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Preface

This set of notes and exercises have grown out of the course “Statistical Practise in
Epidemiology with R” (http://BendixCarstensen.com/SPE) and of small workshops for
my epidemiological colleagues in the Clinincal Epidemiology section at Steno Diabetes
Center.

The first version of this document (mainly the first 7 chapters) were written jointly with
Michael Hills (Highgate, London, retired) and Martyn Plummer (IARC, Lyon), to whom I
owe much thanks for harsh comments. The major part of the document is however my
responsibility, in particular the impenetrable parts that have not been scutinized
thoroughly by others.

Bendix Carstensen
Steno Diabetes Center
January 2015.

http://BendixCarstensen.com/SPE


2 R for epidemiology

Program for Bordeaux course

Time: Thursday 22nd January 2015, 14:00

Venue: Lecture Hall Pierre Alexandre Louis, ISPED, University of Bordeaux, 146, rue
Leo-Saignat

Contents: There will be three time slots, the two first aprroximately equally divided
between lecture and practicals. The timing will be:

14:00–15:15 Epidemiological study types and data types; simple analyses of
epidemiological data.
Practicals: ch. 5, 7.1, 7.2

15:30–16:15 Representation of follow-up data in the Epi package: The Lexis

machinery
Practicals: ch. 9

16:30–17:45 Cox-models and Poisson models: Example of identity and how
to model and report multiple time scale models
Discussion

Prerequisites: A working installation of:

• R, version 3.1.2 (any above 3.0.0 will do)

• the Epi package, version 1.1.67 (no other will do)

• You can check this by starting R and run the commands:

> library( Epi )
> sessionInfo()

R version 3.1.2 (2014-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_1.1.67



Chapter 1

Getting R running on your computer

1.1 What is R?

R is free program for data analysis and graphics. It contains all state of the art statistical
methods, and has become the preferred analysis tool for most professional statisticians in
the world. It can be used as simple calculator and as a very specialized statistical analysis
and reporting machinery.

The special thing about R is that you enter commands from the keyboard into a console
window, where you also see the results. This is an advantage because you end up with a
script that you can use to reproduce your analyses—a requirement in any scientific
endeavour.

The disadvantage is that you somehow have to find out what to type. The practicals will
contain some hints, and you will mostly be using R as a calculator, as you just saw — type
an expression, hit the return key and you get the result.

1.2 Getting R

You can obtain R, which is free, from CRAN (the Comprehensive R Archive Network), at
http://cran.r-project.org/. Under “Download R for Windows” click on “install R for
the first time” and then on “Download R 3.0.2 for Windows”, which is a self-extracting
installer. This means that if you save it to your computer somewhere and click on it, it will
install R for you.

Apart from what you have downloaded there are several thousand add-on packages to R
dealing with all sorts of problems from ecology to fiance and incidentally, epidemiology.
You must download these manually. In this course we shall only need the Epi package.

1.2.1 Starting R

You start R by clicking on the icon that the installer has put on your desktop. You should
edit the properties of this, so that R starts in the folder that you have created on your
computer for this course.

Once you have installed R, start it, and in the menu bar click on Packages → Install
package(s)..., chose a mirror (this is just a server where you can get the stuff), and then the
Epi package.

3
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4 Getting R running on your computer R for epidemiology

Once R (hopefully) has told you that it has been installed, you can type:

> library( Epi )

to get access to the Epi package. You can get an overview of the functions and datasets in
the package by typing:

> library( help=Epi )

It should be apparent that you have version 1.1.49 of the Epi package. For documentauon
purposes it is often useful to have the following at the beginning of your program:

> sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] Epi_1.1.67

loaded via a namespace (and not attached):
[1] tools_3.0.2

1.2.2 Quitting R

Type q() in the console, and answer “No” when asked whether you want to save workspace
image.

1.3 Working with the script editor

If you click on File → New script, R will open a window for you which is a text-editor very
much like Notepad.

If you write a command in it you can transfer it to the R console and have it executed by
pressing CTRL-r. If nothing is highlighted, the line where the cursor is will be transmitted
to the console and the cursor will move to the next line. If a part of the screen is
highlighted the highlighted part will be transmitted to the console. Highlighting can also
be used to transmit only a part of a line of code.

1.3.1 Rstudio

This is an interface that allows you to have a slithly more flexible script-editor than the
built-in, R-studio har syntax coloriung which can be very nice. You can obtain it from
http://rstudio.com.

http://rstudio.com
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1.3.2 Try!

Now, either open a script by File → New script, and type (omit the “>” in the beginning of
the line), or fire up R-studio and type in the editor window:

> 5+7
> pi
> 1:10
> N <- c(27,33,81)
> N

Run the lines one at a time by pressing CTRL-r, (in R-studio it is CTRL-ENTER) and see
what happens.

You can also type the commands in the console directly. But then you will not have a
record of what you have done. Well, you can press File → Save History and save all you
typed in the console (including the 73.6% commands with errors).

1.4 Changing the looks . . .

1.4.1 . . . of standard R

If you want R to start up with a different font, different colors etc., the go to the folder
where R is installed — most likely Program Files\R\R-2.13.1, then to the folder etc,
and open the file Rconsole with Notepad. In the file are specifications on how R will look
when you start it, pretty self-explanatory, except perhaps for MDI.
MDI means “Multiple Display Interface”, which means you get a single R-window, and

within that sub-windows with the console, the script editor, graphs etc. If this is set to
“no”, you get SDI which means “Single Display Interface”, which means that R will open
the console, script editor etc. in separate windows of their own.

A withe background can be trying to look at so on my (BxC) computer I use a bold font
and the following colors:

> background = gray5
> normaltext = yellow2
> usertext = green
> pagerbg = gray5
> pagertext = yellow2
> highlight = red
> dataeditbg = gray5
> dataedittext = red
> dataedituser = yellow2
> editorbg = gray5
> editortext = lightblue

(If you want to know which colors are available in R, just give the command colors()).

1.4.2 . . . of Rstudio

Click on Tools→Global options...→Apperance and choose Consolas font, 16 pt, Editor theme
Cobalt
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1.5 Further reading

On the CRAN web-site the last menu-entry on the left is “Contributed” and will take you
to a very long list of various introductions to R, including manuals in esoteric languages
such as Danish, Finnish and Hungarian.



Chapter 2

Some basic commands in R

2.1 Preliminaries

The purpose of these notes is to describe a small subset of the Rlanguage, sufficient to
allow someone new to R to get started. The exercises are important because they reinforce
basic aspects of R. For further details about R we refer the reader to An Introduction to
R by W.N.Venables, D.M.Smith, and the R development team. This can be downloaded
from the R website at http://www.r-project.org.

To start R click on the R icon. To change your working directory click on
File→ Change dir... and select the directory you want to work in. Alternatively you can

write:

> setwd("c:/where/alll/my/files/are")

To get out of R click on the File menu and select Exit, or simpler just type “q()”. You will
be offered the chance to save the work space, but at this stage just exit without saving,
then start R again, and change the working directory, as before.
R is case sensitive, so that A is different from a. Commands in R are generally separated

by a newline, although a semi-colon can also be used. When using R it makes sense to
avoid as much typing as possible by recalling previous commands using the vertical arrow
key and editing them.

2.2 Using R as a calculator

Typing 2+2 will return the answer 4, typing 2^3 will return the answer 8 (2 to the power of
3), typing log(10) will return the natural logarithm of 10, which is 2.3026, and typing
sqrt(25) will return the square root of 25.

Instead of printing the result you can store it in an object, say

> a <- 2+2

which can be used in further calculations. The expression <-, pronounced ”gets”, is called
the assignment operator, and is obtained by typing < and then -. The assignment operator
can also be used in the opposite direction, as in

> 2+2 -> a

7
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The contents of a can be printed by typing a.
Standard probability functions are readily available. For example, the probability below

1.96 in a standard normal (i.e. Gaussian) distribution is obtained with

> pnorm(1.96)

while

> pchisq(3.84,1)

will return the probability below 3.84 in a χ2 distribution on 1 degree of freedom, and

> pchisq(3.84,1,lower.tail=FALSE)

will return the probability above 3.84.

Exercise 2.1.

1. Calculate
√

32 + 42.

2. Find the probability above 4.3 in a chi-squared distribution on 1 degree of
freedom.

2.3 Objects and functions

All commands in R are functions which act on objects. One important kind of object is a
vector, which is an ordered collections of numbers, or an ordered collection of character
strings. Examples of vectors are 4, 6, 1, 2.2, which is a numeric vector with 4 components,
and “Charles Darwin”, “Alfred Wallace” which is a vector of character strings with 2
components. The components of a vector must be of the same type (numeric or character).
The combine function c(), together with the assignment operator, is used to create
vectors. Thus

> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 by first combining the 4 numbers 4, 6, 1, 2.2
in order and then assigning the result to the vector v. Collections of components of
different types are called lists, and are created with the list() function. Thus

> m <- list(4, 6, "name of company")

creates a list with 3 components. The main differences between the numbers 4, 6, 1, 2.2
and the vector v is that along with v is stored information about what sort of object it is
and hence how it is printed and how it is combined with other objects. Try

> v
> 3+v
> 3*v

and you will see that R understands what to do in each case. This may seem trivial, but
remember that unlike most statistical packages there are many different kinds of object in
R.

You can get a description of the structure of any object using the function str(). For
example, str(v) shows that v is numeric with 4 components.



Some basic commands in R 2.4 Sequences 9

2.4 Sequences

It is not always necessary to type out all the components of a vector. For example, the
vector (15, 20, 25, ... ,85) can be created with

> seq(15, 85, by=5)

and the vector (5, 20, 25, ... ,85) can be created with

> c(5,seq(20, 85, by=5))

You can learn more about functions by typing ? followed by the function name. For
example ?seq gives information about the syntax and usage of the function seq().

Exercise 2.2.

1. Create a vector w with components 1, -1, 2, -2

2. Print this vector (to the screen)

3. Obtain a description of w using str()

4. Create the vector w+1, and print it.

5. Create the vector (0, 1, 5, 10, 15, ... , 75) using c() and seq().

2.5 The births data

Table 2.1: Variables in the births dataset

Variable Units or Coding Type Name

Subject number – categorical id

Birth weight grams metric bweight

Birth weight < 2500 g 1=yes, 0=no categorical lowbw

Gestational age weeks metric gestwks

Gestational age < 37 weeks 1=yes, 0=no categorical preterm

Maternal age years metric matage

Maternal hypertension 1=hypertensive, 0=normal categorical hyp

Sex of baby 1=male, 2=female categorical sex

The most important example of a vector in epidemiology is the data on a variable
recorded for a group of subjects. To introduce R we use the births data which concern 500
mothers who had singleton births in a large London hospital. These data are available as
an R object called births in the Epi package. You can get them into your workspace by:

> library( Epi )
> data( births )

Try
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> objects()

to make sure that you have an object called births in your working directory. A more
detailed overview of the objects in your workspace is obtained by:

> lls()

The function

> str(births)

shows that the object births is a data frame with 500 observations of 8 variables. The
names and types of the variables are also shown together with the first 10 values of each
variable.

Some of the variables which make up these data take integer values while others are
numeric taking measurements as values. For most variables the integer values are just
codes for different categories, such as "male" and "female" which are coded 1 and 2 for
the variable sex.

Exercise 2.3.

1. The dataframe "diet" in the Epi package contains data from a follow-up
study with coronary heart disease as the end-point. Load these data with:

> data(diet)

and print the contents of the data frame to the screen.

2. Check that you now have two objects, births, and diet in your work
space.

3. Obtain a description of the object diet.

4. Remove the object diet with the command

> rm(diet)

5. Check that you only have the object births left.

2.6 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try

> births[1,"bweight"]

This will list the value taken by the first subject for the bweight variable. Similarly

> births[2,"bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for
the first 10 subject for the bweight variable, try

> births[1:10, "bweight"]

and to list all the data for this variable, try

> births[, "bweight"]
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Exercise 2.4.

1. Print the data on the variable gestwks for subject 7 in the births data
frame.

2. Print all the data for subject 7.

3. Print all the data on the variable gestwks.

2.7 Summaries

A good way to start an analysis is to ask for a summary of the data by typing

> summary(births)

To see the names of the variables in the data frame try

> names(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to
specify the name of the data frame. Thus births$hyp refers to the variable hyp in the
births data frame, and typing births$hyp will print the data on this variable. To
summarize the variable hyp try

> summary(births$hyp)

In most datasets there will be some missing values. These are usually coded using tab
delimited blanks to mark the values which are missing. R then codes the missing values
using the NA (not available) symbol. The summary shows the number of missing values for
each variable.

2.8 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the
levels of the factor. Variables such as hyp and sex are originally coded using integer codes,
and by default R will interpret these codes as numeric values taken by the variables. For R
to recognize that the codes refer to categories it is necessary to convert the variables to be
factors, and to label the levels. To convert the variable hyp to be a factor, try

> hyp <- factor(births$hyp)
> str(births)
> objects()

which shows that hyp is both in your work space (as a factor), and in in the births data
frame (as a numeric variable). It is better to use the transform function on the data frame,
as in

> births <- transform(births, hyp=factor(hyp))
> str(births)

which shows that hyp, in the births data frame, is now a factor with two levels, labeled "0"

and "1" which are the original values taken by the variable. It is possible to change the
labels to (say) "normal" and "hyper" with

> births <- transform( births, hyp=factor(hyp,labels=c("normal","hyper")) )
> str(births)
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Exercise 2.5.

1. Convert the variable sex into a factor

2. Label the levels of sex as "male" and "female".

2.9 Frequency tables

When starting to look at any new data frame the first step is to check that the values of
the variables make sense and correspond to the codes defined in the coding schedule. For
categorical variables (factors) this can be done by looking at one-way frequency tables and
checking that only the specified codes (levels) occur. The most useful function for making
tables is stat.table. This is currently part of the Epi package, so you will need to load
this package first with

> library(Epi)

The distribution of the factors hyp and sex can be viewed by typing

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

Their cross-tabulation is obtained by typing

> stat.table(list(hyp,sex),data=births)

Cross-tabulations are useful when checking for consistency, but because no distinction is
drawn between the response variable and any explanatory variables, they are not useful as
a way of presenting data.

2.10 Grouping the values of a metric variable

For a numeric variable like matage it is often useful to group the values and to create a new
factor which codes the groups. For example we might cut the values taken by matage into
the groups 20–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels
corresponding to the four groups. The best way of doing this is with the function cut. Try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35,40,45),right=FALSE))
> stat.table(agegrp,data=births)

By default the factor levels are labeled [20-25), [25-30), etc., where [20-25) refers to the
interval which includes the left hand end (20) but not the right hand end (25). This is the
reason for right=FALSE. When right=TRUE (which is the default) the intervals include the
right hand end but not the left hand.

It is important to realize that observations which are not inside the range specified in the
breaks() part of the command result in missing values for the new factor. For example,
try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35),right=FALSE))
> summary(births)

Only observations from 20 up to, but not including 35, are included. For the rest, agegrp
is coded missing. You can specify that you want to cut a variable into a given number of
intervals of equal length by specifying the number of intervals. For example
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> births <- transform(births,agegrp=cut(matage,breaks=5,right=FALSE))
> stat.table(agegrp,data=births)

shows 5 intervals of width 4.

Exercise 2.6.

1. Summarize the numeric variable gestwks, which records the length of
gestation for the baby, and make a note of the range of values.

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45
weeks, including the left hand end, but not the right hand. Make a table
of the frequencies for the four levels of gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and
make a table of frequencies.

2.11 Tables of means and other things

To obtain the mean of bweight by sex, try

> stat.table(sex, mean(bweight), data=births)

The headings of the table can be improved with

> stat.table(sex,list("Mean birth weight"=mean(bweight)),data=births)

To make a two-way table of mean birth weight by sex and hypertension, try

> stat.table(list(sex,hyp),mean(bweight),data=births)

and to tabulate the count as well as the mean, try

> stat.table(list(sex,hyp),list(count(),mean(bweight)),data=births)

Available functions for the cells of the table are count, mean, weighted.mean, sum,

min, max, quantile,median, IQR, and ratio. The last of these is useful for rates and
odds. For example, to make a table of the odds of low birth weight by hypertension, try

> stat.table(hyp, list("odds"=ratio(lowbw,1-lowbw,100)),data=births)

The scale factor 100 makes the odds per 100. Margins can be added to the tables, as
required. For example,

> stat.table(sex, mean(bweight),data=births,margins=TRUE)

for a one-way table, and

> stat.table(list(sex,hyp),mean(bweight),data=births,margins=c(TRUE,FALSE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(FALSE,TRUE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(TRUE,TRUE))

for a two-way table.
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Exercise 2.7.

1. Make a table of median birth weight by sex.

2. Do the same for gestation time, but include count as a function to be
tabulated along with median. Note that when there are missing values for
the variable being summarized the count refers to the number of
non-missing observations for the row variable, not the summarized
variable.

3. Create a table showing the mean gestation time for the baby by hyp and
lowbw, together with margins for both.

4. Make a table showing the odds of hypertension by sex of the baby.

2.11.1 Other tabulation functions

You may want to take a look at the help pages for the functions:

• table

• ftable

• xtabs

• addmargins

• array

• tapply

One way to do this is to simply type:

> example( table )

2.12 Generating new variables

New variables can be produced using assignment together with the usual mathematical
operations and functions:

+ - * log exp ^ sqrt

The sign ^ means “to the power of”, log means “natural logarithm”, and sqrt means
“square root”.

The transform() function allows you to transform or generate variables in a data frame.
For example, try

> births <- transform(births,
+ num1=1,
+ num2=2,
+ logbw=log(bweight))

The variable logbw is the natural logarithm of birth weight. Logs base 10 are obtained
with log10( ).
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2.13 Logical variables

Logical variables take the values TRUE or FALSE, and behave like factors. New variables
can be created which are logical functions of existing variables. For example

> births <- transform(births, low=bweight<2000)
> str(births)

creates a logical variable low with levels TRUE and FALSE, according to whether bweight
is less than 2000 or not. The logical expressions which R allows are

== < <= > >= !=

The first is logical equals and the last is not equals. One common use of logical variables is
to restrict a command to a subset of the data. For example, to list the values taken by
bweight for hypertensive women, try

> births$bweight[births$hyp=="hyper"]

If you want the entire dataframe restricted to hypertensive women try:

> births[births$hyp=="hyper",]

The subset() function also allows you to take a subset of a data frame. Try

> subset(births, hyp=="hyper")

Exercise 2.8.

1. Create a logical variable called early according to whether gestwks is less
than 30 or not.Make a frequency table of early.

2. Print the id numbers of women with gestwks less than 30 weeks.
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Working with R

3.1 Saving the work space

When exiting from R you are offered the chance of saving all the objects in your current
work space. If you do so, the work space is re-instated next time you start R. It can be
useful to do this, but before doing so it is worth tidying things up, because the work space
can fill up with temporary objects, and it is easy to forget what these are when you resume
the session.

3.2 Saving output in a file

To save the output from an R command in a file, for future use, the sink() command is
used. For example,

> sink("output.txt")
> summary(births)

first instructs R to re-direct output away from the R terminal to the file "output.txt" and
then summarizes the births data frame, the output from which goes to the sink. While a
sink is open all output will go to it, replacing what is already in the file. To append output
to a file, use the append=TRUE option with sink(). To close a sink, use

> sink()

Exercise 3.9.

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the
output you expected is in the file.

16
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3.3 Saving R objects in a file

The command read.table() is relatively slow because it carries out quite a lot of
processing as it reads the data. To avoid doing this more than once you can save the data
frame, which includes the R information, and read from this saved file in future. For
example,

> save(births, file="births.Rdata")

will save the births data frame in the file births.Rdata. By default the data frame is
saved as a binary file, but the option ascii=TRUE can be used to save it as a text file. To
load the object from the file use

> load("births.Rdata")

The commands save() and load() can be used with any R objects, but they are
particularly useful when dealing with large data frames.

Exercise 3.10.

1. Use read.table() to read the data in the file diet.txt into a data frame
called diet.

2. Save this data frame in the file "diet.Rdata"

3. Remove the data frame

4. Load the data frame from the file "diet.Rdata".

3.4 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. This means you can use the
cut and paste facilities of the editor to cut down on typing. For Windows we recommend
using the text editor Tinn-R, but you can use your favorite text editor instead if you prefer,
and copy-paste commands from it into the R-console.

Alternatively you can use the built-in script-editor: Click on File→New script, or
File→Open script, according to whether you are using an old script. You can move the
current line from the script-editor to the console by CTRL-R. If you have highlighted a
section of the script the highlighted part will be moved to the console.

Now start up the editor and enter the following lines:

> births <- transform( births,
+ lowbw = factor(lowbw, labels=c("normal","low")),
+ hyp = factor(hyp, labels=c("normal","hyper")),
+ sex = factor(sex, labels=c("male","female")) )

Now save the script as mygetbirths.R and run it. One major advantage of running all
your R commands from a script is that you end up with a record of exactly what you did
which can be repeated at any time.

This will also help you redo the analysis in the (highly likely) event that your data
changes before you have finished all analyses.
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Exercise 3.11.

1. Create a script called mytab.R which includes the lines

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

and run just these two lines.

2. Edit the script to include the lines

> stat.table(sex,mean(bweight),data=births)
> stat.table(hyp,mean(bweight),data=births)

and run these two lines.

3. Edit the script to create a factor cutting matage at 20, 30, 35, 40, 45 years,
and run just this part of the script.

4. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45
weeks, and run just this part of the script.

5. Save and run the entire script.

3.5 The search path

R organizes objects in different positions on a search path. The command

> search()

shows these positions. The first is the work space, or global environment, the second is the
Epi package, the third is a package of commands called methods, the fourth is a package
called stats, and so on. To see what is in the work space try

> objects()

You should see just the objects births and diet. The command objects(1) does the
same as objects(). A shorther name for the same function is ls(). In the Epi package is
a function that gives a more detailed picture, lls(); try:

> lls()

To see what is in the Epi package, try

> ls(2)

When you type the name of an object R looks for it in the order of the search path and
will return the first object with this name that it finds. This is why it is best to start your
session with a clean workspace, otherwise you might have an object in your workspace that
masks another one later in the search path.

3.6 Attaching a data frame

The function objects(1) shows that the only objects in the workspace are births and
diet. To refer to variables in the births data frame by name it is necessary to specify the
name of the data frame, as in births$hyp. This is quite cumbersome, and provided you
are working primarily with one data frame, it can help to put a copy of the variables from
a data frame in their own position on the search path. This is done with the function
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> attach(births)

which places a copy of the variables in the births data frame in position 2. You can verify
this with
> objects(2)

which shows the objects in this position are the variables from the births data frame.
Note that the methods package has now been moved up to position 3, as shown by the
search() function.

When you type the command:
> hyp

R will look in the first position where it fails to find hyp, then the second position where it
finds hyp, which now gets printed.

Although convenient, attaching a data frame can give rise to confusion. For example,
when you create a new object from the variables in an attached data frame, as in
> subgrp <- bweight[hyp==1]

the object subgrp will be in your workspace (position 1 on the search path) not in position
2. To demonstrate this, try
> objects(1)
> objects(2)

Similarly, if you modify the data frame in the workspace the changes will not carry through
to the attached version of the data frame. The best advice is to regard any operation on an
attached data frame as temporary, intended only to produce output such as summaries and
tabulations.

Beware of attaching a data frame more than once - the second attached copy will be
attached in position 2 of the search path, while the first copy will be moved up to position
3. You can see this with
> attach(births)
> search()

Having several copies of the same data set can lead to great confusion. To detach a data
frame, use the command
> detach(births)

which will detach the copy in position 2 and move everything else down one position. To
detach the second copy repeat the command detach(births).

Exercise 3.12.

1. Use search() to make sure you have no data frames attached.

2. Use objects(1) to check that you have the data frame births in your
work space.

3. Verify that typing births$hyp will print the data on the variable hyp but
typing hyp will not.

4. Attach the births data frame in position 2 and check that the variables
from this data frame are now in position 2.

5. Verify that typing hyp will now print the data on the the variable hyp.

6. Summarize the variable bweight for hypertensive women.

> setwd(sweave.wd)
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Graphs in R

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and
then add on points, lines, text etc., preferably in a script.

4.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> library(Epi)
> data(births)
> str(births)

Now attach the dataframe and look at the birthweight distribution with

> attach(births)
> hist(bweight)

The histogram can be refined – take a look at the possible options with

> ?hist

and try some of the options, for example:

> hist(bweight, col="gray", border="white")

To look at the relationship between birthweight and gestational weeks, try

> plot(gestwks, bweight)

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols
try:

> plot(1:25, pch=1:25)

20
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Exercise 4.13.

1. Make a plot of the birth weight versus maternal age with

> plot(matage, bweight)

2. Label the axes with

> plot(matage, bweight, xlab="Maternal age", ylab="Birth weight (g)")

4.2 Colours

There are many colours recognized by R. You can list them all by colours() or,
equivalently, colors() (R allows you to use British or American spelling). To colour the
points of birthweight versus gestational weeks, try

> plot(gestwks, bweight, pch=16, col="green")

This creates a solid mass of colour in the center of the cluster of points and it is no longer
possible to see individual points. You can recover this information by overwriting the
points with black circles using the points() function.

> points(gestwks, bweight)

4.3 Adding to a plot

The points() function is one of several functions that add elements to an existing plot. By
using these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different
colours for male and female babies. To start with an empty plot, try

> plot(gestwks, bweight, type="n")

Then add the points with the points function.

> points(gestwks[sex==1], bweight[sex==1], col="blue")
> points(gestwks[sex==2], bweight[sex==2], col="red")

To add a legend explaining the colours, try

> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")
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4.3.1 Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get
subsets of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we
had a 5 level factor instead.

Instead of specifying one color for all points, we may specify a vector of colours of the
same length as the gestwks and bweight vectors. This is rather tedious to do directly, but
R allows you to specify an expression anywhere, so we can use the fact that sex takes the
values 1 and 2, as follows:

First create a colour vector with two colours, and take look at sex:

> c("blue","red")
> sex

Now see what happens if you index the colour vector by sex:

> c("blue","red")[sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get
"red", so the result is a long vector of "blue"s and "red"s corresponding to the males and
females. This can now be used in the plot:

> plot( gestwks, bweight, pch=16, col=c("blue","red")[sex] )

The same trick can be used if we want to have a separate symbol for mothers over 40 say.
We first generate the indexing variable:

> oldmum <- ( matage >= 40 ) + 1

Note we add 1 because ( matage >= 40 ) generates a logic variable, so by adding 1 we get
a numeric variable with values 1 and 2, suitable for indexing:

> plot( gestwks, bweight, pch=c(16,3)[oldmum], col=c("blue","red")[sex] )

so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index,

so you don’t need to create the variable oldmum, you can create it on the fly:

> plot( gestwks, bweight, pch=c(16,3)[(matage>=40 )+1], col=c("blue","red")[sex] )

Exercise 4.14.

1. Make a three level factor for maternal age with cutpoints at 30 and 40
years.

2. Use this to make the plot of gestational weeks with three different plotting
symbols. (Hint: Indexing with a factor automatically gives indexes 1,2,3
etc.).
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4.3.2 Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a
few other functions that generates other sequences of colours, type ?rainbow to see them.

Gray-tones are produced by the function gray (or grey), which takes a numerical
argument between 0 and 1; gray(0) is black and gray(1) is white. Try:

> plot( 0:10, pch=16, cex=3, col=gray(0:10/10) )
> points( 0:10, pch=1, cex=3 )

4.4 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing
locator(1) shifts you to the graphics window and waits for one click of the left mouse
button. When you click, it will return the corresponding coordinates.

You can use locator() inside other graphics functions to position graphical elements
exactly where you want them. Recreate the birth-weight plot,

> plot( gestwks, bweight, pch=c(16,3)[(matage>=40 )+1], col=c("blue","red")[sex] )

and then add the legend where you wish it to appear by typing

> legend(locator(1), pch=1, legend=c("Boys","Girls"), col=c("blue","red") )

The identify() function allows you to find out which records in the data correspond to
points on the graph. Try

> identify( gestwks, bweight )

When you click the left mouse button, a label will appear on the graph identifying the row
number of the nearest point in the data frame births. If there is no point nearby, R will
print a warning message on the console instead. To end the interaction with the graphics
window, right click the mouse: the identify function returns a vector of identified points.

Exercise 4.15.

1. Use identify() to find which records correspond to the smallest and
largest number of gestational weeks.

2. View all the variables corresponding to these records with:

> births[identify(gestwks,bweight), ]
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4.5 Saving your graphs for use in other documents

Once you have a graph on the screen you can click on File→ Save as , and choose the
format you want your graph in. The PDF (Acrobat reader) format is normally the most
economical, and Acrobat reader has good options for viewing in more detail on the screen.
The Metafile format will give you an enhanced metafile .emf, which can be imported into
a Word document by Insert→ Picture→ From File . Metafiles can be resized and edited
inside Word.

If you want exact control of the size of your plot you can start a graphics device before
doing the plot. Instead of appearing on the screen, the plot will be written directly to a
file. After the plot has been completed you will need to close the device again in order to
be able to access the file. Try:

> win.metafile(file="plot1.emf", height=3, width=4)
> plot(gestwks, bweight)
> dev.off()

This will give you a enhanced metafile plot1.emf with a graph which is 3 inches tall and 4
inches wide.

4.6 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These
are collected on the help page of par(). For example, if you want axis labels always to be
horizontal, use the command par(las=1). This will be in effect until a new graphics device
is opened.

Look at the typewriter-version of the help-page with

> ?par

or better, use the the html-version through Help→ Html help→ Packages→ base→
P→ par .

It is a good idea to take a print of this (having set the text size to “smallest” because it is
long) and carry it with you at any time to read in buses, cinema queues, during boring
lectures etc. Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give

you the exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par( mfrow=c(2,3) )

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The
plots will appear by row, i.e. in the top row first. If you want the plots to appear
column-wise, use par( mfcol=c(2,3) ) (you still get 2 rows by 3 columns). To restore the
layout to a single plot per page use

> par( mfrow=c(1,1) )

Finally for more complex graphical lay-outs you can use the functions layout(), take a
look:

> ?layout
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4.7 Population pyramid

First, load the Epi package and then the Danish population data, N.dk
> library( Epi )
> data( N.dk )
> head( N.dk )

For the sake of simplicity we turn the data into a 3-way array, classified by sex, age and
calendar year:
> pp <- xtabs( N ~ sex + A + P, data=N.dk )
> str( pp )

A simple histogram (well, box-plot) of the male population in 1980:
> barplot( pp["1",,"1980"] )
> barplot( pp["1",,"1980"], horiz=TRUE, col="blue", border="blue" )

Now you want the females back to back with this. We plot makes and females stacked, by
entering a 2× 100 matrix instead of a vector:
> dim( pp[,,"1980"] )
> barplot( pp[,,"1980"], horiz=TRUE, col=c("blue","red"), border="transparent" )

That is not quite what we want, but there is a hidden (i.e. undocumented) feature in
barplot; namely that if you give a first row of negative numbers, then this will determine
the starting point of the bars, so we should just add a row of the male population with a
minus:
> barplot( rbind(-pp["1",,"1980"], pp[,,"1980"] ),
+ horiz=TRUE, col=c("red","blue"), border="transparent", space=0 )

Finally we want to see all the pyramids, on the same scale so we fix the extent of the
x-axis:
> barplot( rbind(-pp["1",,"1980"], pp[,,"1980"] )/1000,
+ xlim=c(-1,1)*50, xlab="Persons (1000s)", yaxt="n", xaxt="n",
+ horiz=TRUE, col=c("red","blue"), border="transparent", space=0 )
> axis( side=2, at=0:10*10, las=1 )
> axis( side=1, at=c(-5:0,1:5)*10, labels=c(5:0,1:5)*10 )
> text( -48, 100, "1980", font=2, adj=0 )

If we want to see it for all years, we print to a pdf-file, and make a loop over the years
inside the plot. Note the differences here:
> dimnames(pp)[3]
> dimnames(pp)[[3]]

The first is a list of length 1, namely a subset of the list dimnames(pp), the second is the
content of the 3rd list element if dimnames(pp). It is the latter we use in the loop:
> pdf( "./graph/DKpyr.pdf", height=8, width=8 )
> for( yy in dimnames(pp)[[3]] )
+ {
+ barplot( rbind(-pp["1",,yy], pp[,,yy] )/1000,
+ xlim=c(-1,1)*50, xlab="Persons (1000s)", yaxt="n", xaxt="n",
+ horiz=TRUE, col=c("red","blue"), border="transparent", space=0 )
+ axis( side=2, at=0:10*10, las=1 )
+ axis( side=1, at=c(-5:0,1:5)*10, labels=c(5:0,1:5)*10 )
+ text( -48, 100, yy, font=2, adj=0 )
+ }
> dev.off()

4.7.0.0.1 Exercise: Add an axis on the right showing the year of birth. Remember to
restrict it properly — you may need the functions pmin and pmax.
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The effx function for effects
estimation

Identifying the response variable correctly is the key to analysis. The main types are:

• Metric (a measurement taking many values, usually with units)

• Binary (two values coded 0/1)

• Failure (does the subject fail at end of follow-up, and how long was follow-up)

• Count (aggregated failure data)

The response variable must be numeric.
Variables on which the response may depend are called explanatory variables. They can

be factors or numeric. A further important aspect of explanatory variables is the role they
will play in the analysis.

• Primary role: exposure

• Secondary role: confounder

The word effect is a general term referring to ways of comparing the values of the
response variable at different levels of an explanatory variable. The main measures of effect
are:

• Differences in means for a metric response.

• Ratios of odds for a binary response.

• Ratios of rates for a failure or count response.

What other measures of effects might be used?

5.1 The function effx

The function effx is intended to introduce the estimation of effects in epidemiology,
together with the related ideas of stratification and controlling, without the need for
familiarity with statistical modelling.

We shall use the births data in the Epi package, which can be loaded and inspected with

26
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> library(Epi)
> data(births)
> help(births)

The variables we shall be interested in are bweight (birth weight) and hyp (hypertension).
An alternative way of characterizing birth weight is shown in lowbw which is coded 1 for
babies with low birth weight, and 0 otherwise. Other variables of interest are sex (of the
baby) and gestwks, the gestation time.

All variables are numeric, so first we need first to do a little housekeeping:

> births$hyp <- factor(births$hyp,labels=c("normal","hyper"))
> births$sex <- factor(births$sex,labels=c("M","F"))
> births$agegrp <- cut(births$matage,breaks=c(20,25,30,35,40,45),right=FALSE)
> births$gest4 <- cut(births$gestwks,breaks=c(20,35,37,39,45),right=FALSE)

Now try

> effx(response=bweight,typ="metric",exposure=sex,data=births)

The effect of sex on birth weight, measured as a difference in means, is −197. The
command

> stat.table(sex,mean(bweight), data=births)

verifies this (3032.8− 3229.9 = −197.1). The p-value refers to the test that there is no
effect of sex on birth weight. Use effx to find the effect of hyp on bweight.

For another example, consider the effect of sex on the binary response lowbw.

> effx(response=lowbw,typ="binary",exposure=sex,data=births)

The effect of sex on lowbw, measured as an odds ratio, is 1.43. The command

> stat.table(sex,list(odds=ratio(lowbw,1-lowbw,100)),data=births)

can be used to verify this (16.26/11.39 = 1.427). Use effx to find the effect of hyp on
lowbw.

5.2 Factors on more than two levels

The variable gest4 is the result of cutting gestwks into 4 groups with boundaries [20,35)
[35,37) [37,39) [39,45). We shall find the effects of gest4 on the metric response bweight.

> effx(response=bweight,typ="metric",exposure=gest4,data=births)

There are now 3 effects

[35,37) vs [20,35) 856.6

[37,39) vs [20,35) 1360.0

[39,45) vs [20,35) 1668.0

The command

> stat.table(gest4,mean(bweight),data=births)

verifies that the effect of agegrp (level 2 vs level 1) is 2590− 1733 = 857, etc. Find the
effects of gest4 on lowbw. Use the option base=4 to change the baseline for gest4 from 1
to 4.
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5.3 Stratified effects

As an example we shall stratify the effects of hyp on bweight by sex with

> effx(bweight, type="metric", exposure=hyp, strata=sex,data=births)

The effects of hyp in the different strata defined by sex are −496 and −380.
Use effx to stratify the effect of hyp on lowbw first by sex and then by gest4.

5.4 Controlling the effect of hyp for sex

The effect of hyp is controlled for sex by first looking at the effects of hyp in the two strata
defined by sex, and then combining these effects if they are similar. In this case the effcts
were −496 and −380 which look similar (the test for effect modification is a test of whether
they differ significantly) so we can combine them, and control for sex.

The combining is done by declaring sex as a control variable:

> effx(bweight, type="metric", exposure=hyp, control=sex,data=births)

The effect of hyp on bweight controlled for sex is −448. Note that it is the name of the
control variable which is passed, not the variable itself. There can be more than one control
variable, control=list(sex,agegrp).

Many people go straight ahead and control for variables which are likely to confound the
effect of exposure without bothering to stratify first, but there are times when it is useful
to stratify first.

5.5 Numeric exposures

If we wished to study the effect of gestation time on the baby’s birth weight then gestwks

is a numeric exposure. Assuming that the relationship of the response with gestwks is
roughly linear (for a metric response) or log-linear (for a binary response) we can find the
linear effect of gestwks.

> effx(response=bweight, type="metric", exposure=gestwks,data=births)

The linear effect of gestwks is 197 g per extra week of gestation. The linear effect of
gestwks on lowbw can be found similarly

> effx(response=lowbw, type="binary", exposure=gestwks,data=births)

The linear effect of gestwks on lowbw is a reduction by a factor of 0.408 per extra week of
gestation, i.e. the odds of a baby having a low birth weight is reduced by a factor of 0.408
per one week increase in gestation.

You cannot stratify by a numeric variable, but you can study the effects of a numeric
exposure stratified by (say) agegrp with

> effx(lowbw, type="binary",exposure=gestwks,strata=agegrp,data=births)

You can control for a numeric variable by putting it in control=.
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5.6 Checking on linearity

At this stage it will be best to make a visual check using plot. For example, to check
whether bweight goes up linearly with gestwks try

> with(births, plot(gestwks,bweight))

Is the relationship roughly linear? It is not possible to check graphically whether log odds
of a baby being low birth weight goes down linearly with gestation because the individual
odds are either 0 or ∞. Instead we use the grouped variable gest4:

> tab<-stat.table(gest4,ratio(lowbw,1-lowbw,100),data=births)
> str(tab)
> #Extract the odds from tab, and plot the logodds against 1:4
> odds<-tab[1,1:4]
> plot(1:4,log(odds),type="b")

The relationship is remarkably linear, but remember this is quite crude because it takes no
account of unequal gestation intervals. More about checking for linearity later.

5.7 Frequency data

Data from very large studies are often summarized in the form of frequency data, which
records the frequency of all possible combinations of values of the variables in the study.
Such data are sometimes presented in the form of a contingency table, sometimes as a data
frame in which one variable is the frequency. As an example, consider the UCBAdmissions

data, which is one of the standard R data sets, and refers to the outcome of applications to
6 departments by gender. The command

> UCBAdmissions

shows that the data are in the form of a 2× 2× 6 contingency table for the three variables
Admit (admitted/rejected), Gender (male/female), and Dept (A/B/C/D/E/F). Thus in
department A 512 males were admitted while 312 were rejected, and so on. The question of
interest is whether there is any bias against admitting female applicants.

The command

> ucb <- as.data.frame(UCBAdmissions)
> head(ucb)

coerces the contingency table to a data frame, and shows the first 10 lines. The relationship
between the contingency table and the data frame should be clear. The command

> ucb$Admit <- as.numeric(ucb$Admit)-1

turns Admit into a numeric variable coded 1 for rejection, 0 for admission, so

> effx(Admit,type="binary",exposure=Gender,weights=Freq,data=ucb)

shows the odds of rejection for female applicants to be 1.84 times the odds for males (note
the use of weights to take account of the frequencies). A crude analysis therefore suggests
there is a strong bias against admitting females. Continue the analysis by stratifying the
crude analysis by department - does this still support a bias against females? What is the
effect of gender controlled for department?
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Dates in R

Epidemiological studies often contain date variables which take values such as 2/11/1962.
We shall use the diet data to illustrate how to deal with variables whose values are dates.

The important variables in the dataset are chd, which takes the value 1 if the subject
develops coronary heart disease during the study the value 0 if the observation is censored,
and the three date variables which are date of birth (dob), date of entry (doe) and date of
exit (dox). The command

> str(diet)

shows that these three variables are Date variables.
You will also see that the values are just numbers, but if you try

> head( diet )

you will see these variables printed as “real” dates. The variables are internally stored as
number of days since 1/1/1970.

To convert a character string (or a character variable) to date format try:

> as.Date( "14/07/1952", format="%d/%m/%Y" )
> as.numeric( as.Date( "14/07/1952", format="%d/%m/%Y" ) )

The first form shows the date form and the latter the number of days since 1/1/1970,
which is a negative number for dates prior to 1/1/1970.

The format parts, “%d” etc., identify elements of the dates, whereas the “/”s are just the
separator characters that are in the character string. There are other possibilities for
formats, see ?strftime or the section on dates and times in the R command sheet at the
end of this document.

Reading dates from an external file is done by reading the fields as character variables
and then transforming them to date variables by the function as.Date

If you want to enter a fixed date, for example if you want to terminate follow-up at 1st
April 1975 you could say:

> newx <- pmin( diet$dox, as.Date( "1975-4-1", format="%F" ) )

The format %F is shorthand for the ISO-standard date representation %Y-%m-%d, which is
the default, so it can be omitted altogether:

> newx <- pmin( diet$dox, as.Date("1975-4-1") )

30



Dates in R 31

You can print dates in the format you like by using the function format.Date(), try for
example:

> bdat <- as.Date( "1952-7-14", format="%F" )
> format.Date( bdat, format="%A %d %B %Y" )

Exercise 6.16.

1. Convert doe and dox to date variables.

2. Generate a new variable y which is the elapsed time in years between the
date of entry and the date of exit.

3. The file getdiet.R reads the diet data, converts all three date variables to
standard form using the transform function, and generates the variable y.
Run this script and check the results are what you want.

4. Enter your own birtday as a date. Print it using format.Date() with the
format "%A %d %B %Y". Did you learn anything new?

5. Enter the birthday of your husband/wife/. . . as a date too. When will you
be (were you) 100 years old together? (Hint: mean() works on vectors of
dates as well.)

In the Epi package is also a function cal.yr which converts dates to fractional years:

> as.Date( "1952-7-14" )
> cal.yr( as.Date("1952-7-14") )
> cal.yr( "1952-7-14" )

The function will also find all date-variabels in a dataframe and convert them; try:

> data( diet )
> str( diet )
> str( cal.yr(diet) )
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Epidemiological calculations

7.1 Calculation of rates, RR and RD

This exercise is very prescriptive, so you should make an effort to really understand
everything you type into R.

Recall that the standard error of log-rate is 1/
√
D, so that a 95% confidence interval for

the log of a rate is:
θ̂ ± 1.96/

√
D = log(λ)± 1.96/

√
D

If we take the exponential, we get the confidence interval for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf

1. Now, suppose you have 15 events during 5532 person-years. Now use R as a simple
desk calculator to derive the rate and a confidence interval:

> options(width=90,show.signif.stars=FALSE)
> library( Epi )

> D <- 15
> Y <- 5532
> rate <- D / Y
> erf <- exp( 1.96 / sqrt(D) )
> c( rate, rate/erf, rate*erf )

[1] 0.002711497 0.001634654 0.004497720

You can explore the function ci.mat(), which lets you use matrix multiplication to
produce confidence interval from an estimate and a standard error (or columns of
such):

> ci.mat()

Estimate 2.5% 97.5%
[1,] 1 1.000000 1.000000
[2,] 0 -1.959964 1.959964

> exp( c( log(D/Y), 1/sqrt(D) ) %*% ci.mat() )
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Estimate 2.5% 97.5%
[1,] 0.002711497 0.001634669 0.004497678

2. Now try to achieve this estimate and c.i. using a Poisson model. Use the number of
events as the response and the log-person-years as offset:

> mm <- glm( D ~ 1, offset=log(Y), family=poisson )
> summary( mm )

Call:
glm(formula = D ~ 1, family = poisson, offset = log(Y))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9103 0.2582 -22.89 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: -8.8818e-16 on 0 degrees of freedom
Residual deviance: -8.8818e-16 on 0 degrees of freedom
AIC: 6.557

Number of Fisher Scoring iterations: 3

What is the interpretation of the parameter in this model?

3. You can extract a confidence interval directly from the model with the ci.lin() and
ci.exp-functions from Epi:

> ci.lin( mm )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -5.910254 0.2581989 -22.89032 5.801722e-116 -6.416315 -5.404194

> ci.lin( mm, E=T)[,5:7]

exp(Est.) 2.5% 97.5%
0.002711497 0.001634669 0.004497678

> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678

4. There is an alternative way to fit a Poisson model, using the rates a the Poisson
response, and the person-years as weights instead (albeit it will give you a warning
about non-integer response in a Poisson model):

> mmx <- glm( D/Y ~ 1, weight=Y, family=poisson )
> ci.exp( mmx )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678

Verify that this give the same results as above.
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5. The advantage of this latter approach is that it will also make sense to use an
identity link — the response is the same but the parameter estimated is now the rate,
not the log-rate:

> ma <- glm( D/Y ~ 1, weight=Y, family=poisson(link=identity) )

What is the meaning of the intercept in this model?

Verify that you actually get the same rate estimate as before.

6. Now use ci.lin to produce the estimate and the confidence intervals from this
model:

> ci.lin( ma )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 0.002711497 0.0007001054 3.872983 0.0001075112 0.001339315 0.004083678

> ci.lin( ma )[,c(1,5,6)]

Estimate 2.5% 97.5%
0.002711497 0.001339315 0.004083678

> ci.exp( ma, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 0.002711497 0.001339315 0.004083678

Why are the confidence limits not the same as from the multiplicative model?

Derive the formula for the standard error of this estimated rate.

7. Now, suppose the events and person years are collected over three periods:

> Dx <- c(3,7,5)
> Yx <- c(1412,2783,1337)
> Px <- 1:3
> cbind( Px, Dx, Yx )

Px Dx Yx
[1,] 1 3 1412
[2,] 2 7 2783
[3,] 3 5 1337

Try to fit the same model as before to the data from the separate periods.

> m1 <- glm( Dx ~ 1, offset=log(Yx), family=poisson )

8. Now test whether the rates are the same in the three periods: Try to fit a model with
the period as a factor in the model:

> mp <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )

and compare the two models using anova with the argument test="Chisq":

> anova( m1, mp, test="Chisq" )
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Analysis of Deviance Table

Model 1: Dx ~ 1
Model 2: Dx ~ factor(Px)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 0.70003
2 0 0.00000 2 0.70003 0.7047

Compare the test statistic to the deviance of the model mp.

What is the deviance good for?

9. If we have observations of two rates λ1 and λ0, based on (D1, Y1) and (D0, Y0) the
variance of the difference of the log of the rates, that is the log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1

+
1

D0

)
Suppose you have 15 events during 5532 person-years in an unexposed group and 28
events during 4783 person-years in an exposed group:

Compute the the rate-ratio and c.i. by:

> D0 <- 15 ; D1 <- 28
> Y0 <- 5532 ; Y1 <- 4783
> RR <- (D1/Y1)/(D0/Y0)
> erf <- exp( 1.96 * sqrt(1/D0+1/D1) )
> c( RR, RR/erf, RR*erf )

[1] 2.158980 1.153146 4.042153

> exp( c( log(RR), sqrt(1/D0+1/D1) ) %*% ci.mat() )

Estimate 2.5% 97.5%
[1,] 2.15898 1.15316 4.042106

10. Now achieve this using a Poisson model:

> D <- c(D0,D1) ; Y <- c(Y0,Y1); xpos <- 0:1
> mm <- glm( D ~ factor(xpos), offset=log(Y), family=poisson )

What does the parameters mean in this model?

You can extract the exponentiated parameters by:

> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678
factor(xpos)1 2.158979720 1.153159560 4.042106222
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11. If we instead want the rate-difference, we just subtract the rates, and the variance of
the difference is (since the rates are based on independent samples) just the sum of
the variances:

var(RD) = var(λ1) + var(λ0)

= D1/Y
2
1 +D0/Y

2
0

Use this formula to compute the rate difference and a 95% confidence interval for it.
Note that we use the %*% for matrix multiplication:

> rd <- diff( D/Y )
> sd <- sqrt( sum( D/Y^2 ) )
> c( rd, sd ) %*% ci.mat()

Estimate 2.5% 97.5%
[1,] 0.00314257 0.0005765288 0.005708611

12. Verify that this is the confidence interval you get when you fit an additive model with
exposure as factor:

> ma <- glm( D/Y ~ factor(xpos), weight=Y,
+ family=poisson(link=identity) )
> ci.lin( ma )[,c(1,5,6)]

Estimate 2.5% 97.5%
(Intercept) 0.002711497 0.0013393153 0.004083678
factor(xpos)1 0.003142570 0.0005765288 0.005708611

13. Normally one would like to get both the rates and the ratio between them. This can
be achieved in one go using the ctr.mat argument to ci.lin. Try:

> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM

[,1] [,2]
rate 0 1 0
rate 1 1 1
RR 1 vs. 0 0 1

> mm <- glm( D ~ factor(xpos),
+ offset=log(Y), family=poisson )
> ci.lin( mm, ctr.mat=CM, E=T)[,5:7]

exp(Est.) 2.5% 97.5%
rate 0 0.002711497 0.001634669 0.004497678
rate 1 0.005854066 0.004041994 0.008478512
RR 1 vs. 0 2.158979720 1.153159560 4.042106222

> round( ci.lin( mm, ctr.mat=CM, E=T)[,5:7], 3 )

exp(Est.) 2.5% 97.5%
rate 0 0.003 0.002 0.004
rate 1 0.006 0.004 0.008
RR 1 vs. 0 2.159 1.153 4.042

14. Refit the model with Y/1000 as the person time, so you get the estimated rates in
units of cases per 1000.
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15. Use the same machinery to the additive model to get the rates and the rate-difference
in one go. Note that the annotation of the resulting estimates are via the
column-names of the contrast matrix.

> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/Y ~ factor(xpos), weight=Y,
+ family=poisson(link=identity) )
> ci.lin( ma, ctr.mat=CM )[,c(1,5,6)]

Estimate 2.5% 97.5%
rate 0 0.002711497 0.0013393153 0.004083678
rate 1 0.005854066 0.0036857298 0.008022403
RD 1 vs. 0 0.003142570 0.0005765288 0.005708611

7.2 Lexis diagram

In the Lexis diagram below displayed follow-up times of a small occupational cohort over
the years 1940-1959 and the age range 40-54 years (this example is from B&D). Each line
runs from the entry to follow-up until either the diagnosis of cancer (•), or censoring or
withdrawal (no symbol) due to death from other causes or migration.
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1. Calculate the numbers of new cases of cancer, and person-years at risk in all the three
5-year agebands: 40-44, 45-49, and 50-54 years for each of the 5-year calendar periods
1940-44, 1945-49, and 1950-54 separately.
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Hint 1: Execute some division of labour in your group, so that not everybody is
calculating these items for all periods.

Hint 2: The data set is avaialable as an example dataset, occup, in the Epi package.
Try:

> library( Epi )
> data( occup )
> str( occup )
> occup
> example( occup )

2. Calculate the numbers of new cases of cancer, person-years at risk in the three 5-year
age groups: 40-44, 45-49, and 50-54 years for a birth cohort born in 1902-11.

3. Now estimate the cumulative rate and the cumulative risk over the whole 15-year age
range for the chosen birth cohort.

4. The age-specific incidences (per 100,000 person-years) in the three 5-year age-groups
during 1940–60 in the whole population of the country were 100, 200, and 400,
respectively, so there was no variation between the subperiods. Assuming that this is
an appropriate reference population, calculate the expected number of cases for the
index occupational cohort for the same period. Compare the observed and expected
number of cases by standardised incidence ratio, SIR.

Comment on the result.

7.2.1 Lexis diagram — solution

1. You can load the dataset from the Epi package by:

> library( Epi )
> data( occup )
> occup

In order to compute the cases and person-years we set up a Lexis object:

> oL <- Lexis( entry = list( age=AoE, per=DoE ),
+ exit = list( per=DoX ),
+ entry.status = factor( rep("W",nrow(occup)) ),
+ exit.status = factor( Xst ),
+ data = occup )
> summary( oL )

Exit status X and W are synonymous. If we want to classify the follow-up
(person-years and events) by age and calendar time we must first subdivide by the
two timescales, this is done by splitLexis:

> oL <- splitLexis( oL, time="age", breaks=seq(0,100,5) )
> oL <- splitLexis( oL, time="per", breaks=seq(0,100,5)+1900 )
> oL[order(oL$lex.id,oL$age),]

Having split the follow-up we can make a tabulation of the follow-up using the utility
function timeBand:
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> table( timeBand(oL,"age","left"), timeBand(oL,"per","left"))

However we do not want the number of observations (lines) in the dataset, we want
the number of person-yeras (lex.dur) and the number of deaths (lex.Xst=="D"), so
we set up a matrix with these as columns, and define the two clssification variables:

> FU <- with( oL, cbind(lex.Xst=="D",lex.dur) )
> colnames(FU) <- c("D","Y")
> Age <- timeBand(oL,"age","left")
> Period <- timeBand(oL,"per","left")

This enables us to use xtabs to simultaneously tabulate person-years and deaths

> FUtab <- xtabs( FU ~ Age + Period )
> ftable(FUtab,col.vars=2:3)

2. If we want the tabulation by age for the birth cohort 1902–11, we simply restrict the
dataset to his group, i.e. the persons where per− age is betwwen 1029 and 1912:

> BC <- subset(oL,per-age>1902 & per-age<1912)
> FU <- with( BC, cbind(lex.Xst=="D",lex.dur) )
> colnames(FU) <- c("D","Y")
> Age <- timeBand(BC,"age","left")
> FUctab <- xtabs( FU ~ Age )
> FUctab

3. The cumulative rate for the cohort:

5×
(

1

16.5
+

1

15.7
+

1

7.1

)
= 1.32, 1− exp(−1.32) = 0.73

or in terms of the just computed:

> sum(FUctab[,1]/FUctab[,2]*5)

4. Occupational cohort. Expected number of cases

E =
100

105y
×(11+9.5+6+0) y+

200

105y
×(6+12.2+10.5+5.7) y+

400

105y
×(6+8.5+4.2+6.1) y = 0.1949

Observed O = 7, standardised incidence ratio 7/0.1949 = 35.9. Quite a risky
occupation!

Note that the point of subdividing the follow-up by age and calendar time is to make
it possible to apply population rates to the follow-up — the population rates vary by
age and calendar time. So what is done is to match the population rates to the
follow-up dataset:

> p.rates <- data.frame( rate=c(100,200,400), Age=c(40,45,50) )
> oL$Age <- timeBand(oL,"age","left")
> oL <- merge(oL,p.rates)
> oL

With this we can now compute the observed and expected cases:

> O <- with( oL, sum( lex.Xst=="D" ) )
> E <- with( oL, sum( lex.dur*rate/10^5 ) )
> c( O, E, O/E )

Usually, we will use smaller intervals, as well as population rates that actually do
vary by calendar time, but that would require more complicated computing:



Chapter 8

Follow-up data in the Epi package

In the Epi-package, follow-up data is represented by adding some extra variables to a data
frame. Such a data frame is called a Lexis object. The tools for handling follow-up data
then use the structure of this for special plots, tabulations etc.

Follow-up data basically consists of a time of entry, a time of exit and an indication of
the status at exit (normally either “alive” or “dead”). Implicitly is also assumed a status
during the follow-up (in survival studies this is “alive”).

8.1 Timescales

A timescale is a variable that varies deterministicly within each person during follow-up,
e.g.:

• Age

• Calendar time

• Time since treatment

• Time since relapse

All timescales advance at the same pace, so the time followed is the same on all timescales.
Therefore, it suffices to use only the entry point on each of the time scale, for example:

• Age at entry.

• Date of entry.

• Time since treatment (at treatment this is 0).

• Time since relapse (at relapse this is 0, before relapse it is NA).

In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object
is a data frame, where each record represents a piece of follow-up time and with a bit of
extra structure representing the follow-up. Normally we will start by setting up a Lexis
object with one record per person, each representing the entire follow-up of a person.

For the nickel data we would construct a Lexis object by:

40
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> data( nickel )
> nicL <- Lexis( entry = list( per=agein+dob,
+ age=agein,
+ tfh=agein-age1st ),
+ exit = list( age=ageout ),
+ exit.status = ( icd %in% c(162,163) )*1,
+ data = nickel )

The entry argument is a named list with the entry points on each of the timescales we
want to use. It defines the names of the timescales and the entry points. The exit

argument gives the exit time on one of the timescales, so the name of the element in this
list must match one of the names of the entry list. This is sufficient, because the follow-up
time on all time scales is the same, in this case ageout - agein. Now take a look at the
result:

> str( nickel )
> str( nicL )
> head( nicL )
> summary( nicL )

The Lexis object nicL has a variable for each timescale, the value of which is the entry
point on this timescale. The follow-up time is in the variable lex.dur (duration).

We defined the exit status to be death from lung cancer (ICD7 162,163), i.e. this
variable is 1 if follow-up ended with a death from this cause. If follow-up ended alive or by
death from another cause, the exit status is coded 0, i.e. as a censoring.

Note that the exit status is in the variable lex.Xst (eXit status. The variable lex.Cst

is the state where the follow-up takes place (Current status), in this case 0 (alive) for all
persons.

It is possible to get a visualization of the follow-up along the timescales chosen by using
the plot method for Lexis objects. nicL is an object of class Lexis, so using the function
plot() on it means that R will look for the function plot.Lexis and use this function.

> plot( nicL )

The function allows a lot of control over the output, and a points.Lexis function allows
plotting of the endpoints of follow-up, so here is a more elaborate plot:

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( nicL, 1:2, lwd=1, col=c("blue","red")[(nicL$exp>0)+1],
+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),
+ xlim=1900+c(0,90), xaxs="i",
+ ylim= 10+c(0,90), yaxs="i", las=1 )
> points( nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1],
+ col="lightgray", lwd=3, cex=1.2 )
> points( nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1],
+ col=c("blue","red")[(nicL$exp>0)+1], lwd=1, cex=1.2 )

8.2 Splitting the follow-up time along a timescale

The follow-up time in a cohort can be subdivided by for example current age. This is
achieved by the splitLexis (note that it is not called split.Lexis). This requires that
the timescale and the breakpoints on this timescale are supplied. Try:
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> nicS1 <- splitLexis( nicL, "age", breaks=seq(0,100,10) )
> str( nicL )
> str( nicS1 )
> round( subset( nicS1, id %in% 8:10 ), 2 )

The resulting object is again a Lexis object, and so follow-up may be split further along
another timescale. Try this and list the result for individuals 4 and 6:

> nicS2 <- splitLexis( nicS1, "tfh", breaks=c(0,1,5,10,20,30,100) )
> round( subset( nicS2, id %in% 8:10 ), 2 )

If we want to model the effect of these timescales we will for each interval use either the
value of the left endpoint in each interval or the middle. There is a function timeBand

which returns these. Try:

> timeBand( nicS2, "age", "middle" )[1:10]

Note that these are the midpoints of the intervals defined by breaks=, not the midpoints of
the actual follow-up intervals. This is because the variable to be used in modeling must be
independent of the censoring and mortality pattern — it should only depend on the chosen
grouping of the timescale.
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Figure 8.1: Lexis diagram of the nickel data set.
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8.3 Cutting time at a specific date

If we have a recording of the date of a specific event as for example recovery or relapse, we
may classify follow-up time as being before or after this intermediate event. This is
achieved with the function cutLexis, which takes three arguments: the time point, the
timescale, and the name of the (new) state following the date.

Now we define the age for the nickel workers where the cumulative exposure exceeds 50
exposure years:

> subset( nicL, id %in% 8:10 )
> agehi <- nicL$age1st + 50/nicL$exposure
> nicC <- cutLexis( data=nicL, cut=agehi, timescale="age",
+ new.state=2, precursor.states=0 )
> subset( nicC[order(nicC$id,nicC$age),], id %in% 8:10 )

(The precursor.states= argument is explained below). Note that individual 6 has had
his follow-up split at age 25 where 50 exposure-years were attained. This could also have
been achieved in the split data set nicS2 instead of nicL, try:
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Figure 8.2: Lexis diagram of the nickel data set, with bells and whistles. The red lines are
for persons with exposure> 0, so it is pretty evident that the oldest ones are the exposed part
of the cohort.
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> subset( nicS2, id %in% 8:10 )
> agehi <- nicS2$age1st + 50/nicS2$exposure
> nicS2C <- cutLexis( data=nicS2, cut=agehi, timescale="age",
+ new.state=2, precursor.states=0 )
> subset( nicS2C[order(nicS2C$id,nicS2C$age),], id %in% 8:10 )
> summary( nicS2C )

Note that follow-up subsequent to the event is classified as being in state 2, but that the
final transition to state 1 (death from lung cancer) is preserved. This is the point of the
precursor.states= argument. It names the states (in this case 0, “Alive”) that will be
over-written by new.state (in this case 2, “High exposure”). Clearly, state 1 (“Dead”)
should not be updated even if it is after the time where the persons moves to state 2. On
other words, only state 0 is a precursor to state 2, state 1 is always subsequent to state 2.

Note if the intermediate event is to be used as a time-dependent variable in a Cox-model,
then lex.Cst should be used as the time-dependent variable, and lex.Xst==1 as the event.

It is possible to illustrate the transitions between the different states by the command
boxes.Lexis — if you omit boxpos=TRUE, you will be asked to click on the screen to locate
the boxes.

> boxes( nicS2C, boxpos=TRUE )
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Figure 8.3: The person years (in the boxes) and number of transitions between the states.

8.4 Competing risks — multiple types of events

If we want to consider death from lung cancer and death from other causes as separate
events we can code these as for example 1 and 2.

> data( nickel )
> nicL <- Lexis( entry = list( per=agein+dob,
+ age=agein,
+ tfh=agein-age1st ),
+ exit = list( age=ageout ),
+ exit.status = ( icd > 0 ) + ( icd %in% c(162,163) ),
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+ data = nickel )
> str( nicL )
> head( nicL )
> subset( nicL, id %in% 8:10 )

If we want to label the states, we can enter the names of these in the states parameter,
try for example:

> nicL <- Lexis( entry = list( per=agein+dob,
+ age=agein,
+ tfh=agein-age1st ),
+ exit = list( age=ageout ),
+ exit.status = ( icd > 0 ) + ( icd %in% c(162,163) ),
+ data = nickel,
+ states = c("Alive","D.oth","D.lung") )
> str( nicL )

You can get an overview of the number of records by state and transitions between states as
well as the person-years in each state by using summary.Lexis(), and computing rates:

> summary( nicL, scale=1000 )

When we cut at a date as in this case, the date where cumulative exposure exceeds 50
exposure-years, we get the follow-up after the date classified as being in the new state if
the exit (lex.Xst) was to a state we defined as one of the precursor.states:

> nicL$agehi <- nicL$age1st + 50/nicL$exposure
> nicC <- cutLexis( data=nicL, cut=nicL$agehi, "age",
+ new.state="HiExp", precursor.states="Alive" )
> subset( nicC, id %in% 8:10 )
> summary( nicC, scale=1000 )

Note that the persons-years is the same, but that the number of events has changed. This
is because events are now defined as any transition from alive, including the transitions to
HiExp.

As before we can illustrate the different states with little boxes:

> boxes( nicC, boxpos=TRUE, scale.R=1000, pos.arr=c(5,7,5,5,7)/10 )

8.5 Multiple events of the same type (recurrent

events)

Sometimes more events of the same type are recorded for each person and one would then
like to count these and put follow-up time in states accordingly. So states must be
numbered. Essentially, each set of cut-points represents progressions from one state to the
next. Therefore the states should be numbered, and the numbering of states subsequently
occupied be increased accordingly.

This is a behaviour different from the one outlined above, and it is achieved by the
argument count=TRUE to cutLexis. When count is set to TRUE, the value of the arguments
new.state and precursor.states are ignored. Actually, when using the argument
count=TRUE, the function countLexis is called, so an alternative is to use this directly.

If we record when persons pass thresholds of exposure we have this situation. But if we
at the same time want to keep track of when people die, we must code death by a
sufficiently large number, because all states will be increased by one for each event:
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Figure 8.4: The persons years (in the boxes) and number of transitions and rates per 1000
PY between states in the competing risks model.

> nicL <- Lexis( entry = list( per=agein+dob,
+ age=agein,
+ tfh=agein-age1st ),
+ exit = list( age=ageout ),
+ exit.status = ( icd > 0 )*100,
+ data = nickel )
> summary( nicL )

We now cut the follow-up at successive exposure thresholds — note that we go through the
levels (i.e. the times at which they are crossed) by going through them in random order
(sample.int(x) returns a random permutation of the numbers 1, . . . , x).

> nicC <- nicL
> exlev <- seq(20,140,40)
> for( level in exlev[sample.int(length(exlev))] )
+ {
+ agehi <- nicC$age1st + level/nicC$exposure
+ nicC <- cutLexis( data=nicC, cut=agehi, "age", count=TRUE )
+ }
> summary( nicC )

We can now plot these:

> nc <- length( table( nicC$lex.Cst ) )
> boxes( nicC, boxpos=list( x=rep( seq(5,95,,nc), 2 ),
+ y=rep( c(80,20), each=nc) ),
+ scale.R=100 )

We can put a few extra bells and whistles on the graph, by redefining the names of the
names of the states by first making them factors (using factorize), then by pasting the
relevant pieces of text to it. Moreover we also ask that rates instead of no. transitions be
shown.
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> nicF <- factorize( nicC )
> xlev <- paste( c("<",rep("",nc-1)),
+ c(exlev[1],exlev),
+ c("",rep("-",nc-1)), sep="" )
> levels( nicF$lex.Cst ) <-
+ levels( nicF$lex.Xst ) <-
+ c( paste( "Cum.ex.\n", xlev, "\n" ),
+ paste( "Dead\n", xlev ) )
> levels( nicF$lex.Cst )
> boxes( nicF, boxpos=list( y=rep( c(80,20), each=nc),
+ x=rep( seq(5,95,,nc), 2 ) ),
+ eq.ht=FALSE, hmult=1.5, wmult=1.5, scale.R=1000, pos=0.3 )

The resulting two graphs are shown in figure 8.5.
A more thorough explanation of the Lexis machinery and its practical use in modeling is

given in the papers by Plummer & Carstensen [1, 2].
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Figure 8.5: The person years (in the boxes) and number of transitions between states in the
counting model. The bottom display is enhanced by labeling of exposure levels, and showing
the transition rates rather than the no. of transitions.
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8.6 Cox-models and Poisson regression

This exercise demonstrates the equivalence of the Cox-model and an absurd limit of the
Poisson model.

To illustrate this we use the lung cancer survival data set from the survival package:

> options( width=95 )
> library( splines )
> library( Epi )
> library( survival )
> data( lung )
> str( lung )

'data.frame': 228 obs. of 10 variables:
$ inst : num 3 3 3 5 1 12 7 11 1 7 ...
$ time : num 306 455 1010 210 883 ...
$ status : num 2 2 1 2 2 1 2 2 2 2 ...
$ age : num 74 68 56 57 60 74 68 71 53 61 ...
$ sex : num 1 1 1 1 1 1 2 2 1 1 ...
$ ph.ecog : num 1 0 0 1 0 1 2 2 1 2 ...
$ ph.karno : num 90 90 90 90 100 50 70 60 70 70 ...
$ pat.karno: num 100 90 90 60 90 80 60 80 80 70 ...
$ meal.cal : num 1175 1225 NA 1150 NA ...
$ wt.loss : num NA 15 15 11 0 0 10 1 16 34 ...

> lung[1:5,]

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0

Now take a look at the number of censorings (status=1) and deaths (status=1) as well
as the number of ties:

> table( lung$status )

1 2
63 165

> table( table( lung$time ) )

1 2 3
146 38 2

Then take a look at the censorings (+) and event times and the summary of the
Kaplan-Meier estimator of the overall survival function:

> with( lung, Surv( time, status==2 ) )

[1] 306 455 1010+ 210 883 1022+ 310 361 218 166 170 654 728 71 567
[16] 144 613 707 61 88 301 81 624 371 394 520 574 118 390 12
[31] 473 26 533 107 53 122 814 965+ 93 731 460 153 433 145 583
[46] 95 303 519 643 765 735 189 53 246 689 65 5 132 687 345
[61] 444 223 175 60 163 65 208 821+ 428 230 840+ 305 11 132 226
[76] 426 705 363 11 176 791 95 196+ 167 806+ 284 641 147 740+ 163
[91] 655 239 88 245 588+ 30 179 310 477 166 559+ 450 364 107 177
[106] 156 529+ 11 429 351 15 181 283 201 524 13 212 524 288 363
[121] 442 199 550 54 558 207 92 60 551+ 543+ 293 202 353 511+ 267
[136] 511+ 371 387 457 337 201 404+ 222 62 458+ 356+ 353 163 31 340
[151] 229 444+ 315+ 182 156 329 364+ 291 179 376+ 384+ 268 292+ 142 413+
[166] 266+ 194 320 181 285 301+ 348 197 382+ 303+ 296+ 180 186 145 269+
[181] 300+ 284+ 350 272+ 292+ 332+ 285 259+ 110 286 270 81 131 225+ 269
[196] 225+ 243+ 279+ 276+ 135 79 59 240+ 202+ 235+ 105 224+ 239 237+ 173+
[211] 252+ 221+ 185+ 92+ 13 222+ 192+ 183 211+ 175+ 197+ 203+ 116 188+ 191+
[226] 105+ 174+ 177+
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> ( s.km <- survfit( Surv( time, status==2 ) ~ 1, data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

records n.max n.start events median 0.95LCL 0.95UCL
228 228 228 165 310 285 363

8.6.1 Cox-model

We then fit a Cox-model with age and sex as regression variables, but first we make sex a
factor:

> lung$sex <- factor( lung$sex, labels=c("M","F") )
> system.time(
+ c.as <- coxph( Surv( time, status==2 ) ~ age + sex,
+ method="breslow", eps=10^-8, iter.max=25, data=lung )
+ )

user system elapsed
0.001 0.003 0.006

> summary( c.as )

Call:
coxph(formula = Surv(time, status == 2) ~ age + sex, data = lung,

method = "breslow", eps = 10^-8, iter.max = 25)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|z|)
age 0.017013 1.017158 0.009222 1.845 0.06506
sexF -0.512565 0.598957 0.167462 -3.061 0.00221

exp(coef) exp(-coef) lower .95 upper .95
age 1.017 0.9831 0.9989 1.0357
sexF 0.599 1.6696 0.4314 0.8316

Concordance= 0.603 (se = 0.026 )
Rsquare= 0.06 (max possible= 0.999 )
Likelihood ratio test= 14.08 on 2 df, p=0.0008741
Wald test = 13.44 on 2 df, p=0.001208
Score (logrank) test = 13.69 on 2 df, p=0.001067

We can then plot the predicted survival curves for a 60 year old man and woman:

> plot( survfit( c.as, newdata=data.frame(age=60,sex=c("M","F")) ),
+ col=c("blue","red"), lwd=3 )

Note that the two curves are estimates of survival curves; the jumps are at the same places
for both curves.

8.6.2 The Poisson model

IN order to fit a Poisson-model to the same follow-up we define the follow-up data as a
Lexis object:

> Lx <- Lexis( exit = list( tfd=time),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data=lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfd timescale.

> summary( Lx )
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Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69593 228

So everyone starts as “Alive” at time 0. The Cox-model is obtained if we fit a Poisson
model to data where we have one interval per event, and moreover assign one parameter to
each interval. So first we cut data at all entry and exit times to form a data frame with one
record per follow-up interval between event times:

> dx <- splitLexis( Lx, "tfd", breaks=c(0,unique(Lx$time)) )
> summary( dx )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> subset( dx, lex.id==19 )[,1:13]

lex.id tfd lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog ph.karno pat.karno
2139 19 0 5 Alive Alive 1 61 2 56 F 2 60 60
2140 19 5 6 Alive Alive 1 61 2 56 F 2 60 60
2141 19 11 1 Alive Alive 1 61 2 56 F 2 60 60
2142 19 12 1 Alive Alive 1 61 2 56 F 2 60 60
2143 19 13 2 Alive Alive 1 61 2 56 F 2 60 60
2144 19 15 11 Alive Alive 1 61 2 56 F 2 60 60
2145 19 26 4 Alive Alive 1 61 2 56 F 2 60 60
2146 19 30 1 Alive Alive 1 61 2 56 F 2 60 60
2147 19 31 22 Alive Alive 1 61 2 56 F 2 60 60
2148 19 53 1 Alive Alive 1 61 2 56 F 2 60 60
2149 19 54 5 Alive Alive 1 61 2 56 F 2 60 60
2150 19 59 1 Alive Alive 1 61 2 56 F 2 60 60
2151 19 60 1 Alive Dead 1 61 2 56 F 2 60 60

So we see that the time-split data frame has substantially more records, but exactly the
same amount of risk time and no. of events.

We can now fit the detailed Poisson model — pretty daft endeavour, takes quite some
computing time because of the excessively large number of parameters:

> system.time(
+ p.as <- glm( (dx$lex.Xst=="Dead") ~ factor(tfd) - 1 + age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=dx, eps=10^-8, maxit=25 )
+ )

user system elapsed
9.915 0.021 9.933

> length( coef(p.as) )

[1] 188

We can now verify that we actually have the same regression parameters as in the
Cox-model:

> ci.lin(p.as,subset=c("age","sex"))

Estimate StdErr z P 2.5% 97.5%
age 0.01701289 0.009221954 1.844825 0.06506302 -0.001061808 0.03508759
factor(sex)F -0.51256479 0.167462060 -3.060782 0.00220760 -0.840784401 -0.18434519

> ci.lin(c.as)

Estimate StdErr z P 2.5% 97.5%
age 0.01701289 0.009221954 1.844825 0.065063023 -0.001061808 0.03508759
sexF -0.51256479 0.167462063 -3.060782 0.002207601 -0.840784404 -0.18434518
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> ci.lin(p.as,subset=c("age","sex"))/
+ ci.lin(c.as)

Estimate StdErr z P 2.5% 97.5%
age 1 1 1 0.9999999 0.9999997 1
factor(sex)F 1 1 1 0.9999998 1.0000000 1

Thus the Cox-model is the same as the Poisson model with 188 parameters to describe the
baseline intensity.

8.6.3 A more sensible Poisson model

The model above (Cox/Poisson) models the baseline by one parameter per interval between
event times. Thus, the ordering and location of the event times (as well as the location of
the risk time) is not used in the model; the rates are allowed to vary unrestricted between
intervals. This does not seem sensible, so instead of assigning a separate rate-parameter to
each interval, we could model the rates as a smooth function of the location of the interval.

To this end we define internal and boundary knots for a spline basis and fit the spline
model. The Epi package has a function Ns that allows specification of a natural spline
(restricted cubic spline) by only supplying all knots without specifying which ones are the
boundary knots:

> kn <- c(0,25,75,150,250,500,1000)
> system.time(
+ s.as <- glm( (lex.Xst=="Dead") ~ Ns( tfd, knots=kn )
+ + age + sex,
+ offset = log(lex.dur),
+ family = poisson, data=dx, eps=10^-8, maxit=25 )
+ )

user system elapsed
0.310 0.004 0.315

> length( coef( s.as ) )

[1] 9

This model is much quicker to fit because the no. of parameters is so much smaller, but it
still takes much longer than to fit the Cox-model.

We can now compare the parameters from the model with those from the Cox-model:

> ci.lin(s.as,subset=c("age","sex"))

Estimate StdErr z P 2.5% 97.5%
age 0.01636881 0.009204915 1.778268 0.075359829 -0.001672495 0.03441011
sexF -0.51200146 0.167452705 -3.057588 0.002231258 -0.840202726 -0.18380019

> ci.lin(c.as)

Estimate StdErr z P 2.5% 97.5%
age 0.01701289 0.009221954 1.844825 0.065063023 -0.001061808 0.03508759
sexF -0.51256479 0.167462063 -3.060782 0.002207601 -0.840784404 -0.18434518

> ci.lin(s.as,subset=c("age","sex"))/
+ ci.lin(c.as)

Estimate StdErr z P 2.5% 97.5%
age 0.9621415 0.9981524 0.9639225 1.158259 1.5751390 0.9806918
sexF 0.9989009 0.9999441 0.9989568 1.010716 0.9993082 0.9970436

From the parametric model we can extract the intensity as a function of time since
diagnosis, and from that we compute the estimated cumulative intensity over 10-day
periods for 60 year old men, and then the survival function:
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> new <- data.frame( tfd = 1:100*10,
+ sex = "M",
+ age = 60,
+ lex.dur = 10 )
> s.pr <- ci.pred( s.as, newdata=new )
> s.surv <- exp( -cumsum( c(0,s.pr[,1]) ) )

We can now ploy both the estimated underlying mortality (which is the one you never see
from the fitted Cox-model):

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.5 )
> matplot( new$tfd, s.pr*300,
+ log="y", xlab="Time since diagnosis (days)", ylab="Mortality (%/month)",
+ type="l", lty=1, lwd=c(4,1,1), col="black" )
> plot( survfit( c.as, newdata=data.frame(age=60,sex="M") ),
+ conf.int=FALSE, mark.time=FALSE, lwd=3,
+ xlab="Time since diagnosis (days)", ylab="Survival probability" )
> lines( c(1,new$tfd), s.surv, col="red", lwd=4 )
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Figure 8.6: Left: Mortality among 60 year old male lung cancer patients as estimated from a
Poisson model with a spline in time. Right: Estimated survival from the Cox-model (black)
and the Poisson model (red), 60 year old male lung cancer patients.

This is the simple way to get the survival function from the parametric Poisson model,
but the standard errors does not come with it this way.

In order to get the predicted survival with confidence intervals from the spline model we
need to devise a contrast matrix to produce the predictions directly, including the
covariance between the point estimates for log-incidence rates at the prediction points. We
then use the delta-method to derive standard errors of the cumulative incidences.

This is implemented in the function ci.cum in Epi, which need the contrast matrix to be
multiplied to the parameter vector as one argument

First the time points where we compute the incidences
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> T.pt <- seq(10,1000,10)
> CM = cbind( 1, Ns( T.pt, knots=kn ), 60, 0 )
> ci.lin( s.as )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -7.33249005 0.780497057 -9.39464151 5.741300e-21 -8.862236173 -5.80274393
Ns(tfd, knots = kn)1 -0.01216061 0.590516380 -0.02059317 9.835702e-01 -1.169551443 1.14523023
Ns(tfd, knots = kn)2 0.73013494 0.620231686 1.17719710 2.391168e-01 -0.485496824 1.94576671
Ns(tfd, knots = kn)3 0.43351613 0.590979501 0.73355528 4.632198e-01 -0.724782404 1.59181467
Ns(tfd, knots = kn)4 1.37818863 0.588420963 2.34218140 1.917139e-02 0.224904739 2.53147253
Ns(tfd, knots = kn)5 0.55990396 1.283944678 0.43608107 6.627779e-01 -1.956581362 3.07638929
Ns(tfd, knots = kn)6 0.77107474 0.908692852 0.84855377 3.961296e-01 -1.009930519 2.55208001
age 0.01636881 0.009204915 1.77826812 7.535983e-02 -0.001672495 0.03441011
sexF -0.51200146 0.167452705 -3.05758845 2.231258e-03 -0.840202726 -0.18380019

> head( CM )

1 2 3 4 5 6
[1,] 1 0.003555556 0.000000e+00 0 -0.09162891 0.2290723 -0.1374434 60 0
[2,] 1 0.028444444 0.000000e+00 0 -0.16647084 0.4161771 -0.2497063 60 0
[3,] 1 0.095111111 8.888889e-05 0 -0.20830538 0.5207635 -0.3124581 60 0
[4,] 1 0.203555556 2.400000e-03 0 -0.21394301 0.5348575 -0.3209145 60 0
[5,] 1 0.333333333 1.111111e-02 0 -0.19322508 0.4830627 -0.2898376 60 0
[6,] 1 0.463111111 3.048889e-02 0 -0.15655953 0.3913988 -0.2348393 60 0

> head( Lambda <- ci.cum( s.as, ctr.mat=CM, intl=10 ) )

Estimate 2.5% 97.5% Std.err.
[1,] 0.01573572 0.00597744 0.02549399 0.004978803
[2,] 0.03018553 0.01409597 0.04627510 0.008209113
[3,] 0.04395497 0.02175695 0.06615300 0.011325733
[4,] 0.05764164 0.02890228 0.08638099 0.014663206
[5,] 0.07172113 0.03665723 0.10678504 0.017890076
[6,] 0.08658460 0.04604430 0.12712490 0.020684205

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( survfit( c.as, newdata=data.frame(age=60,sex="M") ),
+ conf.int=TRUE, mark.time=FALSE, lwd=1,
+ ylim=0:1, yaxs="i", bty="n",
+ xlab="Time since diagnosis (days)", ylab="Survival proability")
> lines( survfit( c.as, newdata=data.frame(age=60,sex="M") ),
+ conf.int=FALSE, mark.time=FALSE, lwd=3 )
> lines( c(1,new$tfd), s.surv, col="red", lwd=4 )
> matlines( 1:100*10, exp(-Lambda[,1:3]), lty=1,
+ col=c("white","red","red") )

It is not necessary to split time at all event times; it would suffice to split in say 5-day
intervals equidistantly; the results would be pretty much the same.

8.6.4 Interaction: testing the proportionality assumption

8.6.4.1 Categorical interaction

If we test the proportionality by cox.zph we find a weak indication of a sex-effect, that is
an interaction between sex and time:

> ( pr.as <- cox.zph( c.as ) )

rho chisq p
age -0.0274 0.128 0.720
sexF 0.1235 2.444 0.118
GLOBAL NA 2.642 0.267

> par( mfrow=c(1,2) )
> plot( pr.as )
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Figure 8.7: Estimated survival for 60 year old men; black curves are the Breslow-estimator
from the Cox-model; red curves estimates from Poisson-model with smooth effects of time
since diagnosis.

Another way of estimating the interaction is to do it explicitly in the Poisson-model;
then we both get a likelihood-ratio test and an estimate of the male-female mortality ratio
as a function of time. In this setup we can test the shape of the interaction; we test a linear
and a more extended:

> i.as <- glm( (lex.Xst=="Dead") ~ Ns( tfd, knots=kn ) + age +
+ sex*tfd,
+ offset = log(lex.dur),
+ family = poisson, data=dx, eps=10^-8, maxit=25 )
> I.as <- glm( (lex.Xst=="Dead") ~ Ns( tfd, knots=kn ) + age +
+ sex + sex:Ns( tfd, knots=kn ),
+ offset = log(lex.dur),
+ family = poisson, data=dx, eps=10^-8, maxit=25 )
> anova( s.as, i.as, I.as, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex
Model 2: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex * tfd
Model 3: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex + sex:Ns(tfd,

knots = kn)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
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Figure 8.8: Scoenfeld residuals from the Cox model with age and sex as predictors.

1 20013 1618.1
2 20012 1615.1 1 2.9503 0.08586
3 20007 1613.8 5 1.3683 0.92775

We see that there is a borderline significant effect, pretty much with the same p-value as
the Schoenfeld test. However, it would also be useful to see the magnitude of the effect, so
we set up the matrix needed to extract it:

> tpt <- 0:100*10
> ci.exp( i.as, subset="sex" )

exp(Est.) 2.5% 97.5%
sexF 0.3924498 0.2159101 0.7133376
sexF:tfd 1.0014594 0.9998030 1.0031186

> RR <- ci.exp( i.as, subset="sex", ctr.mat=-cbind(1,tpt) )
> matplot( tpt, RR, type="l", lty=1, lwd=c(4,1,1), col="black",
+ log="y", ylab="M/F mortality RR",
+ xlab="Time since diagnosis (days)" )
> abline( h=1 )

We can also show the estimate of the curved interaction:

> ci.exp( I.as, subset="sex" )

exp(Est.) 2.5% 97.5%
sexF 0.2119284 0.010758941 4.174543
Ns(tfd, knots = kn)1:sexF 4.2515736 0.182089006 99.269464
Ns(tfd, knots = kn)2:sexF 1.7836462 0.059666558 53.319545
Ns(tfd, knots = kn)3:sexF 4.1326768 0.167130783 102.189539
Ns(tfd, knots = kn)4:sexF 1.9484053 0.128262624 29.597736
Ns(tfd, knots = kn)5:sexF 10.3902777 0.008567524 12600.825082
Ns(tfd, knots = kn)6:sexF 22.6497755 0.463848067 1105.992172

> CM <- cbind( 1, Ns(tpt, knots=kn) )
> RRi <- ci.exp( I.as, subset="sex", ctr.mat=-CM )
> matplot( tpt, cbind(RR,RRi), type="l", lty=1, lwd=c(4,1,1),
+ col=rep(c("black","blue"),each=3),
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+ log="y", ylab="M/F mortality RR", ylim=c(1/5,5),
+ xlab="Time since diagnosis (days)" )
> abline( h=1 )
> abline( h=1/ci.exp( s.as, subset="sex" ), col="gray" )
> abline( h=1/ci.exp( s.as, subset="sex" )[1], lwd=3, col="gray" )
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Figure 8.9: Estimated interaction between sex and time since diagnosis.

From figure 8.9 it is pretty clear that if anything there is a decreasing M/F rate ratio of
quite substantial magnitude, albeit not significantly different from the horizontal gray line.
There is a tendency (presumably a selection phenomenon) that men have a higher
mortality shortly after diagnosis.

8.6.4.2 Continuous interaction

If we expand the Cox-model with the physician-derived Karnofsky index, ph.karnof and
test whether there is a proportionality we get a significant non-proportionality:

> c.as

Call:
coxph(formula = Surv(time, status == 2) ~ age + sex, data = lung,

method = "breslow", eps = 10^-8, iter.max = 25)

coef exp(coef) se(coef) z p
age 0.017 1.017 0.00922 1.84 0.0650
sexF -0.513 0.599 0.16746 -3.06 0.0022

Likelihood ratio test=14.1 on 2 df, p=0.000874 n= 228, number of events= 165
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> ( c.ask <- update( c.as, ~ . + ph.karno ) )

Call:
coxph(formula = Surv(time, status == 2) ~ age + sex + ph.karno,

data = lung, method = "breslow", eps = 10^-8, iter.max = 25)

coef exp(coef) se(coef) z p
age 0.0124 1.012 0.00940 1.31 0.1900
sexF -0.4966 0.609 0.16771 -2.96 0.0031
ph.karno -0.0133 0.987 0.00588 -2.26 0.0240

Likelihood ratio test=18.8 on 3 df, p=0.000306 n= 227, number of events= 164
(1 observation deleted due to missingness)

> ( cz <- cox.zph( c.ask ) )

rho chisq p
age 0.00711 0.00896 0.92460
sexF 0.12238 2.41657 0.12006
ph.karno 0.23152 8.24624 0.00408
GLOBAL NA 11.54038 0.00914

> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( cz )
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Figure 8.10: Schoenfeld residuals and smoothed means for the three covariates in the model.

If we instead use the Poisson model we can explicitly incorporate a parametric
interaction between time and the Karnofsky index, and we can graph the mortality RR by
time for persons with different values of the Karnofsky index relative to persons with some
reference index.

Also we can plot the estimated absolute mortality rates for say 60-year old men with
different values of the Karnofsky index. So first we expand the model with the Karnofsky
index and continuous interactions.

> s.ask <- update( s.as, . ~ . + ph.karno )
> round( ci.exp( s.ask ), 3 )
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exp(Est.) 2.5% 97.5%
(Intercept) 0.002 0.000 0.017
Ns(tfd, knots = kn)1 0.908 0.282 2.922
Ns(tfd, knots = kn)2 2.220 0.656 7.519
Ns(tfd, knots = kn)3 1.561 0.488 4.991
Ns(tfd, knots = kn)4 4.057 1.287 12.792
Ns(tfd, knots = kn)5 1.705 0.136 21.315
Ns(tfd, knots = kn)6 1.830 0.313 10.690
age 1.012 0.993 1.031
sexF 0.608 0.438 0.845
ph.karno 0.987 0.976 0.999

> si.ask <- update( s.ask, . ~ . + I(100/ph.karno):tfd )
> round( ci.exp( si.ask ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.018 0.002 0.170
Ns(tfd, knots = kn)1 1.667 0.485 5.726
Ns(tfd, knots = kn)2 6.533 1.585 26.929
Ns(tfd, knots = kn)3 12.260 2.110 71.219
Ns(tfd, knots = kn)4 150.153 10.892 2069.934
Ns(tfd, knots = kn)5 527.564 7.428 37469.374
Ns(tfd, knots = kn)6 1475.427 20.815 104584.667
age 1.014 0.995 1.033
sexF 0.579 0.417 0.804
ph.karno 0.960 0.941 0.979
I(100/ph.karno):tfd 0.995 0.992 0.998

> sI.ask <- update( s.ask, . ~ . + I(100/ph.karno):Ns(tfd, knots = kn ) )
> round( ci.exp( sI.ask ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.032 0.001 1.502000e+00
Ns(tfd, knots = kn)1 0.272 0.002 3.841900e+01
Ns(tfd, knots = kn)2 3.793 0.028 5.146880e+02
Ns(tfd, knots = kn)3 458.051 1.852 1.133167e+05
Ns(tfd, knots = kn)4 5.804 0.019 1.734744e+03
Ns(tfd, knots = kn)5 9173.667 0.424 1.986010e+08
Ns(tfd, knots = kn)6 1752.350 0.130 2.369029e+07
age 1.014 0.996 1.033000e+00
sexF 0.578 0.415 8.050000e-01
ph.karno 0.953 0.910 9.990000e-01
Ns(tfd, knots = kn)1:I(100/ph.karno) 2.429 0.073 8.107600e+01
Ns(tfd, knots = kn)2:I(100/ph.karno) 0.747 0.022 2.595100e+01
Ns(tfd, knots = kn)3:I(100/ph.karno) 0.013 0.000 7.980000e-01
Ns(tfd, knots = kn)4:I(100/ph.karno) 0.792 0.009 6.733500e+01
Ns(tfd, knots = kn)5:I(100/ph.karno) 0.002 0.000 2.386000e+00
Ns(tfd, knots = kn)6:I(100/ph.karno) 0.006 0.000 1.297700e+01

> anova( s.ask, si.ask, sI.ask, s.ask, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex + ph.karno
Model 2: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex + ph.karno +

I(100/ph.karno):tfd
Model 3: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex + ph.karno +

Ns(tfd, knots = kn):I(100/ph.karno)
Model 4: (lex.Xst == "Dead") ~ Ns(tfd, knots = kn) + age + sex + ph.karno
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 19989 1607.3
2 19988 1594.7 1 12.5835 0.0003892
3 19983 1588.9 5 5.8045 0.3257085
4 19989 1607.3 -6 -18.3880 0.0053324

Here is a clearly significant linear interaction with the Karnofsky index, and the further
non-linear extension is not significant relative to the linear. Interestingly, if we had tested
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the non-linear interaction directly against the main-effects model, we would have had a
significant difference.

Hence we shall look at the distribution of the Karnofsky index in the dataset:

> with( lung, pctab( table( status, ph.karno ) ) )

ph.karno
status 50 60 70 80 90 100 All N

1 1.6 4.8 4.8 31.7 39.7 17.5 100.0 63.0
2 3.0 9.8 17.7 28.7 29.9 11.0 100.0 164.0

We see that the relevant reference value for the index is 80, so we will for both interaction
models show:

• mortality rates as a function of time for 60-year old men, with Karnofsky indices 60,
70, . . . , 100

• mortality RR as a function of time relative to index 80 for Karnofsky indices 60, 70,
. . . , 100

We extract the mortality rates and the RRs for different values of Karnofsky index in the
three different models and graph them separately.
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Figure 8.11: The effect of Karnofsky index in three models (left to right) linear effect, linear-
inverse interaction with time and spline-inverse interaction with time. Top panels are pre-
dicted mortality rates for a 60-year old man, bottom panels are RR relative Karnofsky index
80.
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> new <- data.frame( tfd=0:100*10, sex="M", age=60, lex.dur=3000 )
> rr.k <- rr.i <- rr.I <- NULL
> pr.k <- pr.i <- pr.I <- NULL
> kr <- 80
> for( ki in 6:10*10 )
+ {
+ ndat <- cbind( new, ph.karno=ki )
+ kk <- ndat$ph.karno
+ tt <- ndat$tfd
+ c0 <- cbind( kk-kr )
+ ci <- cbind( kk, (100/kk)*tt )
+ cr <- cbind( kr, (100/kr)*tt )
+ cI <- cbind( kk, Ns(tt,knots=kn)*(100/kk) )
+ cR <- cbind( kr, Ns(tt,knots=kn)*(100/kr) )
+ pr.k <- cbind( pr.k, ci.pred( s.ask, newdata = ndat ) )
+ pr.i <- cbind( pr.i, ci.pred( si.ask, newdata = ndat ) )
+ pr.I <- cbind( pr.I, ci.pred( sI.ask, newdata = ndat ) )
+ rr.k <- cbind( rr.k, ci.exp( s.ask, subset="karno", ctr.mat=c0 ) )
+ rr.i <- cbind( rr.i, ci.exp( si.ask, subset="karno", ctr.mat=ci-cr ) )
+ rr.I <- cbind( rr.I, ci.exp( sI.ask, subset="karno", ctr.mat=cI-cR ) )
+ }
> round( head( pr.i ), 3 )

Estimate 2.5% 97.5% Estimate 2.5% 97.5% Estimate 2.5% 97.5% Estimate 2.5% 97.5%
1 11.142 3.910 31.748 7.422 2.708 20.344 4.944 1.806 13.538 3.294 1.159 9.358
2 10.009 5.025 19.936 6.747 3.590 12.680 4.535 2.419 8.501 3.042 1.536 6.023
3 9.133 5.008 16.655 6.230 3.646 10.646 4.225 2.483 7.188 2.853 1.579 5.156
4 8.596 4.392 16.825 5.934 3.205 10.985 4.059 2.204 7.478 2.761 1.426 5.345
5 8.386 4.212 16.699 5.858 3.101 11.065 4.043 2.154 7.589 2.769 1.410 5.436
6 8.434 4.463 15.941 5.961 3.336 10.652 4.151 2.344 7.353 2.863 1.545 5.305
Estimate 2.5% 97.5%

1 2.194 0.719 6.693
2 2.038 0.931 4.461
3 1.922 0.953 3.875
4 1.870 0.878 3.982
5 1.886 0.878 4.048
6 1.960 0.965 3.982

> par( mfrow=c(2,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( new$tfd, pr.k, log="y", ylim=c(1,50),
+ type="l", lty=1, lwd=c(4,1,1),
+ col=rep( gray(seq(0.2,0.8,,5)), each=3 ),
+ xlab="Time since diagnosis (days)",
+ ylab="Mortality among 60 year old men (%/month)" )
> matplot( new$tfd, pr.i, log="y", ylim=c(1,50),
+ type="l", lty=1, lwd=c(4,1,1),
+ col=rep( gray(seq(0.2,0.8,,5)), each=3 ),
+ xlab="Time since diagnosis (days)",
+ ylab="Mortality among 60 year old men (%/month)" )
> matplot( new$tfd, pr.I, log="y", ylim=c(1,50),
+ type="l", lty=1, lwd=c(4,1,1),
+ col=rep( gray(seq(0.2,0.8,,5)), each=3 ),
+ xlab="Time since diagnosis (days)",
+ ylab="Mortality among 60 year old men (%/month)" )
> matplot( new$tfd, rr.k, log="y", ylim=c(0.2,10),
+ type="l", lty=1, lwd=c(4,1,1),
+ col=rep( gray(seq(0.2,0.8,,5)), each=3 ),
+ xlab="Time since diagnosis (days)",
+ ylab="RR relative to Karnofsky 80" )
> text( rep(100,5), 10*(0.8^(0:4)), 6:10*10,
+ col=gray(seq(0.2,0.8,,5)), font=2, cex=1.5, adj=1 )
> matplot( new$tfd, rr.i, log="y", ylim=c(0.2,10),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep( gray(seq(0.2,0.8,,5)), each=3 ),
+ xlab="Time since diagnosis (days)",
+ ylab="RR relative to Karnofsky 80" )
> matplot( new$tfd, rr.I, log="y", ylim=c(0.2,10),
+ type="l", lty=1, lwd=c(3,1,1),
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+ col=rep( gray(seq(0.2,0.8,,5)), each=3 ),
+ xlab="Time since diagnosis (days)",
+ ylab="RR relative to Karnofsky 80" )

It appears from the interactions in figure 8.11 that patients with a low Karnofsky index
have a higher mortality, particularly in the beginning, and that the relationship either goes
away or reverts by time.

The exploration of the non-proportionality as done in the two previous examples is not
easily achieved in the Cox-model.



Chapter 9

Diabetes mortality in Denmark

This chapter illustrates the assessment of how mortality among Danish Diabetes patients
depend on age, calendar time and duration of diabetes. And how to understand and
compute SMR, and assess how it depends on these factors as well.

We are using data from the National Danish Diabetes register. There is a sample of
10,000 records from this in the Epi package. Actually there are two, we shall use the one
with only cases of diabetes diagnosed after 1995. This is of interest because it is only for
these where the data of diagnosis is certain, and hence for whom we can compute the
duration of diabetes during follow-up.

9.1 Mortality in Danish diabetes patients

First, we load the Epi package and the dataset, and take a look at it:

> options( width=120 )
> library( Epi )
> data( DMlate )
> str( DMlate )

'data.frame': 10000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

> head( DMlate )

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> summary( DMlate )

sex dobth dodm dodth dooad doins dox
M:5185 Min. :1898 Min. :1995 Min. :1995 Min. :1995 Min. :1995 Min. :1995
F:4815 1st Qu.:1930 1st Qu.:2000 1st Qu.:2002 1st Qu.:2001 1st Qu.:2001 1st Qu.:2010

Median :1941 Median :2004 Median :2005 Median :2004 Median :2005 Median :2010
Mean :1942 Mean :2003 Mean :2005 Mean :2004 Mean :2004 Mean :2009
3rd Qu.:1951 3rd Qu.:2007 3rd Qu.:2008 3rd Qu.:2007 3rd Qu.:2007 3rd Qu.:2010
Max. :2008 Max. :2010 Max. :2010 Max. :2010 Max. :2010 Max. :2010

NA's :7497 NA's :4503 NA's :8209

62
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We then set up the dataset as a Lexis object with age, calendar time and duration of
diabetes as timescales, and date of death as event.

9.2 A Lexis object

In the dataset we have a date of exit dox which is either the day of censoring or the date of
death:

> with( DMlate, table( dead=!is.na(dodth),
+ same=(dodth==dox), exclude=NULL ) )

same
dead TRUE <NA>
FALSE 0 7497
TRUE 2503 0
<NA> 0 0

So we can set up the Lexis object by specifying the timescales and the exit status:

> LL <- Lexis( entry = list( A = dodm-dobth,
+ P = dodm,
+ dur = 0 ),
+ exit = list( P = dox ),
+ exit.status = factor( !is.na(dodth),
+ labels=c("Alive","Dead") ),
+ data = DMlate )

NOTE: entry.status has been set to "Alive" for all.

We can get an overview of the data by using the summary function on the object:

> summary( LL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 7497 2499 9996 2499 54273.27 9996

A very crude picture of the mortality by sex can be obtained by the stat.table function:

> stat.table( sex,
+ list( D=sum( lex.Xst=="Dead" ),
+ Y=sum( lex.dur ),
+ rate=ratio( lex.Xst=="Dead", lex.dur, 1000 ) ),
+ data=LL )

-------------------------------
sex D Y rate
-------------------------------
M 1343.00 27614.21 48.63
F 1156.00 26659.05 43.36
-------------------------------

So not surprisingly, we see that men have a higher mortality than women.

9.2.1 Time-splitting

We now want to assess how mortality depends on age, calendar time and duration. In
principle we could split the follow-up along all three time scales, but in practice it would be
sufficient to split it along one of the time-scales and then just use the value of each of the
time-scales at the left endpoint of the intervals.

We note that the total follow-up time was some 54,000 person-years, so if we split the
follow-up in 12-month intervals we get a bit more than 50,000 records:
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> SL <- splitLexis( LL, breaks=seq(0,125,1/2), time.scale="A" )
> summary( SL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 115974 2499 118473 2499 54273.27 9996

9.3 Mortality models

With this in place we can start by making a crude age-specific mortality curve for men and
women separately, using natural splines:

> library( splines )
> r.m <- glm( (lex.Xst=="Dead") ~ ns( A, df=10, intercept=TRUE ) - 1,
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> r.f <- update( r.m, data = subset( SL, sex=="F" ) )

With these objects we can get the estimated log-rates by using predict, and supplying a
data frame of prediction points, and finally use the wrapper ci.pred to get the rates with
CIs:

> nd <- data.frame( A = seq(10,90,0.5),
+ lex.dur = 1000)
> p.m <- ci.pred( r.m, newdata = nd )
> p.f <- ci.pred( r.f, newdata = nd )

and then we can plot the two sets of estimated rates:

> matplot( seq(10,90,0.5), cbind(p.m,p.f),
+ type="l", lty=1, lwd=c(3,1,1), las=1,
+ col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.1,200),
+ xlab="Age", ylab="Mortality rates per 1000 PY" )

9.3.1 Graphical comparison with the population rates

We can compare with the mortality rates from the general population; they are available in
the data frame M.dk

> data( M.dk )
> head( M.dk )

A sex P D Y rate
1 0 1 1974 459 35963.33 12.762999
2 0 2 1974 303 34382.83 8.812537
3 0 1 1975 435 36099.00 12.050195
4 0 2 1975 311 34652.17 8.974908
5 0 1 1976 405 34965.00 11.583012
6 0 2 1976 258 33278.33 7.752792

So we just plot the mortality rates from 2005 on top of this:

> with( subset( M.dk, sex==1 & P==2005 ), lines( A, rate, col="blue", lty="12", lwd=3 ) )
> with( subset( M.dk, sex==2 & P==2005 ), lines( A, rate, col="red" , lty="12", lwd=3 ) )
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Figure 9.1: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Blue: men, red: women.

9.3.2 Modeling population mortality

It would however be more prudent to model these rates in a similar fashion as the diabetes
mortality:

> R.m <- glm( D ~ ns( A, df=10, intercept=TRUE ) - 1,
+ offset = log( Y ),
+ family = poisson,
+ data = subset( M.dk, sex==1 & P>1994 ) )
> R.f <- update( R.m, data = subset( M.dk, sex==2 & P>1994 ) )
> nd <- data.frame( A = seq(10,90,0.5),
+ Y = 1000)
> P.m <- ci.pred( R.m, newdata = nd )
> P.f <- ci.pred( R.f, newdata = nd )

Once we have the predicted rates from a smoothing model we can redo the plot with these
overlaid:

> matplot( seq(10,90,0.5), cbind(p.m,p.f),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.1,200),
+ xlab="Age", ylab="Mortality rates per 1000 PY" )
> matlines( seq(10,90,0.5), cbind(P.m,P.f), lty="12",
+ col=c("blue","red"), lwd=c(3,1,1) )
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Figure 9.2: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Broken lines are empirical rates from 2005. Blue: men, red: women.

9.4 Period and duration effects

We now want to model the mortality rates among diabetes patients also including current
date and duration of diabetes. However, we shall not just use the positioning of knots for
the splines as provided by ns, because this is based on the allocating knots so that the
number of observations (lines in the dataset), is the same between knots. However the
information in a follow-up study is in the number of events, so it would be better to
allocate knots so that number of events were the same between knots.

We will be using so-called natural splines that are linear beyond the boundary knots,
and hence we take the 5th and 95th percentile of deaths as the boundary knots for age (A)
and calendar time (P) but for duration where we actually have follow-up from tine 0 on the
timescale we use 0 as the first knot.

So we start out by placing knots so that the number of events is the same between each
pair of knots (strictly speaking we should do this separately for men and women, but we
pass on that one here):

> ( kn.A <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( A+lex.dur, probs=seq(5,95,10)/100 ) ) )

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
56.02519 63.67995 69.06092 73.25311 76.29021 79.03847 81.42094 84.27242 87.66598 92.27406

> ( kn.P <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( P+lex.dur, probs=seq(5,95,30)/100 ) ) )
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Figure 9.3: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Broken lines are modeled population rates 1995–2010. Blue: men, red:
women.

5% 35% 65% 95%
1998.117 2003.490 2006.826 2009.658

> ( kn.dur <- c(0,with( subset( SL, lex.Xst=="Dead" ),
+ quantile( dur+lex.dur, probs=seq(5,95,10)/100 ) ) ) )

5% 15% 25% 35% 45% 55% 65% 75% 85%
0.0000000 0.1065024 0.5549624 1.2210815 1.9783710 2.9568789 3.9411362 5.0770705 6.3668720 8.1048597

95%
10.6789870

With these we can now model mortality rates (separately for men and women), as
functions of age, calendar time and duration:

> mm <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A ) +
+ Ns( P, kn=kn.P ) +
+ Ns( dur, kn=kn.dur ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> summary( mm )

Call:
glm(formula = (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P,

kn = kn.P) + Ns(dur, kn = kn.dur), family = poisson, data = subset(SL,
sex == "M"), offset = log(lex.dur))

Deviance Residuals:
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Min 1Q Median 3Q Max
-0.8209 -0.2257 -0.1637 -0.1113 4.4781

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.07100 0.11525 -26.647 < 2e-16
Ns(A, kn = kn.A)1 0.68137 0.18401 3.703 0.000213
Ns(A, kn = kn.A)2 1.23017 0.16609 7.407 1.30e-13
Ns(A, kn = kn.A)3 1.45987 0.18737 7.791 6.63e-15
Ns(A, kn = kn.A)4 1.93749 0.17576 11.024 < 2e-16
Ns(A, kn = kn.A)5 2.14289 0.18795 11.401 < 2e-16
Ns(A, kn = kn.A)6 1.88278 0.19994 9.417 < 2e-16
Ns(A, kn = kn.A)7 2.39331 0.16835 14.216 < 2e-16
Ns(A, kn = kn.A)8 3.15094 0.13231 23.814 < 2e-16
Ns(A, kn = kn.A)9 2.46528 0.12507 19.711 < 2e-16
Ns(P, kn = kn.P)1 -0.27974 0.11518 -2.429 0.015150
Ns(P, kn = kn.P)2 -0.46891 0.17475 -2.683 0.007288
Ns(P, kn = kn.P)3 -0.29893 0.09597 -3.115 0.001841
Ns(dur, kn = kn.dur)1 -0.80244 0.23296 -3.444 0.000572
Ns(dur, kn = kn.dur)2 -0.70553 0.23032 -3.063 0.002190
Ns(dur, kn = kn.dur)3 -0.85622 0.21821 -3.924 8.72e-05
Ns(dur, kn = kn.dur)4 -0.65603 0.21720 -3.020 0.002524
Ns(dur, kn = kn.dur)5 -0.99130 0.21039 -4.712 2.46e-06
Ns(dur, kn = kn.dur)6 -0.20911 0.19712 -1.061 0.288775
Ns(dur, kn = kn.dur)7 -1.05815 0.20146 -5.252 1.50e-07
Ns(dur, kn = kn.dur)8 -0.44781 0.16043 -2.791 0.005249
Ns(dur, kn = kn.dur)9 -0.85253 0.26511 -3.216 0.001301
Ns(dur, kn = kn.dur)10 -0.24127 0.13095 -1.842 0.065414

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12999 on 60346 degrees of freedom
Residual deviance: 11708 on 60324 degrees of freedom
AIC: 14440

Number of Fisher Scoring iterations: 8

> mf <- update( mm, data = subset( SL, sex=="F" ) )

These models fit substantially better than the model with only age as we can see from this
comparison:

> anova( mm, r.m, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ ns(A, df = 10, intercept = TRUE) - 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 60324 11708
2 60337 11810 -13 -102.33 5.868e-16

> anova( mf, r.f, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ ns(A, df = 10, intercept = TRUE) - 1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 58103 10199
2 58116 10266 -13 -67.312 2.499e-09

The models are not formally nested since the location of the knots are different, so from a
formal point of view these test are not valid, but is is clear that the more extensive
modeling provides a much better description of the rates.
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The model fitted separately for men and women has three terms: age (A), calendar time
(P) and diabetes duration (dur). Since the outcome is a rate with dimension time−1 we
must put the rate dimension on one of these terms and leave the two others as rate-ratios.
In order to do this we must fix reference values for the two rate-ratio terms. The natural
variable for the rate-dimension is age, so that we get estimated age-specific rate-ratios for a
specific calendar time, 1.1.2008, say, and a specific duration of diabetes, 2 years, say.

In order to extract these terms from the model we need contrast matrices, that is
matrices where each row corresponds to a set of values for age or period or duration, and
the columns correspond to the columns in the spline basis as used in the model i.e. the
parameters.

This is one reason for explicitly fixing the knots in the spline definitions; when we extract
the effects we must use the same set of knots as in the model specification in order to get
the right predictions.

We will need matrices for specified set of values for age, calendar time and duration, but
also matrices where all rows refer to the chosen reference values for calendar time and
duration.

We begin by specifying the prediction points for the time scales and the reference points.
There is formally no reason to require that the matrices all have the same number of rows,
but it makes the handling of the reference points much easier.

> N <- 100
> pr.A <- seq(10,90,,N)
> pr.P <- seq(1995,2010,,N)
> pr.d <- seq(0,15,,N)
> rf.P <- 2009
> rf.d <- 2

With these in place we generate the matrices we shall multiply to the parameter estimates:

> AC <- Ns( pr.A, knots=kn.A )
> PC <- Ns( pr.P, knots=kn.P )
> dC <- Ns( pr.d, knots=kn.dur )
> PR <- Ns( rep(rf.P,N), knots=kn.P )
> dR <- Ns( rep(rf.d,N), knots=kn.dur )

Note that the rows of AC refer to N points on the age-scale, PC to N points on the calendar
time scale, etc.

These matrices are the necessary input for extracting the effects; this is done by the
function ci.exp — remember to take a look at the help page for this.

Note that we make use of all parameters when extracting the age-effect — this is the
effect where we have the dimension of the response (rate), and hence the intercept, and
where we have fixed the values of date and duration at their reference values.

The rate-ratios for calendar time and duration are estimated exclusively from the
parameters for these terms, but note that we subtract the values at the reference point:

> m.A <- ci.exp( mm, ctr.mat=cbind(1,AC,PR,dR) ) * 1000
> f.A <- ci.exp( mf, ctr.mat=cbind(1,AC,PR,dR) ) * 1000
> m.P <- ci.exp( mm, subset="P" , ctr.mat=PC-PR )
> f.P <- ci.exp( mf, subset="P" , ctr.mat=PC-PR )
> m.d <- ci.exp( mm, subset="dur", ctr.mat=dC-dR )
> f.d <- ci.exp( mf, subset="dur", ctr.mat=dC-dR )

We now plot the three effects in three panels beside each other:
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> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(m.A,f.A),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", xlab="Age", ylab="Mortality rate per 1000 PY" )
> matplot( pr.P, cbind(m.P,f.P),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", xlab="Date of follow-up", ylab="Mortality rate ratio" )
> matplot( pr.d, cbind(m.d,f.d),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", xlab="Diabetes duration", ylab="Mortality rate ratio" )
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Figure 9.4: Estimates from model for mortality of Danish diabetes patients. The duration is
modeled with 10 parameters, which is clearly way too much.

Figure 9.4 clearly shows that the duration effect is grossly over-modeled, and that the
rate-ratios have a much smaller variability than the mortality rates.

Moreover the y-axis for mortality rates should be from about 0.1 to 200, and the y-axes
for the rate-ratios should be on approximately the same scale. To make the RR-axes
symmetric, from 1/30 to 30, that is a factor 302 = 900, and the the rate-axis from 0.2 to
180, also a factor of 900 between endpoints of the axes.

So we redefine the duration knots, refit the models, re-extract parameters and plot using
pre-specified axis ranges:

> kn.dur <- c(0,with( subset( SL, lex.Xst=="Dead" ),
+ quantile( dur+lex.dur, probs=seq(5,95,30)/100 ) ))
> dC <- Ns( pr.d, knots=kn.dur )
> dR <- Ns( rep(rf.d,N), knots=kn.dur )
> mm <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A ) +
+ Ns( P, kn=kn.P ) +
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+ Ns( dur, kn=kn.dur ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> mf <- update( mm, data = subset( SL, sex=="F" ) )
> m.A <- ci.exp( mm, ctr.mat=cbind(1,AC,PR,dR) ) * 1000
> f.A <- ci.exp( mf, ctr.mat=cbind(1,AC,PR,dR) ) * 1000
> m.P <- ci.exp( mm, subset="P" , ctr.mat=PC-PR )
> f.P <- ci.exp( mf, subset="P" , ctr.mat=PC-PR )
> m.d <- ci.exp( mm, subset="dur", ctr.mat=dC-dR )
> f.d <- ci.exp( mf, subset="dur", ctr.mat=dC-dR )
> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(m.A,f.A),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.2,180),
+ xlab="Age", ylab="Mortality rate per 1000 PY" )
> matplot( pr.P, cbind(m.P,f.P),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/30,30),
+ xlab="Date of follow-up", ylab="Mortality rate ratio" )
> abline( h=1 )
> matplot( pr.d, cbind(m.d,f.d),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/30,30),
+ xlab="Diabetes duration", ylab="Mortality rate ratio" )
> abline( h=1 )
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Figure 9.5: Estimates from the model for mortality of Danish diabetes patients with only 5
knots (corresponding to 4 parameters) for duration.

We might argue that we do not need the same scale for the y-axes for rates and RRs:
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> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(m.A,f.A),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.2,180),
+ xlab="Age", ylab="Mortality rate per 1000 PY" )
> matplot( pr.P, cbind(m.P,f.P),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Date of follow-up", ylab="Mortality rate ratio" )
> abline( h=1 )
> matplot( pr.d, cbind(m.d,f.d),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Diabetes duration", ylab="Mortality rate ratio" )
> abline( h=1 )
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Figure 9.6: Estimates from model for mortality of Danish diabetes patients.

9.4.1 Common parameters for men and women

We have so far fitted models separately for men and women, but judging from the display
of the parameters in figure 9.6, the period and duration effects are the same, so we might
fit a model for the entire dataset with common period and duration effects, but different
age-effect for the two sexes:

> m2 <- glm( (lex.Xst=="Dead") ~ sex +
+ sex:Ns( A, kn=kn.A ) +
+ Ns( P, kn=kn.P ) +
+ Ns( dur, kn=kn.dur ),
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+ offset = log( lex.dur ),
+ family = poisson,
+ data = SL )
> ci.exp(m2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.04119274 0.03438381 0.04935001
sexF 0.66279727 0.52988985 0.82904063
Ns(P, kn = kn.P)1 0.73073343 0.61936177 0.86213158
Ns(P, kn = kn.P)2 0.68819843 0.53300611 0.88857722
Ns(P, kn = kn.P)3 0.69848011 0.60798995 0.80243837
Ns(dur, kn = kn.dur)1 0.50506934 0.41989411 0.60752230
Ns(dur, kn = kn.dur)2 0.74203629 0.62822061 0.87647214
Ns(dur, kn = kn.dur)3 0.32632124 0.23932256 0.44494573
Ns(dur, kn = kn.dur)4 0.99090716 0.84957330 1.15575313
sexM:Ns(A, kn = kn.A)1 1.98512038 1.38417401 2.84697075
sexF:Ns(A, kn = kn.A)1 2.39621511 1.49756936 3.83411082
sexM:Ns(A, kn = kn.A)2 3.40484122 2.45876781 4.71494042
sexF:Ns(A, kn = kn.A)2 3.18475083 2.13514511 4.75032719
sexM:Ns(A, kn = kn.A)3 4.30809709 2.98415003 6.21942609
sexF:Ns(A, kn = kn.A)3 4.72130255 3.03591495 7.34233276
sexM:Ns(A, kn = kn.A)4 6.94917213 4.92438942 9.80649360
sexF:Ns(A, kn = kn.A)4 5.04812724 3.33296803 7.64591450
sexM:Ns(A, kn = kn.A)5 8.47754594 5.86563417 12.25251749
sexF:Ns(A, kn = kn.A)5 6.56708550 4.38443826 9.83629131
sexM:Ns(A, kn = kn.A)6 6.57840684 4.44759052 9.73008561
sexF:Ns(A, kn = kn.A)6 8.39810642 5.83749263 12.08193243
sexM:Ns(A, kn = kn.A)7 10.97880122 7.89479441 15.26753831
sexF:Ns(A, kn = kn.A)7 10.70794349 7.91116788 14.49344214
sexM:Ns(A, kn = kn.A)8 23.24296856 17.93627190 30.11972557
sexF:Ns(A, kn = kn.A)8 27.59059972 21.11490857 36.05230826
sexM:Ns(A, kn = kn.A)9 11.67404685 9.13826544 14.91348339
sexF:Ns(A, kn = kn.A)9 14.86040520 11.52591094 19.15958261

We can formally test this model against the separate models; the deviance and degrees of
freedom from the separate models for men and women add up to that of a joint model with
interaction between all terms and sex. Note that we add 1 to the degrees of freedom for the
joint model; this is because the degrees of freedom is equal to the number of parameters
minus 1, so the sum of the degrees of freedom from the two models is 1 too small — loosely
speaking the intercepts from the two separate models correspond to the overall intercept
and the main effect of sex in a joint model, and the sex parameter should be counted too.

> j.dev <- mm$dev + mf$dev
> j.df <- mm$df.r + mf$df.r + 1
> 1 - pchisq( m2$dev - j.dev, m2$df.r - j.df )

[1] 0.347409

So there is indeed no evidence of different period and duration effects.
We might from a purely technical point of view contemplate a model where the

difference in age-specific mortality between men and women were either constant or
exponentially increasing or decreasing by age. And we might even accept a model of that
sort by a statistical test, but given the different biology of men and women over their life
span, it would make little sense. And therefore we have not done it here.

We can now extract the parameters from the model. Note that the sequence (and hence
meaning) of the parameters depend on how the model is specified. The age-specific rates
for men and women at the reference time and reference duration will need parameters
extracted by the following subset-argument to ci.exp:

> ci.exp( m2, subset=c("Int","sexM","P","dur") )
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exp(Est.) 2.5% 97.5%
(Intercept) 0.04119274 0.03438381 0.04935001
sexM:Ns(A, kn = kn.A)1 1.98512038 1.38417401 2.84697075
sexM:Ns(A, kn = kn.A)2 3.40484122 2.45876781 4.71494042
sexM:Ns(A, kn = kn.A)3 4.30809709 2.98415003 6.21942609
sexM:Ns(A, kn = kn.A)4 6.94917213 4.92438942 9.80649360
sexM:Ns(A, kn = kn.A)5 8.47754594 5.86563417 12.25251749
sexM:Ns(A, kn = kn.A)6 6.57840684 4.44759052 9.73008561
sexM:Ns(A, kn = kn.A)7 10.97880122 7.89479441 15.26753831
sexM:Ns(A, kn = kn.A)8 23.24296856 17.93627190 30.11972557
sexM:Ns(A, kn = kn.A)9 11.67404685 9.13826544 14.91348339
Ns(P, kn = kn.P)1 0.73073343 0.61936177 0.86213158
Ns(P, kn = kn.P)2 0.68819843 0.53300611 0.88857722
Ns(P, kn = kn.P)3 0.69848011 0.60798995 0.80243837
Ns(dur, kn = kn.dur)1 0.50506934 0.41989411 0.60752230
Ns(dur, kn = kn.dur)2 0.74203629 0.62822061 0.87647214
Ns(dur, kn = kn.dur)3 0.32632124 0.23932256 0.44494573
Ns(dur, kn = kn.dur)4 0.99090716 0.84957330 1.15575313

> ci.exp( m2, subset=c("Int","sexF","P","dur") )

exp(Est.) 2.5% 97.5%
(Intercept) 0.04119274 0.03438381 0.04935001
sexF 0.66279727 0.52988985 0.82904063
sexF:Ns(A, kn = kn.A)1 2.39621511 1.49756936 3.83411082
sexF:Ns(A, kn = kn.A)2 3.18475083 2.13514511 4.75032719
sexF:Ns(A, kn = kn.A)3 4.72130255 3.03591495 7.34233276
sexF:Ns(A, kn = kn.A)4 5.04812724 3.33296803 7.64591450
sexF:Ns(A, kn = kn.A)5 6.56708550 4.38443826 9.83629131
sexF:Ns(A, kn = kn.A)6 8.39810642 5.83749263 12.08193243
sexF:Ns(A, kn = kn.A)7 10.70794349 7.91116788 14.49344214
sexF:Ns(A, kn = kn.A)8 27.59059972 21.11490857 36.05230826
sexF:Ns(A, kn = kn.A)9 14.86040520 11.52591094 19.15958261
Ns(P, kn = kn.P)1 0.73073343 0.61936177 0.86213158
Ns(P, kn = kn.P)2 0.68819843 0.53300611 0.88857722
Ns(P, kn = kn.P)3 0.69848011 0.60798995 0.80243837
Ns(dur, kn = kn.dur)1 0.50506934 0.41989411 0.60752230
Ns(dur, kn = kn.dur)2 0.74203629 0.62822061 0.87647214
Ns(dur, kn = kn.dur)3 0.32632124 0.23932256 0.44494573
Ns(dur, kn = kn.dur)4 0.99090716 0.84957330 1.15575313

Note that the two subsets of parameters have different length; the parameters for the
women (sex=“F”) has one more column:

> mi.A <- ci.exp( m2, subset=c("Int","sexM","P","dur"), ctr.mat=cbind(1 ,AC,PR,dR) ) * 1000
> fi.A <- ci.exp( m2, subset=c("Int","sexF","P","dur"), ctr.mat=cbind(1,1,AC,PR,dR) ) * 1000
> b.P <- ci.exp( m2, subset="P" , ctr.mat=PC-PR )
> b.d <- ci.exp( m2, subset="dur", ctr.mat=dC-dR )

> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(m.A,f.A,mi.A,fi.A),
+ type="l", lty=rep(c(3,1),each=6), lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.2,180),
+ xlab="Age", ylab="Mortality rate per 1000 PY" )
> matplot( pr.P, cbind(m.P,f.P,b.P),
+ type="l", lty=rep(c(3,1),c(6,3)), lwd=c(3,1,1), col=rep(c("blue","red","black"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Date of follow-up", ylab="Mortality rate ratio" )
> abline( h=1 )
> matplot( pr.d, cbind(m.d,f.d,b.d),
+ type="l", lty=rep(c(3,1),c(6,3)), lwd=c(3,1,1), col=rep(c("blue","red","black"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Diabetes duration", ylab="Mortality rate ratio" )
> abline( h=1 )

We shall return to the set-up with separate effects for men and women.
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Figure 9.7: Estimates from models for mortality of Danish diabetes patients. The broken
lines are from the full interaction model, full lines with common effects of date and duration.
Men:blue, women:red, both (i.e. common): black.

9.5 Accounting for multiple time scales

The model we fitted has three time-scales: current age, current date and current duration
of diabetes, so the effects that we report are not immediately interpretable, as they are (as
in all multiple regression) to be interpreted as “all else equal” which they are not, as the
three time scales advance by the same pace.

The reporting would therefore more naturally be only on the mortality scale, but
showing the mortality for persons diagnosed in different ages, using separate displays for
separate years of diagnosis.

Incidentally, this is most easily done using the ci.pred function with the newdata=

argument. So a person diagnosed in age 50 will have a (log-)mortality measure in cases per
1000 PY as:

> pts <- seq(0,20,1)
> nd <- data.frame( A= 50+pts,
+ P=1995+pts,
+ dur= pts,
+ lex.dur=1000 )
> ci.pred( mm, newdata=nd )

Estimate 2.5% 97.5%
1 30.26381 21.77308 42.06563
2 14.97557 11.23766 19.95680
3 15.91802 12.50610 20.26078
4 17.87916 14.37698 22.23446
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5 19.06408 15.79295 23.01274
6 19.96428 16.70839 23.85462
7 21.13109 17.51102 25.49955
8 22.67632 18.65497 27.56451
9 24.53447 20.21171 29.78177
10 26.61244 21.98992 32.20667
11 28.86802 23.55884 35.37366
12 31.33564 24.82984 39.54605
13 34.10668 26.23335 44.34300
14 37.28204 27.88749 49.84135
15 40.74629 29.14142 56.97253
16 44.39407 29.59358 66.59666
17 48.33981 29.52353 79.14830
18 52.88668 29.36325 95.25518
19 58.45978 29.45660 116.01970
20 65.65161 30.04833 143.44007
21 75.17049 31.21620 181.01508

We can wrap this so that we get the predicted rates with confidence intervals: This can be
nicely wrapped in a function that takes age and date of diagnosis as input and returns the
estimated mortality rates for a male and a female diagnosed this age and date:

> DMm <-
+ function( A, P, pts=seq(0,25,0.1) )
+ {
+ nd <- data.frame( A=A+pts,
+ P=P+pts,
+ dur= pts,
+ lex.dur=1000 )
+ cbind( nd$A, ci.pred( mm, newdata=nd ),
+ ci.pred( mf, newdata=nd ) )
+ }
> DMm( 50, 1996, pts=0:10 )

Estimate 2.5% 97.5% Estimate 2.5% 97.5%
1 50 29.46588 21.97066 39.51808 14.542246 10.213136 20.70637
2 51 14.58073 11.30879 18.79933 8.920489 6.575060 12.10257
3 52 15.49833 12.55439 19.13262 8.976858 6.923712 11.63884
4 53 17.40561 14.31189 21.16809 10.302383 8.080729 13.13484
5 54 18.54146 15.54911 22.10967 12.222651 9.792516 15.25585
6 55 19.37755 16.27207 23.07570 14.458964 11.629029 17.97757
7 56 20.44634 16.97085 24.63358 16.526631 13.154646 20.76297
8 57 21.84970 18.08634 26.39612 18.101043 14.344029 22.84210
9 58 23.51919 19.59123 28.23469 18.981532 15.077545 23.89637
10 59 25.43706 21.14450 30.60105 19.249329 15.204291 24.37053
11 60 27.65893 22.55955 33.91098 19.272483 14.924008 24.88799

With this in place we can now plot the mortality rates for persons diagnosed at different
ages and different dates:

> DMm.1996 <-
+ rbind(
+ DMm( 30, 1996 ), NA,
+ DMm( 40, 1996 ), NA,
+ DMm( 50, 1996 ), NA,
+ DMm( 60, 1996 ), NA,
+ DMm( 70, 1996 ), NA,
+ DMm( 80, 1996 ), NA,
+ DMm( 90, 1996 ) )
> DMm.2005 <-
+ rbind(
+ DMm( 30, 2005 ), NA,
+ DMm( 40, 2005 ), NA,
+ DMm( 50, 2005 ), NA,
+ DMm( 60, 2005 ), NA,
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+ DMm( 70, 2005 ), NA,
+ DMm( 80, 2005 ), NA,
+ DMm( 90, 2005 ) )
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( DMm.1996[,1], DMm.1996[,-1],
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1,1000), xlim=c(30,95), las=1,
+ xlab="Age", ylab="Mortality rate per 1000 PY" )
> text( 30, 1000, "DM diagnosed 1996", adj=c(0,1) )
> matplot( DMm.2005[,1], DMm.2005[,-1],
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1,1000), xlim=c(30,95), las=1,
+ xlab="Age", ylab="Mortality rate per 1000 PY" )
> text( 30, 1000, "DM diagnosed 2005", adj=c(0,1) )

30 40 50 60 70 80 90

1

5

10

50

100

500

1000

Age

M
or

ta
lit

y 
ra

te
 p

er
 1

00
0 

P
Y

DM diagnosed 1996

30 40 50 60 70 80 90

1

5

10

50

100

500

1000

Age

M
or

ta
lit

y 
ra

te
 p

er
 1

00
0 

P
Y

DM diagnosed 2005

Figure 9.8: Estimates of mortality of Danish diabetes patients for patients diagnosed in ages
30, 40, . . . , 90.

Note from figure 9.8 that it seems that mortality among men is higher the younger age
at diagnosis, but not for women. But also note that we predicted from 0 to 25 years of
diabetes duration, which is a bit bold, given that we only have 15 years of observation, and
thus no one with diabetes duration longer than that. Also the rightmost boundary knot for
the duration effect is at 10 years, so we are effectively assuming that the duration effect is
(log-)linear beyond this — for 15 years, out which we have data for the first 5!

The model we used for the mortality rates used three time-scales: age, calendar time and
duration of diabetes.

It would be of interest to see whether we would get the same (or better) description by
adding age at diagnosis and date of diagnosis to the model.
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Now, age at diagnosis = current age − duration of diabetes, and date of diagnosis =
current date − duration of diabetes, so the terms we might add only constitute the
non-linear effects of these variables.

We add the effects one at at time and test whether age at diagnosis or current age is the
better predictor, but we want to use a set of knots which is aligned to the new variables we
consider:

> kn.Ad <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( A-dur, probs=seq(5,95,10)/100 ) )
> kn.Pd <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( P-dur, probs=seq(5,95,20)/100 ) )

We can now make on-the-fly tests of the non-linear effects of these fixed effects using
anova:

> anova( mm,
+ update( mm, . ~ . + Ns(A-dur,knots=kn.Ad) ),
+ update( mm, . ~ . + Ns(A-dur,knots=kn.Ad) - Ns(A,knots=kn.A) ),
+ test = "Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur) + Ns(A - dur, knots = kn.Ad)

Model 3: (lex.Xst == "Dead") ~ Ns(P, kn = kn.P) + Ns(dur, kn = kn.dur) +
Ns(A - dur, knots = kn.Ad)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 60330 11719
2 60322 11710 8 9.2579 0.3210
3 60330 11720 -8 -10.1280 0.2562

> anova( mm,
+ update( mm, . ~ . + Ns(P-dur,knots=kn.Pd) ),
+ update( mm, . ~ . + Ns(P-dur,knots=kn.Pd) - Ns(P,knots=kn.P) ),
+ test = "Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur) + Ns(P - dur, knots = kn.Pd)

Model 3: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(dur, kn = kn.dur) +
Ns(P - dur, knots = kn.Pd)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 60330 11719
2 60327 11714 3 4.3186 0.229
3 60329 11715 -2 -0.6486 0.723

> anova( mf,
+ update( mf, . ~ . + Ns(A-dur,knots=kn.Ad) ),
+ update( mf, . ~ . + Ns(A-dur,knots=kn.Ad) - Ns(A,knots=kn.A) ),
+ test = "Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur) + Ns(A - dur, knots = kn.Ad)

Model 3: (lex.Xst == "Dead") ~ Ns(P, kn = kn.P) + Ns(dur, kn = kn.dur) +
Ns(A - dur, knots = kn.Ad)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 58109 10203
2 58101 10193 8 10.1731 0.2531
3 58109 10198 -8 -5.2649 0.7289
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> anova( mf,
+ update( mf, . ~ . + Ns(P-dur,knots=kn.Pd) ),
+ update( mf, . ~ . + Ns(P-dur,knots=kn.Pd) - Ns(P,knots=kn.P) ),
+ test = "Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur) + Ns(P - dur, knots = kn.Pd)

Model 3: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(dur, kn = kn.dur) +
Ns(P - dur, knots = kn.Pd)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 58109 10203
2 58106 10202 3 1.591 0.66142
3 58108 10208 -2 -5.820 0.05447

From this it is pretty clear that there is not much difference between using current age or
age at diagnosis, and likewise for date of diagnosis, except possibly for period for women,
where it seems more appropriate to use current age (since the p-value for removing this
from the model is 0.033). But since the tests concerning the age-effects are insignificant, we
could argue that an equally good description of data could be obtained using age at
diagnosis and duration of diabetes.

In conclusion, there does not seem to be much need to change the model we fitted.
But we try to fit the models with age at diagnosis and date of diagnosis as explanatory

variables instead. To this end we also need new contrast matrices, because the deaths are
distributed differently along these “entry”-variables, and we therefor placed the knots
differently.

> AC <- Ns( pr.A, knots=kn.Ad )
> PC <- Ns( pr.P, knots=kn.Pd )
> PR <- Ns( rep(rf.P,N), knots=kn.Pd )
> Mm <- glm( (lex.Xst=="Dead") ~ Ns( A-dur, kn=kn.Ad ) +
+ Ns( P-dur, kn=kn.Pd ) +
+ Ns( dur, kn=kn.dur ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> Mf <- update( Mm, data = subset( SL, sex=="F" ) )
> M.A <- ci.exp( Mm, ctr.mat=cbind(1,AC,PR,dR) ) * 1000
> F.A <- ci.exp( Mf, ctr.mat=cbind(1,AC,PR,dR) ) * 1000
> M.P <- ci.exp( Mm, subset="P" , ctr.mat=PC-PR )
> F.P <- ci.exp( Mf, subset="P" , ctr.mat=PC-PR )
> M.d <- ci.exp( Mm, subset="kn.dur", ctr.mat=dC-dR )
> F.d <- ci.exp( Mf, subset="kn.dur", ctr.mat=dC-dR )

Once the models are fitted, we can plot the estimated effects, as seen in figure 9.9

> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(M.A,F.A),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.2,180),
+ xlab="Age at diagnosis", ylab="Mortality rate at 2 years duration per 1000 PY" )
> matplot( pr.P, cbind(M.P,F.P),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Date of diagnosis", ylab="Mortality rate ratio" )
> abline( h=1 )
> matplot( pr.d, cbind(M.d,F.d),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Diabetes duration", ylab="Mortality rate ratio" )
> abline( h=1 )
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Figure 9.9: Model for diabetes patient mortality using age and date at diagnosis.

The effects shown in figure are shown in a slightly counter-intuitive way; the age-effect is
the effect of age at diagnosis, the period effect is the effect of date at diagnosis, and the
duration effect is the only time-scale in the model, the effect of time since diagnosis.

In order to see how the effects from the two approaches using age/date at
diagnosis/follow-up relate to each other we can plot them on top of each other:

> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(M.A,F.A,m.A,f.A),
+ type="l", lty=rep(c(1,2),each=6), lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.2,180),
+ xlab="Age at diagnosis/follow-up", ylab="Mortality rate at 2 years duration per 1000 PY" )
> matplot( pr.P, cbind(M.P,F.P,m.P,f.P),
+ type="l", lty=rep(c(1,2),each=6), lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Date of diagnosis/follow-up", ylab="Mortality rate ratio" )
> abline( h=1 )
> matplot( pr.d, cbind(M.d,F.d,m.d,f.d),
+ type="l", lty=rep(c(1,2),each=6), lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Diabetes duration", ylab="Mortality rate ratio" )
> abline( h=1 )

From figure 9.10 we see that the age and duration curves from the model with two time
scales have smaller slopes than those from the model with the age and calendar time as
fixed effects. This is because in the latter all the time effect (that is the effect of the clock
advancing) is in the duration effect. The sum of the average slopes are however the same.
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Figure 9.10: Comparison of estimates from two different models; the full lines give the es-
timates from the model where age and date are included as fixed variables with the value
at diabetes diagnosis, whereas the broken lines are estimates from the model where age and
calendar time are included as time scales.
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9.6 SMR

The SMR is the standardized mortality ratio, which is mortality rate-ratio between the
diabetes patients and the general population. In real studies we would subtract the deaths
and the person-years among the diabetes patients from those of the general population, but
since we do not have access to these (recall that we only have a random sample of 10,000
diabetes patients), we make the comparison to the general population at large, i.e. also
including the diabetes patients.

There are two ways to make the comparison to the population mortality; one is toe
amend the diabetes patient dataset with the population mortality dataset, the other
(classical) one is to include the population mortality rates as a fixed variable in the
calculations.

The latter requires that each analytical unit in the diabetes patient dataset is amended
with a variable with the population mortality for the corresponding sex, age and calendar
time.

This can be achieved in two ways: Either we just use the current split of follow-up time
and allocate the population mortality rates for some suitably chosen (mid-)point of the
follow-up in each, or we make a second split by date, so that follow-up in the diabetes
patients is in the same classification of age and data as the population mortality table.

We will use the second approach, that is include as an extra variable the population
mortality as available from the data set M.dk.

First we create the variables in the diabetes dataset that we need for matching with the
population mortality data, that is age, date and sex at the midpoint of each of the intervals
(or rater at a point 3 months after the left end point of the interval — recall we split the
follow-up in 6 month intervals).

We need to have variables with the same names in both datasets, moreover, they should
be of the same type, so we must transform the sex variable in M.dk to a factor:

> str( SL )

Classes âLexisâ and 'data.frame': 118473 obs. of 14 variables:
$ lex.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ A : num 58.7 59 59.5 60 60.5 ...
$ P : num 1999 1999 2000 2000 2001 ...
$ dur : num 0 0.339 0.839 1.339 1.839 ...
$ lex.dur: num 0.339 0.5 0.5 0.5 0.5 ...
$ lex.Cst: Factor w/ 2 levels "Alive","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "Alive","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 2 ...
$ dobth : num 1940 1940 1940 1940 1940 ...
$ dodm : num 1999 1999 1999 1999 1999 ...
$ dodth : num NA NA NA NA NA NA NA NA NA NA ...
$ dooad : num NA NA NA NA NA NA NA NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "breaks")=List of 3
..$ A : num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
..$ P : NULL
..$ dur: NULL
- attr(*, "time.scales")= chr "A" "P" "dur"
- attr(*, "time.since")= chr "" "" ""

> SL$Am <- floor( SL$A+0.5 )
> SL$Pm <- floor( SL$P+0.5 )
> data( M.dk )
> str( M.dk )
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'data.frame': 7800 obs. of 6 variables:
$ A : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : num 1 2 1 2 1 2 1 2 1 2 ...
$ P : num 1974 1974 1975 1975 1976 ...
$ D : num 459 303 435 311 405 258 332 205 312 233 ...
$ Y : num 35963 34383 36099 34652 34965 ...
$ rate: num 12.76 8.81 12.05 8.97 11.58 ...
- attr(*, "Contents")= chr "Number of deaths and risk time in Denmark"

> M.dk <- transform( M.dk, Am = A,
+ Pm = P,
+ sex = factor( sex, labels=c("M","F") ) )
> str( M.dk )

'data.frame': 7800 obs. of 8 variables:
$ A : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 1 2 1 2 1 2 1 2 ...
$ P : num 1974 1974 1975 1975 1976 ...
$ D : num 459 303 435 311 405 258 332 205 312 233 ...
$ Y : num 35963 34383 36099 34652 34965 ...
$ rate: num 12.76 8.81 12.05 8.97 11.58 ...
$ Am : num 0 0 0 0 0 0 0 0 0 0 ...
$ Pm : num 1974 1974 1975 1975 1976 ...

Then we can match up the rates from M.dk:

> SLr <- merge( SL, M.dk[,c("Am","Pm","sex","rate")] )
> dim( SL )

[1] 118473 16

> dim( SLr )

[1] 118448 17

This merge only takes rows that have information from both datasets, hence the slightly
fewer rows in SLr than in SL. There is no point in including observations where there is no
risk time among the diabetes patients; the computed expected numbers will be 0, and
hence crash the analysis.

We can now compute the SMR as the observed divided by the expected numbers by say
age and sex:

> stat.table( list( Age=floor(A/10)*10,
+ Sex=sex ),
+ list( D=sum(lex.Xst=="Dead"),
+ E=sum(lex.dur*rate/1000),
+ SMR=ratio(lex.Xst=="Dead",lex.dur*rate/1000) ),
+ margins = TRUE,
+ data = SLr )

--------------------------------
-----------Sex-----------

Age M F Total
--------------------------------
0 0.00 0.00 0.00

0.02 0.01 0.02
0.00 0.00 0.00

10 1.00 1.00 2.00
0.14 0.04 0.18
7.27 23.98 11.15

20 0.00 0.00 0.00
0.36 0.18 0.54
0.00 0.00 0.00

30 5.00 4.00 9.00
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1.49 1.06 2.55
3.37 3.77 3.53

40 32.00 15.00 47.00
9.91 5.24 15.16
3.23 2.86 3.10

50 119.00 62.00 181.00
50.49 22.92 73.41
2.36 2.71 2.47

60 275.00 157.00 432.00
148.12 77.20 225.32
1.86 2.03 1.92

70 486.00 331.00 817.00
288.07 214.03 502.10
1.69 1.55 1.63

80 348.00 423.00 771.00
266.89 336.16 603.05
1.30 1.26 1.28

90 76.00 159.00 235.00
65.20 127.34 192.54
1.17 1.25 1.22

Total 1342.00 1152.00 2494.00
830.68 784.18 1614.86
1.62 1.47 1.54

--------------------------------

We see that the overall SMR is 1.6, but strongly varying with age and to some extent by
sex. Moreover, it may seem that the variation with age is not the same for the two sexes.

We can now model the SMR by including the log-expected numbers instead of the
log-person-years as offset, using separate models for men and women. Also note that we
exclude those units where no deaths in the population occur. Also we compute the
expected numbers, E:

> SLr <- subset( SLr, rate>0)
> SLr$E <- SLr$lex.dur * SLr$rate / 1000
> Sm <- glm( (lex.Xst=="Dead") ~ Ns( A-dur, kn=kn.Ad ) +
+ Ns( P-dur, kn=kn.Pd ) +
+ Ns( dur, kn=kn.dur ),
+ offset = log( E ),
+ family = poisson,
+ data = subset( SLr, sex=="M" ) )
> Sf <- update( Sm, data = subset( SLr, sex=="F" ) )

The estimates are extracted exactly as for the mortality model; but the results are not
mortality rates but rather SMRs (rate-ratios):

> sM.A <- ci.exp( Sm, ctr.mat=cbind(1,AC,PR,dR) )
> sF.A <- ci.exp( Sf, ctr.mat=cbind(1,AC,PR,dR) )
> sM.P <- ci.exp( Sm, subset="P" , ctr.mat=PC-PR )
> sF.P <- ci.exp( Sf, subset="P" , ctr.mat=PC-PR )
> sM.d <- ci.exp( Sm, subset="kn.dur", ctr.mat=dC-dR )
> sF.d <- ci.exp( Sf, subset="kn.dur", ctr.mat=dC-dR )

— plotted using the same code (with obvious adjustments of the axes:
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> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, cbind(sM.A,sF.A),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Age at follow-up", ylab="SMR" )
> abline( h=1 )
> matplot( pr.P, cbind(sM.P,sF.P),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Date of follow-up", ylab="SMR ratio" )
> abline( h=1 )
> matplot( pr.d, cbind(sM.d,sF.d),
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(1/3,3),
+ xlab="Diabetes duration", ylab="SMR ratio" )
> abline( h=1 )
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Figure 9.11: SMR in the diabetic population relative to the (entire) Danish population.
Clearly the effect of age is over-modeled.

It seems reasonably from figure 9.11 clear that there is very little difference between
SMR for males and females once we controlled for age, date and duration of diabetes. This
can be formally tested by fitting models with and without sex-interaction and also a model
with no overall effect of sex:

> Sb <- update( Sm, data = SLr )
> Sb.s <- update( Sb, . ~. + sex )
> Sb.i <- update( Sb, . ~. + sex:( Ns( A-dur, kn=kn.Ad ) +
+ Ns( P-dur, kn=kn.Pd ) +
+ Ns( dur, kn=kn.dur ) ) )
> anova( Sb, Sb.s, Sb.i, test="Chisq" )
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Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + Ns(P - dur, kn = kn.Pd) +
Ns(dur, kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + Ns(P - dur, kn = kn.Pd) +
Ns(dur, kn = kn.dur) + sex

Model 3: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + Ns(P - dur, kn = kn.Pd) +
Ns(dur, kn = kn.dur) + Ns(A - dur, kn = kn.Ad):sex + Ns(P -
dur, kn = kn.Pd):sex + Ns(dur, kn = kn.dur):sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 118403 21916
2 118402 21916 1 0.0122 0.9121
3 118386 21903 16 13.2846 0.6518

So we see there is absolutely no difference between the SMR between the sexes.
We therefore extract the parameters from the model with common SMR for the two

sexes.

> Sb.A <- ci.exp( Sb, ctr.mat=cbind(1,AC,PR,dR) )
> Sb.P <- ci.exp( Sb, subset="P" , ctr.mat=PC-PR )
> Sb.d <- ci.exp( Sb, subset="kn.dur", ctr.mat=dC-dR )
> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, Sb.A,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/3,3),
+ xlab="Age at diagnosis", ylab="SMR" )
> abline( h=1 )
> matplot( pr.P, Sb.P,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/3,3),
+ xlab="Date of diagnosis", ylab="SMR ratio" )
> abline( h=1 )
> matplot( pr.d, Sb.d,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/3,3),
+ xlab="Diabetes duration", ylab="SMR ratio" )
> abline( h=1 )

We can simplify the model to one the is easier to convey to users by using a linear effect
of date of diagnosis, and using only knots at 0,1,and 2 years for duration, giving an
estimate of the change in SMR as duration increases beyond 2 years. At the same time we
also limit the number of knots for the age-effect:

> kn.Ad <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( A-dur, probs=seq(5,95,20)/100 ) )
> kn.dur <- 0:2
> AC <- Ns( pr.A, knots=kn.Ad )
> dC <- Ns( pr.d, knots=kn.dur )
> dR <- Ns( rep(rf.d,N), knots=kn.dur )
> Sx <- glm( (lex.Xst=="Dead") ~ Ns( A-dur, kn=kn.Ad ) +
+ I( P-dur ) +
+ Ns( dur, kn=kn.dur ),
+ offset = log( E ),
+ family = poisson,
+ data = SLr )

Having fitted the model, we can then plot the estimates from it:

> Sx.A <- ci.exp( Sx, ctr.mat=cbind(1,AC,rf.P,dR) )
> Sx.P <- ci.exp( Sx, subset="P" , ctr.mat=cbind(pr.P-rf.P) )
> Sx.d <- ci.exp( Sx, subset="kn.dur", ctr.mat=dC-dR )
> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, Sx.A,
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Figure 9.12: SMR in the diabetic population for both sexes, relative to the (entire) Danish
population.

+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/2,4),
+ xlab="Age at diagnosis", ylab="SMR" )
> abline( h=1 )
> abline( v=4:8*10, col="gray" )
> matplot( pr.P, Sx.P,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/2,4),
+ xlab="Date of diagnosis", ylab="SMR ratio" )
> abline( h=1 )
> matplot( pr.d, Sx.d,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/2,4),
+ xlab="Diabetes duration", ylab="SMR ratio" )
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> abline( h=1,v=2 )
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Figure 9.13: SMR in the diabetic population for both sexes, relative to the (entire) Danish
population — simplified model.

We can formulate the period and duration effects by looking at the estimated
parameters:

> 100*( 1 - ci.exp( Sx, subset="P" ) )

exp(Est.) 2.5% 97.5%
I(P - dur) 1.59215 2.766214 0.40391

If we want to assess the annual change in SMR by duration of diabetes we can calculate
the duration effects at say 5 and 6 years and subtract them:
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> d6 <- Ns( 6, knots=kn.dur )
> d5 <- Ns( 5, knots=kn.dur )
> 100*( ci.exp( Sx, subset="kn.dur", ctr.mat=d6-d5 ) - 1 )

exp(Est.) 2.5% 97.5%
[1,] 0.2222163 -1.365779 1.835778

Thus the estimate is an annual increase in SMR of 0.3% (-1.3–1.9)%, thus no evidence of
any increasing SMR after 2 years of diabetes duration.

The conclusion is that SMR for diabetes patients diagnosed at age 50 is about 2 after
two years of duration and does not change, whereas it for patients aged 70 is about 1.4
after 2 years of diabetes and does not change. The SMR is initially (just after diagnosis)
about twice as high, and does not change.

9.6.1 Interaction models

We may explore whether there is an interaction between age and duration by including a
product of the (linear) duration effects and age at diagnosis:

> Slx <- update( Sx, . ~. + I(A-dur):Ns(dur,knots=kn.dur) )
> anova( Slx, Sx, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + I(P - dur) +
Ns(dur, kn = kn.dur) + Ns(dur, kn = kn.dur):I(A - dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + I(P - dur) +
Ns(dur, kn = kn.dur)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 118411 21936
2 118413 21941 -2 -4.9395 0.08461

> ci.exp( Slx )

exp(Est.) 2.5% 97.5%
(Intercept) 3.820872e+14 1.393779e+04 1.047444e+25
Ns(A - dur, kn = kn.Ad)1 5.796186e-01 4.542913e-01 7.395205e-01
Ns(A - dur, kn = kn.Ad)2 5.016243e-01 3.968090e-01 6.341260e-01
Ns(A - dur, kn = kn.Ad)3 3.060510e-01 2.100009e-01 4.460324e-01
Ns(A - dur, kn = kn.Ad)4 4.835756e-01 3.826729e-01 6.110842e-01
I(P - dur) 9.841822e-01 9.724406e-01 9.960657e-01
Ns(dur, kn = kn.dur)1 5.988204e-02 1.451733e-02 2.470054e-01
Ns(dur, kn = kn.dur)2 4.090076e-01 2.651628e-01 6.308847e-01
Ns(dur, kn = kn.dur)1:I(A - dur) 1.021670e+00 1.002343e+00 1.041369e+00
Ns(dur, kn = kn.dur)2:I(A - dur) 1.006681e+00 1.000835e+00 1.012562e+00

Even if the effect is not statistically significant, we would still want to explore the shape of
it:

> Slx.A <- ci.exp( Slx, ctr.mat=cbind(1,AC,rf.P,dR,dR*pr.A) )
> Slx.P <- ci.exp( Slx, subset="P" , ctr.mat=cbind(pr.P-rf.P) )
> Slx.d <- ci.exp( Slx, subset="kn.dur", ctr.mat=cbind(dC-dR,(dC-dR)*50) )
> for( a in seq(55,90,5) ) Slx.d <- cbind( Slx.d,
+ ci.exp( Slx, subset="kn.dur", ctr.mat=cbind(dC-dR,(dC-dR)*a) ) )
> dim( Slx.d )

[1] 100 27

> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( pr.A, Slx.A,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/2,4),
+ xlab="Age at diagnosis", ylab="SMR" )
> abline( h=1 )
> abline( v=4:8*10, col="gray" )
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> matplot( pr.P, Slx.P,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ log="y", ylim=c(1/2,4),
+ xlab="Date of diagnosis", ylab="SMR ratio" )
> abline( h=1 )
> matplot( pr.d, Slx.d,
+ type="l", lty=1, lwd=c(3,1,1), col=rep(heat.colors(9),each=3),
+ log="y", ylim=c(1/2,4),
+ xlab="Diabetes duration", ylab="SMR ratio" )
> abline( h=1 )
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Figure 9.14: SMR in the diabetic population for both sexes, relative to the (entire) Danish
population — interaction model with age-specific duration effects.

This approach is however a bit artificial, because we have fixed the duration effects to be
1 at duration 2 years. It would be appropriate to combine the effects of age at diagnosis
and duration to show how the SMR looks as a function of current age.
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> pts <- c(seq(0,15,0.1),NA)
> np <- length( pts )
> nd <- data.frame( A=rep(seq(50,90,5),each=np)+pts,
+ P=rf.P+pts,
+ dur= pts,
+ E=1 )
> A.sx <- ci.pred( Sx , newdata=nd )
> A.sl <- ci.pred( Slx, newdata=nd )

> matplot( NA, NA,
+ log="y", ylim=c(1/2,5), xlim=c(50,100),
+ xlab="Age at follow-up", ylab="SMR" )
> abline( h=c(5:19/10,seq(2,5,0.5)), v=seq(50,100,5), col=gray(0.8) )
> matlines( nd$A, cbind(A.sx,A.sl),
+ type="l", lty=rep(c(1,3),each=3), lwd=c(3,1,1), col="forestgreen" )
> abline( h=1 )

From figure ?? it is clear that the interaction means that the patients diagnosed at
young age (50–60, that is) do not experience a declining SMR, on the contrary, they have a
relative mortality that is close to what it is a year or so after diagnosis, which is about 2
for 50-year old , 1.4 for 70 year old and 1.1 for 80 year old

This interaction machinery with linear age easily generalizes to more complex age-effects,
it is just a question of choosing another age-effect:

> Six <- update( Sx, . ~. + Ns(A-dur,knots=kn.Ad):Ns(dur,knots=kn.dur) )
> anova( Six, Slx, Sx, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + I(P - dur) +
Ns(dur, kn = kn.dur) + Ns(A - dur, kn = kn.Ad):Ns(dur, kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + I(P - dur) +
Ns(dur, kn = kn.dur) + Ns(dur, kn = kn.dur):I(A - dur)

Model 3: (lex.Xst == "Dead") ~ Ns(A - dur, kn = kn.Ad) + I(P - dur) +
Ns(dur, kn = kn.dur)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 118405 21929
2 118411 21936 -6 -6.7561 0.34400
3 118413 21941 -2 -4.9395 0.08461

> A.si <- ci.pred( Six, newdata=nd )

And we can use the exact same code to show the interaction and plot it along the others in
a similar plot:

> matplot( NA, NA,
+ log="y", ylim=c(1/2,5), xlim=c(50,100),
+ xlab="Age at follow-up", ylab="SMR" )
> abline( h=c(5:19/10,seq(2,5,0.5)), v=seq(50,100,5), col=gray(0.8) )
> matlines( nd$A, cbind(A.si,A.sl,A.sx),
+ type="l", lty=rep(c(1,3),c(6,3)), lwd=c(3,1,1),
+ col=rep(c("magenta","limegreen"),c(3,6)) )
> abline( h=1 )

From figure ?? it is seen that the interaction chosen was way too complex; the long-term
variations in the SMR as estimated here do not seem believable. Although the general
pattern is pretty much the same; it is the age at diagnosis that determines the SMR.
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Figure 9.15: SMR in the diabetic population for both sexes, relative to the (entire) Danish
population — interaction model with age-specific duration effects, shown for patients diag-
nosed at ages 50 to 90.
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Figure 9.16: SMR in the diabetic population for both sexes, relative to the (entire) Danish
population — interaction model with age-specific duration effects, shown for patients diag-
nosed at ages 50, 60, 70, 80 and 90. The bright green curves are from the simple interaction
model, while magenta curves are from the more complex interaction model.



Chapter 10

General calculations

10.1 Modelling linear and non-linear effects

This section describes how continuous non-linear effects of explanatory variables can be
modelled and in particular reported in graphical form.

10.1.1 Linear regression: diet data

We start out by an ordinary regression based on the diet data set from the Epi package,
we plot the relationship between weight and height as well as the estimated regression line
from regression of weight (outcome) on height (determinant):

> options( show.signif.stars=FALSE, width=100 )
> library( Epi )
> data( diet )
> names( diet )

[1] "id" "doe" "dox" "dob" "y" "fail" "job"
[8] "month" "energy" "height" "weight" "fat" "fibre" "energy.grp"
[15] "chd"

> with( diet, plot(weight~height,pch=16) )
> abline( lm(weight~height,data=diet), col="red", lwd=2 )

We can take look at the summary of the model, and the more parsimonious output from
ci.lin:

> ml <- lm( weight ~ height, data=diet )
> summary( ml )

Call:
lm(formula = weight ~ height, data = diet)

Residuals:
Min 1Q Median 3Q Max

-24.7361 -7.4553 0.1608 6.9384 27.8130

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -59.91601 14.31557 -4.185 3.66e-05
height 0.76421 0.08252 9.261 < 2e-16

Residual standard error: 9.625 on 330 degrees of freedom
(5 observations deleted due to missingness)

Multiple R-squared: 0.2063, Adjusted R-squared: 0.2039
F-statistic: 85.76 on 1 and 330 DF, p-value: < 2.2e-16

94
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Figure 10.1: Height and weight with regression line.

> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -59.9160 14.3156 -4.1854 0 -87.9740 -31.858
height 0.7642 0.0825 9.2607 0 0.6025 0.926

Apart from the regression line it is of interest to see the confidence limits (for the mean
relationship), and the prediction limits ; intervals for prediction of weight for a given value
of height. The latter is wider because it also incorporates the residual variation:

> ml <- lm( weight ~ height, data=diet )
> nd <- data.frame( height = 150:190 )
> pr.co <- predict( ml, newdata=nd, interval="conf" )
> pr.pr <- predict( ml, newdata=nd, interval="pred" )
> with( diet, plot( weight ~ height, pch=16 ) )
> matlines( nd$height, pr.co, lty=1, lwd=c(5,2,2), col="blue" )
> matlines( nd$height, pr.pr, lty=2, lwd=c(5,2,2), col="blue" )

We can also use a quadratic model, that is a model where weight is not a simple linear
function of height, but is assumed to be a quadratic function of weight.

> mq <- lm( weight ~ height + I(height^2), data=diet )
> ci.lin( mq )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -1.928840e+02 2.698746e+02 -0.7147173 0.4747838 -721.82849818 336.06043842
height 2.304522e+00 3.122922e+00 0.7379378 0.4605522 -3.81629244 8.42533719
I(height^2) -4.454604e-03 9.028397e-03 -0.4933992 0.6217305 -0.02214994 0.01324073

> nd <- data.frame( height = 150:190 )
> pr.co <- predict( mq, newdata=nd, interval="conf" )
> pr.pr <- predict( mq, newdata=nd, interval="pred" )
> with( diet, plot( weight ~ height, pch=16 ) )
> matlines( nd$height, pr.co, lty=1, lwd=c(5,2,2), col="blue" )
> matlines( nd$height, pr.pr, lty=2, lwd=c(5,2,2), col="blue" )
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Figure 10.2: Linear (left) and quadratic (right) relationship between height an weight, with
confidence limits for the mean, and prediction limits.

From figure 10.2 we see that there is not much curvature; the formal test is whether the
coefficient to height2 is significantly different from 0; it is not; the p-value 0.622, so no
evidence of non-linearity of the relationship. Interestingly, it is seen that the addition of
the quadratic term increases the uncertainly of the mean estimate, but not the width of the
prediction limits.

10.1.2 Poisson regression: rates and RRs

In section ?? we did some elementary calculations on fictitious rate data with very few
observations.

To illustrate how we predict rates from Poisson models on real data we use a data set
from the Epi package, with no. of cases of testis cancer and person-years in the Danish
male population, classified by age and calendar time in 1-year classes:

> data( testisDK )
> str( testisDK )

'data.frame': 4860 obs. of 4 variables:
$ A: num 0 1 2 3 4 5 6 7 8 9 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: num 1 1 0 1 0 0 0 0 0 0 ...
$ Y: num 39650 36943 34588 33267 32614 ...

> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33

First we make a coarse table of the cases, person-years and rates by 10-year classes of age
and calendar time using stat.table:
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> stat.table( list(A=floor(A/10)*10,
+ P=floor(P/10)*10),
+ list( D=sum(D),
+ Y=sum(Y/10^5),
+ rate=ratio(D,Y,10^5) ),
+ margins=TRUE, data=testisDK )

----------------------------------------------------------------
----------------------------P----------------------------

A 1940 1950 1960 1970 1980 1990 Total
----------------------------------------------------------------
0 10.00 7.00 16.00 18.00 9.00 10.00 70.00

26.05 40.37 38.85 38.21 30.71 21.66 195.84
0.38 0.17 0.41 0.47 0.29 0.46 0.36

10 13.00 27.00 37.00 72.00 97.00 75.00 321.00
21.36 35.05 40.04 39.06 38.47 22.61 196.59
0.61 0.77 0.92 1.84 2.52 3.32 1.63

20 124.00 221.00 280.00 535.00 724.00 557.00 2441.00
22.26 29.23 34.02 40.29 39.41 28.25 193.45
5.57 7.56 8.23 13.28 18.37 19.72 12.62

30 149.00 288.00 377.00 624.00 771.00 744.00 2953.00
21.95 30.59 28.56 34.11 39.69 27.28 182.18
6.79 9.42 13.20 18.30 19.43 27.27 16.21

40 95.00 198.00 230.00 334.00 432.00 360.00 1649.00
18.75 29.80 29.87 28.23 33.23 27.58 167.45
5.07 6.64 7.70 11.83 13.00 13.05 9.85

50 40.00 79.00 140.00 151.00 193.00 155.00 758.00
14.43 24.27 27.97 28.13 26.35 20.69 141.83
2.77 3.26 5.01 5.37 7.32 7.49 5.34

60 29.00 43.00 54.00 83.00 82.00 44.00 335.00
10.42 17.12 20.55 23.58 23.57 15.65 110.89
2.78 2.51 2.63 3.52 3.48 2.81 3.02

70 18.00 26.00 35.00 41.00 40.00 32.00 192.00
5.38 9.68 11.36 13.37 15.38 11.01 66.17
3.35 2.69 3.08 3.07 2.60 2.91 2.90

80 7.00 9.00 13.00 19.00 18.00 21.00 87.00
1.34 2.62 3.46 4.23 5.04 4.15 20.84
5.24 3.44 3.75 4.49 3.57 5.06 4.18

Total 485.00 898.00 1182.00 1877.00 2366.00 1998.00 8806.00
141.92 218.72 234.68 249.21 251.85 178.87 1275.25
3.42 4.11 5.04 7.53 9.39 11.17 6.91

----------------------------------------------------------------

We then model the rates using a Poisson-model, because the likelihood for (d, y) = (D, Y) is
proportional to a Poisson likelihood assuming that rates are constant in 1× 1-year intervals
of age and calendar time.

The first model is very coarse; we simply assume that incidence rates depend linearly on
the age in in each interval and not on calendar time at all; we use ci.lin and ci.exp to
show the parameters on the log-scale and on the rate-scale respectively:

> ml <- glm( D ~ A, offset=log(Y/1000), family=poisson, data=testisDK )
> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -2.8677 0.0207 -138.5578 0 -2.9083 -2.8271
A 0.0055 0.0005 11.3926 0 0.0045 0.0064
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> round( ci.exp( ml ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0568 0.0546 0.0592
A 1.0055 1.0046 1.0064

How would you interpret the estimates that are computed by ci.exp?
To predict the incidence rates in different ages, we must devise a data set of explanatory

variables, in this case age, A and person-years, Y. Note that we put Y to be constant equal
to 105, so that we get the expected number of cases during 100,000 person-years, that is
the incidence rates per 100,000 PY. We then plot the estimated rates against age; note that
we are using a log-scale for the rates, and hence the log-linear relationship between rates
and age show up as a straight line:

> nd <- data.frame( A=15:60, Y=10^5 )
> pr <- ci.pred( ml, newdata=nd )
> head( cbind(nd,pr) )

A Y Estimate 2.5% 97.5%
1 15 1e+05 6.170105 5.991630 6.353896
2 16 1e+05 6.204034 6.028525 6.384652
3 17 1e+05 6.238149 6.065547 6.415662
4 18 1e+05 6.272452 6.102689 6.446937
5 19 1e+05 6.306943 6.139944 6.478485
6 20 1e+05 6.341624 6.177301 6.510319

> matplot( nd$A, pr,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Figure 10.3: Predicted incidence rates of testis cancer using a naive model with only a liner
effect of age.

An alternative way of deriving the rates is to make an explicit calculation from the
estimated parameters of the model:

> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -2.8677 0.0207 -138.5578 0 -2.9083 -2.8271
A 0.0055 0.0005 11.3926 0 0.0045 0.0064
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> Cl <- cbind( 1, nd$A )
> head( Cl )

[,1] [,2]
[1,] 1 15
[2,] 1 16
[3,] 1 17
[4,] 1 18
[5,] 1 19
[6,] 1 20

> matplot( nd$A, ci.exp( ml, ctr.mat=Cl ),
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )

Verify that the two plots show the same curve.
As in the diet example we can now add a quadratic term in age, to check if there is any

indication of non-linearity:

> mq <- glm( D ~ A + I(A^2),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( mq ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -12.3656 0.0596 -207.3611 0 -12.4825 -12.2487
A 0.1806 0.0033 54.8290 0 0.1741 0.1871
I(A^2) -0.0023 0.0000 -53.7006 0 -0.0024 -0.0022

> round( ci.exp( mq ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0000 0.0000 0.0000
A 1.1979 1.1902 1.2057
I(A^2) 0.9977 0.9976 0.9978

There is clearly a very strong indication of a non-linear relationship.
We can now plot the estimated curved relationship using a contrast matrix as before, but

now with a column of the ages squared too:

> round( ci.lin( mq ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -12.3656 0.0596 -207.3611 0 -12.4825 -12.2487
A 0.1806 0.0033 54.8290 0 0.1741 0.1871
I(A^2) -0.0023 0.0000 -53.7006 0 -0.0024 -0.0022

> Cq <- cbind( 1, 15:60, (15:60)^2 )
> head( Cq, 4 )

[,1] [,2] [,3]
[1,] 1 15 225
[2,] 1 16 256
[3,] 1 17 289
[4,] 1 18 324

> matplot( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )

Actually we want to plot the two predictions on top of each other:

> matplot( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
> matlines( nd$A, ci.exp( ml, ctr.mat=Cl )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Figure 10.4: Predicted age-specific testis cancer incidence rates using a linear (blue) and a
quadratic model (black)

It is of interest to see if the quadratic gives an adequate description of rates, so we fit a
more flexible model using natural splines (a.k.a. restricted cubic splines). These are
functions that are piecewise cubic functions in intervals defined by knots ; the natural
(restricted) refer to the extra restriction that the curves are linear beyond the outermost
knots; in this case below age 15 and above age 651. The function Ns from the Epi package
is a wrapper fro the function ns from the splines package; it computes the outer knots
from the supplied set of knots, but we still need to load the splines package:

> library( splines )
> ms <- glm( D ~ Ns(A,knots=seq(15,65,10)),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( ms ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.548 7.650 9.551
Ns(A, knots = seq(15, 65, 10))2 5.706 4.998 6.514
Ns(A, knots = seq(15, 65, 10))3 1.002 0.890 1.128
Ns(A, knots = seq(15, 65, 10))4 14.402 11.896 17.436
Ns(A, knots = seq(15, 65, 10))5 0.466 0.429 0.505

> aa <- 15:65
> As <- Ns( aa, knots=seq(15,65,10) )
> head( As )

1 2 3 4 5
[1,] 0.0000000000 0 0.00000000 0.00000000 0.00000000
[2,] 0.0001666667 0 -0.02527011 0.07581034 -0.05054022
[3,] 0.0013333333 0 -0.05003313 0.15009940 -0.10006626
[4,] 0.0045000000 0 -0.07378197 0.22134590 -0.14756393
[5,] 0.0106666667 0 -0.09600952 0.28802857 -0.19201905
[6,] 0.0208333333 0 -0.11620871 0.34862613 -0.23241742

1This is a restriction that turns out to render the resulting curves a bit more stable — an excellent
illustration of this is found on Paul Lambert’s website, see http://www.le.ac.uk/hs/pl4/spline_eg.html

http://www.le.ac.uk/hs/pl4/spline_eg.html
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As before we overlay the spline fitted model with the fit from the previous (quadratic)
model:

> matplot( aa, ci.exp( ms, ctr.mat=cbind(1,As) )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
> matlines( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Figure 10.5: Predicted age-specific testis cancer incidence rates using a spline (black) and at
quadratic model (blue)

10.1.3 Period effect

So far we have totally ignored the calendar time; so we insert a term for the linear trend by
calendar year:

> msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P,
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( msp ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -58.105 1.444 -40.229 0.000 -60.935 -55.274
Ns(A, knots = seq(15, 65, 10))1 2.120 0.057 37.444 0.000 2.009 2.231
Ns(A, knots = seq(15, 65, 10))2 1.700 0.068 25.157 0.000 1.567 1.832
Ns(A, knots = seq(15, 65, 10))3 0.007 0.060 0.110 0.913 -0.112 0.125
Ns(A, knots = seq(15, 65, 10))4 2.596 0.097 26.631 0.000 2.405 2.787
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.748 0.000 -0.861 -0.698
P 0.024 0.001 32.761 0.000 0.023 0.025

> round( ci.exp( msp ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.327 7.453 9.305
Ns(A, knots = seq(15, 65, 10))2 5.472 4.793 6.247
Ns(A, knots = seq(15, 65, 10))3 1.007 0.894 1.133
Ns(A, knots = seq(15, 65, 10))4 13.405 11.074 16.226
Ns(A, knots = seq(15, 65, 10))5 0.459 0.423 0.497
P 1.024 1.023 1.026
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We see that the coefficient is 1.024 meaning that rates increase annually by a factor of
1.024 or by 2.4%.

If we want to show predicted rates from this model, we must recognize that calendar
time (P) is in the model now, so the prediction must refer to a specific point in time, here
we choose 1970, and put this in as a separate column in the contrast matrix:

> Ca <- cbind( 1, Ns( aa, knots=seq(15,65,10) ), 1970 )
> head( Ca )

1 2 3 4 5
[1,] 1 0.0000000000 0 0.00000000 0.00000000 0.00000000 1970
[2,] 1 0.0001666667 0 -0.02527011 0.07581034 -0.05054022 1970
[3,] 1 0.0013333333 0 -0.05003313 0.15009940 -0.10006626 1970
[4,] 1 0.0045000000 0 -0.07378197 0.22134590 -0.14756393 1970
[5,] 1 0.0106666667 0 -0.09600952 0.28802857 -0.19201905 1970
[6,] 1 0.0208333333 0 -0.11620871 0.34862613 -0.23241742 1970

As before we overlay the fitted rates with those from the previous model:

> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
> matlines( nd$A, ci.pred( ms, newdata=nd ),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Figure 10.6: Estimated rates from the spline model without period effect(blue) and rates in
1970 from the model with a linear period effect (black).

The curves in figure 10.6 is in some sense both estimates of the rates in 1970; the model
with no period effect namely assumes that rates do not change over time.

We would also like to see how the RR as a function of time looks; to this end we must
choose a reference on the P-scale; and since we made the rate prediction for 1970, this is a
natural choice, so we compute the RR between years 1945,. . . ,1995 and 1970:

> round( ci.lin( msp ), 3 )
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Estimate StdErr z P 2.5% 97.5%
(Intercept) -58.105 1.444 -40.229 0.000 -60.935 -55.274
Ns(A, knots = seq(15, 65, 10))1 2.120 0.057 37.444 0.000 2.009 2.231
Ns(A, knots = seq(15, 65, 10))2 1.700 0.068 25.157 0.000 1.567 1.832
Ns(A, knots = seq(15, 65, 10))3 0.007 0.060 0.110 0.913 -0.112 0.125
Ns(A, knots = seq(15, 65, 10))4 2.596 0.097 26.631 0.000 2.405 2.787
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.748 0.000 -0.861 -0.698
P 0.024 0.001 32.761 0.000 0.023 0.025

> pp <- seq(1945,1995,0.2)
> Cp <- cbind( pp - 1970 )
> head( Cp )

[,1]
[1,] -25.0
[2,] -24.8
[3,] -24.6
[4,] -24.4
[5,] -24.2
[6,] -24.0

> ci.exp( msp, subset="P" )

exp(Est.) 2.5% 97.5%
P 1.024235 1.022769 1.025704

> matplot( pp, ci.exp( msp, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )

As for the initial analyses of age, we could include a quadratic effect of period; which
means that the contrast matrix we shall use is the difference between the linear and
quadratic functions of the years 1945 to 1995, and the same fro 1970:

> mspq <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( mspq ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -807.245 205.039 -3.937 0.000 -1209.115 -405.375
Ns(A, knots = seq(15, 65, 10))1 2.123 0.057 37.497 0.000 2.012 2.234
Ns(A, knots = seq(15, 65, 10))2 1.707 0.068 25.249 0.000 1.575 1.840
Ns(A, knots = seq(15, 65, 10))3 0.006 0.060 0.099 0.921 -0.113 0.125
Ns(A, knots = seq(15, 65, 10))4 2.598 0.098 26.643 0.000 2.407 2.789
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.767 0.000 -0.862 -0.699
P 0.784 0.208 3.769 0.000 0.376 1.191
I(P^2) 0.000 0.000 -3.654 0.000 0.000 0.000

> Cq <- cbind( pp-1970, pp^2-1970^2 )
> head( Cq )

[,1] [,2]
[1,] -25.0 -97875.00
[2,] -24.8 -97096.96
[3,] -24.6 -96318.84
[4,] -24.4 -95540.64
[5,] -24.2 -94762.36
[6,] -24.0 -93984.00

> ci.exp( mspq, subset="P" )

exp(Est.) 2.5% 97.5%
P 2.1893078 1.4566021 3.2905821
I(P^2) 0.9998075 0.9997042 0.9999107

> matplot( pp, ci.exp( mspq, subset="P", ctr.mat=Cq ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Figure 10.7: RR relative to 1970 from a model with quadratic effect of calendar time.

Although the coefficient to P2 seems tiny, it is actually strongly significant, and it seems
also so judging from the graph of the RR as a function of calendar time in figure 10.7.

Then we expand the model to a model where we use a spline to model the calendar time
effect.

> msps <- glm( D ~ Ns(A,knots=seq(15,65,5)) +
+ Ns(P,knots=seq(1950,1990,5)),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( msps ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 5))1 9.293 7.914 10.912
Ns(A, knots = seq(15, 65, 5))2 8.630 7.575 9.832
Ns(A, knots = seq(15, 65, 5))3 9.260 7.965 10.765
Ns(A, knots = seq(15, 65, 5))4 6.592 5.652 7.688
Ns(A, knots = seq(15, 65, 5))5 5.310 4.446 6.342
Ns(A, knots = seq(15, 65, 5))6 3.209 2.627 3.919
Ns(A, knots = seq(15, 65, 5))7 3.224 2.607 3.987
Ns(A, knots = seq(15, 65, 5))8 1.076 0.918 1.260
Ns(A, knots = seq(15, 65, 5))9 3.698 3.101 4.411
Ns(A, knots = seq(15, 65, 5))10 0.828 0.726 0.945
Ns(P, knots = seq(1950, 1990, 5))1 1.351 1.107 1.649
Ns(P, knots = seq(1950, 1990, 5))2 1.451 1.222 1.723
Ns(P, knots = seq(1950, 1990, 5))3 1.626 1.365 1.938
Ns(P, knots = seq(1950, 1990, 5))4 2.182 1.879 2.533
Ns(P, knots = seq(1950, 1990, 5))5 2.283 1.995 2.613
Ns(P, knots = seq(1950, 1990, 5))6 2.354 2.122 2.613
Ns(P, knots = seq(1950, 1990, 5))7 2.917 2.642 3.221
Ns(P, knots = seq(1950, 1990, 5))8 2.452 2.225 2.702

In order to show the RR relative to 1970, we need the contrast matrix as a difference of 1)
one corresponding to the splines for the years 1945–95 and 2) one where all rows are
identical to the one corresponding to the 1970 value for the splines:
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> Cs <- Ns( pp ,knots=seq(1950,1990,5))
> Cr <- Ns(rep(1970,length(pp)),knots=seq(1950,1990,5))
> head( cbind(Cs,Cr), 4 )

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
[1,] 0 0 0 0 0 0.2535463 -0.7606388 0.5070926 0 0.1666667 0.6666667 0.1666667 0 0 0 0
[2,] 0 0 0 0 0 0.2434044 -0.7302133 0.4868089 0 0.1666667 0.6666667 0.1666667 0 0 0 0
[3,] 0 0 0 0 0 0.2332626 -0.6997877 0.4665251 0 0.1666667 0.6666667 0.1666667 0 0 0 0
[4,] 0 0 0 0 0 0.2231207 -0.6693622 0.4462414 0 0.1666667 0.6666667 0.1666667 0 0 0 0

> ci.exp( msps, subset="P" )

exp(Est.) 2.5% 97.5%
Ns(P, knots = seq(1950, 1990, 5))1 1.351303 1.107224 1.649188
Ns(P, knots = seq(1950, 1990, 5))2 1.451226 1.222380 1.722914
Ns(P, knots = seq(1950, 1990, 5))3 1.626416 1.365047 1.937830
Ns(P, knots = seq(1950, 1990, 5))4 2.181622 1.879069 2.532890
Ns(P, knots = seq(1950, 1990, 5))5 2.283165 1.994875 2.613117
Ns(P, knots = seq(1950, 1990, 5))6 2.354497 2.121572 2.612993
Ns(P, knots = seq(1950, 1990, 5))7 2.917336 2.641957 3.221419
Ns(P, knots = seq(1950, 1990, 5))8 2.451882 2.224656 2.702317

> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cs-Cr ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )

From figure ?? it is clear that the curvature is not over the entire time-span, basically it
looks as if there is a downward bend in the increase of rates around 1980.

Try to devise way to give rough estimates of the average annual increase before and after
1980.

Finally we can plot the estimated age-specific incidence rates in 1970, and the RR
relative to 1970 from this model.

Consider how the contrast matrix for extraction of the age-specific rates in 1970 are
constructed:

> par( mfrow=c(1,2) )
> Cap <- cbind( 1, Ns( aa ,knots=seq(15,65,5)),
+ Ns(rep(1970,length(aa)),knots=seq(1950,1990,5)) )
> matplot( aa, ci.exp( msps, ctr.mat=Cap )*10^5,
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cs-Cr ),
+ log="y", xlab="Date", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )

In order to make the two plots more comparable we make sure that the physical size of 1
year on the x-axis of both plots is the same, and we also devise the y-axes so that a
doubling of rates or RRs have the same physical extent:

> par( mfrow=c(1,2) )
> matplot( aa, ci.exp( msps, ctr.mat=Cap )*10^5,
+ log="y", xlab="Age",
+ ylim=c(2,20), xlim=c(15,65),
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cs-Cr ),
+ log="y", xlab="Date",
+ ylim=c(2,20)/sqrt(2*20), xlim=c(15,65)+1930,
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Figure 10.8: Age-specific rates as of 1970, and RR relative to this year.

10.1.4 Cohort effect

Instead of using calendar time we might contemplate using date of birth — the difference
between calendar time and age at observation, C = P− A:

> testisDK <- transform( testisDK, C = P - A )
> head( testisDK )

A P D Y C
1 0 1943 1 39649.50 1943
2 1 1943 1 36942.83 1942
3 2 1943 0 34588.33 1941
4 3 1943 1 33267.00 1940
5 4 1943 0 32614.00 1939
6 5 1943 0 32020.33 1938

> range( testisDK$C )

[1] 1854 1996

We can then fit a model exactly as before, but now with date of birth, cohort, C, as
variable, and in the prediction we will use 1950 as the reference cohort:

> mscs <- glm( D ~ Ns(A,knots=seq(15,65,5)) +
+ Ns(C,knots=seq(1880,1970,5)),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( mscs ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 5))1 11.753 9.946 13.889
Ns(A, knots = seq(15, 65, 5))2 12.259 10.645 14.117
Ns(A, knots = seq(15, 65, 5))3 14.988 12.769 17.592
Ns(A, knots = seq(15, 65, 5))4 12.501 10.599 14.745
Ns(A, knots = seq(15, 65, 5))5 11.342 9.398 13.689
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Ns(A, knots = seq(15, 65, 5))6 7.771 6.294 9.595
Ns(A, knots = seq(15, 65, 5))7 8.068 6.448 10.094
Ns(A, knots = seq(15, 65, 5))8 3.112 2.614 3.705
Ns(A, knots = seq(15, 65, 5))9 12.615 10.309 15.437
Ns(A, knots = seq(15, 65, 5))10 2.465 2.120 2.868
Ns(C, knots = seq(1880, 1970, 5))1 0.711 0.392 1.289
Ns(C, knots = seq(1880, 1970, 5))2 1.021 0.654 1.594
Ns(C, knots = seq(1880, 1970, 5))3 0.938 0.602 1.461
Ns(C, knots = seq(1880, 1970, 5))4 0.936 0.646 1.357
Ns(C, knots = seq(1880, 1970, 5))5 1.115 0.789 1.576
Ns(C, knots = seq(1880, 1970, 5))6 1.275 0.923 1.760
Ns(C, knots = seq(1880, 1970, 5))7 1.082 0.788 1.484
Ns(C, knots = seq(1880, 1970, 5))8 1.717 1.267 2.328
Ns(C, knots = seq(1880, 1970, 5))9 1.782 1.318 2.409
Ns(C, knots = seq(1880, 1970, 5))10 2.126 1.582 2.857
Ns(C, knots = seq(1880, 1970, 5))11 2.552 1.908 3.415
Ns(C, knots = seq(1880, 1970, 5))12 1.697 1.273 2.262
Ns(C, knots = seq(1880, 1970, 5))13 3.169 2.383 4.214
Ns(C, knots = seq(1880, 1970, 5))14 3.189 2.399 4.241
Ns(C, knots = seq(1880, 1970, 5))15 4.660 3.512 6.184
Ns(C, knots = seq(1880, 1970, 5))16 4.274 3.206 5.699
Ns(C, knots = seq(1880, 1970, 5))17 4.184 3.249 5.389
Ns(C, knots = seq(1880, 1970, 5))18 4.853 3.595 6.551

> Cac <- cbind( 1, Ns( aa ,knots=seq(15,65,5)),
+ Ns(rep(1950,length(aa)),knots=seq(1880,1970,5)) )
> cc <- 1870:1980
> Cc <- Ns( cc ,knots=seq(1880,1970,5))
> Rc <- Ns(rep(1950,length(cc)),knots=seq(1880,1970,5))
> head( cbind(cc,Cc,Rc), 4 )

cc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11
[1,] 1870 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5070926 -1.521278 1.0141851 0 0 0 0 0 0 0 0 0 0 0
[2,] 1871 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4563833 -1.369150 0.9127666 0 0 0 0 0 0 0 0 0 0 0
[3,] 1872 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4056740 -1.217022 0.8113481 0 0 0 0 0 0 0 0 0 0 0
[4,] 1873 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3549648 -1.064894 0.7099296 0 0 0 0 0 0 0 0 0 0 0

12 13 14 15 16 17 18
[1,] 0.1666667 0.6666667 0.1666667 0 0 0 0
[2,] 0.1666667 0.6666667 0.1666667 0 0 0 0
[3,] 0.1666667 0.6666667 0.1666667 0 0 0 0
[4,] 0.1666667 0.6666667 0.1666667 0 0 0 0

> ci.exp( mscs, subset="C" )

exp(Est.) 2.5% 97.5%
Ns(C, knots = seq(1880, 1970, 5))1 0.7110146 0.3922167 1.288935
Ns(C, knots = seq(1880, 1970, 5))2 1.0213110 0.6544218 1.593890
Ns(C, knots = seq(1880, 1970, 5))3 0.9380898 0.6021630 1.461419
Ns(C, knots = seq(1880, 1970, 5))4 0.9363640 0.6460472 1.357142
Ns(C, knots = seq(1880, 1970, 5))5 1.1152683 0.7890542 1.576347
Ns(C, knots = seq(1880, 1970, 5))6 1.2746243 0.9232362 1.759752
Ns(C, knots = seq(1880, 1970, 5))7 1.0816587 0.7883781 1.484041
Ns(C, knots = seq(1880, 1970, 5))8 1.7171832 1.2666307 2.328001
Ns(C, knots = seq(1880, 1970, 5))9 1.7820025 1.3182664 2.408870
Ns(C, knots = seq(1880, 1970, 5))10 2.1259480 1.5817614 2.857356
Ns(C, knots = seq(1880, 1970, 5))11 2.5524958 1.9078097 3.415034
Ns(C, knots = seq(1880, 1970, 5))12 1.6968365 1.2728651 2.262026
Ns(C, knots = seq(1880, 1970, 5))13 3.1690225 2.3830575 4.214210
Ns(C, knots = seq(1880, 1970, 5))14 3.1893629 2.3986732 4.240693
Ns(C, knots = seq(1880, 1970, 5))15 4.6600832 3.5119014 6.183652
Ns(C, knots = seq(1880, 1970, 5))16 4.2740883 3.2055953 5.698733
Ns(C, knots = seq(1880, 1970, 5))17 4.1844023 3.2491442 5.388872
Ns(C, knots = seq(1880, 1970, 5))18 4.8533026 3.5953904 6.551318

With the model and the contrast matrices in place we can plot estimated rates in the 1050
cohort and the RR of other birth cohorts relative to this:
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> par( mfrow=c(1,2) )
> matplot( aa, ci.exp( mscs, ctr.mat=Cac )*10^5,
+ log="y", xlab="Age",
+ ylim=c(1.5,30), xlim=c(0,80),
+ ylab="Testis cancer incidence rate per 100,000 PY in 1950 cohort",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( cc, ci.exp( mscs, subset="C", ctr.mat=Cc-Rc ),
+ log="y", xlab="Date",
+ ylim=c(1.5,30)/sqrt(1.5*30), xlim=c(0,80)+1890,
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1950 )
> abline( v=c(1914,1919,1940,1946), col="green" )
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Figure 10.9: Age-specific rates in the 1950 cohort, and RR relative to this cohort. The green
vertical lines indicate the two world wars.

Although the cohort effect is clearly over-modelled here it is clearly apparent that there
is a dip in incidence rates for men born during the 2ndWW 1940–45, and there seems to be
a weak tendency of the same for men born during the 1stWW 1914–18.
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10.2 Diagnostic criteria in the NDR

This exercise is based on the Danish National Diabetes Register (NDR) — or to be precise
a 10% bogus sample. The term ”bogus” refers to the fact that the database we shall use is
a 10% sample of the NDR, were all dates have been changes randomly by a quantity in the
range from −7 to 7 days, so no person is identifiable, but we still have a database that
behaves as the NDR in terms of incidence, mortality etc.

1. First load the Epi-package, and then get the 10% sample of the NDR from the web
— the variable names are as in the original NDR, but all dates have been altered.
Note that you must include the web-address in a url()-command, moreover the
web-address is case-sensitive:

> library( Epi )
> clear()
> load( file=url("http://BendixCarstensen.com/DMreg/data/NDR2011-bogus.Rda") )
> lls()

2. Now take a look at the data frame, and convince yourself that the
missingness-pattern is ok:

> str( ndr )
> summary( ndr )

3. Note that all the dates are factors, which is a bit impractical, so we convert them to
fractional years by cal.yr. This is most easily done in a loop over all the date
variables. R is so friendly that you can use the variable names in commands too; the
date varaibels are those that start with D_; and grep is the function that seraces for a
particular string in a character vector; try:

> names( ndr )
> grep( "D_", names(ndr) )

This is a way to get the position number of the date variables, so conversion is
dead-easy now:

> wh <- grep( "D_", names(ndr) )
> for( i in wh ) ndr[,i] <- cal.yr( ndr[,i] )
> head( ndr )

We can use cal.yr without firther arguments because the dates are in standard
ISO-format (YYYY-MM-DD), othrwise we would need the format argument.

4. It is a bit annoying with upper-case names and with the underscores, so we can just
change the variable names by removing the first two letters and putting the rest to
lower case (the 10 is just to cut the names short for convenience). And then we save
the groomed register

> names( ndr ) <- tolower( substr(names(ndr),3,10) )
> names( ndr )
> save( ndr, file="ndr.Rda" )
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10.2.1 Blood glucose criteria in NDR

It has been debated whether the blood glucose criteria shoudl be used at all, and we
therefore create a new version of the register by computing a new date of inclusion and a
new inclusion criterion, as if the two glucose citeria were omitted:

5. Now create two new variables, new.aars and new.dto, based only on LPR, foot
therapy and medication:

> load( file="ndr.Rda" )
> ndr$new.dto <- with( ndr, pmin( fodt, lpr, oad, ins, na.rm=TRUE ) )
> # Assigning levels is a bit more tricky
> ndr$new.aars <- NA
> ndr$new.aars[ndr$new.dto==ndr$fodt]<- "fodt"
> ndr$new.aars[ndr$new.dto==ndr$oad] <- "oad"
> ndr$new.aars[ndr$new.dto==ndr$ins] <- "ins"
> ndr$new.aars[ndr$new.dto==ndr$lpr] <- "lpr"
> summary( ndr )

6. Now make a table of changes:

> addmargins( with( ndr, table( inklaars, new.aars, useNA="ifany" ) ) )

Why have some non-clucose inclusions changed?

7. The question of real interest is another: How does the exclusion from the register
depend on age and date. This is just a logistic regression:

> ndr <- transform( ndr, A = inkldto-foddto )
> mF <- glm( is.na(new.aars) ~ A + I(A^2) + I(A^3),
+ family = binomial,
+ data = subset( ndr, sex=="K" ) )
> summary( mF )

We dont get much wiser from that.

8. Instead, predict the probability as a function of A, that we put in a prediction data
frame — it muts contain variables with the same names as the explanatory variables
in the model:

> nd <- data.frame( A=5:90 )
> pr.F <- predict( mF, newdata=nd, type="response" )
> plot( nd$A, pr.F, type="l" )

9. But we would like to make it a bit more flexible, so we put in a natural spline of age
instaed:

> library( splines )
> a.kn <- c(10,20,25,30,35,4:9*10)
> mF <- glm( is.na(new.aars) ~ Ns( A, knots=a.kn ),
+ family = binomial,
+ data = subset( ndr, sex=="K" ) )
> summary( mF )
> pr.F <- predict( mF, newdata=nd, type="response" )
> plot( nd$A, pr.F, type="l" )
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10. But we would alos like to see if it depends on time, so we include the data of
diagnosis, inkldto, in the model too:

> p.kn <- seq(1996,2010,,4)
> mF <- glm( is.na(new.aars) ~ Ns( A, knots=a.kn ) +
+ Ns( inkldto, knots=p.kn ),
+ family = binomial,
+ data = subset( ndr, sex=="K" ) )
> summary( mF )
> nd <- data.frame( A=5:90, inkldto=2000 )
> pr.F <- predict( mF, newdata=nd, type="response" )
> plot( nd$A, pr.F, type="l" )

11. But this only gives the prediction for the year 2000, we would like to see it for all
years. In order to use matplot, we would like to have the predictions of the
age-specific probabilities next to each oter in a matrix. We use cbind for that:

> pr.F <- NULL
> for( p in 1996:2011 )
+ {
+ nd <- data.frame( A=5:90, inkldto=p )
+ pr.F <- cbind( pr.F, predict( mF, newdata=nd, type="response" ) )
+ }
> matplot( nd$A, pr.F,
+ type="l", lty=1, lwd=1:2, col=heat.colors(25)[1:16] )
> text( c(80,80), c(55,60)/100, c(1996,2011),
+ col=heat.colors(25)[c(1,16)], font=2 )

12. But this is a model that assumes that the age effects is the same in all years, so we
explore an inateraction model:

> iF <- glm( is.na(new.aars) ~ Ns( A, knots=a.kn )*Ns( inkldto, knots=p.kn ),
+ family = binomial,
+ data = subset( ndr, sex=="K" ) )
> summary( iF )
> anova( mF, iF, test="Chisq" )

The nice thing here is that the prediction machinery is eactly the same:

> pr.F <- NULL
> for( p in 1996:2011 )
+ {
+ nd <- data.frame( A=5:90, inkldto=p )
+ pr.F <- cbind( pr.F, predict( iF, newdata=nd, type="response" ) )
+ }
> matplot( nd$A, pr.F,
+ type="l", lty=1, lwd=1:2, col=heat.colors(25)[1:16] )
> text( c(80,80), c(55,60)/100, c(1996,2011),
+ col=heat.colors(25)[c(1,16)], font=2 )

The graph now really indicates that there is an interaction!
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