence rates of diabetes.

We just add this to the previous graph:

with( w15, matplot( survi( 1, mW, A=50 )[
cbind( survi( 1, mW, A=50 )[

survli( 1, mD, A=50 )[
survi( 1, mT, A=50 )[,3],
surv2( 1, mW, mD, iW, A=50 )[,3] ),
1wd=3, type="1", lty=c(1,1,1,2), yaxs="i", ylim=0:1,
xlab="Age", ylab="Conditional survival given age 50",
col=c("red", "blue", "limegreen", "magenta"), xlim=c(50,100) ) )

text( 95, Seq(0.9,0'7,,4)’ C(uu,un’nu,nn),

col=c("red","blue", "limegreen", "magenta") )

+V+H++++F+V
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Figure 2.4: Survival curves conditional on attaining age 50; the added (broken) line is the
correctly computed survival function.

From figure 2.4 we see that the corrected survival is practically indistinguishable from
the total population mortality.
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2.3 Years of life lost

9. The function y11 computes the years of life lost under the different scenarios. Since

10.

the calculated rates are in events per 1 person-year we can compute the years of life
lost, by putting the first argument of y11 to 1. We also set the A argument which
indicates the ages at which we want the expected residual life time computed; by
default the point 0 is always included — actually it is the value of age.in that is
used, but the default of this is 0.

> with( w15, y11( int=1, muW=mW, muD=mD, lam=iW, A=c(40,50,60,70,80) ) )

AO A40 A50 A60 AT70 A80
43.202977 6.787443 5.956740 4.564222 3.168186 1.680120

We can now see how much it matters if we assume immunity and if we replace the
mortality among the non-DM with the total mortality, So we omit the lam (diabetes
incidence) argument, and use either the mortality among persons without DM
(immunity assumption) or the total mortality in the population:

> with( w15, yl11( int=1, muW=mW, muD=mD, lam=iW, A=c(40,50,60,70,80) ) )

AO A40 A50 A60 AT70 A80
43.202977 6.787443 5.956740 4.564222 3.168186 1.680120

> with( w15, y11( int=1, muW=mW, muD=mD, A=c(40,50,60,70,80), n=F ) )

AO A40 A50 A60 A70 A80
44 .155298 7.610837 6.584063 4.954874 3.358854 1.739498

> with( w15, yl1( int=1, muW=mT, muD=mD, A=c(40,50,60,70,80), n=F ) )

AO A40 A50 A60 A70 A80
43.399315 6.859584 5.865477 4.333904 2.888800 1.488385

We see that there is a substantial difference between the approaches — the corrected
approach taking incidence into account gives results between the two other
approaches — the immunity assumption overestimates YLL and the uses of the total
mortality tends ti underestimate the YLL. At lest for this example.

To plot how years of life lost looks as a function of age, we use some more tightly
spaced ages for conditioning, and we put the results in a vector:

> y11£2015 <- with( wi5, y11( int=1, muW=mW, muD=mD, lam=ilW, A=c(40:90) ) )
> plot( 40:90, yl1f2015[-1], type="1", lwd=3 )

Now try to see graphically what happens if we ignore the DM incidence and just
compare to “immune” persons:

> y11f2015x <- with( w15, yl1( int=1, muW=mW, muD=mD, A=c(40:90) ) )

NOTE: Calculations assume that Well persons cannot get Ill (quite silly!).

> lines( 40:90, yllf2015x[-1], type="1", 1lwd=3, lty="22" )
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Finally compare to the total mortality:

> y11f2015t <- with( w15, y11( int=1, muW=mT, muD=mD, A=c(40:90), note=F ) )
> lines( 40:90, yll1f2015t[-1], type="1", 1lwd=3, lty="44" )

We can redo it using a better scaling of the y-axis (using ylim=): yaxs="i" makes
sure that the lover end of the y-axis is at the levels of the z-axis, so that visual
distance from the z-axis actually is the YLL:

> plot( 40:90, yl11f2015 [-1], type="1", 1lwd=3, ylim=c(0,8), yaxs="i" )
> lines( 40:90, yl1f2015x[-1], type="1", 1lwd=3, lty="12" )
> lines( 40:90, yl11f2015t[-1], type="1", 1lwd=3, 1lty="53" )

ylIf2015[-1]

0— T T T T |
40 50 60 70 80 90

40:90

Figure 2.5: Years of life lost to diabetes in women, using empirical mortality rates from 2015.
Full line: Estimates from the illness-death model, dotted line: estimates assuming immunity
among non-DM persons, dashed line: approximation using the total population mortality for
cOmparison.

So from figure 2.5 we see that the immune approach overestimates the YLL, mostly
in young ages, whereas the approach comparing to the total mortality underestimates
the YLL, primarily in older ages.
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2.4 Modeling / smoothing rates

This part of the exercise replaces the empirical rates which are only available in the same
form as data (that is 1 x 1 year age by period classes) with predicted rates based on a
statistical model. Another way of putting this is that we use statistical modeling to smooth
the rates, so that they are biologically plausible by having the property that they vary
smoothly by age and calendar time.

Moreover, this part of the exercises also collects estimated values of YLL for different
combinations of sex, age and calendar time in an array, so it is easier to print and plot
results.

11. The curves of mortality and just shown are just for women and just for one particular
year — cross-sectional mortality rates. This also gives wiggly curves which is just
attributable to random error. To some extent this carries over to the YLL curves as
well, less so because YLL is a cumulative measure.

We do have a dataset covering the 20-year period 19962015 incl. and both for men
and women; it would therefore be more timely fit proper statistical models for the
mortality and incidence rates over the period 1996-2015 for all ages 0-99, and use
predictions from these as input to the functions computing years of life lost.

The models we use will be age-period-cohort models [1] providing estimated mortality
rates for ages 0-99 and dates 1.1.1996-31.12.2015. Since we will use parametric
models using age and calendar time as quantitative variable we can make predictions
for any combination of age and calendar time — in principle also outside the period
where data are available, of course provided that we are willing to believe the
projections of the rates.

First we transform the age and period variables to reflect the mean age and period in
each of the cells in the age by period Lexis diagram, and we compute the total
number of deaths and person-years. We also restrict data to ages over 30:

> data( DMepi )

> DMepi <- transform( DMepi, A = A + 0.5,

+ P=P+ 0.5,

+ D.T = D.nD + D.DM,
+ Y.T = Y.nD + Y.DM )
> DMepi <- subset( DMepi, A>30 )

With the correct age and period coding of the age and date, we can then fit models
for mortality and incidence rates. Note that we for comparative purposes also fit a
model for the total mortality.

We will use natural splines (the function Ns), and hence we must specify a set of
knots for splines for the age, period and cohort effects — we use separate sets for the
age-effects in mortality and incidence:

> ( a.kn <- seq(40,95,,7) )

[1] 40.00000 49.16667 58.33333 67.50000 76.66667 85.83333 95.00000

> ( i.kn <- seq(35,85,,9) )
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2017

[1] 35.00 41.25 47.50 53.75 60.00 66.25 72.50 78.75 85.00

> ( p.kn <- seq(1997,2015,,5) )

[1] 1997.0 2001.5 2006.0 2010.5 2015.0

> ( c.kn <- s5eq(1910,1975,,7) )

[1] 1910.000 1920.833 1931.667 1942.500 1953.333 1964.167 1975.000

Once we defined the knots, we can check the number of different types of events

between knots:

> ae <- xtabs( cbind(D.T,D.nD,D.DM,X) ~ cut(A,c(30,a.kn,Inf)) + sex, data=DMepi )
> ftable( addmargins(ae,1), col.vars=3:2 )

D.T D.nD D.DM X

sex M F M F M F M F
cut(A, c(30, a.kn, Inf))
(30,40] 8642 4287 8165 4057 477 230 7872 6125
(40,49.2] 18307 10898 16597 10007 1710 891 22976 16695
(49.2,58.3] 41358 26273 35931 23709 5427 2564 38460 24456
(58.3,67.5] 86946 58330 71420 50860 15526 7470 52510 35467
(67.5,76.7] 123844 95912 100813 81764 23031 14148 34745 29303
(76.7,85.8] 155566 161873 130564 139518 25002 22355 16836 19403
(85.8,95] 91967 165741 80626 147904 11341 17837 3568 6160
(95, Inf] 9797 32147 8969 29868 828 2279 150 380
Sum 536427 555461 453085 487687 83342 67774 177117 137989
> ie <- xtabs( cbind(D.T,D.nD,D.DM,X) ~ cut(A,c(30,i.kn,Inf)) + sex, data=DMepi )
> ftable( addmargins(ie,1), col.vars=3:2 )

D.T D.nD D.DM X

sex M F M F M F M F
cut(A, c(30, i.kn, Inf))
(30,35] 3473 1568 3319 1476 154 92 2974 2653
(35,41.2] 6587 3479 6154 3287 433 192 7428 6447
(41.2,47.5] 14004 8326 12731 7634 1273 692 17215 11716
(47.5,53.8] 22380 13932 19684 12701 2696 1231 22733 14516
(53.8,60] 35402 22696 30227 20241 5175 2455 29178 18519
(60,66.2] 51911 34732 42720 30307 9191 4425 32412 21622
(66.2,72.5] 84278 61401 68097 52608 16181 8793 31227 24338
(72.5,78.8] 95308 79520 78218 67626 17090 11894 18670 17532
(78.8,85] 105069 111007 88437 95760 16632 15247 10480 12556
(85, Inf] 118015 218800 103498 196047 14517 22753 4800 8090
Sum 536427 555461 453085 487687 83342 67774 177117 137989

> pe <- xtabs( cbind(D.T,D.nD,D.DM,X) ~ cut(P,c(1990,p.kn,Inf)) + sex,

> ftable( addmargins(pe,1), co

sex

cut(P, c(1990, p.kn, Inf))
(1990,1997]

(1997,2002]

(2002,20086]

(2006,20101]

(2010,2015]

(2015, Inf]

Sum

1.vars=3:2 )

D.T
M F

29292 29795
140143 146999
1081563 113870
131758 137025
101500 102343

255681 25429
536427 555461

D.nD

D.DM

M F M

26337

27139

123654 132636

92741

101093

109604 118982

80691
20058
453085

86678
21159
487687

2955
16489
15412
22154
20809

5523
83342

F

2656
14363
12777
18043
15665

4270
67774

X
M

6294
34270
33116
51235
42722

9480

177117

data=DMepi )

F

5096
27040
25799
39492
33280

7282

137989
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> ce <- xtabs( cbind(D.T,D.nD,D.DM,X) ~ cut(P-A,c(-Inf,c.kn,Inf)) + sex, data=DMepi )
> ftable( addmargins(ce,1), col.vars=3:2 )

D.T D.nD D.DM X
sex M F M F M F M
cut(P - A, c(-Inf, c.kn, Inf))
(-Inf,1.91e+03] 21696 53528 19912 49797 1784 3731 536
(1.91e+03,1.92e+03] 100947 156279 89351 139871 11596 16408 5730
(1.92e+03,1.93e+03] 172751 178116 145838 153694 26913 24422 22062 2
(1.93e+03,1.94e+03] 120506 92151 96478 78028 24028 14123 42920 3
(1.94e+03,1.95e+03] 77803 50607 63705 44033 14098 6574 56002 3
(1.95e+03,1.96e+03] 31242 18697 27224 16676 4018 2021 33972 2
(1.96e+03,1.98e+03] 10102 5387 9268 4935 834 452 14341 1
(1.98e+03, Inf] 1380 696 1309 653 71 43 1554
Sum 536427 555461 453085 487687 83342 67774 177117 13

Once we have fixed the knots for the age, period and cohort effects we fit Separate
APC-models for mortality among non-diseased (mW), mortality among diseased (mD),
total mortality (mT) and incidence rates (iW), separately for men (suffix .m) and for
men (suffix .f).

> mW.m <- glm( D.nD ~ Ns(A ,knots=a.kn,int=TRUE) +

+ Ns( P,knots=p.kn,ref=2005) +

+ Ns (P-A,knots=c.kn,ref=1950),

+ offset = log(Y.nD),

+ family = poisson,

+ data = subset( DMepi, sex=="M" ) )

> mD.m <- update( mW.m, D.DM ~ . , offset=log(Y.DM) )
> mT.m <- update( mW.m, D.T ~ . , offset=log(Y.T ) )
> iW.m <- glm( X ~ Ns(A ,knots=i.kn,int=TRUE) +

+ Ns( P,knots=p.kn,ref=2005) +

+ Ns (P-A,knots=c.kn,ref=1950),

+ offset = log(Y.nD),

+ family = poisson,

+ data = subset( DMepi, sex=="M" ) )

The models for women are fitted by simply updating the models for men, using a
different subset of the dataset:

mW.f <- update( mW.m, data = subset( DMepi, sex=="F"
mD.f <- update( mD.m, data = subset( DMepi, sex=="F"
mT.f <- update( mT.m, data = subset( DMepi, sex=="F"
iW.f <- update( iW.m, data = subset( DMepi, sex=="F"

vV Vv Vv Vv
non

e e e
e e e

For comparison we can show how the smoothed rates for the midpoint of 2015
compared to the empirical rates for women for the period of 2015. So we first predict
the rates from the models:

nd <- data.frame( A = 30:99+0.5,
P = 2015.5,
Y.nD = 1,
Y.DM = 1,
Y.T 1)

mulW.f <- ci.pred( mW.f, nd )
muD.f <- ci.pred( mD.f, nd )
muT.f <- ci.pred( mT.f, nd )
lam.f <- ci.pred( iW.f, nd )

VVVYV+ + + +V
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> clr <- c("red","blue", "limegreen", "black")
> with( w15, matplot( A, cbind( mW, mD, mT, iW)*1000, lwd=3,
+ log=”y", type=”1”, lty=1,
+ col=clr ) )
> matlines( nd$A, cbind(muW.f,muD.f,muT.f,lam.f)*1000,
+ lty=1, lwd=c(3,1,1),
+ col=rep(clr,each=3) )
> cn <- par("usr")
> text( rep( cn[1:2]%%%c(8,2)/10, 4 ),
+ 10~ ((cbind(9:6,1:4)/10) /*}cn[4:3]1) [c(3,1,2,4)],
+ c("no DM mort","DM mort","Total mort","DM inc"), adj=1,
+ col=clr )
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Figure 2.6: Empirical rates for the year 2015 and fitted rates for women at mid-2015.

12.

From figure 2.6 we see a much more credible version of the rates; a basis we should
use for predicting the years of life lost.

Also we can redo the YLL analyses with the smoothed rates, and plot it on top of the
empirical rate based ones; first we re-compute and save the YLL based on the
empirical rates:
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13.

> y11£2015s <- with( w15, yll( int=1, muW=mW, muD=mD, lam=il,
+ age.in=0, A=c(40:90) ) )
> y11£20151i <- with( w15, yll( int=1, muW=mW, muD=mD, age.in=0, A=c(40:90) ) )

NOTE: Calculations assume that Well persons cannot get I1ll (quite silly!).

> y11f2015t <- with( w15, yl11( int=1, muW=mT, muD=mD, age.in=0, A=c(40:90), note=F ) )

and then the corresponding YLL computed from the rates as predicted from the
statistical model:

> y11sf2015s <- yl11( int=1, muW=muW.f[,1], muD=muD.f[,1], lam=lam.f[,1], age.in=30, A=
> y11sf2015i <- yl1( int=1, muW=muW.f[,1], muD=muD.f[,1], age.in=30, A=c(40:90) )

NOTE: Calculations assume that Well persons cannot get I11 (quite silly!).

> y11sf2015t <- yl1( int=1, muW=muT.f[,1], muD=muD.f[,1], age.in=30, A=c(40:90), note=

Finally we can plot these 6 curves together; the wiggly, empirical based as you saw
before in gray, and the new model-based in black

plot( 40:90, yl1f2015s [-1], type="1", 1lwd=3, ylim=c(0,8), yaxs="i", col=gray(0.6)
lines( 40:90, yl1f2015i [-1], type="1", lwd=3, 1ty="12", col=gray(0.6) )

lines( 40:90, yllf2015t [-1], type="1", lwd=3, 1ty="53", col=gray(0.6) )

# smoothed estimates

lines( 40:90, yllsf2015s[-1], type="1", 1lwd=3 )

lines( 40:90, yllsf2015i[-1], type="1", 1lwd=3, lty="12" )

lines( 40:90, yllsf2015t[-1], type="1", 1lwd=3, lty="53" )

VVVVYVVYV

But we would like to see YLL for different (well, all) combinations of sex, age,
calendar time and would like to explore the different ways of computing YLL. Hence
we set up a 4-dimensional array to collect the YLL as computed by different methods
and differences between them by sex, age and date:

> # ages and dates for computing YLL

> a.ref <- 30:90

> p.ref <- 1996:2016

> # array to hold results

> aYLL <- NArray( list( type = c("Sus","Imm","Tot","I-S","I-S Ex}","T-S","T-S Ex}"),
+

+

+

>

sex = levels( DMepi$sex ),
age = a.ref,
date = p.ref ) )

str( aYLL )

logi [1:7, 1:2, 1:61, 1:21] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4

..$ type: chr [1:7] "Sus" "Imm" "Tot" "I-S"

..$ sex : chr [1:2] "M" "F"

..$ age : chr [1:61] "30" "31" "32" "33" .

..$ date: chr [1:21] "1996" "1997" "1998" "1999"

> dim( aYLL ) ; prod( dim( aYLL ) )

type sex age date
7 2 61 21

[1] 17934
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Figure 2.7: Years of life lost to diabetes in women, using empirical mortality rates from
2015 (gray) and smoothed estimates of rates (black). Full line: Estimates from the illness-
death model, dotted line: estimates assuming immunity among non-DM persons, dashed line:
approximation using the total population mortality for comparison.

So aYLL is now a 4-dimensional array with a total of 17,934 entries, each representing
a YLL fora particular combination of sex, age etc. A particular element (number) in
the array can be referenced as, say, a¥YLL["Imm","M","35","2001"]. Note that the
"35" refer to the entry for 35 year old (the label is "35"). We could instead of the
names refer to the number along each dimension, so the element
aYLL["Imm","M","35","2002"] is the same as aYLL[2,1,6,7] or
aYLL["Imm",1,"35",7], since "35" is the 6" element in the age-dimension (the 3rd
dimension). If we want all elements along the age-dimension we just leave the space
between commas blank: aYLL["Imm", 1m7]. But any mention of a subset of the array
must have three commas between the square brackets.

Once we have the array, we can fill values in it using a loops over calendar time; the
age-dimension is an argument to y11 and sex is handled in completely different
models, as is the three different approaches to computing the YLL:

> system. time(
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+ for( ip in p.ref )
+ {
+ nd <- data.frame( A = seq(30.2,100,0.2)-0.1,
+ P = ip,
+ Y.nD = 1,
+ Y.DM = 1,
+ Y.T =1)
+ muW.m <- ci.pred( mW.m, nd )[,1]
+ muD.m <- ci.pred( mD.m, nd )[,1]
+ muT.m <- ci.pred( mT.m, nd )[,1]
+ lam.m <- ci.pred( iW.m, nd )[,1]
+ muW.f <- ci.pred( mW.f, nd )[,1]
+ muD.f <- ci.pred( mD.f, nd )[,1]
+ muT.f <- ci.pred( mT.f, nd )[,1]
+ lam.f <- ci.pred( iW.f, nd )[,1]
+ aYLL["Imm","M", ,paste(ip)] <- y11( int=0.2, muW.m, muD.m, lam=NULL , A=a.ref,
+ aYLL["Imm","F", ,paste(ip)] <- y11( int=0.2, muW.f, muD.f, lam=NULL , A=a.ref,
+ aYLL["Tot","M", ,paste(ip)] <- y11( int=0.2, muT.m, muD.m, lam=NULL , A=a.ref,
+ aYLL["Tot","F", ,paste(ip)] <- y11( int=0.2, muT.f, muD.f, lam=NULL , A=a.ref,
+ aYLL["Sus","M", ,paste(ip)] <- y11( int=0.2, muW.m, muD.m, lam=lam.m, A=a.ref,
+ aYLL["Sus","F", ,paste(ip)] <- y11( int=0.2, muW.f, muD.f, lam=lam.f, A=a.ref,
+

})

user

18.639  0.000

One advantage of an array is that we can perform

system elapsed

18.638

some of the dimensions:

aYLL["I-S"
aYLL["I-S Ex}"
aYLL["T-S"
aYLL["T-S Ex}"

vV Vv Vv Vv

]
3:;]
] <=
]

290

<- aYLL["Imm",,,]

<- (aYLL["Imm",,,]
aYLL["Tot",,,] -

<- (aYLL["Tot",,,]

aYLL["Sus",,,]

aYLL["Sus",,,]) / aYLL["Sus",,,] * 100

aYLL["Sus",,,]

simple operations over all levels of

- aYLL["Sus",,,]) / aYLL["Sus",,,] * 100

And a further advantage is the possibility to get a simple overview of select parts of
the values using ftable; here we take every 10*" age and every 5" date element and
list in two different ways, by changing row.vars and col.vars:

age.
age.
age.
age.
age.
age.

in
in
in
in
in
in

> round( ftable( aYLL[,,seq(11,51,10),seq(1,21,5)], col.vars=c(3,2), row.vars=c(4,1) )

age
sex
date type
1996 Sus
Imm
Tot
I-S
I-S ExY%
T-S
T-S ExY%
2001 Sus
Imm
Tot
I-S
I-S ExY%
T-S
T-S ExY%

40

M F
9.3 9.9
10.2 10.7
9.6 10.2
0.9 0.8
9.6 7.9
0.3 0.3
3.6 2.8
8.6 8.4
9.7 9.2
9.0 8.7
1.1 0.8
12.2 9.6
0.3 0.3
3.8 3.2

_
NONONNOINO OWONW-N

OAON OO0 OWNNOWNO -

50
M

s

NOOWONNNNONOOWWwO
WNOOTNWONFENONNNDO

[y

QO OO UTUTU1 OO 0O uory,

60
M

NOOWOONOWNOG OO U101 © O

QO VO UTOHOUITOONOO”TNO®
OO NNNPO 010N

s

WO NOWWWNOO”TO WWwWwWw

70
M

O, WP 0O, LN OO

80

F M
4.7 1.9
5.0 2.0
4.6 1.8
0.3 0.1
5.4 3.7
-0.1 -0.1
-2.2 -4.6
4.0 2.0
4.3 2.0
3.9 1.8
0.3 0.1
6.4 4.2
-0.1 -0.1
-2.6 -6.3

OO wWoOoONNMDNPOWONDNDDN
NFEFOFRPNPOWORLRNDEOTNO

-
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1
2.2
2.0

1.7
1.8
1

3.6
3.8

.1

3.3
2.9
0.3

8.6
-0.2

4.6 .1
5.6

6.4

7.6 6.0
6.9
6.2

7.5

2006 Sus

.1 .2
4.5

6.5
0.7

8.4
7.8
0.9

8.6

Imm

Tot

.6

3.4
0.3
7.5

.1
0.5
9.8
0.0

-0.2

7.8
1.
14.2

1
4.0

1
4.6

0.6
12.6

0.9

I-S

14.4 11.0

11.3

I-S ExY,

T-S

.1

-0
-3.5

.1
-1.3

-0

1
1

0.2

0.3
3.7
6.5
7.8
6.9
1
19.5

-6.4

1
1
1

-7.7
1
1

-5.5

3.3 2. 2.0

6.5
7.5

T-S ExY%

2011 Sus

.5
.6

3.0
3.3

2

2.8

4.3

.1
4.7

5.3 5.5
6.3 6.3
5.7
0.8

5.5
1

.1
2.6
0.3

11.8

4.8

Imm

Tot

1.4

4.3

4.0

6.8

1
15.

1
5.2

.1
.1

-0.2

0.3
9.6

0.5
12.7

0.7
17.2

.0

I-S

19.7 14.4

1
0.3

I-S ExY

T-S

1

-0.
-7.8
1
1
1

.1
-4.1 -10.3

0.0 -0.2 -0

0.0
-1

0.2

0.2

0.4
5.7
6.5
7.3
6.3
0.9
13.4

-6.9

0.1
4.4
4.7

.1
.1

3.2
4.6

3.6

T-S ExY%

2016 Sus

1.6

.1
.2
2.8

2.9

5.3 5.7

6.5
7.2

1.7
1.3

.1
2.5

0.2

6.2

1

1
0.7
13.5

Imm

Tot

.1
0.4

3.7

5.5
0.5

6.5

0.7
10.
-0.

1
3.3

.2 .1
.0 .1
-0.3 -0.2 -0.2

0.5
11

I-S

.1
-0.4

.1
-0.3

9.4 .7

-0.2

1
1

I-S ExY

T-S

-0.4

-0.2

-9.4 -15.7 -12.2

-6.0 -13.4

-2.9 -8.8

-4.3

-1.0

-1.9

T-S Ex%

c(1,4) )

c(2,3), row.vars=

> round( ftable( aYLL[,,seq(11,51,10),seq(1,21,5)], col.vars

sex
age

80

70

60

50

40

80

70

60

50

40

date

type
Sus

2.6
2.3

2.
1
1

4.7

6.8
5.7

9.9 8.5

7.4 5.5 3.6 1.9
6.9 5.2
6.0 4.6

5.3
5.3

9.3

8.6

1996
2001

4.0

7.2

8.4
7.6

2.0
1

1
1

3.5
3

1
.8

.1 3.6
4.3 3.0

6.4
5

.7
.5

.1

7.5

2006

.5

6.5

2.8

1
1
5.9
5.8

5.2

6.5

2011

1
5.0

4.4
4.3

5.7

6.5
10.7

2.9

6.5
10.2

2016

2.7

.2
.2

.2
7.9

2.0

2
1
1
1

3.8

1
7.8
6.9
6.3

1996
2001

Tmm

2.4
2.2

1
1

9.2

3.8

9.7
8.6

3.8
3.3

5
3.2

.1
6.3

6.2

8.4
7.5

3.3

2006

4.8

1
1

3.5

4.7

7.8
7.3
9.6
9.0
7.8
6.9
6.3
0.9
1.

2011

4.7

7.2
10.2

4.6

1
7.6

2016

2.5
2.2
2.0
1
1

4.6

6.8
5.7

8.7
7.3
6.5
5.7
5.5
0.7
0.7
0.7
0.8
0.5
7.9

1.8

1
1
1
1

5.5

1996
2001

Tot

3.9

8.7
7.8
6.8
6.5
0.8
0.8
0.9
1

5.2 3.4
2.9

1
6.2

3.4
2.9
2.8
0.3
0.3
0.3
0.3

0.2

.1
4.3

4.5

2006

4.0 2.6

5.5

2011

.1
0.5
0.5
0.5
0.5

1 3.7 2.5

0.7
0.9

2016

1
1
1
1
1
3.2
3.5

4.0

.1
.1
.1
.1
.1

0.2
3.7

0.5

1996
2001

I-S

0.3

0.6

0.9 0.6 0.3

1

1.
1

2006

.0

0.3

0.7
0.5

2011

0.4

0.7
7.9

0.2

0.7
9.8

0.9
12.5

9.6
12.2

2016

I-S Ex% 1996

5.4
6.4
7.5

9.6
6.0

.1
8.6
9.8

12.7

.1
7.5

8.6

9.5
11

9.6
11.3

4.2

10.8

2001

.0

12.6 8.6 4.6
11

14.4

14.2

2006

5.2
3.3

14 .4

15.1
10.1
0.3
0.3
0.2

.1
.1
.1
.1
.1

.8
.1
-0.2

.1
.1

17.2
11
-0.2

19.7

19.5

2011

9.4 .1
0.2 0.0
0.0
0.0
0.0
-0.3

.7

13.5

13.4

2016

1
1
1
1

-0.2

-0.1
-0.
-0
-0

-0
-0
-0

0.3 0.2 0.0 -0
0.3 -0

0.3
0.4

1996
2001

T-S

1
.1
.1

-0.3

0.2

0.0

0.2

.1

0
0.2
-0.2

1

-0.
0.0

2006

0.3

-0.2

0.2

2011

-0.1

-0.2 -0.4 -0.4 -0.2

1

-0.
3.6

2016

T-S Ex% 1996

-4.3

0.4 -2.2
0.4

2.1

-2.6 -4.6

0.5

2.7
2.6

-5.2

-2.6

2.3

-0.2 -3.9 -6.3

3.8

2001
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2006 3.7 2.1 -1.3 -5.5 -7.7 3.3 2.0 -0.2 -3.5 -6.4
2011 5.7 3.6 -1.1 -6.9 -10.3 5.1 3.2 0.1 -4.1 -7.8
2016 -1.9 -4.3 -8.8 -13.4 -15.7 -1.0 -2.9 -6.0 -9.4 -12.2

14. Plotting the age- and time trends in the YLL is done by selecting relevant parts of
the array; for example aYLL["Sus","M",,] is an age by period matrix of years of life
lost to DM for men, using the correct model (susceptible).

15.

So we plot this family of curves showing the change over time, one panel for men and
one panel for women

VVVV+++VVVVVYV +H++ VY

par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
matplot( a.ref, aYLL["Sus","M",,],

type="1", 1ty=1, col="blue", lwd=1:2,

ylim=c(0,12), xlab="Age",

ylab="Years lost to DM", yaxs="i" )
abline(v=50,h=1:10,col=gray(0.7))
text( 90, 11, "Men", col="blue", adj=1 )
text( 40, aYLL["Sus","M","40","1996"], "1996", adj=c(0,0), col="blue" )
text( 43, aYLL["Sus","M",6"44","2016"], "2016", adj=c(1,1), col="blue" )
matplot( a.ref, aYLL["Sus","F",,],

type="1", 1ty=1, col="red", lwd=1:2,

ylim=c(0,12), xlab="Age",

ylab="Years lost to DM", yaxs="i" )
abline(v=50,h=1:10,col=gray(0.7))
text( 90, 11, "Women", col="red", adj=1 )
text( 40, aYLL["Sus","F",6"40","1996"], "1996", adj=c(0,0), col="red" )
text( 43, aYLL["Sus","F",6"44",6"2016"], "2016", adj=c(1,1), col="red" )

A similar piece of code is needed to make the corresponding curves for Imm and Tot,
so we simply put it all in a function where the type of calculation is the argument.
All other variables will just be taken from the global environment, so the function
defined here will only work at this place in the program.

V+ +++++++++++++++++++V

plyll <- function(wh){
par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )

matplot( a.ref, aYLL[wh,"M",,],

type="1", 1ty=1, col="blue", lwd=1:2,

ylim=c(0,12), xlab="Age",

ylab="Years lost to DM", yaxs="i" )
abline(v=50,h=1:12,col=gray(0.7))
text( 90, 11.5, "Men", col="blue", adj=1 )
text( 40, aYLL[wh,"M","40","1996"], "1996", adj=c(0,0), col="blue" )
text( 43, aYLL[wh,"M","44","2016"], "2016", adj=c(1,1), col="blue" )

matplot( a.ref, aYLL[wh,"F",,],

type="1", 1ty=1, col="red", lwd=1:2,

ylim=c(0,12), xlab="Age",

ylab="Years lost to DM", yaxs="i" )
abline(v=50,h=1:12,col=gray(0.7))
text( 90, 11.5, "Women", col="red", adj=1 )
text( 40, aYLL[wh,"F","40","1996"], "1996", adj=c(0,0), col="red" )
text ( 43, aYLL[wh,"F'",6"44","2016"], "2016", adj=c(1,1), col="red" )
}
plyll("Imm")
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> plyll("Tot")

> plyl1("Sus")
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Figure 2.8: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes, assuming the persons without diabetes at
a given age remain free from diabetes (immunity assumption). The lines refer to date of

evaluation; the top lines refer to 1.1.1996 the bottom ones to 1.1.2012. Blue curves are men,
red women.

From figure 2.9 we see that for men aged 50 the years lost to diabetes has decreased
from a bit over 8 to a bit less than 6 years, and for women from 8.5 to 5 years; so a
greater improvement for women.
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Figure 2.9: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes, allowing the persons without diabetes at a
given to contract diabetes and thus be subject to higher mortality. The lines refer to date of
evaluation; the top lines refer to 1.1.1996 the bottom ones to 1.1.2012. Blue curves are men,

red women.
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Figure 2.10: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes. Allowance for susceptibility is approximated
by using the total population mortality instead of non-DM mortality. The lines refer to date

of evaluation; the top lines refer to 1.1.1996 the bottom ones to 1.1.2012. Blue curves are
men, red women.
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2.5 Comparing men and women

16. It is illustrative to see the lines for men and women overlaid in the same plot — here
men and women overlaid and plots side by side for two different approaches to
computation of YLL:

par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )

matplot( a.ref, cbind(aYLL["Imm","M",,],aYLL["Imm","F",,]),
type="1", 1ty=1, col=rep(c("blue","red"),each=18), lwd=1:2,
ylim=c(0,12), xlab="Age",
ylab="Years lost to DM", yaxs="i" )

abline(v=50,h=1:12,col=gray(0.7))

text( 40, aYLL["Imm","F","40","1996"], "1996", adj=c(0,0) )

text( 43, aYLL["Imm","F",6"44",6"2016"], "2016", adj=c(1,1) )

mtext ( "Immunity to DM", side=3 )

matplot( a.ref, cbind(aYLL["Sus","M",,],aYLL["Sus","F",,]),
type="1", 1ty=1, col=rep(c("blue","red"),each=18), lwd=1:2,
ylim=c(0,12), xlab="Age",
ylab="Years lost to DM", yaxs="i" )

abline(v=50,h=1:12,col=gray(0.7))

text( 40, aYLL["Sus","F","40","1996"], "1996", adj=c(0,0) )

text( 43, aYLL["Sus","F","44","2016"], "2016", adj=c(1,1) )

mtext ( "Susceptible to DM", side=3 )

VVVV+++VIVVIVYV +H S+ + VYV

From figure 2.11 we see that the improvement has been larger for women than for
men, but it should be remembered that women have a longer life expectancy then
men. Under the (unrealistic) assumption of immunity the improvement in years of
life lost to DM for 50-year old women were from 9.2 to 6.2 years and for men from 8.1
to 6.1 years. Under the more realistic assumption that the non-diseased comparison
group is allowed to acquire diabetes after the conditioning age, the drop in YLL for
women were from 8.5 to 5.7 and for men from 7.4 to 5.3 years.

Also from the tables above we see that the general pattern in the difference between
the naive (Immune) and the more realistic (Susceptible) is an overestimation of the
years of life lost by about 1 year, or some 5-10%. That is not dramatic, but certainly
neither negligible.
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Figure 2.11: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes. The left panel is based on an assumption
that persons without DM at a given age will not contract DM; the right panel is based on a
model where persons at a given age can contract diabetes and thus transfer to a state with
higher mortality. The lines refer to date of evaluation; the top lines refer to 1.1.1996 the
bottom ones to 1.1.2016. Blue curves are men, red women.
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2.6 Comparing approaches

17. In order to compare the different approaches to computing years of life lost, we plot
the results from the three different approaches in three select years:

cpyll <-
function (wh)
{
par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
for( sx in c("M","F") )
{
matplot( a.ref, t(aYLL[c("Sus","Tot","Imm"),sx,,paste(wh[1])]),
col="transparent",
ylim=c(0,12), xlab="Age", ylab="Years lost to DM", yaxs="i" )
for( yy in wh )
matlines( a.ref, t(aYLL[c("Sus","Tot","Imm"),sx,,paste(yy)]),
type="1", 1lty=c("solid","63","22"), lend="butt",
col=if (sx=="M") "blue" else "red", lwd=2 )
abline(h=1:12,v=50,col=gray(0.7))
text( 90, 11.5, sx, col=if( sx=="M") "blue" else "red", adj=1 )
F
}
cpyll( seq(1996,2016,10) )
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Figure 2.12: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes at the beginning of the years 1996, 20006, and
2016 (top to bottom). Full lines are from using the correct calculation in the illness-death
model, dotted lines using the naive approach (immunity assumption) and the broken lines the
comparison with the total mortality. Blue curves are men, red women.
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From figure 2.12 we see that the immunity assumption invariably overestimates the
years of life lost, at age 50 by something between 6 months and a year, whereas the
approximation using the total population mortality (including the diabetics) is much
closer to the correct calculation.

The conclusion is that the calculation of YLL should preferably be based on all rates
in an illness-death model, and if this is not possible for want of access to diabetes
incidence rates, then based on a comparison of the mortality among DM patient and
the total population mortality.



Chapter 3

Concepts in survival and demography

The following is a summary of relations between various quantities used in analysis of
follow-up studies. They are ubiquitous in the analysis and reporting of results. Hence it is
important to be familiar with all of them and the relation between them.

3.1 Probability

Survival function:

S(t) = P{survival at least till ¢}
P{T>t}=1-P{T <t}=1-F(t)

Conditional survival function:

S(ttentry) = P{survival at least till ¢| alive at teptry }
= S(t)/S(tentry)

Cumulative distribution function of death times (cumulative risk):

F(t) = P{death before t}
P{T <t} =1-S(t)

Density function of death times:

f(t) = limP{death in (¢t,t+ h)} /h = }llim Fle+ h})L — F(t) = F'(t)

h—0 —0

Intensity:

At) = }LILI%) P{event in (¢,t + h] | alive at t} /h

_ oy PR - FQ) _f()

0 S(t)h —S(t)

T S(t+ h) — S(t) dlog S(t)
= S(t)h ot
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The intensity is also known as the hazard function, hazard rate, mortality /morbidity
rate or simply “rate”.

Note that f and \ are scaled quantities, they have dimension time™*.

Relationships between terms:

~ dlog S(t)

a0

S(t) = exp (— /0 ") du) — oxp(—A()

The quantity A(t) = fot A(s) ds is called the integrated intensity or the cumulative
rate. It is not an intensity (rate), it is dimensionless, despite its name.

Cdlog(S() _ S'() _ F() _ ()
dt Sty 1-F(t)  S)

A(t) =
The cumulative risk of an event (to time t) is:
t
F(t) = P{Event before time t} = / Mu)S(u)du=1—85(t)=1—e*®
0

For small |z| (< 0.05), we have that 1 —e™* & x, so for small values of the integrated
intensity:
Cumulative risk to time t ~ A(t) = Cumulative rate

3.2 Statistics

Likelihood contribution from follow up of one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P{event at t4|entry at to} = P{survive (to,t1)| alive at ¢y} x
P{survive (t,t5)| alive at ¢;} x
P{survive (ts,t3)| alive at t5} X
P{event at t4] alive at t3}

Each term in this expression corresponds to one empirical rate

(d,y) = (#deaths, #risk time), i.e. the data obtained from the follow-up of one
person in the interval of length y. Each person can contribute many empirical rates,
most with d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d,y):
(X)) = dlog(N\) — Ay

This is under the assumption that the rate (\) is constant over the interval that the
empirical rate refers to.

I This is a concept coined by BxC, and so is not necessarily generally recognized.
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Log-likelihood for several persons. Adding log-likelihoods from a group of persons
(only contributions with identical rates) gives:

Dlog(\) — XY,

where Y is the total follow-up time, and D is the total number of failures.

Note: The Poisson log-likelihood for an observation D with mean \Y is:
Dlog(\Y) — AY = Dlog(\) + Dlog(Y) — \Y

The term D log(Y) does not involve the parameter A, so the likelihood for an
observed rate can be maximized by pretending that the no. of cases D is Poisson
with mean Y. But this does not imply that D follows a Poisson-distribution. It is
entirely a likelihood based computational convenience. Anything that is not
likelihood based is not justified.

A linear model for the log-rate, log(A) = X/ implies that
AY = exp(log(A) +log(Y)) = exp(X 8 + log(Y))

Therefore, in order to get a linear model for log(\) we must require that log(Y")
appear as a variable in the model for D ~ (AY') with the regression coefficient fixed
to 1, a so-called offset-term in the linear predictor.

3.3 Competing risks

Competing risks: If there is more than one, say 3, causes of death, occurring with
(cause-specific) rates A1, Ao, Az, that is:

Ae(a) = }llirr(l) P{death from cause c in (a,a + h| | alive at a} /h, ¢=1,2,3
%
The survival function is then:
S(a) = exp <—/ Ar(u) + Ao(u) + Ag(u) du)
0

because you have to escape all 3 causes of death. The probability of dying from cause
1 before age a (the cause-specific cumulative risk) is:

a a
P{dead from cause 1 at a} = / A1(u)S(u)du # 1 — exp (—/ A1 (u) du)

0 0
The term exp(— f; Ai(u) du) is sometimes referred to as the “cause-specific survival”,
but it does not have any probabilistic interpretation in the real world. It is the
survival under the assumption that only cause 1 existed and that the mortality rate
from this cause was the same as when the other causes were present too.

Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes
1, 2 and 3 respectively:

1=S5(a)+ /Oa A1 (u)S(u) du + /a Ao (u)S(u) du + /a A3(u)S(u)du, Va

0 0



40 3.4 Demography YLL 2017

Subdistribution hazard Fine and Gray defined models for the so-called subdistribution
hazard. Recall the relationship between between the hazard () and the cumulative
risk (F'):
Aa) = — dlog(S(a)) _ dlog(1 — F(a))
da da
When more competing causes of death are present the Fine and Gray idea is to use

this transformation to the cause-specific cumulative risk for cause 1, say:

Sula) = dlog(ld—a Fi(a))

This is what is called the subdistribution hazard, it depends on the survival function
S, which depends on all the cause-specific hazards:

Fi(a) = P{dead from cause 1 at a} = / A1 (u)S(u) du
0

The subdistribution hazard is merely a transformation of the cause-specific
cumulative risk. Namely the same transformation which in the single-cause case
transforms the cumulative risk to the hazard.

3.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age
(a) integrated with respect to the distribution of age at death:

FIL — /Oooaf(a)da

where f is the density of the distribution of lifetime (age at death).

The relation between the density f and the survival function S is f(a) = —5'(a), so
integration by parts gives:

EL = /Oooa(—S'(a)) da = — [aS(a)Ko

—i—/OOOS(a)da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
definition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) = /00 S(u)/S(a)du

Lifetime lost due to a disease is the difference between the expected residual lifetime for
a diseased person and a non-diseased (well) person at the same age. So all that is
needed is a(n estimate of the) survival function in each of the two groups.

LL(CL) = / SWell(u)/SWell(a) - SDiseased(u)/SDiseased(a) du
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Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease
in question or not. That is whether we will include the possibility of a well person
getting ill and subsequently die. This does not show up in the formulae, but is a
decision required in order to devise an estimate of Swen.

Lifetime lost by cause of death is using the fact that the difference between the
survival probabilities is the same as the difference between the death probabilities. If
several causes of death (3, say) are considered then:

S(a) =1 — P{dead from cause 1 at a}
— P{dead from cause 2 at a}
— P{dead from cause 3 at a}

and hence:

Swen (@) — Spiseased(@) = P{dead from cause 1 at a|Diseased}
+ P{dead from cause 2 at a|Diseased}
+ P{dead from cause 3 at a|Diseased}
— P{dead from cause 1 at a|Well}
— P{dead from cause 2 at a|Well}
— P{dead from cause 3 at a|Well}

So we can conveniently define the lifetime lost due to cause 2, say, by:

LLy(a) = / P{dead from cause 2 at u|Diseased & alive at a}

— P{dead from cause 2 at u|Well & alive at a} du

These quantities have the property that their sum is the total years of life lost due to
the disease:
LL(a) = LL;(a) + LLy(a) + LL3(a)

The terms in the integral are computed as (see the section on competing risks):
P{dead from cause 2 at z|Diseased & alive at a} = / A2, pis (1) Spis (1) / Spis (@) du

P{dead from cause 2 at x|Well & alive at a} = / A2 wen () Swen (1) / Swen (@) du
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