
Simulation of
multistate models with

multiple timescales:
simLexis in the Epi package

SDC
Saturday 18th February, 2017

http://BendixCarstensen.com/Epi/simLexis.pdf

Version 2.3

Compiled Saturday 18th February, 2017, 14:04

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bxc@steno.dk

http://BendixCarstensen.com

http://BendixCarstensen.com/Epi/simLexis.pdf
http://BendixCarstensen.com

Contents

1 Using simLexis 1
1.1 Introduction . 1
1.2 simLexis in practice . 1

1.2.1 Input for the simulation . 2
1.3 Setting up a Lexis object . 3
1.4 Analysis of rates . 5
1.5 The mortality rates . 6

1.5.1 Proportionality of mortality rates . 6
1.5.2 How the mortality rates look . 8

1.6 Input to the simLexis function . 10
1.6.1 The transition object . 10
1.6.2 The initial cohort . 11

1.7 Simulation of the follow-up . 12
1.7.1 Using other models for simulation . 13

1.8 Reporting the simulation results . 14
1.8.1 Comparing predictions from different models 18

2 Simulation of transitions in multistate models 20
2.1 Theory . 20
2.2 Components of simLexis . 21

2.2.1 simX . 23
2.2.2 sim1 . 25
2.2.3 lint . 25
2.2.4 get.next . 26
2.2.5 chop.lex . 26

2.3 Probabilities from simulated Lexis objects 26
2.3.1 nState . 27
2.3.2 pState, plot.pState and lines.pState 27

References 29

ii

Chapter 1

Using simLexis

1.1 Introduction

This vignette explains the machinery behind simulation of life histories through multistate
models implemented in simLexis. In simLexis transition rates are allowed to depend on
multiple time scales, including timescales defined as time since entry to a particular state
(duration). This therefore also covers the case where time at entry into a state is an
explanatory variable for the rates, since time at entry is merely time minus duration. Thus,
the set-up here goes beyond Markov- and semi-Markov-models, and brings simulation based
estimation of state-occupancy probabilities into the realm of realistic multistate models.

The basic idea is to simulate a new Lexis object [3, 1] as defined in the Epi package for
R, based on 1) a multistate model defined by its states and the transition rates between
them and 2) an initial population of individuals.

Thus the output will be a Lexis object describing the transitions of a predefined set of
persons through a multistate model. Therefore, if persons are defined to be identical at
start, then calculation of the probability of being in a particular state at a given time boils
down to a simple enumeration of the fraction of the persons in the particular state at the
given time. Bar of course the (binomial) simulation error, but this can be brought down by
simulation a sufficiently large number of persons.

An observed Lexis object with follow-up of persons through a number of states will
normally be the basis for estimation of transition rates between states, and thus will
contain all information about covariates determining the occurrence rates, in particular the
timescales [2]. Hence, the natural input to simulation from an estimated multistate model
will typically be an object of the same structure as the originally observed. Since
transitions and times are what is simulated, any values of lex.Xst and lex.dur in the
input object will of course be ignored.

This first chapter of this vignette shows by an example how to use the function
simLexis and display the results. The subsequent chapter discusses in more detail how the
simulation machinery is implemented and is not needed for the practical use of simLexis.

1.2 simLexis in practice

This section is largely a commented walk-trough of the example from the help-page of
simLexis, with a larger number of simulated persons in order to minimize the pure

1

2 Using simLexis Multistate models with multiple timescales

simulation variation.
When we want to simulate transition times through a multistate model where transition

rates may depend on time since entry to the current or a previous state, it is essential that
we have a machinery to keep track of the transition time on all time scales, as well as a
mechanism that can initiate a new time scale to 0 when a transition occurs to a state
where we shall use time since entry as determinant of exit rates from that state. This is
provided by simLexis.

1.2.1 Input for the simulation

Input for simulation of a single trajectory through a multistate model requires a
representation of the current status of a person; the starting conditions. The object that
we supply to the simulation function must contain information about all covariates and all
timescales upon which transitions depend, and in particular which one(s) of the timescales
that are defined as time since entry into a particular state. Hence, starting conditions
should be represented as a Lexis object (where lex.dur and lex.Xst are ignored, since
there is no follow-up yet), where the time scale information is in the attributes time.scale
and time.since respectively.

Thus there are two main arguments to a function to simulate from a multistate model:

1. A Lexis object representing the initial states and covariates of the population to be
simulated. This has to have the same structure as the original Lexis object
representing the multistate model from which transition rates in the model were
estimated. As noted above, the values for lex.Xst and lex.dur are not required
(since these are the quantities that will be simulated).

2. A transition object, representing the transition intensities between states, which
should be a list of lists of intensity representations. As an intensity representation we
mean a function that for given a Lexis object that can be used to produce estimates
of the transition intensities at a set of supplied time points since the state represented
in the Lexis object.

The names of the elements of the transition object (which are lists) will be names of
the transient states, that is the states from which a transition can occur. The names
of the elements of each of these lists are the names of states to which transitions can
occur (which may be either transient or absorbing states).

Hence, if the transition object is called Tr then TRAB (or Tr[["A"]][["B"]]) will
represent the transition intensity from state A to the state B.

The entries in the transition object can be either glm objects, representing Poisson
models for the transitions, coxph objects representing an intensity model along one
time scale, or simply a function that takes a Lexis object as input returns an
estimated intensity for each row.

In addition to these two input items, there will be a couple of tuning parameters.
The output of the function will simply be a Lexis object with simulated transitions

between states. This will be the basis for deriving sensible statistics from the Lexis object
— see next section.

Using simLexis 1.3 Setting up a Lexis object 3

1.3 Setting up a Lexis object

As an example we will use the DMlate dataset from the Epi package; it is a dataset
simulated to resemble a random sample of 10,000 patients from the Danish National
Diabetes Register.

We start by loading the Epi package:

> options(width=90)
> library(Epi)
> print(sessionInfo(), l=F)

R version 3.3.2 (2016-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] Epi_2.9

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 MASS_7.3-45 Matrix_1.2-6 plyr_1.8.4
[5] parallel_3.3.2 tools_3.3.2 survival_2.40-1 etm_0.6-2
[9] Rcpp_0.12.5 splines_3.3.2 grid_3.3.2 data.table_1.9.6
[13] numDeriv_2014.2-1 chron_2.3-47 lattice_0.20-33

First we load the diabetes data and set up a simple illness-death model:

> data(DMlate)
> dml <- Lexis(entry = list(Per=dodm, Age=dodm-dobth, DMdur=0),
+ exit = list(Per=dox),
+ exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "DM" for all.

This is just data for a simple survival model with states “DM” and “Dead”. Now we cut the
follow-up at insulin start, which for the majority of patients (T2D) is a clinical indicator of
deterioration of disease regulation. We therefore also introduce a new timescale, and split
the non-precursor states, so that we can address the question of ever having been on
insulin:

> dmi <- cutLexis(dml, cut = dml$doins,
+ pre = "DM",
+ new.state = "Ins",
+ new.scale = "t.Ins",
+ split.states = TRUE)
> summary(dmi)

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996

> str(dmi)

Classes ‘Lexis’ and 'data.frame': 11690 obs. of 15 variables:
$ Per : num 1999 2003 2005 2009 2009 ...
$ Age : num 58.7 64.1 86.3 44 75.8 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ t.Ins : num NA NA NA NA NA NA NA NA NA NA ...
$ lex.dur: num 11.08 6.689 5.446 0.736 1.344 ...

4 Using simLexis Multistate models with multiple timescales

$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..: 1 1 1 1 1 3 1 1 3 1 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth : num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "time.scales")= chr "Per" "Age" "DMdur" "t.Ins"
- attr(*, "time.since")= chr "" "" "" "Ins"
- attr(*, "breaks")=List of 4
..$ Per : NULL
..$ Age : NULL
..$ DMdur: NULL
..$ t.Ins: NULL

We can show how many person-years we have and show the number of transitions and
transition rates (per 1000), using the boxes.Lexis function to display the states and the
number of transitions between them:

> boxes(dmi, boxpos = list(x=c(20,20,80,80),
+ y=c(80,20,80,20)),
+ scale.R = 1000, show.BE = TRUE)

DM
45,885.5

9,899 6,157

Ins
8,387.8

97 1,340

Dead
0 2,048

Dead(Ins)
0 451

1,694
(36.9)

2,048
(44.6)

451
(53.8)

DM
45,885.5

9,899 6,157

Ins
8,387.8

97 1,340

Dead
0 2,048

Dead(Ins)
0 451

DM
45,885.5

9,899 6,157

Ins
8,387.8

97 1,340

Dead
0 2,048

Dead(Ins)
0 451

Figure 1.1: Data overview for the dmi dataset. Numbers in the boxes are person-years and
the number of persons who begin, resp. end their follow-up in each state, and numbers on
the arrows are no. of transitions and rates (transition intensities) per 1000 PY.

Using simLexis 1.4 Analysis of rates 5

1.4 Analysis of rates

In the Lexis object (which is just a data frame) each person is represented by one record
for each transient state he occupies, thus in this case either 1 or 2 records; those who have
a recorded time both without and with insulin have two records.

In order to be able to fit Poisson models with occurrence rates varying by the different
time-scales, we split the follow-up in 6-month intervals for modeling:

> Si <- splitLexis(dmi, 0:30/2, "DMdur")
> dim(Si)

[1] 115370 15

> print(subset(Si, lex.id==97)[,1:10], digits=6)

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex dobth
1105 97 1997.55 58.9268 0.00000 NA 0.5000000 DM DM F 1938.62
1106 97 1998.05 59.4268 0.50000 NA 0.5000000 DM DM F 1938.62
1107 97 1998.55 59.9268 1.00000 NA 0.5000000 DM DM F 1938.62
1108 97 1999.05 60.4268 1.50000 NA 0.5000000 DM DM F 1938.62
1109 97 1999.55 60.9268 2.00000 NA 0.1793292 DM Ins F 1938.62
1110 97 1999.72 61.1061 2.17933 0.000000 0.3206708 Ins Ins F 1938.62
1111 97 2000.05 61.4268 2.50000 0.320671 0.5000000 Ins Ins F 1938.62
1112 97 2000.55 61.9268 3.00000 0.820671 0.0116359 Ins Dead(Ins) F 1938.62

Note that when we split the follow-up each person’s follow up now consists of many
records, each with the current values of the timescales at the start of the interval
represented by the record. In the modelling we must necessarily assume that the rates are
constant within each 6-month interval, but the size of these rates we model as smooth
functions of the time scales (that is the values at the beginning of each interval).

The approach often used in epidemiology where one parameter is attached to each
interval of time (or age) is not feasible when more than one time scale is used, because
intervals are not classified the same way on all timescales.

We shall use natural splines (restricted cubic splines) for the analysis of rates, and hence
we must allocate knots for the splines. This is done for each of the time-scales, and
separately for the transition out of states “DM” and “Ins”. For age, we place the knots so
that the number of events is the same between each pair of knots, but only half of this
beyond each of the boundary knots, whereas for the timescales DMdur and tIns where we
have observation from a well-defined 0, we put knots at 0 and place the remaining knots so
that the number of events is the same between them and beyond the last:

> nk <- 5
> (ai.kn <- with(subset(Si,lex.Xst=="Ins"),
+ quantile(Age+lex.dur , probs=(1:nk-0.5)/nk)))

10% 30% 50% 70% 90%
23.75455 45.27279 56.62919 65.47851 77.50000

> (ad.kn <- with(subset(Si,lex.Xst=="Dead"),
+ quantile(Age+lex.dur , probs=(1:nk-0.5)/nk)))

10% 30% 50% 70% 90%
61.91951 72.52731 78.43121 83.32348 90.15195

> (di.kn <- with(subset(Si,lex.Xst=="Ins"),
+ c(0,quantile(DMdur+lex.dur, probs=(1:(nk-1))/nk))))

20% 40% 60% 80%
0.000000 2.000000 4.500000 6.811225 9.500000

> (dd.kn <- with(subset(Si,lex.Xst=="Dead"),
+ c(0,quantile(DMdur+lex.dur, probs=(1:(nk-1))/nk))))

6 Using simLexis Multistate models with multiple timescales

20% 40% 60% 80%
0.0000000 0.7687885 2.1327858 4.0465435 6.5232033

> (ti.kn <- with(subset(Si,lex.Xst=="Dead(Ins)"),
+ c(0,quantile(t.Ins+lex.dur, probs=(1:(nk-1))/nk))))

20% 40% 60% 80%
0.0000000 0.3093771 1.1307324 2.5489391 4.9117043

We then fit Poisson models to transition rates, using the wrapper Ns from the Epi package
to simplify the specification of the rates:

> library(splines)
> DM.Ins <- glm((lex.Xst=="Ins") ~ Ns(Age , knots=ai.kn) +
+ Ns(DMdur, knots=di.kn) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM"))
> DM.Dead <- glm((lex.Xst=="Dead") ~ Ns(Age , knots=ad.kn) +
+ Ns(DMdur, knots=dd.kn) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM"))
> Ins.Dead <- glm((lex.Xst=="Dead(Ins)") ~ Ns(Age , knots=ad.kn) +
+ Ns(DMdur, knots=dd.kn) +
+ Ns(t.Ins, knots=ti.kn) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="Ins"))

Note the similarity of the code used to fit the three models, is is mainly redefining the
response variable (“to” state) and the subset of the data used (“from” state).

1.5 The mortality rates

This section discusses in some detail how to extract ad display the mortality rates from the
models fitted. But it is not necessary for understanding how to use simLexis in practice.

1.5.1 Proportionality of mortality rates

Note that we have fitted separate models for the three transitions, there is no assumption
of proportionality between the mortality rates from DM and Ins.

However, there is nothing that prevents us from testing this assumption; we can just fit a
model for the mortality rates in the entire data frame Si, and compare the deviance from
this with the sum of the deviances from the separate models:

> with(Si, table(lex.Cst))

lex.Cst
DM Ins Dead Dead(Ins)

97039 18331 0 0

> All.Dead <- glm((lex.Xst %in% c("Dead(Ins)","Dead")) ~
+ Ns(Age , knots=ad.kn) +
+ Ns(DMdur, knots=dd.kn) +
+ lex.Cst +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = Si)
> round(ci.exp(All.Dead), 3)

Using simLexis 1.5 The mortality rates 7

exp(Est.) 2.5% 97.5%
(Intercept) 0.049 0.043 0.056
Ns(Age, knots = ad.kn)1 4.120 3.479 4.879
Ns(Age, knots = ad.kn)2 4.652 4.054 5.338
Ns(Age, knots = ad.kn)3 15.460 13.575 17.608
Ns(Age, knots = ad.kn)4 7.529 6.711 8.447
Ns(DMdur, knots = dd.kn)1 0.520 0.429 0.629
Ns(DMdur, knots = dd.kn)2 0.707 0.622 0.803
Ns(DMdur, knots = dd.kn)3 0.319 0.238 0.428
Ns(DMdur, knots = dd.kn)4 0.829 0.742 0.926
lex.CstIns 2.168 1.946 2.414
I(Per - 2000) 0.965 0.954 0.977
sexF 0.665 0.614 0.720

From the parameter values we would in a simple setting just claim that start of
insulin-treatment was associated with a slightly more than doubling of mortality.

The model All.dead assumes that the age- and DM-duration effects on mortality in the
“DM” and “Ins” states are the same, and moreover that there is no effect of insulin
duration, but merely a mortality that is larger by a multiplicative constant not depending
on insulin duration. The model DM.Dead has 8 parameters to describe the dependency on
age and DM duration, the model Ins.Dead has 12 for the same plus the insulin duration (a
natural spline with k knots gives k − 1 parameters, and we chose k = 5 above).

We can compare the fit of the proportional hazards model with the fit of the separate
models for the two mortality rates, by adding up the deviances and d.f. from these:

> what <- c("null.deviance","df.null","deviance","df.residual")
> (rD <- unlist(DM.Dead[what]))

null.deviance df.null deviance df.residual
19957.95 97038.00 17849.90 97028.00

> (rI <- unlist(Ins.Dead[what]))

null.deviance df.null deviance df.residual
4329.880 18330.000 3674.067 18316.000

> (rA <- unlist(All.Dead[what]))

null.deviance df.null deviance df.residual
24300.15 115369.00 21608.79 115358.00

> round(c(dd <- rA-(rI+rD), "pVal"=1-pchisq(dd[3],dd[4]+1)), 3)

null.deviance df.null deviance df.residual pVal.deviance
12.314 1.000 84.822 14.000 0.000

Thus we see there is a substantial non-proportionality of mortality rates from the two
states; but a test provides no clue whatsoever to the particular shape of the
non-proportionality.

To this end, we shall explore the predicted mortalities under the two models
quantitatively in more detail. Note that the reason that there is a difference in the null
deviances (and a difference of 1 in the null d.f.) is that the null deviance of All.Dead refer
to a model with a single intercept, that is a model with constant and identical mortality
rates from the states “DM” and “Ins”, whereas the null models for DM.Dead and Ins.Dead

have constant but different mortality rates from the states “DM” and “Ins”. This is however
irrelevant for the comparison of the residual deviances.

8 Using simLexis Multistate models with multiple timescales

1.5.2 How the mortality rates look

If we want to see how the mortality rates are modelled in DM.Dead and Ins.Dead in
relation to All.Dead, we make a prediction of rates for say men diagnosed in different ages
and going on insulin at different times after this. So we consider men diagnosed in ages 40,
50, 60 and 70, and who either never enter insulin treatment or do it 0, 2 or 5 years after
diagnosis of DM.

To this end we create a prediction data frame where we have observation times from
diagnosis and 12 years on (longer would not make sense as this is the extent of the data).

But we start by setting up an array to hold the predicted mortality rates, classified by
diabetes duration, age at diabetes onset, time of insulin onset, and of course type of model.
What we want to do is to plot the age-specific mortality rates for persons not on insulin,
and for persons starting insulin at different times after DM. The mortality curves start at
the age where the person gets diabetes and continues 12 years; for persons on insulin they
start at the age when they initiate insulin.

> pr.rates <- NArray(list(DMdur = seq(0,12,0.1),
+ DMage = 4:7*10,
+ r.Ins = c(NA,0,2,5),
+ model = c("DM/Ins","All"),
+ what = c("rate","lo","hi")))
> str(pr.rates)

logi [1:121, 1:4, 1:4, 1:2, 1:3] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 5
..$ DMdur: chr [1:121] "0" "0.1" "0.2" "0.3" ...
..$ DMage: chr [1:4] "40" "50" "60" "70"
..$ r.Ins: chr [1:4] NA "0" "2" "5"
..$ model: chr [1:2] "DM/Ins" "All"
..$ what : chr [1:3] "rate" "lo" "hi"

For convenience the Epi package contains a function that computes predicted (log-)rates
with c.i. — it is merely a wrapper for predict.glm:

> ci.pred

function (obj, newdata, Exp = NULL, alpha = 0.05, df = Inf)
{

if (!inherits(obj, "glm"))
stop("Not usable for non-glm objects")

zz <- predict(obj, newdata = newdata, se.fit = TRUE, type = "link")
zz <- cbind(zzfit, zzse.fit) %*% ci.mat(alpha = alpha,

df = df)
if (missing(Exp)) {

return(obj$family$linkinv(zz))
}
else {

if (Exp) {
return(exp(zz))

}
else if (!Exp)

return(zz)
}

}
<environment: namespace:Epi>

So set up the prediction data frame and modify it in loops over ages at onset and insulin
onset. Note that we set lex.dur to 1000 in the prediction frame, so that we obtain rates in
units of events per 1000 PY.

Using simLexis 1.5 The mortality rates 9

> nd <- data.frame(DMdur = as.numeric(dimnames(pr.rates)[[1]]),
+ lex.Cst = factor(1, levels=1:4,
+ labels=levels(Si$lex.Cst)),
+ sex = factor(1, levels=1:2, labels=c("M","F")),
+ lex.dur = 1000)
> for(ia in dimnames(pr.rates)[[2]])
+ {
+ dnew <- transform(nd, Age = as.numeric(ia)+DMdur,
+ Per = 1998+DMdur)
+ pr.rates[,ia,1,"DM/Ins",] <- ci.pred(DM.Dead, newdata = dnew)
+ pr.rates[,ia,1,"All" ,] <- ci.pred(All.Dead, newdata = dnew)
+ for(ii in dimnames(pr.rates)[[3]][-1])
+ {
+ dnew = transform(dnew, lex.Cst = factor(2, levels=1:4,
+ labels=levels(Si$lex.Cst)),
+ t.Ins = ifelse((DMdur-as.numeric(ii)) >= 0,
+ DMdur-as.numeric(ii), NA))
+ pr.rates[,ia, ii ,"DM/Ins",] <- ci.pred(Ins.Dead, newdata = dnew)
+ pr.rates[,ia, ii ,"All" ,] <- ci.pred(All.Dead, newdata = dnew)
+ }
+ }

So for each age at DM onset we make a plot of the mortality as function of current age both
for those with no insulin treatment at those that start 1, 3 and 5 years after, thus 4 curves
(with c.i.). These curves are replicated with a different color for the simplified model.

> par(mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1)
> plot(NA, xlim=c(40,82), ylim=c(5,300), bty="n",
+ log="y", xlab="Age", ylab="Mortality rate per 1000 PY")
> abline(v=seq(40,80,5), h=outer(1:9,10^(0:2),"*"), col=gray(0.8))
> for(aa in 4:7*10) for(ii in 1:4)
+ matlines(aa+as.numeric(dimnames(pr.rates)[[1]]),
+ cbind(pr.rates[,paste(aa),ii,"DM/Ins",],
+ pr.rates[,paste(aa),ii,"All" ,]),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("red","limegreen"),each=3))

From figure 1.2 we see that there is a substantial insulin-duration effect which is not
accommodated by the simple model with only one time-dependent variable to describe the
insulin effect. Note that the simple model (green curves) for those on insulin does not
depend in insulin duration, and hence the mortality curves for those on insulin are just
parallel to the mortality curves for those not on insulin, regardless of diabetes duration (or
age) at the time of insulin initiation. This is the proportional hazards assumption. Thus
the effect of insulin initiation is under-estimated for short duration of insulin and
over-estimated for long duration of insulin.

This is the major discrepancy between the two models, and illustrates the importance of
being able to accommodate different time scales, but there is also a declining overall insulin
effect by age which is not accommodated by the proportional hazards approach.

Finally, this plot illustrates an important feature in reporting models with multiple
timescales; all timescales must be represented in the predicted rates, only reporting the
effect of one timescale, conditional on a fixed value of other timescales is misleading since
all timescales by definition advance at the same pace. For example, the age-effect for a
fixed value of insulin duration really is a misnomer since it does not correspond to any real
person’s follow-up, but to the mortality of persons in different ages but with the same
duration of incuin use.

10 Using simLexis Multistate models with multiple timescales

40 50 60 70 80

5

10

20

50

100

200

Age

M
or

ta
lit

y
ra

te
 p

er
 1

00
0

P
Y

Figure 1.2: Estimated mortality rates for male diabetes patients with no insulin (lower sets
of curves) and insulin (upper curves), with DM onset in age 40, 50, 60 and 70. The red
curves are from the models with separate age effects for persons with and without insulin,
and a separate effect of insulin duration. The green curves are from the model with common
age-effects and only a time-dependent effect of insulin, assuming no effect of insulin duration
(the classical time-dependent variable approach). Hence the upper green curve is common
for any time of insulin inception.

1.6 Input to the simLexis function

In order to simulate from the multistate model with the estimated transition rates, and get
the follow-up of a hypothetical cohort, we must supply both the transition rates and the
structure of the model as well as the initial cohort status to simLexis.

1.6.1 The transition object

We first put the models into an object representing the transitions; note this is a list of
lists, the latter having glm objects as elements:

> Tr <- list("DM" = list("Ins" = DM.Ins,
+ "Dead" = DM.Dead),
+ "Ins" = list("Dead(Ins)" = Ins.Dead))

Now we have the description of the rates and of the structure of the model. The Tr object
defines the states and models for all transitions between them; the object TrAB is the
model for the transition intensity from state A to state B.

Using simLexis 1.6 Input to the simLexis function 11

1.6.2 The initial cohort

We now define an initial Lexis object of persons with all relevant covariates defined. Note
that we use subset to get a Lexis object, this conserves the time.scale and time.since

attributes which is needed for the simulation (the usual “[” operator does not preserve
these attributes when you select columns):

> str(Si[NULL,1:9])

Classes ‘Lexis’ and 'data.frame': 0 obs. of 9 variables:
$ lex.id : int
$ Per : num
$ Age : num
$ DMdur : num
$ t.Ins : num
$ lex.dur: num
$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..:
$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..:
$ sex : Factor w/ 2 levels "M","F":
- attr(*, "time.scales")= chr "Per" "Age" "DMdur" "t.Ins"
- attr(*, "time.since")= chr "" "" "" "Ins"
- attr(*, "breaks")=List of 4
..$ Per : NULL
..$ Age : NULL
..$ DMdur: num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
..$ t.Ins: NULL

> ini <- subset(Si,FALSE,select=1:9)
> str(ini)

Classes ‘Lexis’ and 'data.frame': 0 obs. of 9 variables:
$ lex.id : int
$ Per : num
$ Age : num
$ DMdur : num
$ t.Ins : num
$ lex.dur: num
$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..:
$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..:
$ sex : Factor w/ 2 levels "M","F":
- attr(*, "time.scales")= chr "Per" "Age" "DMdur" "t.Ins"
- attr(*, "time.since")= chr "" "" "" "Ins"
- attr(*, "breaks")=List of 4
..$ Per : NULL
..$ Age : NULL
..$ DMdur: num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
..$ t.Ins: NULL

> ini <- subset(Si,select=1:9)[NULL,]
> str(ini)

Classes ‘Lexis’ and 'data.frame': 0 obs. of 9 variables:
$ lex.id : int
$ Per : num
$ Age : num
$ DMdur : num
$ t.Ins : num
$ lex.dur: num
$ lex.Cst: Factor w/ 4 levels "DM","Ins","Dead",..:
$ lex.Xst: Factor w/ 4 levels "DM","Ins","Dead",..:
$ sex : Factor w/ 2 levels "M","F":
- attr(*, "time.scales")= chr "Per" "Age" "DMdur" "t.Ins"
- attr(*, "time.since")= chr "" "" "" "Ins"
- attr(*, "breaks")=List of 4
..$ Per : NULL
..$ Age : NULL
..$ DMdur: num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
..$ t.Ins: NULL

12 Using simLexis Multistate models with multiple timescales

We now have an empty Lexis object with attributes reflecting the timescales in multistate
model we want to simulate, so we must now enter some data to represent the persons
whose follow-up we want to simulate through the model; we set up an initial dataset with
one man and one woman:

> ini[1:2,"lex.id"] <- 1:2
> ini[1:2,"lex.Cst"] <- "DM"
> ini[1:2,"Per"] <- 1995
> ini[1:2,"Age"] <- 60
> ini[1:2,"DMdur"] <- 5
> ini[1:2,"sex"] <- c("M","F")
> ini

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 1 1995 60 5 NA NA DM <NA> M
2 2 1995 60 5 NA NA DM <NA> F

1.7 Simulation of the follow-up

Now we simulate 1000 of each of these persons using the estimated model. The t.range

argument gives the times range where the integrated intensities (cumulative rates) are
evaluated and where linear interpolation is used when simulating transition times. Note
that this must be given in the same units as lex.dur in the Lexis object used for fitting
the models for the transitions.

> set.seed(52381764)
> Nsim <- 1000
> system.time(simL <- simLexis(Tr,
+ ini,
+ t.range = 12,
+ N = Nsim))

user system elapsed
3.636 0.044 3.687

The result is a Lexis object — a data frame representing the simulated follow-up of 2000
persons (1000 identical men and 1000 identical women) according to the rates we estimated
from the original dataset.

> summary(simL, by="sex")

$M

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 300 388 312 0 1000 700 7425.96 1000
Ins 0 273 0 115 388 115 2125.24 388
Sum 300 661 312 115 1388 815 9551.20 1000

$F

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 428 346 226 0 1000 572 8528.06 1000
Ins 0 265 0 81 346 81 1712.67 346
Sum 428 611 226 81 1346 653 10240.73 1000

Using simLexis 1.7 Simulation of the follow-up 13

1.7.1 Using other models for simulation

1.7.1.1 Proportional hazards Poisson model

We fitted a proportional mortality model All.Dead (which fitted worse than the other
two), this is a model for both the transition from “DM” to “Death” and from “Ins” to
“Dead(Ins)”, assuming that they are proportional. But it can easily be used in the
simulation set-up, because the state is embedded in the model via the term lex.Cst, which
is updated during the simulation.

Simulation using this instead just requires that we supply a different transition object:

> Tr.p <- list("DM" = list("Ins" = DM.Ins,
+ "Dead" = All.Dead),
+ "Ins" = list("Dead(Ins)" = All.Dead))
> system.time(simP <- simLexis(Tr.p,
+ ini,
+ t.range = 12,
+ N = Nsim))

user system elapsed
3.714 0.020 3.734

> summary(simP, by="sex")

$M

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 326 405 269 0 1000 674 7526.98 1000
Ins 0 226 0 179 405 179 2018.83 405
Sum 326 631 269 179 1405 853 9545.81 1000

$F

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 432 363 205 0 1000 568 8494.55 1000
Ins 0 243 0 120 363 120 1824.00 363
Sum 432 606 205 120 1363 688 10318.55 1000

1.7.1.2 Proportional hazards Cox model

A third possibility would be to replace the two-time scale proportional mortality model by
a one-time-scale Cox-model, using diabetes duration as time scale, and age at diagnosis of
DM as (fixed) covariate:

> library(survival)
> Cox.Dead <- coxph(Surv(DMdur, DMdur+lex.dur,
+ lex.Xst %in% c("Dead(Ins)","Dead")) ~
+ Ns(Age-DMdur, knots=ad.kn) +
+ I(lex.Cst=="Ins") +
+ I(Per-2000) + sex,
+ data = Si)
> round(ci.exp(Cox.Dead), 3)

exp(Est.) 2.5% 97.5%
Ns(Age - DMdur, knots = ad.kn)1 4.172 3.535 4.924
Ns(Age - DMdur, knots = ad.kn)2 4.503 3.825 5.301
Ns(Age - DMdur, knots = ad.kn)3 16.077 14.087 18.348
Ns(Age - DMdur, knots = ad.kn)4 7.479 6.500 8.605
I(lex.Cst == "Ins")TRUE 2.171 1.949 2.419
I(Per - 2000) 0.965 0.954 0.977
sexF 0.667 0.616 0.723

14 Using simLexis Multistate models with multiple timescales

> round(ci.exp(All.Dead), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.049 0.043 0.056
Ns(Age, knots = ad.kn)1 4.120 3.479 4.879
Ns(Age, knots = ad.kn)2 4.652 4.054 5.338
Ns(Age, knots = ad.kn)3 15.460 13.575 17.608
Ns(Age, knots = ad.kn)4 7.529 6.711 8.447
Ns(DMdur, knots = dd.kn)1 0.520 0.429 0.629
Ns(DMdur, knots = dd.kn)2 0.707 0.622 0.803
Ns(DMdur, knots = dd.kn)3 0.319 0.238 0.428
Ns(DMdur, knots = dd.kn)4 0.829 0.742 0.926
lex.CstIns 2.168 1.946 2.414
I(Per - 2000) 0.965 0.954 0.977
sexF 0.665 0.614 0.720

Note that in order for this model to be usable for simulation, it is necessary that we use the
components of the Lexis object to specify the survival. Each record in the data frame Si

represents follow up from DMdur to DMdur+lex.dur, so the model is a Cox model with
diabetes duration as underlying timescale and age at diagnosis, Age-DMdur, as covariate.

Also note that we used I(lex.Cst=="Ins") instead of just lex.Cst, because coxph

assigns design matrix columns to all levels of lex.Cst, also those not present in data,
which would give NAs among the parameter estimates and NAs as mortality outcomes.

We see that the effect of insulin and the other covariates are pretty much the same as in
the two-time-scale model. We can simulate from this model too; there is no restrictions on
what type of model can be used for different transitions
> Tr.c <- list("DM" = list("Ins" = TrDMIns,
+ "Dead" = Cox.Dead),
+ "Ins" = list("Dead(Ins)" = Cox.Dead))
> system.time(simC <- simLexis(Tr.c,
+ ini,
+ t.range = 12,
+ N = Nsim))

user system elapsed
4.692 0.024 4.716

> summary(simC, by="sex")

$M

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 363 418 219 0 1000 637 7511.36 1000
Ins 0 280 0 138 418 138 2142.91 418
Sum 363 698 219 138 1418 775 9654.27 1000

$F

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 490 324 186 0 1000 510 8696.14 1000
Ins 0 263 0 61 324 61 1699.39 324
Sum 490 587 186 61 1324 571 10395.53 1000

1.8 Reporting the simulation results

We can now tabulate the number of persons in each state at a predefined set of times on a
given time scale. Note that in order for this to be sensible, the from argument would
normally be equal to the starting time for the simulated individuals.

Using simLexis 1.8 Reporting the simulation results 15

> system.time(
+ nSt <- nState(subset(simL,sex=="M"),
+ at=seq(0,11,0.2), from=1995, time.scale="Per"))

user system elapsed
0.146 0.000 0.146

> nSt[1:10,]

State
when DM Ins Dead Dead(Ins)
1995 1000 0 0 0
1995.2 987 12 1 0
1995.4 967 22 10 1
1995.6 944 36 19 1
1995.8 929 46 24 1
1996 911 52 35 2
1996.2 891 64 43 2
1996.4 873 74 48 5
1996.6 864 79 51 6
1996.8 852 85 57 6

We see that as time goes by, the 5000 men slowly move away from the starting state (DM).
Based on this table (nSt is a table) we can now compute the fractions in each state, or,

rather more relevant, the cumulative fraction across the states in some specified order, so
that a plot of the stacked probabilities can be made, using either the default rather colorful
layout, or a more minimalistic version (both in figure 1.3):

> pM <- pState(nSt, perm=c(1,2,4,3))
> head(pM)

State
when DM Ins Dead(Ins) Dead
1995 1.000 1.000 1.000 1
1995.2 0.987 0.999 0.999 1
1995.4 0.967 0.989 0.990 1
1995.6 0.944 0.980 0.981 1
1995.8 0.929 0.975 0.976 1
1996 0.911 0.963 0.965 1

> par(mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> plot(pM)
> plot(pM, border="black", col="transparent", lwd=3)
> text(rep(as.numeric(rownames(pM)[nrow(pM)-1]),ncol(pM)),
+ pM[nrow(pM),]-diff(c(0,pM[nrow(pM),]))/5,
+ colnames(pM), adj=1)
> box(col="white", lwd=3)
> box()

A more useful set-up of the graph would include a more through annotation and sensible
choice of colors, as seen in figure 1.4:

> clr <- c("limegreen","orange")
> # expand with a lighter version of the two chosen colors
> clx <- c(clr, rgb(t(col2rgb(clr[2:1])*2 + rep(255,3)) / 3, max=255))
> par(mfrow=c(1,2), las=1, mar=c(3,3,4,2), mgp=c(3,1,0)/1.6)
> # Men
> plot(pM, col=clx)
> lines(as.numeric(rownames(pM)), pM[,2], lwd=3)
> mtext("60 year old male, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.6))
> mtext("Survival curve", side=3, line=1.5, adj=0)
> mtext("DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1])
> mtext("DM, no insulin", side=3, line=0.5, adj=0, col=clr[2])
> axis(side=4)
> axis(side=4, at=1:19/20, labels=FALSE)
> axis(side=4, at=1:99/100, labels=FALSE, tcl=-0.3)

16 Using simLexis Multistate models with multiple timescales

1996 1998 2000 2002 2004 2006

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

1996 1998 2000 2002 2004 2006

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

DM

Ins

Dead(Ins)

Dead

Figure 1.3: Default layout of the plot.pState graph (left), and a version with the state
probabilites as lines and annotation of states.

> # Women
> pF <- pState(nState(subset(simL,sex=="F"),
+ at=seq(0,11,0.2),
+ from=1995,
+ time.scale="Per"),
+ perm=c(1,2,4,3))
> plot(pF, col=clx)
> lines(as.numeric(rownames(pF)), pF[,2], lwd=3)
> mtext("60 year old female, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.6))
> mtext("Survival curve", side=3, line=1.5, adj=0)
> mtext("DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1])
> mtext("DM, no insulin", side=3, line=0.5, adj=0, col=clr[2])
> axis(side=4)
> axis(side=4, at=1:19/20, labels=FALSE)
> axis(side=4, at=1:99/100, labels=FALSE, tcl=-0.3)

If we instead wanted to show the results on the age-scale, we would use age as timescale
when constructing the probabilities; otherwise the code is pretty much the same as before
(Figure 1.5):

> par(mfrow=c(1,2), las=1, mar=c(3,3,4,2), mgp=c(3,1,0)/1.6)
> # Men
> pM <- pState(nState(subset(simL,sex=="M"),
+ at=seq(0,11,0.2),
+ from=60,
+ time.scale="Age"),
+ perm=c(1,2,4,3))
> plot(pM, col=clx, xlab="Age")
> lines(as.numeric(rownames(pM)), pM[,2], lwd=3)

Using simLexis 1.8 Reporting the simulation results 17

1996 1998 2000 2002 2004 2006
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

60 year old male, diagnosed 1990, aged 55
Survival curve
DM, no insulin DM, InsulinDM, no insulin

0.0

0.2

0.4

0.6

0.8

1.0

1996 1998 2000 2002 2004 2006
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

60 year old female, diagnosed 1990, aged 55
Survival curve
DM, no insulin DM, InsulinDM, no insulin

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.4: plot.pState graphs where persons ever on insulin are given in orange and
persons never on insulin in green, and the overall survival (dead over the line) as a black
line.

> mtext("60 year old male, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.6))
> mtext("Survival curve", side=3, line=1.5, adj=0)
> mtext("DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1])
> mtext("DM, no insulin", side=3, line=0.5, adj=0, col=clr[2])
> axis(side=4)
> axis(side=4, at=1:19/20, labels=FALSE)
> axis(side=4, at=1:19/20, labels=FALSE, tcl=-0.4)
> axis(side=4, at=1:99/100, labels=FALSE, tcl=-0.3)
> # Women
> pF <- pState(nState(subset(simL,sex=="F"),
+ at=seq(0,11,0.2),
+ from=60,
+ time.scale="Age"),
+ perm=c(1,2,4,3))
> plot(pF, col=clx, xlab="Age")
> lines(as.numeric(rownames(pF)), pF[,2], lwd=3)
> mtext("60 year old female, diagnosed 1990, aged 55", side=3, line=2.5, adj=0, col=gray(0.6))
> mtext("Survival curve", side=3, line=1.5, adj=0)
> mtext("DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1])
> mtext("DM, no insulin", side=3, line=0.5, adj=0, col=clr[2])
> axis(side=4)
> axis(side=4, at=1:9/10, labels=FALSE)
> axis(side=4, at=1:19/20, labels=FALSE, tcl=-0.4)
> axis(side=4, at=1:99/100, labels=FALSE, tcl=-0.3)

Note the several statements with axis(side=4,...; they are nesessary to get the fine
tick-marks in the right hand side of the plots that you will need in order to read off the
probabilities at 2006 (or 71 years).

18 Using simLexis Multistate models with multiple timescales

60 62 64 66 68 70
0.0

0.2

0.4

0.6

0.8

1.0

Age

P
ro

ba
bi

lit
y

60 year old male, diagnosed 1990, aged 55
Survival curve
DM, no insulin DM, InsulinDM, no insulin

0.0

0.2

0.4

0.6

0.8

1.0

60 62 64 66 68 70
0.0

0.2

0.4

0.6

0.8

1.0

Age

P
ro

ba
bi

lit
y

60 year old female, diagnosed 1990, aged 55
Survival curve
DM, no insulin DM, InsulinDM, no insulin

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.5: plot.pState graphs where persons ever on insulin are given in orange and
persons never on insulin in green, and the overall survival (dead over the line) as a black
line.

1.8.1 Comparing predictions from different models

We have actually fitted different models for the transitions, and we have simulated Lexis
objects from all three approaches, so we can plot these predictions on top of each other:

> PrM <- pState(nState(subset(simP,sex=="M"),
+ at=seq(0,11,0.2),
+ from=60,
+ time.scale="Age"),
+ perm=c(1,2,4,3))
> PrF <- pState(nState(subset(simP,sex=="F"),
+ at=seq(0,11,0.2),
+ from=60,
+ time.scale="Age"),
+ perm=c(1,2,4,3))
> CoxM <- pState(nState(subset(simC,sex=="M"),
+ at=seq(0,11,0.2),
+ from=60,
+ time.scale="Age"),
+ perm=c(1,2,4,3))
> CoxF <- pState(nState(subset(simC,sex=="F"),
+ at=seq(0,11,0.2),
+ from=60,
+ time.scale="Age"),
+ perm=c(1,2,4,3))
> par(mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> plot(pM, border="black", col="transparent", lwd=3)
> lines(PrM, border="blue" , col="transparent", lwd=3)

Using simLexis 1.8 Reporting the simulation results 19

> lines(CoxM, border="red" , col="transparent", lwd=3)
> text(60.5, 0.05, "M")
> box(lwd=3)
> plot(pF, border="black", col="transparent", lwd=3)
> lines(PrF, border="blue" , col="transparent", lwd=3)
> lines(CoxF, border="red" , col="transparent", lwd=3)
> text(60.5, 0.05, "F")
> box(lwd=3)

60 62 64 66 68 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

M

60 62 64 66 68 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

F

Figure 1.6: Comparison of the simulated state occupancy probabilities using separate Poisson
models for the mortality rates with and without insulin (black) and using proportional hazards
Poisson models (blue) and Cox-models with diabetes duration as timescale and age at diabetes
diagnosis as covariate (red).

From figure 1.6 it is clear that the two proportional hazards models (blue and red
curves) produce pretty much the same estimates of the state occupancy probabilites over
time, but also that they relative to the model with separately estimated transition
intensities overestimates the probability of being alive without insulin and underestimates
the probabilities of being dead without insulin. However both the overall survival, and the
fraction of persons on insulin are quite well in agreement with the more elaborate model.
Thus the proportional hazards models overestimate the relative mortality of the insulin
treated diabetes patients relative to the non-insulin treated.

Interestingly, we also see a bump in th estimated probabilities from the Cox-model based
model, but this is entirely an artifact that comes from the estimation method for the
baseline hazard of the Cox-model that lets the (cumulative) hazard have large jumps at
event times where the risk set is small. So also here it shows up that an assumption of
continuous underlying hazards leads to more credible estimates.

Chapter 2

Simulation of transitions in multistate
models

2.1 Theory

Suppose that the rate functions for the transitions out of the current state to, say, 3
different states are λ1, λ2 and λ3, and the corresponding cumulative rates are Λ1, Λ2 and
Λ3, and we want to simulate an exit time and an exit state (that is either 1, 2 or 3). This
can be done in two slightly different ways:

1. First time, then state:

(a) Compute the survival function, S(t) = exp
(
−Λ1(t)− Λ2(t)− Λ3(t)

)
(b) Simulate a random U(0,1) variate, u, say.

(c) The simulated exit time is then the solution tu to the equation
S(tu) = u ⇔

∑
j Λj(tu) = − log(u).

(d) A simulated transition at tu is then found by simulating a random draw from
the multinomial distribution with probabilities pi = λi(tu)/

∑
j λj(tu).

2. Separate cumulative incidences:

(a) Simulate 3 independent U(0,1) random variates u1, u2 and u3.

(b) Solve the equations Λi(ti) = − log(ui), i = 1, 2, 3 and get (t1, t2, t3).

(c) The simulated survival time is then min(t1, t2, t3), and the simulated transition is
to the state corresponding to this, that is k ∈ {1, 2, 3}, where tk = min(t1, t2, t3)

The intuitive argument is that with three possible transition there are 3 independent
processes running, but only the first transition is observed. The latter approach is used in
the implementation in simLexis.

The formal argument for the equality of the two approaches goes as follows:

1. Equality of the transition times:

20

Simulation of transitions in multistate models 2.2 Components of simLexis 21

(a) In the first approach we simulate from a distribution with cumulative rate
Λ1(t) + Λ2(t) + Λ3(t), hence from a distribution with survival function:

S(t) = exp
(
−(Λ1(t) + Λ2(t) + Λ3(t))

)
= exp

(
−Λ1(t)

)
× exp

(
−Λ2(t)

)
× exp

(
−Λ3(t)

)
(b) In the second approach we choose the smallest of three independent survival

times, with survival functions exp(−Λi), i = 1, 2, 3. Now, the survival function
for the minimum of three independent survival times is:

Smin(t) = P {min(t1, t2, t3) > t}
= P {t1 > t} × P {t2 > t} × P {t3 > t}
= exp

(
−Λ1(t)

)
× exp

(
−Λ2(t)

)
× exp

(
−Λ3(t)

)
which is the same survival function as derived above.

2. Type of transition:

(a) In the first instance the probability of a transition to state i, conditional on the
transition time being t, is as known from standard probability theory:
λi(t)/

(
λ1(t) + λ2(t) + λ3(t)

)
.

(b) In the second approach we choose the transition corresponding to the the
smallest of the transition times. So when we condition on the event that a
transition takes place at time t, we have to show that the conditional probability
that the smallest of the three simulated transition times was actually the ith, is
as above.

But conditional on survival till t, the probabilities that events of type 1, 2, 3
takes place in the interval (t, t+ dt) are λ1(t) dt, λ2(t) dt and λ1(t) dt,
respectively (assuming that the probability of more than one event in the
interval of length dt is 0). Hence the conditional probabilities given a transition
time in (t, t+ dt) is:

λi(t) dt

λ1(t) dt+ λ2(t) dt+ λ3(t) dt
=

λi(t)

λ1(t) + λ2(t) + λ3(t)

— exactly as above.

2.2 Components of simLexis

This section explains the actually existing code for simLexis, as it is in the current version
of Epi. The function simLexis takes a Lexis object as input. This defines the initial
state(s) and times of the start for a number of persons. Since the purpose is to simulate a
history through the estimated multistate model, the input values of the outcome variables
lex.Xst and lex.dur are ignored — the aim is to simulate values for them.

Note however that the attribute time.since must be present in the object. This is used
for initializing timescales defined as time since entry into a particular state, it is a character
vector of the same length as the time.scales attribute, with value equal to a state name if
the corresponding time scale is defined as time since entry into that state. In this example
the 4th timescale is time since entry into the “Ins” state, and hence:

22 Simulation of transitions in multistate modelsMultistate models with multiple timescales

> cbind(
+ attr(ini, "time.scale"),
+ attr(ini, "time.since"))

[,1] [,2]
[1,] "Per" ""
[2,] "Age" ""
[3,] "DMdur" ""
[4,] "t.Ins" "Ins"

Lexis objects will have this attribute set for time scales created using cutLexis.
The other necessary argument is a transition object Tr, which is a list of lists. The

elements of the lists should be glm objects derived by fitting Poisson models to a Lexis

object representing follow-up data in a multistate model. It is assumed (but not checked)
that timescales enter in the model via the timescales of the Lexis object. Formally, there
are no assumptions about how lex.dur enters in the model.

Optional arguments are t.range, n.int or time.pts, specifying the times after entry at
which the cumulative rates will be computed (the maximum of which will be taken as the
censoring time), and N a scalar or numerical vector of the number of persons with a given
initial state each record of the init object should represent.

The central part of the functions uses a do.call / lapply / split construction to do
simulations for different initial states. This is the construction in the middle that calls
simX. simLexis also calls get.next which is further detailed below.

> simLexis

function(Tr, # List of lists of transition objects
init, # Lexis object of persons to simulate.

N = 1, # No. persons simulated per line in init
lex.id,
t.range = 20, # Range for rate computation in the simulation
n.int = 101, # length of time intervals

time.pts = seq(0,t.range,length.out=n.int)
)

{
Expand the input data frame using N and put in lex.id
if(time.pts[1] !=0)

stop("First time point must be 0, time.pts[1:3]= ",
time.pts[1:3])

Expand init
if(!missing(N))
{
if(length(N) == 1)

init <- init[rep(1:nrow(init),each=N),]
else init <- init[rep(1:nrow(init), N),]
}

and update lex.id if necessary
if(!missing(lex.id))
{
if(length(lex.id)==nrow(init))

init$lex.id <- lex.id
else init$lex.id <- 1:nrow(init)
}

else init$lex.id <- 1:nrow(init)

Check/fix attributes
if(is.null(tS <- attr(init,"time.scales")))
stop("No time.scales attribute for init")

if(is.null(tF <- attr(init,"time.since")))
{
attr(init,"time.since") <- tF <- rep("", tS)
warning("'time.since' attribute set to blanks")

Simulation of transitions in multistate models 2.2 Components of simLexis 23

}

Convenience constants
np <- length(time.pts)
tr.st <- names(Tr)

Set up a NULL object to hold the follow-up records
sf <- NULL

Take as initiators only those who start in a transient state
nxt <- init[init$lex.Cst %in% tr.st,]

If some are not in a transient state then say so
if(nrow(nxt) < nrow(init))
{
tt <- table(init$lex.Cst)
tt <- tt[tt>0]
nt <- length(tt)
warning("\nSome initiators start in a absorbing state\n",

"Initiator states represented are: ",
paste(rbind(names(tt), rep(":",nt),

paste(tt), rep(" ",nt)), collapse=""), "\n",
"Transient states are: ", paste(names(Tr), coll=" "))

if(nrow(nxt)==0) stop("\nNo initiators in transient states!")
}

Then we update those who are in a transient states and keep on doing
that till all are in absorbing states or censored
while(nrow(nxt) > 0)
{
nx <- do.call(rbind.data.frame,

lapply(split(nxt,
nxt$lex.Cst),

simX,
Tr, time.pts, tS))

sf <- rbind.data.frame(sf, nx)
nxt <- get.next(nx, tr.st, tS, tF)
}

Doctor lex.Xst levels, fix values for the censored
sf$lex.Xst <- factor(sf$lex.Xst, levels=levels(sf$lex.Cst))
sf$lex.Xst[is.na(sf$lex.Xst)] <- sf$lex.Cst[is.na(sf$lex.Xst)]

Nicely order the output by persons, then times and states
nord <- match(c("lex.id", tS,

"lex.dur",
"lex.Cst",
"lex.Xst"), names(sf))

noth <- setdiff(1:ncol(sf), nord)
sf <- sf[order(sf$lex.id,sf[,tS[1]]),c(nord,noth)]
rownames(sf) <- NULL
Finally, supply attributes - note we do not supply the "breaks"
attribute as this is irrelevant for simulated objects
attr(sf, "time.scales") <- tS
attr(sf, "time.since") <- tF
chop.lex(sf, tS, max(time.pts))
}

2.2.1 simX

simX is called by simLexis and simulates transition-times and -types for a set of patients
assumed to be in the same state. It is called from simLexis with a data frame as
argument, uses the state in lex.Cst to select the relevant component of Tr and compute

24 Simulation of transitions in multistate modelsMultistate models with multiple timescales

predicted cumulative intensities for all states reachable from this state.
Note that it is here the switch between glm, coxph and objects of class function is made.
The dataset on which this prediction is done has length(time.pts) rows per person.

> simX

function(nd, Tr, time.pts, tS)
{
Simulation is done from the data frame nd, in chunks of starting
state, lex.Cst. This is necessary because different states have
different (sets of) exit rates. Therefore, this function simulates
for a set of persons from the same starting state.
np <- length(time.pts)
nr <- nrow(nd)
if(nr==0) return(NULL)

The 'as.character' below is necessary because indexing by a factor
by default is by the number of the level, and we are not indexing by
this, but by components of Tr which just happens to have names that
are a subset of the levels of lex.Cst.
cst <- as.character(unique(nd$lex.Cst))
if(length(cst)>1) stop("More than one lex.Cst present:\n", cst, "\n")

Expand each person by the time points
prfrm <- nd[rep(1:nr,each=np),]
prfrm[,tS] <- prfrm[,tS] + rep(time.pts,nr)
prfrm$lex.dur <- il <- min(diff(time.pts))
Poisson-models should use the estimated rate at the midpoint of the
intervals:
prfrp <- prfrm
prfrp[,tS] <- prfrp[,tS]+il/2

Make a data frame with predicted rates for each of the transitions
out of this state for these times
rt <- data.frame(lex.id = prfrm$lex.id)
for(i in 1:length(Tr[[cst]]))

{
if(inherits(Tr[[cst]][[i]], "glm"))
rt <- cbind(rt, predict(Tr[[cst]][[i]],

type="response",
newdata=prfrp))

else
if(inherits(Tr[[cst]][[i]], "coxph"))
rt <- cbind(rt, predict(Tr[[cst]][[i]],

type="expected",
newdata=prfrm))

else
if(is.function(Tr[[cst]][[i]]))
rt <- cbind(rt, Tr[[cst]][[i]](prfrm))
else
stop("Invalid object supplied as transition, elements of the list must be either:\n",

"- a glm(poisson) object fitted to a Lexis object\n",
"- a coxph object fitted to a Lexis object\n",
"- a function that takes a Lexis object as argument and returns\n",
" average rates for each record in the same units as lex.dur.")

}
names(rt)[-1] <- names(Tr[[cst]])

Then find the transition time and exit state for each person:
xx <- match(c("lex.dur","lex.Xst"), names(nd))
if(any(!is.na(xx))) nd <- nd[,-xx[!is.na(xx)]]
merge(nd,

do.call(rbind,
lapply(split(rt,

rt$lex.id),
sim1,
time.pts)),

Simulation of transitions in multistate models 2.2 Components of simLexis 25

by="lex.id")
}

As we see, simX calls sim1 which simulates the transition for one person.

2.2.2 sim1

The predicted cumulative intensities are fed, person by person, to sim1 — again via a
do.call / lapply / split construction — and the resulting time and state is appended to
the nd data frame. This way we have simulated one transition (time and state) for each
person:

> sim1

function(rt, time.pts)
{
Simulates a single transition time and state based on the data frame
rt with columns lex.id and timescales. It is assumed that the coumns
in in rt are the id, followed by the set of estimated transition
rates to the different states reachable from the current one.
ci <- apply(rbind(0,rt[,-1,drop=FALSE]), 2, cumsum)[1:nrow(rt),,drop=FALSE]
tt <- uu <- -log(runif(ncol(ci)))
for(i in 1:ncol(ci)) tt[i] <- lint(ci[,i], time.pts, uu[i])
Note this resulting data frame has 1 row and is NOT a Lexis object
data.frame(lex.id = rt[1,1],

lex.dur = min(tt,na.rm=TRUE),
lex.Xst = factor(if(min(tt) < max(time.pts))

colnames(ci)[tt==min(tt)]
else NA))

}

The sim1 function uses lint to do linear interpolation.

2.2.3 lint

We do not use approx to do the linear interpolation, because this function does not do the
right thing if the cumulative incidences (ci) are constant across a number of times.
Therefore we have a custom made linear interpolator that does the interpolation exploiting
the fact the the ci is non-decreasing and tt is strictly monotonously increasing:

> lint

function(ci, tt, u)
{
Makes a linear interpolation, but does not crash if all ci values are
identical, but requires that both ci and tt are non-decreasing.
ci plays the role of cumulative intensity, tt of time
if(any(diff(ci)<0) | any(diff(tt)<0)) stop("Non-icreasing arguments")
c.u <- min(c(ci[ci>u], max(ci)))
c.l <- max(c(ci[ci<u], min(ci)))
t.u <- min(c(tt[ci>u], max(tt)))
t.l <- max(c(tt[ci<u], min(tt)))
c.u==c.l if u is outside the range of ci
ifelse(c.u==c.l, t.l, t.l + (u-c.l)/(c.u-c.l)*(t.u-t.l))
}

26 Simulation of transitions in multistate modelsMultistate models with multiple timescales

2.2.4 get.next

We must repeat the simulation operation on those that have a simulated entry to a
transient state, and also make sure that any time scales defined as time since entry to one
of these states be initialized to 0 before a call to simX is made for these persons. This
accomplished by the function get.next:

> get.next

function(sf, tr.st, tS, tF)
{
Produces an initial Lexis object for the next simulation for those
who have ended up in a transient state.
Note that this exploits the existence of the "time.since" attribute
for Lexis objects and assumes that a character vector naming the
transient states is supplied as argument.
if(nrow(sf)==0) return(sf)
nxt <- sf[sf$lex.Xst %in% tr.st,]
if(nrow(nxt) == 0) return(nxt)
nxt[,tS] <- nxt[,tS] + nxt$lex.dur
wh <- tF
for(i in 1:length(wh))

if(wh[i] != "") nxt[nxt$lex.Xst==wh[i],tS[i]] <- 0
nxt$lex.Cst <- nxt$lex.Xst
return(nxt)
}

2.2.5 chop.lex

The operation so far has censored individuals max(time.pts) after each new entry to a
transient state. In order to groom the output data we use chop.lex to censor all persons
at the same designated time after initial entry.

> chop.lex

function(obj, tS, cens)
{
A function that chops off all follow-up beyond cens since entry for
each individual
Entry times on 1st timescale
zz <- entry(obj, 1, by.id=TRUE)
Merge with the revised exit times on this timescale
ww <- merge(obj, data.frame(lex.id = as.numeric(names(zz)),

cens = zz+cens))
Only retain records with an entry time prior to the revised exit time
ww <- ww[ww[,tS[1]] < ww$cens,]
Revise the duration according the the revised exit time
x.dur <- pmin(ww$lex.dur, ww[,"cens"]-ww[,tS[1]])
Change lex.Xst to lex.Cst for those with shortened follow-up
ww$lex.Xst[x.dur<ww$lex.dur] <- ww$lex.Cst[x.dur<ww$lex.dur]
Insert the updated follow-yp time
ww$lex.dur <- pmin(x.dur, ww$lex.dur)
ww
}

2.3 Probabilities from simulated Lexis objects

Once we have simulated a Lexis object we will of course want to use it for estimating
probabilities, so basically we will want to enumerate the number of persons in each state at
a pre-specified set of time points.

Simulation of transitions in multistate models2.3 Probabilities from simulated Lexis objects 27

2.3.1 nState

Since we are dealing with multistate model with potentially multiple time scales, it is
necessary to define the timescale (time.scale), the starting point on this timescale (from)
and the points after this where we compute the number of occupants in each state, (at).

> nState

function (obj,
at,

from,
time.scale = 1)

{
Counts the number of persons in each state of the Lexis object 'obj'
at the times 'at' from the time 'from' in the time scale
'time.scale'

Determine timescales and absorbing and transient states
tS <- check.time.scale(obj,time.scale)
TT <- tmat(obj)
absorb <- rownames(TT)[apply(!is.na(TT),1,sum)==0]
transient <- setdiff(rownames(TT), absorb)

Expand each record length(at) times
tab.frm <- obj[rep(1:nrow(obj),each=length(at)),

c(tS,"lex.dur","lex.Cst","lex.Xst")]

Stick in the corresponding times on the chosen time scale
tab.frm$when <- rep(at, nrow(obj)) + from

For transient states keep records that includes these points in time
tab.tr <- tab.frm[tab.frm[,tS] <= tab.frm$when &

tab.frm[,tS]+tab.frm$lex.dur > tab.frm$when,]
tab.tr$State <- tab.tr$lex.Cst

For absorbing states keep records where follow-up ended before
tab.ab <- tab.frm[tab.frm[,tS]+tab.frm$lex.dur <= tab.frm$when &

tab.frm$lex.Xst %in% absorb,]
tab.ab$State <- tab.ab$lex.Xst

Make a table using the combination of those in transient and
absorbing states.
with(rbind(tab.ab, tab.tr), table(when, State))
}

2.3.2 pState, plot.pState and lines.pState

In order to plot probabilities of state-occupancy it is useful to compute cumulative
probabilities across states in any given order; this is done by the function pState, which
returns a matrix of class pState:

> pState

function(nSt, perm=1:ncol(nSt))
{
Compute cumulative proportions of persons across states in order
designate by 'perm'
tt <- t(apply(nSt[,perm], 1, cumsum))
tt <- sweep(tt, 1, tt[,ncol(tt)], "/")
class(tt) <- c("pState","matrix")
tt
}

28 Simulation of transitions in multistate modelsMultistate models with multiple timescales

There is also a plot and lines method for the resulting pState objects:

> plot.pState

function(x,
col = rainbow(ncol(x)),

border = "transparent",
xlab = "Time",
ylim = 0:1,
ylab = "Probability", ...)

{
Function to plot cumulative probabilities along the time scale.
matplot(as.numeric(rownames(x)), x, type="n",

ylim=ylim, yaxs="i", xaxs="i",
xlab=xlab, ylab=ylab, ...)

lines.pState(x,
col = col,

border = border, ...)
}

> lines.pState

function(x,
col = rainbow(ncol(x)),

border = "transparent", ...)
{
Function to plot cumulative probabilities along the time scale.

Fixing the colors:
nc <- ncol(x)
col <- rep(col , nc)[1:nc]
border <- rep(border, nc)[1:nc]

Just for coding convenience when plotting polygons
pSt <- cbind(0, x)
for(i in 2:ncol(pSt))

{
polygon(c(as.numeric(rownames(pSt)) ,

rev(as.numeric(rownames(pSt)))),
c(pSt[,i],
rev(pSt[,i-1])),

col=col[i-1], border=border[i-1], ...)
}

}

Bibliography

[1] B. Carstensen and M. Plummer. Using Lexis objects for multi-state models in R.
Journal of Statistical Software, 38(6):1–18, 1 2011.

[2] S. Iacobelli and B. Carstensen. Multiple time scales in multi-state models. Stat Med,
32(30):5315–5327, Dec 2013.

[3] M. Plummer and B. Carstensen. Lexis: An R class for epidemiological studies with
long-term follow-up. Journal of Statistical Software, 38(5):1–12, 1 2011.

29

	Contents
	Using simLexis
	Introduction
	simLexis in practice
	Input for the simulation

	Setting up a Lexis object
	Analysis of rates
	The mortality rates
	Proportionality of mortality rates
	How the mortality rates look

	Input to the simLexis function
	The transition object
	The initial cohort

	Simulation of the follow-up
	Using other models for simulation

	Reporting the simulation results
	Comparing predictions from different models

	Simulation of transitions in multistate models
	Theory
	Components of simLexis
	simX
	sim1
	lint
	get.next
	chop.lex

	Probabilities from simulated Lexis objects
	nState
	pState, plot.pState and lines.pState

	References

