Cancer in T1D patients: Protocol & Data analysis

SDC January 2016 http://BendixCarstensen.com/DMCa/T1D/T1D-Ca.pdf Version 6.1

> Compiled Thursday 21st January, 2016, 19:31 from: /home/bendix/sdc/DMreg/T1DCa/r/T1D-Ca.tex

Bendix Carstensen	<pre>Steno Diabetes Center, Gentofte, Denmark & Department of Biostatistics, University of Copenhagen bxc@steno.dk http://BendixCarstensen.com</pre>
Data collaboration:	
Søren Friis	KB, Copenhagen, Denmark
Reijo Sund	KTL, Helsinki, Finland
Rickard Ljung	KI, Stockholm, Sweden
Jan J Kerssens	NHS National Services, Edinburgh, Scotland
Jessica Harding	BakerIDI, Melbourne, Australia

Contents

1	Ana	alysis protocol	1
	1.1	Analysis dataset	1
	1.2	Analysis models	2
	1.3	Pooling data from different countries	3
	1.4	Reporting	3
		1.4.1 Country-wise	3
		1.4.2 Pooled analysis	3
2	Tun	nour site coding	4
3	Dan	nish T1D data	9
	3.1	The Register data	9
		3.1.1 Dates in cal.yr format	7
		3.1.2 Overview of data	7
	3.2	T1D analysis dataset	9
		3.2.1 Follow-up of T1D patients	0
		3.2.2 The analysis data frame for T1D patients	0
	3.3	The population rates	1
	3.4	The collected analysis datset	4
	3.5	Names and definition of sites	6
	3.6	Analysis of SMR	8
		3.6.1 All cancers	8
		3.6.2 Analysis by duration	9
		3.6.3 Site-specific analyses	1
4	Swe	edish data 4	6
-	4.1	Reading T1D data	6
		4.1.1 Checking of data	7
		4.1.2 Tumour coding	8
	4.2	T1D analysis dataset \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 5	1
		4.2.1 Follow-up of T1D patients	2
	4.3	Reading population data	6
	4.4	Analysis of Swedish data	0
		4.4.1 All cancers	0
		4.4.2 Analysis by duration	2
		4.4.3 Site-specific analyses	4

5	Fini	nish T1D data 69
	5.1	The updated dataset
	5.2	Analysis of Finnish data
		5.2.1 All cancers
		5.2.2 Analysis by duration \ldots 75
		5.2.3 Site-specific analyses
6	Scot	ttish T1D data 81
	6.1	Naming of sites and files
	6.2	Reading the data
	6.3	Analysis of SMR
		6.3.1 All cancers
		6.3.2 Analysis by duration
		6.3.3 Site-specific analyses
-	•	
1	Aus	Versing of gites and files
	(.1 7.0	Naming of sites and files
	1.2	Cancer incidences in T1 patients 9 7.9.1 D
		(.2.1 Person-years
	7.0	$7.2.2 \text{Cancer cases} \dots \dots$
	7.3	Australian population rates
		7.3.1 Population risk time
		7.3.2 Population cancer cases
	7.4	The analysis dataset
	7.5	Analysis of SMR
		7.5.1 All cancers
		7.5.2 Analysis by duration \ldots 111
		7.5.3 Site-specific analyses \ldots
8	Joir	at analyses of 5 countries' data 118
U	8.1	Merging of data frames
	0	8.1.1 Total data sets
		8.1.2 Merging the data sets 118
	8.2	Analysis data frame
	0	8.2.1 Overview of the analysis data frame
		8.2.2 Histograms of follow-up (events & PV)
		8.2.3 Site distribution 13
	83	Baseline splines
	0.0	8.3.1 Case-distribution 13
		8.3.2 Spline knots
	84	Simple models for the HB
	0.1	$8 1 \text{All cancer} \qquad 130$
		8.4.2 Songitivity analysis of PV approximation
		8.4.3 Non sox specific concors 14^{4}
		$8 4 4 \text{All sub sites} \qquad 144$
	85	$\Delta resinteractions$
	0.0 Q G	Age-interaction 161
	0.0	

8.6.1	Statistical models																														16	39
-------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	----

Chapter 1

Analysis protocol

This chapter is an outline of the analysis procedure, and hence the data layout for the joint analysis of cancer incidence among T1D patients.

The main aim of the analysis is to estimate a single cancer incidence RR between T1D patients and non-T1D persons.

Analyses will be conducted separately for each cancer site and sex, and also for all cancers combined.

Sensitivity analyses wil be carried out for all cancers combined by restricting analyses to the subgroups defined by age at diagnosis of DM and by including time since diagnosis in the analysis. We consider data too thin for doing these sensitivity analyses for any of the specific sites of cancer.

1.1 Analysis dataset

Since the T1D patients constitute only a small part of the population, we will use the *entire* population as comparison group, instead of the non-T1D persons or non-DM in general.

Thus we will need a combination of two datasets, one with the number of cases and follow-up time for the T1D patients, and one with the number of cases and follow-up for the entire population.

The combined (stacked dataset) will then be classified by the following variables:

- sex
- age at follow-up preferably in 1-year classes, scored as the *mean* of the age-class.
- date of follow-up preferably in 1-year classes, scored as the *mean* of the period.
- T1D status Population, 0–30, 30–35, 35–40 (T1D diagnosis age interval)
- T1D duration Population, 0, 1, 2, 5, 10, 15 (left endpoints of intervals)

In addition to these five classification variables, the data set should contain the following outcome variables:

- Y person-years
- D0 no. of cases of any cancer (counting only the first for each person).

- D1 no. of cases of cancer 1.
- D2 no. of cases of cancer 2.

```
• . . .
```

When counting the cancers at specific sites we do not exclude cancers occurring after cancers at a different site.

Note that in the combined dataset the rows corresponding to the T1D patients will have quite few cases and person-years, whereas the rows corresponding to the population will have large number of cases and person-years.

Moreover there is no need that the age and calendar time classification be the same in the T1D part and the population part of the dataset, but of course, the age and calendar time range of the population data should include that of the T1D data.

Once the dataset has been constructed, rows (observations) with 0 person-years can of course be deleted.

1.2 Analysis models

For each site we fit a model for the temporal dependence of cancer incidence rates as a function of age and date of follow-up and date of birth (age-period-cohort model). These dependencies are largely going to be determined by the rates in the general population. On top of this we add an effect of being T1D, so a single RR parameter describing the cancer occurrence among T1D patients as depending on age, period and cohort in the same way as in the general population, but just at a different level.

For all cancers the model will be amended by estimating separate RRs for T1D patients diagnosed in different ages (< 30, 30-35, 35-40), and a test for the equality of these will be made¹. Similarly we will include duration of diabetes in the model and test wheter this has an effect.

The dependencies on age, period and cohort are going to be modelled by smooth functions of the variables (splines). This has the implication that for each observational unit in the dataset, the age and date of follow-up must be coded as the *mean* of age, resp. date of follow up for the unit.

This way of modelling the RR between T1D and the general population is very similar to old-fashioned calculation of the SMR, but with two distinct advantages:

- 1. The method here takes the uncertainty of the population rates into account, which in this study might be of some importance because the observation time among T1D patients is in quite young ages.
- 2. It is not necessary to have the same classification of age and date of observation among T1D cases and in the general population. It is preferable to have both as detailed as possible, though.

¹This is really a shortcut, since we should have taken age at diagnosis of T1D into account as a continuous variable; in practice in 1-year intervals.

1.3 Pooling data from different countries

These analyses will be done for each country separately. This corresponds to a joint analysis of all data with an interaction between age, period, cohort and country, as well as an interaction between T1D status and country.

The relevant pooling of data would simply be reducing this model to one where the RR associated with T1D does not depend on country, but is the same across countries. This will also make it possible to test whether the T1D effect is the same between counties by a simple likelihood ratio test.

The outlined structure of data will facilitate this analysis since there will be no requirements about the age and period grouping being the same between counties; the central point is the coding of each age/period group by the *mean* age/period in the group, and the use of these as continuous variables in the analysis.

1.4 Reporting

1.4.1 Country-wise

The reporting will be a separate RR for men and women for each cancer site analyzed, the number of cancer cases among the T1D patients and for background information, the age-distribution of the follow-up among the T1D patients.

The RRs should preferably be reported as forest plots to allow for comparison across sites, sexes and countries. These results should be seen as secondary and appear in supplementary material.

1.4.2 Pooled analysis

The pooled analysis will for each cancer site consist of the no. of cancer cases among T1D persons, the pooled RR as well as the test for equality of RRs across countries.

The effects will be reported in a forest plot for easy comparison.

Chapter 2

Tumour site coding

The tumour classification numbering is different between the coding used by the Danish CRG and NORDCAN. The Danish coding is here:

> tcl <- read.csv2("../data/DKtumorcls.csv",</pre> header=TRUE, skip=2, as.is=TRUE) [1:118,1:3] > tcl <- tcl[tcl[,1] != "",]</pre> rownames(tcl) <- 1:nrow(tcl)</pre> > > tcl Tumorgruppering DIAGGRPa DIAGb 1 Buccal cavity and pharynx 10 11-15 2 11 Lip NA 3 Tongue NA 12 4 Mouth NA 13 5 NA Salivary glands 14 6 Pharynx NA 15 7 Digestive organs 21-29 20 8 Oesophagus NA 21 9 Stomach NA 22 10 23 Small intestine NA 11 Colon incl. rectosigmoideum NA 24 25 12 Rectum and anus NA 26 13 Liver NA Gallbladder and biliary tract 27 14 NA 15 28 Pancreas NA 16 Other and unspecified digestive organs NA 29 17 Respiratory system and intrathoracic organs 30 31-36 18 Nasal cavities, middle ear and sinuses NA 31 19 32 Larynx NA 20 Lung, bronchus and trachea NA 33 21 NA 34 Thymus 22 Heart and mediastinum 35 NΑ 23 36 Pleura NA Bones, joints and articular cartilage 24 40 40 25 50 51-52 Skin Melanoma of skin 26 NA 51 27 Other skin NA 52 28 Mesothelium and connective tissue 60 61-64 29 Mesothelium, non-pleural NA 61 30 Peripheral nerves and autonomic NA 62 31 nervous system NA 32 Peritoneum and retroperitoneum NA 63 33 Other connective tissue NA 64 34 70 70 Breast e 35 Female genital organs incl. skin 80 81-85 36 External female genital organs and vagina NA 81 37 Cervix uteri NA 82 38 Corpus uteri NA 83 Ovary, fallopian tube and broad ligament 39 84 NA 40 Other and unspecified female genital organs NA 85

41	Male genital organs incl. skin	90	91-93
42	Prostate	NA	91
43	Testis	NA	92
44	Other and unspecified male genital organs	NA	93
45	Urinary tract f,g	100	101-104
46	Kidney	NA	101
47	Renal pelvis and ureter f,g	NA	102
48	Urinary bladder f,g	NA	103
49	Other and unspecified urinary organs f,g	NA	104
50	Eye, brain and other parts of	110	111-114
51	central nervous system	NA	
52	Eye	NA	111
53	Meninges	NA	112
54	Brain	NA	113
55	Spinal cord, cranial nerves and other and	NA	114
56	unspecified parts of central nervous system	NA	
57	Endocrine glands	120	121-123
58	Thyroid gland	NA	121
59	Adrenal gland	NA	122
60	Other endocrine glands	NA	123
61	Lymphatic and haematopoietic tissue	130	131-138
62	Hodgkin lymphoma	NA	131
63	Non-Hodgkin lymphoma and malignant	NA	132
64	immunoproliferative disease	NA	
65	Multiple myeloma	NA	133
66	Lymphatic leukaemia	NA	134
67	Myeloid leukaemia	NA	135
68	Monocytic leukaemia	NA	136
69	Other and unspecified leukaemia	NA	137
70	Other and unspecified cancer in lymphatic	NA	138
71	and haematopoietic tissue h	NA	
72	Ill-defined and unspecified cancer	140	140
73	-	NA	
74	Not counted as cancer i	150	150

Likewise we load the naming of tumours which is used in NORDCAN (and hence population rate data:

> load("../data/n.ana.Rda") > n.ana ln code name All sites d0 1 1 2 2 d1 Lip 3 Tongue 3 d2 4 4 d3 Salivary glands 5 5 d4 Mouth 6 6 d5 Pharynx 7 7 d6 Oesophagus 8 8 d7 Stomach 9 9 d8 Small intestine 10 10 d9 Colon 11 11 d10 Rectum and anus 12 12 d11 Liver Gallbladder 13 13 d12 14 14 d13 Pancreas 15 15 d14 Nose, sinuses 16 16 d15 Larynx Lung 17 17 d16 18 18 d17 Pleura 19 19 d18 Breast20 20 d19 Cervix uteri 21 21 d20 Corpus uteri 22 22 23 23 d21 Uterus, other d22 Ovary etc. 24 24 Other female genital organs d23 25 25 d24 Prostate

Testis	d25	26	26
Penis etc.	d26	27	27
Kidney	d27	28	28
Bladder etc.	d28	29	29
Melanoma of skin	d29	30	30
Eye	d31	31	32
Brain, central nervous system	d32	32	33
Thyroid	d33	33	34
Bone	d34	34	35
Soft tissues	d35	35	36
Non-Hodgkin lymphoma	d36	36	37
Hodgkin lymphoma	d37	37	38
Multiple myeloma	d38	38	39
Leukaemia	d40	39	40
Other and unspecified cancers	d48	40	48
All sites but non-melanoma skin cancer	d50	41	50
Lip, oral cavity and pharynx	d51	42	51
Colorectal	d52	43	52

A bit of hand-coding gives the conversion, so that we can rename the columns in the incidence data to match the ones one in the population data (and eventually also the Finnish data) — or vice versa.

> 0.	tcl <- c(NA, 2	, 3, 5, 4,					
+	6, 8	, 9,10,11,					
+	12,13	,14,15,18,					
+	19,20	,23,34,37,					
+	38,NA	,39,40,42,					
+	43,44	,46,48,26,					
+	52,54	,58,24,28,					
+	63,62	,65,NA,72,					
+	rep(N	A,2),66:69)					
> zz	<- cbind(tcl[o	.tcl.], dnam <- 1	n.ana[c(1	:40,42	43	rep(l	VA.4)).])
> ww	<- zz						
> fo	r(i in c(1.6))	ww[.i] <- subst	r(ww[.i].	1.15)			
> cb.	ind(ww[.c(6.1:5)]. 1:nrow(ww))					
	name	Tumorgruppering	DIAGGRPa	DIAGb	ln	code	1:nrow(ww)
NA	All sites	<na></na>	NA	<na></na>	1	d0	1
2	Lip	Lip	NA	11	2	d1	2
3	Tongue	Tongue	NA	12	3	d2	3
5	Salivary glands	Salivary glands	NA	14	4	d3	4
4	Mouth	Mouth	NA	13	5	d4	5
6	Pharvnx	Pharvnx	NA	15	6	d5	6
8	Oesophagus	Oesophagus	NA	21	7	d6	7
9	Stomach	Stomach	NA	22	8	d7	8
10	Small intestine	Small intestine	NA	23	9	d8	9
11	Colon	Colon incl. rec	NA	24	10	d9	10
12	Rectum and anus	Rectum and anus	NA	25	11	d10	11
13	Liver	Liver	NA	26	12	d11	12
14	Gallbladder	Gallbladder and	NA	27	13	d12	13
15	Pancreas	Pancreas	NA	28	14	d13	14
18	Nose, sinuses	Nasal cavities.	NA	31	15	d14	15
19	Larvnx	Larvnx	NA	32	16	d15	16
20	Lung	Lung, bronchus	NA	33	17	d16	17
23	Pleura	Pleura	NA	36	18	d17	18
34	Breast	Breast e	70	70	19	d18	19
37	Cervix uteri	Cervix uteri	NA	82	20	d19	20
38	Corpus uteri	Corpus uteri	NA	83	21	d20	21
NA.1	Uterus, other		NA	<na></na>	22	d21	22
39	Ovary etc.	Ovary, fallopia	NA	84	23	d22	23
40	Other female ge	Other and unspe	NA	85	24	d23	24
42	Prostate	Prostate	NA	91	25	d24	25
43	Testis	Testis	NA	92	26	d25	26
44	Penis etc.	Other and unspe	NA	93	27	d26	27
46	Kidney	Kidney	NA	101	28	d27	28
48	Bladder etc.	Urinary bladder	NA	103	29	d28	29

```
26
     Melanoma of ski Melanoma of ski
                                              NA
                                                    51 30
                                                           d29
                                                                         30
52
                                                   111 31
                                                            d31
                Eye
                                  Eye
                                              NA
                                                                         31
                                Brain
54
     Brain, central
                                              NA
                                                   113 32
                                                            d32
                                                                         32
58
             Thyroid
                       Thyroid gland
                                              NA
                                                   121 33
                                                            d33
                                                                         33
24
                Bone Bones, joints a
                                              40
                                                    40 34
                                                            d34
                                                                         34
        Soft tissues Mesothelium and
                                              60 61-64 35
                                                                         35
28
                                                            d35
                                                  132 36
63
     Non-Hodgkin lym Non-Hodgkin lym
                                             NA
                                                            d36
                                                                         36
62
     Hodgkin lymphom Hodgkin lymphom
                                             NA
                                                   131 37
                                                            d37
                                                                         37
     Multiple myelom Multiple myelom
65
                                              NA
                                                   133 38
                                                            d38
                                                                         38
                                                 <NA> 39
                                                                         39
NA.2
           Leukaemia
                                             NA
                                                            d40
                                 <NA>
72
     Other and unspe Ill-defined and
                                             140
                                                  140 40
                                                            d48
                                                                         40
NA.3 Lip, oral cavit
                                  <NA>
                                              NA
                                                 <NA> 42
                                                            d51
                                                                         41
                                             NA <NA> 43
                                  <NA>
                                                           d52
                                                                         42
NA.4
          Colorectal
66
                 <NA> Lymphatic leuka
                                              NA
                                                   134 NA <NA>
                                                                         43
                 <NA> Myeloid leukaem
                                                   135 NA <NA>
67
                                              NA
                                                                         44
68
                 <NA> Monocytic leuka
                                              NA
                                                   136 NA <NA>
                                                                         45
69
                 <NA> Other and unspe
                                             NA
                                                  137 NA <NA>
                                                                         46
> DKnam <- paste("d",zz$DIAGb,sep="")
> DKnam <- gsub( "61-64", "63", DKnam )</pre>
> DKnam[c(1,39,41,42)] <- c("d0","d139","d151","d251")
> wh <- c(11,23,29,32,41)
> nn <- c("Rectum","Ovary","Bladder","Brain, CNS","Oral etc.")</pre>
> cbind( dnam$name[wh], nn )
                                       nn
[1,] "Rectum and anus"
                                       "Rectum"
[2,] "Ovary etc."
                                       "Ovary"
[3,] "Bladder etc."
                                       "Bladder"
[4,] "Brain, central nervous system" "Brain, CNS"
[5,] "Lip, oral cavity and pharynx" "Oral etc."
        dnam$name[wh] <- nn
>
> ( conv <- ( cnv <- data.frame( DKnam,</pre>
                                   NCnam=dnam$code,
+
+
                                   Clab=dnam$name,
                                   stringsAsFactors=FALSE ) )[wh.c <- c(1:21,23:42),] )</pre>
+
   DKnam NCnam
                                           Clab
                                     All sites
1
     d0
            d0
2
     d11
            d1
                                            Lip
3
                                        Tongue
     d12
            d2
4
     d14
            d3
                               Salivary glands
5
     d13
            d4
                                         Mouth
6
     d15
            d5
                                       Pharynx
7
     d21
            d6
                                    Oesophagus
8
     d22
            d7
                                       Stomach
9
     d23
            d8
                               Small intestine
10
     d24
            d9
                                          Colon
11
     d25
           d10
                                        Rectum
     d26
12
           d11
                                         Liver
13
     d27
                                   Gallbladder
           d12
14
     d28
           d13
                                      Pancreas
15
     d31
           d14
                                 Nose, sinuses
16
     d32
           d15
                                        Larynx
17
     d33
           d16
                                          Lung
18
     d36
           d17
                                        Pleura
19
     d70
           d18
                                        Breast
           d19
                                  Cervix uteri
20
     d82
21
     d83
           d20
                                  Corpus uteri
23
     d84
           d22
                                          Ovarv
24
     d85
           d23
                  Other female genital organs
25
     d91
           d24
                                      Prostate
26
     d92
           d25
                                        Testis
27
     d93
           d26
                                    Penis etc.
28
    d101
           d27
                                        Kidney
29
    d103
           d28
                                       Bladder
30
     d51
           d29
                             Melanoma of skin
```

31	d111	d31	Eye
32	d113	d32	Brain, CNS
33	d121	d33	Thyroid
34	d40	d34	Bone
35	d63	d35	Soft tissues
36	d132	d36	Non-Hodgkin lymphoma
37	d131	d37	Hodgkin lymphoma
38	d133	d38	Multiple myeloma
39	d139	d40	Leukaemia
40	d140	d48	Other and unspecified cancers
41	d151	d51	Oral etc.
42	d251	d52	Colorectal
> 0	cnv[-wl	h.c,]	
	DKnam	NCnam	Clab
22	dNA	d21	Uterus, other
43	d134	<na></na>	<na></na>
44	d135	<na></na>	<na></na>
45	d136	<na></na>	<na></na>
46	d137	<na></na>	<na></na>
> 1	cowname	es(con	nv) <- 1:nrow(conv)

We then save the conversion data frame:

> save(conv, file="../data/conv.Rda")

Chapter 3 Danish T1D data

The following is a detailed technical account of the approach to construction and analysis of data from Denmark. The precise data lay-out is very closely tied to the intended construction of the statistical analysis, hence this is briefly detailed here.

The analysis will be done in parallel for the different types of cancers; the outcome will be (d, y), events and person-years classified by sex, age and calendar time of observation as well as by diabetes status (yes/no) and diabetes duration. The model will be an age-period-cohort model for the rates as function of age and time, with a constant diabetes effect estimated, and in some analyses an effect of time since diagnosis (diabetes duration). This corresponds to a standardized mortality ratio analysis, except that this analysis also takes the uncertainty in the population rates into account.

Since this is analysis of rates in T1D patients a fair bit of the follow-up is in younger ages where the population cancer rates, particularly for the rarer cancers are not terribly high, and so is better modelled by smoothing than averaging in intervals of age and date of diagnosis. This is the background for the chosen approach.

Analyses will be done separately for men and women, and in some circumstances a pooled analysis will be done too. Some analyses will also take age at diagnosis into account, to explore how this influences the rate-ratio.

3.1 The Register data

We use SAS to merge the cancer register and the diabetes register to provide a datafile with one record per cancer diagnosed or diabetes diagnosed:

Physical Name: C:\Bendix\Steno\DM-register\NDR\projects\Cancer\T1D\sas Libref DATA was successfully assigned as follows: Engine: V9 NOTE: Engine: Physical Name: C:\Bendix\Steno\DM-register\NDR\projects\Cancer\T1D\data NOTE: AUTOEXEC processing completed. ***** 1 NOTE: This version of the program takes only T1DM patients defined in different ways, and also splits follow-up by DM-duration Datasets are produced for the entire available follow-up 2 3 4 5 6 7 8 9 * The date from which we trust the inclusion date to be the first ; %let validdate = '01JAN1995'd ; * Set the entry and exit dates for the entire follow-up endeavour ; %let truncdate = '01JAN1995'd ; %let censdate = '31DEC2012'd ; * Just to check it all wemt well ; %unt ruliddate = %roliddate 10 11 12 13 14 %put validdate = &validdate. truncdate = &truncdate. censdate = &censdate.; '011041005'd truncdate 15 16 17 = '01JAN1995'd truncdate = '01JAN1995'd * Set the selector of subgroups to analyse ; %let dgrp = 21,22,241,242,243,249,251,26,28, validdate = '01JAN1995'd censdate = '31DEC2012'd 18 19 20 21 22 33, 51, 70, 23 24 25 26 27 28 29 82,83,84, 91,92, 101,103, 113, 121, 131,132,133,139 ; diag in (& //let diagselect = diag in (&dgrp.); * Variable names for tabulation purposes, note DX and D259 here; 30 31 32 %let dvars = D0 D999 D21 D22 D241 D242 D243 D249 D251 D259 D26 D28 33 D33 34 35 36 D51 D70 D82 D83 D84 37 38 39 D91 D92 D101 D103 D113 40 D121 D131 D132 D133 D139 ; 41 42 43 * Get the relevant formats ; 44 options nosource2; 45 %inc "..\..\sas\CRG-fmts.sas"; NOTE: Format SEX has been output. NOTE: Format DIAG has been output. NOTE: PROCEDURE FORMAT used (Total process time): real time 0.12 seconds cpu time 0.03 seconds 130 * Where we read and out the data ; libname DMCA "..\..\data" ; 131 132 NOTE: Libref DMCA was successfully assigned as follows: Engine: V9 Engine: Physical Name: C:\Bendix\Steno\DM-register\NDR\projects\Cancer\data 133 -----: 134 135 _____ _____ * Preprocessing of the cancer register to primary tumours ; 136 137 * First take the cancer registry, remove all non-cancers ; data cancer ;
 set DMCA.crg2012 ; * DMCA.cancer ; 138 set DMCA.crg2012 ; * DMCA.cancer ; doca = d_diagnosedato ; * Remove 'not counted as cancer' and non-melanoma skin cancer ; if (diag in (52,150)) then delete ; * Recode the leukaemias to one group (139 is a not used value in formats) ; if diag in (134,135,136,137) then diag = 139 ; * Recode the colon cancers to the three separate subsites and the rest ; * 24.1 Ascending colon C18.0, C18.1, C18.2 * 24.2 Transverse colon C18.3, C18.4, C18.5 * 24.3 Descending and sigmoid colon C18.6, C18.7, C19, C19.9 * 24.9 Other colon (unspec. or multiple) * 25.1 Rectum (excl. anus) C20, C209 * This means that colorectal cancers are to be taken as the sum of these * 5 groups, but also that the group 24.9 is NOT of interest per se ; if(diag eq 24) then diag = 249 ; if(icdpyrs in ("C180","C181","C182")) then diag = 241 ; 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

if(icdpyrs in ("C183","C184","C185")) then diag = 242 ;
if(icdpyrs in ("C186","C187","C19","C199")) then diag = 243 ;
if(icdpyrs in ("C20","C209")) then diag = 251 ;
* Finally make a single code for the sites not among those to be anlysed ;
if not (diag in (&dgrp.)) then diag = 999 ; 155 156 157 158 159 160 run ; NOTE: There were 1929170 observations read from the data set DMCA.CRG2012. NOTE: The data set WORK.CANCER has 1397464 observations and 34 variables. NOTE: DATA statement used (Total process time): real time 47.71 seconds 2.09 seconds cpu time 161 * Sort by id and date of diagnosis ;
proc sort data = cancer ;
 by id doCA ; 162 163 164 165 run; NOTE: There were 1397464 observations read from the data set WORK.CANCER. NOTE: The data set WORK.CANCER has 1397464 observations and 34 variables. NOTE: PROCEDURE SORT used (Total process time): real time 7.55 seconds 3.24 seconds cpu time 166 * Sort by id ;
proc sort data = DMCA.dmr2012 out = diabetes ; 167 168 by id ; 169 170 run; NOTE: There were 497232 observations read from the data set DMCA.DMR2012. NOTE: The data set WORK.DIABETES has 497232 observations and 12 variables. NOTE: PROCEDURE SORT used (Total process time): real time 10.98 seconds cpu time 0.73 seconds 171 172 Then merge with the diabetes register ; 173 data DMCR; 174 merge cancer diabetes ; by id ; keep id sex diag diaggrp DMprev T1D doBT doDM doI doCA doX doDD ; 175 176 177 178 179 180 181 182 183 184 185 * Event-dates * Event-dates ; doDM = D_inkldto ; doI = D_ins; doCA = D_diagnosedato ; * If included before 1.1.1995 set DMprev to 1 otherwise 0 ; DMprev = (doDM 1t &validdate.) + doDM - doDM ; * Define T1D solely by date of diagnosis ; * Coded as 30 if dx<30, 35 if btw 30 and 35 and 40 if btw 35 and 40 and as 42 if over 40, and 0 if no diagnosis of DM ; T1D = min(max(floor((doDM-doBT)/(365.25*5))*5 + 5, 30), 42) ; if doDM le .z then T1D = 0 ; * Only persons alive on 1.1.1995 ; if doDD gt '31DEC94'd or doDD le .z ; run ; 186 187 188 189 190 191 192 193 194 195 196 197 198 run : NOTE: Missing values were generated as a result of performing an operation on missing values. Each place is given by: (Number of times) at (Line):(Column). 543533 at 183:10 1290991 at 190:36 1290991 at 194:19 1290991 at 194:30 1290991 1290991 at 194:48 1290991 at 194:51 NOTE: There were 1397464 observations read from the data set WORK.CANCER. NOTE: There were 497232 observations read from the data set WORK.DIABETES. NOTE: The data set WORK.DMCR has 1066038 observations and 12 variables. NOTE: DATA statement used (Total process time): real time 1.71 seconds 1290991 at 194:30 1290991 at 194:36 cpu time 1.71 seconds 199 * The dataset DMCR now has a record for each person who has either a * a diabetes diagnosis or a cancer diagnosis. Persons with more than * one recorded tumour are represented by a record for each tumour ; 200 201 202 203 title "All cancers (tumours) diagnosed 1995 ff." ; 204 &tab. DMCR ; 205 206 where (doca ge &truncdate.) ;

2.298

4.773

1.346

```
207
                 class sex diag doca DMprev T1D ;
                208
209
210
211
212
213
214
              run :
NOTE: There were 539063 observations read from the data set WORK.DMCR.
        WHERE doca>='01JAN1995'D;
NOTE: The PROCEDURE TABULATE printed pages 1-2.
NOTE: PROCEDURE TABULATE used (Total process time):
real time 0.35 seconds
        cpu time
                                  0.81 seconds
215
              title "All cancers diagnosed 1995 ff. among T1D patients" ;
&tab. DMCR ;
216
217
                 where ( doca ge &truncdate. and
218
                            T1D in (30,35,40) and
219
                220
221
222
223
224
                225
226
227
228
229
                         / \text{ rts} = 9 \text{ indent}=2 ;
                format doca year4. ;
keylabel n = " " ;
230
231
232
              run ;
NOTE: There were 1113 observations read from the data set WORK.DMCR.
WHERE (doca>='01JAN1995'D) and T1D in (30, 35, 40) and (doca>dodm);
NOTE: The PROCEDURE TABULATE printed pages 3-4.
NOTE: PROCEDURE TABULATE used (Total process time):
real time 0.19 seconds
        cpu time
                                 0.17 seconds
233
234 * Finally export the relevant data for analysis in XPT format ;
235 libname xptcrg xport '../data/DMCR.xpt';
NOTE: Libref XPTCRG was successfully assigned as follows:
        Engine:
                          XPORT
        Physical Name: C:\Bendix\Steno\DM-register\NDR\projects\Cancer\T1D\data\DMCR.xpt
             proc copy in = work
out = xptcrg memtype = data ;
236
237
                select DMCR ;
238
239
              run;
NOTE: Copying WORK.DMCR to XPTCRG.DMCR (memtype=DATA).
NOTE: There were 1066038 observations read from the data set WORK.DMCR.
NOTE: The data set XPTCRG.DMCR has 1066038 observations and 12 variables.
NOTE: PROCEDURE COPY used (Total process time):
real time 7.22 seconds
cpu time 0.98 seconds
NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
                                 1:18.36
        real time
                                  10.32 seconds
        cpu time
                                                                            doca
             1995
                      1996
                               1997
                                        1998
                                                 1999
                                                          2000
                                                                   2001
                                                                            2002
                                                                                     2003
                                                                                              2004
                                                                                                       2005
                                                                                                                2006
                                                                                                                         2007
                                                                                                                                  2008
 Males
    All
            11,625 11,798 12,076 12,424 12,660 12,860 12,951 13,258 13,741 15,069 15,528 16,077 16,718 17,439 18,076
                                                                                                                   278
    21
                230
                        257
                                 266
                                           260
                                                    254
                                                             254
                                                                      290
                                                                              308
                                                                                        296
                                                                                                306
                                                                                                          274
                                                                                                                            276
                                                                                                                                     324
                364
                        354
                                  331
                                           311
                                                             307
                                                                                        341
                                                                                                          358
                                                                                                                   373
                                                                                                                            376
    22
                                                    345
                                                                      330
                                                                               338
                                                                                                 330
                                                                                                                                     382
    26
                168
                        143
                                  154
                                           158
                                                    179
                                                             181
                                                                      181
                                                                               200
                                                                                        197
                                                                                                          181
                                                                                                                   196
                                                                                                                            180
                                                                                                                                     218
                                                                                                 194
    28
                289
                        291
                                 344
                                           348
                                                    347
                                                             361
                                                                      358
                                                                              366
                                                                                        397
                                                                                                 418
                                                                                                          445
                                                                                                                   435
                                                                                                                            447
                                                                                                                                     463
    33
                      2,002
                               2,067
                                                 2,042
                                                          2,174
                                                                   2,132
                                                                            2,141
                                                                                     2,085
                                                                                              2,169
                                                                                                       2,186
                                                                                                                2,203
                                                                                                                         2,314
                                                                                                                                  2,247
             2.079
                                        1,980
                434
                        407
                                 410
                                           409
                                                    454
                                                             508
                                                                      466
                                                                               491
                                                                                        549
                                                                                                475
                                                                                                          609
                                                                                                                   631
                                                                                                                            716
                                                                                                                                     705
    51
    70
                20
                         13
                                   28
                                            28
                                                     30
                                                             16
                                                                       35
                                                                                26
                                                                                        31
                                                                                                  26
                                                                                                           20
                                                                                                                    26
                                                                                                                             20
                                                                                                                                      32
    91
                               1,651
                                        1.812
                                                          2.023
                                                                   2.083
                                                                            2.306
                                                                                     2,494
                                                                                              3.380
                                                                                                       3.599
                                                                                                                3,733
                                                                                                                         4.189
                                                                                                                                  4.567
             1,417
                      1,554
                                                 1,902
    92
                301
                        294
                                 302
                                           289
                                                    300
                                                             280
                                                                      249
                                                                               279
                                                                                        280
                                                                                                 303
                                                                                                          275
                                                                                                                   295
                                                                                                                            320
                                                                                                                                     286
    101
                262
                        308
                                  293
                                           313
                                                    308
                                                             326
                                                                      332
                                                                               304
                                                                                        331
                                                                                                 367
                                                                                                          374
                                                                                                                   408
                                                                                                                            396
                                                                                                                                     424
                               1.224
                                                                                                                                  1.298
    103
             1.130
                      1.148
                                        1.280
                                                 1.255
                                                          1.208
                                                                   1.178
                                                                            1,208
                                                                                     1.323
                                                                                              1.307
                                                                                                       1.310
                                                                                                                1.297
                                                                                                                         1.274
                                 370
                                                                                        373
                                                                                                386
                                                                                                                   427
                                                                                                                            413
                                                                                                                                     437
    113
               368
                        347
                                           365
                                                    361
                                                             363
                                                                      354
                                                                               345
                                                                                                          399
    121
                          45
                                   34
                                                     37
                                                                       39
                                                                                                           43
                                                                                                                    52
                                                                                                                             60
                                                                                                                                      61
                 44
                                            44
                                                              53
                                                                                40
                                                                                         46
                                                                                                  45
    131
                 67
                          68
                                   80
                                            80
                                                     75
                                                              58
                                                                       63
                                                                                82
                                                                                         86
                                                                                                  64
                                                                                                           78
                                                                                                                    88
                                                                                                                             74
                                                                                                                                      74
```

3.1 The Register data 13

132	412	402	409	392	421	399	399	413	470	476	460	484	527	508	521
133	168	184	174	161	179	181	197	178	202	208	226	235	266	246	260
139	396	372	395	407	460	434	440	401	411	499	482	527	526	489	507
241	275	253	271	316	322	253	333	288	337	345	333	370	359	390	400
241	118	135	126	150	1/6	138	18/	157	178	190	177	161	213	214	216
242	51 <i>/</i>	550	527	500	570	620	623	631	504	503	644	712	626	633	672
243	514	002	337	599	012	100	023	031	105	110	101	110	112	147	160
249	74	94	11	90	83	106	87	94	105	110	101	110	113	147	162
251	5/6	610	661	594	631	6//	666	693	/13	793	804	823	826	884	904
999	1,919	1,965	1,872	2,038	1,957	1,940	1,932	1,969	1,902	2,079	2,150	2,206	2,207	2,410	2,337
Females															
ALL	12,869	12,966	13,268	13,745	13,831	13,902	14,119	14,355	14,298	14,884	15,115	15,943	15,891	16,972	18,193
21	85	100	117	93	104	105	120	110	102	132	122	141	121	127	118
22	217	215	203	223	204	156	211	167	205	195	182	213	189	191	178
26	103	98	86	108	119	99	106	116	108	86	63	78	89	102	90
28	332	322	357	399	376	377	437	407	392	441	416	450	493	458	521
33	1,357	1,354	1,470	1,469	1,567	1,580	1,625	1,726	1,689	1,798	1,872	1,944	2,047	2,041	2,075
51	572	490	510	483	573	605	591	577	688	662	745	817	821	903	1,042
70	3,320	3,526	3,490	3,626	3,719	3,821	3,920	4,153	3,987	4,032	4,050	4,218	4,225	4,856	5,843
82	507	495	438	440	444	394	417	372	417	396	414	392	371	367	400
83	648	629	629	629	643	645	689	641	687	683	677	701	682	755	781
84	612	579	598	626	634	630	624	624	577	535	596	576	575	559	595
101	195	197	182	254	202	230	213	177	201	227	200	222	229	249	265
103	362	386	409	425	411	412	439	441	436	436	455	475	475	477	481
113	297	306	281	371	330	356	320	332	302	349	324	342	374	449	404
121	83	110	201	104	108	120	1020	98	11/	156	117	122	130	1/12	156
131	51	50	10	51	30	56	6/	50	55	100	117	65	73	142	67
120	240	244	265	261	250	205	275	270	200	200	402	410	10	420	421
102	340	120	107	140	100	100	3/3	121	302	147	423	419	444	432	431
133	147	132	137	140	130	163	144	131	131	147	160	210	105	105	220
139	296	304	312	353	334	308	283	3/8	315	367	356	374	3/1	3/6	3/9
241	400	387	454	447	394	413	458	412	421	458	504	532	516	531	519
242	144	158	184	197	210	173	191	185	183	206	200	200	219	226	247
243	571	507	593	551	555	550	525	603	548	530	582	557	534	567	528
249	95	06	~~~	~ ~ ~	100	~~~	~ ~ ~	77	100	130	100	110	1/1	16/	100
		90	99	99	108	96	99		109	100	103	115	141	104	102
251	460	453	501	509	108 474	96 461	496	490	475	555	496	630	559	584	560
251 999	460 1,667	453 1,728	501 1,718	509 1,787	474 1,795	96 461 1,767	99 496 1,670	490 1,714	475 1,774	555 1,931	496 2,005	630 2,146	559 2,028	584 2,195	560 2,105
251 999 All	460 1,667	453 1,728	501 1,718	509 1,787	108 474 1,795	96 461 1,767	99 496 1,670	490 1,714	475 1,774	555 1,931	496 2,005	630 2,146	559 2,028	584 2,195	560 2,105
251 999 All All	460 1,667 24,494	453 1,728 24,764	99 501 1,718 25,344	99 509 1,787 26,169	108 474 1,795 26,491	96 461 1,767 26,762	99 496 1,670 27,070	490 1,714 27,613	475 1,774 28,039	130 555 1,931 29,953	496 2,005 30,643	630 2,146 32,020	559 2,028 32,609	584 2,195 34,411	560 2,105 36,269
251 999 All All 21	460 1,667 24,494 315	453 1,728 24,764 357	99 501 1,718 25,344 383	99 509 1,787 26,169 353	108 474 1,795 26,491 358	96 461 1,767 26,762 359	99 496 1,670 27,070 410	490 1,714 27,613 418	109 475 1,774 28,039 398	130 555 1,931 29,953 438	496 2,005 30,643 396	630 2,146 32,020 419	559 2,028 32,609 397	134 584 2,195 34,411 451	182 560 2,105 36,269 441
251 999 All All 21 22	460 1,667 24,494 315 581	453 1,728 24,764 357 569	501 1,718 25,344 383 534	509 1,787 26,169 353 534	108 474 1,795 26,491 358 549	96 461 1,767 26,762 359 463	99 496 1,670 27,070 410 541	490 1,714 27,613 418 505	475 1,774 28,039 398 546	555 1,931 29,953 438 525	496 2,005 30,643 396 540	630 2,146 32,020 419 586	32,609 397 565	134 584 2,195 34,411 451 573	182 560 2,105 36,269 441 581
251 999 All All 21 22 26	460 1,667 24,494 315 581 271	453 1,728 24,764 357 569 241	501 1,718 25,344 383 534 240	509 1,787 26,169 353 534 266	108 474 1,795 26,491 358 549 298	96 461 1,767 26,762 359 463 280	99 496 1,670 27,070 410 541 287	490 1,714 27,613 418 505 316	475 1,774 28,039 398 546 305	29,953 438 525 280	496 2,005 30,643 396 540 244	630 2,146 32,020 419 586 274	32,609 397 565 269	134 584 2,195 34,411 451 573 320	182 560 2,105 36,269 441 581 311
251 999 All 21 22 26 28	460 1,667 24,494 315 581 271 621	453 1,728 24,764 357 569 241 613	99 501 1,718 25,344 383 534 240 701	509 1,787 26,169 353 534 266 747	108 474 1,795 26,491 358 549 298 723	96 461 1,767 26,762 359 463 280 738	99 496 1,670 27,070 410 541 287 795	490 1,714 27,613 418 505 316 773	475 1,774 28,039 398 546 305 789	555 1,931 29,953 438 525 280 859	496 2,005 30,643 396 540 244 861	630 2,146 32,020 419 586 274 885	559 2,028 32,609 397 565 269 940	584 2,195 34,411 451 573 320 921	182 560 2,105 36,269 441 581 311 1,002
251 999 All 21 22 26 28 33	460 1,667 24,494 315 581 271 621 3,436	453 1,728 24,764 357 569 241 613 3,356	99 501 1,718 25,344 383 534 240 701 3,537	99 509 1,787 26,169 353 534 266 747 3,449	108 474 1,795 26,491 358 549 298 723 3,609	96 461 1,767 26,762 359 463 280 738 3,754	99 496 1,670 27,070 410 541 287 795 3,757	490 1,714 27,613 418 505 316 773 3,867	103 475 1,774 28,039 398 546 305 789 3,774	555 1,931 29,953 438 525 280 859 3,967	496 2,005 30,643 396 540 244 861 4,058	115 630 2,146 32,020 419 586 274 885 4,147	32,609 397 565 269 940 4,361	134 584 2,195 34,411 451 573 320 921 4,288	182 560 2,105 36,269 441 581 311 1,002 4,373
251 999 All 21 22 26 28 33 51	460 1,667 24,494 315 581 271 621 3,436 1,006	453 1,728 24,764 357 569 241 613 3,356 897	99 501 1,718 25,344 383 534 240 701 3,537 920	99 509 1,787 26,169 353 534 266 747 3,449 892	108 474 1,795 26,491 358 549 298 723 3,609 1.027	96 461 1,767 26,762 359 463 280 738 3,754 1,113	99 496 1,670 27,070 410 541 287 795 3,757 1.057	490 1,714 27,613 418 505 316 773 3,867 1.068	475 1,774 28,039 398 546 305 789 3,774 1.237	130 555 1,931 29,953 438 525 280 859 3,967 1,137	496 2,005 30,643 396 540 244 861 4,058 1,354	630 2,146 32,020 419 586 274 885 4,147 1,448	559 2,028 32,609 397 565 269 940 4,361 1.537	584 2,195 34,411 451 573 320 921 4,288 1.608	182 560 2,105 36,269 441 581 311 1,002 4,373 1,954
251 999 All 21 22 26 28 33 51 70	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340	453 1,728 24,764 357 569 241 613 3,356 897 3,539	99 501 1,718 25,344 25,344 240 701 3,537 920 3,518	99 509 1,787 26,169 353 534 266 747 3,449 892 3,654	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179	475 1,774 28,039 398 546 305 789 3,774 1,237 4,018	130 555 1,931 29,953 438 525 280 859 3,967 1,137 4.058	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070	630 2,146 32,020 419 586 274 885 4,147 1,448 4,244	141 559 2,028 32,609 397 565 269 940 4,361 1,537 4,245	584 2,195 34,411 451 573 320 921 4,288 1,608 4.888	182 560 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859
251 999 All All 21 22 26 28 33 51 70 82	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438	99 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372	103 475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417	29,953 438 525 280 859 3,967 1,137 4,058 396	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414	630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392	559 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367	182 560 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400
251 999 All All 21 22 26 28 33 51 70 82 83	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629	99 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641	103 475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687	29,953 438 525 280 859 3,967 1,137 4,058 396 683	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677	630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701	559 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755	182 560 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400 781
251 999 All 21 22 26 28 33 51 70 82 83 84	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579	99 501 1,718 25,344 240 701 3,537 920 3,518 438 629 598	99 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643 634	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624	103 475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 396 683 535	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677 596	119 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576	141 559 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575	134 584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755 559	182 560 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400 781 595
251 999 All 21 22 26 28 33 51 70 82 83 84 91	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1 554	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1 651	999 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1812	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643 634	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2023	99 496 1,670 27,070 410 541 287 795 3,757 3,955 417 689 624 2083	27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306	103 475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577 2,494	29,953 438 525 280 859 3,967 1,137 4,058 396 683 535 3,380	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677 596 3,599	119 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733	141 559 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 4 189	134 584 2,195 34,411 573 320 921 4,288 1,688 4,888 367 755 559 4 567	$182 \\ 560 \\ 2,105 \\ 36,269 \\ 441 \\ 581 \\ 311 \\ 1,002 \\ 4,373 \\ 1,954 \\ 5,859 \\ 400 \\ 781 \\ 595 \\ 4773 \\ 773 \\ 4,773 \\ 1,954 $
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92	460 1,667 24,494 315 581 271 3,436 1,006 3,340 507 648 612 1,417 301	453 453 1,728 24,764 357 569 241 613 3,356 897 3,535 629 579 1,554 204	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 3,021	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 280	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643 634 1,902 300	90 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 630 2,023 280 738 3,754 1,113 3,837 630 2,023 280	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 270	475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577 2,494 280	1555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3966 683 535 3,380	496 2,005 30,643 396 540 244 861 4,058 1,354 4,058 1,354 4,058 3,599 275 296 3,599	139 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 205	141 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 4,189 320	584 2,195 34,411 451 553 320 921 4,288 1,608 4,288 1,608 4,808 367 755 559 4,567 286	182 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400 781 595 4,773 3200
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 642 1,417 301 457	453 4,764 357 569 241 613 3,356 897 3,539 495 579 1,554 294 505	501 1,718 25,344 240 701 3,537 920 3,518 438 629 598 1,651 302 475	99 5009 1,787 26,169 3534 266 747 3,449 892 3,654 440 629 626 1,812 289 567	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643 634 1,902 300 510	90 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279	105 475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577 2,494 280 572	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 396 635 3,380 303 504	406 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677 596 3,599 275 574	1130 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 295 620	1519 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 4,189 320 625	584 2,195 34,411 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 672	182 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400 781 595 4,773 320 700
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612 1,417 301 457	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1 621	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1 705	103 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643 634 1,902 300 510	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1 620	99 496 1,670 27,070 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1 617	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1 624	105 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577 2,494 280 532 1750	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3,967 3,967 683 535 3,380 303 534 4,742	406 2,005 30,643 396 540 244 861 4,058 1,354 4,058 1,354 4,058 1,354 4,075 596 3,599 275 574 1 726	630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 295 630 1 772	$\begin{array}{c} 1519\\ 2,028\\ 32,609\\ 397\\ 565\\ 269\\ 940\\ 4,361\\ 1,537\\ 4,245\\ 371\\ 682\\ 575\\ 4,189\\ 320\\ 625\\ 1\\ 740\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	584 2,195 34,411 451 573 320 921 4,288 1,608 4,868 367 755 559 4,567 286 673 1 775	182 5600 2,105 36,269 441 581 1,002 4,373 1,954 5,859 400 781 595 4,773 320 709
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 112	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612 1,417 301 457 1,492	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,554	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633	99 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705	$\begin{array}{c} 108\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ \end{array}$	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 2800 556 1,620	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,674	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 441 624 2,309 481 1,649	$\begin{array}{c} 105\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,757\\ 757\end{array}$	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3,967 3,967 683 535 3,380 503 594 1,725	$\begin{array}{c} 106\\ 496\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ \end{array}$	630 2,146 32,020 419 586 274 8855 4,147 1,448 4,244 392 701 576 3,733 2955 630 1,772	$\begin{array}{c} 1519\\ 2,028\\ 32,609\\ 397\\ 565\\ 269\\ 940\\ 4,361\\ 1,537\\ 4,245\\ 371\\ 682\\ 575\\ 4,189\\ 320\\ 625\\ 1,749\\ 749\end{array}$	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 673 1,775	162 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 40,07 781 595 4,773 3200 709 1,827
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612 1,417 301 457 1,492 665	453 1,728 24,764 357 569 241 613 3,356 629 579 1,554 294 505 1,534 655	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 71,705	108 474 1,795 26,491 358 549 298 723 3,609 1,027 3,749 444 643 634 1,902 300 510 1,666 619	90 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1,620 7172	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 545 1,617 674	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 647 1,649	105 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577 2,494 280 532 1,759 675 1675	555 1,931 29,953 438 525 2859 3,967 1,137 4,058 396 683 535 3,380 303 594 1,743 735	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677 596 3,599 275 574 1,765 574	139 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 295 630 1,772 769	1559 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 4,189 320 625 51,749 787	584 2,195 34,411 573 320 921 4,288 1,608 4,888 367 7555 559 4,567 286 673 1,775 886	162 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400 781 595 4,773 320 709 1,827 834
251 999 All 21 22 26 28 33 51 70 82 83 82 83 84 91 92 101 103 113 121	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612 1,417 301 457 1,492 665 127	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,554 653 1,554	501 1,718 25,344 383 534 240 701 3,534 438 629 598 1,651 302 475 1,633 651 120	99 5009 1,787 26,169 3534 266 747 3,492 3,654 440 629 626 1,812 289 567 1,705 736 148	100 474 1,795 26,491 358 549 298 723 3,602 1,027 3,749 444 643 634 1,902 300 510 1,666 691 145	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1,620 719 173	99 496 1,670 27,070 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 141	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138	475 1,774 28,039 398 546 305 789 3,774 1,237 4,018 417 687 577 2,494 280 532 1,759 675 160	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3,967 3,975 3,9	$\begin{array}{c} 496\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 574\\ 1,765\\ 723\\ 160\\ \end{array}$	$\begin{array}{c} 139\\ 630\\ 2,146\\ 32,020\\ 419\\ 586\\ 274\\ 885\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 3,733\\ 295\\ 630\\ 1,772\\ 769\\ 174\\ 148\\ 769\\ 174\\ 148\\ 148\\ 148\\ 148\\ 148\\ 148\\ 148\\ 14$	1451 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 575 4,189 320 625 1,749 787 190	584 2,195 34,411 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 673 1,775 886 203	182 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 400 781 595 4,773 320 709 1,827 834 216
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 131	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612 1,417 301 457 1,492 665 127 1,492	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,534 653 1,554 155 1188	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 129	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131	$\begin{array}{c} 108\\ 474\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 114\\ 145\\ 114\\ 144\\ 144\\ 1,902\\ 300\\ 510\\ 1,666\\ 114\\ 145\\ 114\\ 144\\ 1,902\\ 300\\ 510\\ 1,666\\ 114\\ 145\\ 114\\ 144\\ 1,902\\ 300\\ 510\\ 1,666\\ 1,14\\ 1,14\\ 1,14\\ 1,14\\ 1,14\\ 1,14\\ 1,16\\ 1,14\\ 1,14\\ 1,14\\ 1,16\\ 1,14\\ 1,14\\ 1,16\\ 1,14\\ 1,14\\ 1,14\\ 1,16\\ 1,14\\ 1,16\\ 1,14\\ 1,16\\ $	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 2800 556 1,620 719 173 114	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 141 127	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 31 8 4,179 372 641 624 2,309 481 1,649 677 138 136	$\begin{array}{c} 100\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 141\\ 280\\ 512\\ 1,759\\ 675\\ 160\\ 141\\ 280\\ 512\\ 1,759\\ 675\\ 160\\ 141\\ 121\\ 141\\ 141\\ 141\\ 141\\ 141\\ 141$	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3946 683 535 3,380 803 594 1,743 735 201 108	$\begin{array}{c} 496\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 723\\ 160\\ 125\\ 723\\ 160\\ 125\\ \end{array}$	130 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 295 630 1,772 769 174 153	141 559 2,028 32,609 940 4,361 1,537 4,245 371 682 575 4,189 320 625 1,749 787 190 147 787	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 673 1,775 886 673 1,775 886 203 120	182 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 4,773 3200 709 1,827 834 216 137
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 1131 131 22	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 3,340\\ 668\\ 612\\ 1,417\\ 1,492\\ 665\\ 127\\ 1,492\\ 665\\ 127\\ 118\\ 760\\ 700\\ 700\\ 118\\ 760\\ 700\\ 700\\ 700\\ 700\\ 700\\ 700\\ 700$	453 1,728 24,764 357 569 241 613 3,356 629 579 1,554 505 1,534 653 155 1,534 653 155	99 501 1,718 25,344 383 534 240 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 774	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131 753	$\begin{array}{c} 108\\ 474\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 145\\ 145\\ 173\\ 773\\ 773\\ 773\\ 773\\ 773\\ 773\\ 773$	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1,620 719 173 173 173	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 141 141 141	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 642 2,306 279 481 1,649 677 138 677 138 677 138	$\begin{array}{c} 105\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 532\\ 1,759\\ 675\\ 160\\ 1852\\ 282\\ 1,759\\ 675\\ 160\\ 1852\\ 18$	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3967 3,380 303 535 3,380 303 594 1,743 735 201 1,743 864 864	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677 596 3,599 275 574 1,765 723 160 125 883	119 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 295 630 1,772 769 174 173 903	1451 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 4,189 320 625 1,749 787 190 047 147 971	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 673 1,775 886 6673 1,775 886 203 1,775	182 5600 2,105 36,269 441 1,002 4,373 1,954 5,859 400 781 595 4,773 320 709 1,827 834 216 136 216
251 999 All All 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 132 133	460 1,667 24,494 315 581 271 621 3,436 1,006 3,340 507 648 612 1,417 301 457 1,492 665 127 1,492 665 127 1,492	353 453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,554 1553 1553 1553 1553 1555 1,534 746 505 746 7	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 120 774 3.11 120	509 509 1,787 26,169 3533 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 148 131 1753 301	$\begin{array}{c} 108\\ 474\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 145\\ 145\\ 145\\ 173\\ 315\\ 5-5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ -5\\ $	90 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 630 2,023 280 556 1,620 719 173 173 174 784 784 784 785 794 795 795 795 795 795 795 795 795 795 795	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 545 545 545 545 1,617 674 141 141 127 774 341	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138 136 783 309	$\begin{array}{c} 105\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 145\\ 1852\\ 333\\ 333\\ -57\end{array}$	555 1,931 29,953 438 525 280 3,967 1,137 4,058 396 683 535 3,380 303 594 1,743 735 201 1,743 735 201 1,088 488 555 2,000 3,067 2,000 3,0	406 2,005 30,643 396 540 244 4,058 1,354 4,070 414 677 596 3,599 275 574 1,765 723 160 125 723 160 125 383 383	1130 630 2,146 32,020 419 586 274 885 4,147 1,448 4,244 392 701 576 3,733 295 630 00 1,772 769 174 1576 903 903	1451 2,028 32,609 397 565 269 940 4,361 1,537 4,245 371 682 575 4,189 320 625 51,749 787 190 14,749 787	584 2,195 34,411 573 320 921 4,288 1,608 4,888 367 7555 559 4,567 286 673 1,775 886 203 1,775 886 203 1,775	182 5600 2,105 36,269 4411 581 3111 1,002 4,373 1,954 5,859 400 7811 595 4,773 320 709 1,827 834 216 137 952 484
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 131 131 132 133 139	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 301\\ 457\\ 1,492\\ 665\\ 127\\ 118\\ 7492\\ 665\\ 127\\ 118\\ 760\\ 315\\ 692\\ \end{array}$	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,534 655 118 746 316 676	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 129 774 311 707	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131 753 301 -753	$\begin{array}{c} 108\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 114\\ 773\\ 315\\ -\frac{7}{94}\\ \end{array}$	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1,620 719 173 114 784 344 742	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 4141 127 774 341	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138 136 783 309 779	$\begin{array}{c} 105\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 141\\ 852\\ 333\\ 726\\ \end{array}$	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 396 683 535 3,380 303 594 1,743 7355 201 108 864 355 866	$\begin{array}{c} 106\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 723\\ 160\\ 125\\ 883\\ 386\\ 838\\ 838\end{array}$	$\begin{array}{c} 130\\ 630\\ 2,146\\ 32,020\\ 419\\ 586\\ 274\\ 885\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 630\\ 1,772\\ 769\\ 174\\ 153\\ 903\\ 445\\ 901\\ \end{array}$	141 559 2,028 32,609 940 4,361 1,537 4,245 371 682 575 4,189 320 625 1,749 787 190 147 971 451	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 673 1,775 886 673 1,775 886 673 1,203 120 940 431 865	162 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 4,073 320 709 1,827 832 709 1,827 8216 137 952 486 886
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 121 131 132 133 139 241	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 301\\ 457\\ 1,492\\ 665\\ 127\\ 118\\ 760\\ 315\\ 692\\ 675\\ \end{array}$	453 4,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,534 653 1554 1584 746 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 653 1584 746 653 1584 746 653 1584 746 653 1584 653 1584 653 1584 653 1655 165	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 129 774 311 707 725	509 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131 753 301 760 763	$\begin{array}{c} 108\\ 474\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 5114\\ 773\\ 315\\ 794\\ 716\\ \end{array}$	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1,620 719 173 114 784 344 742 666	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 141 127 774 341 723 791	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138 136 778 309 779 700	$\begin{array}{c} 100\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 0141\\ 852\\ 333\\ 726\\ 6758\\ 160\\ 758\\ \end{array}$	555 1,931 29,953 438 525 280 3,967 1,137 4,058 3,986 683 535 3,380 303 594 1,743 735 2011 108 864 355 866 803	$\begin{array}{c} 106\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 723\\ 160\\ 125\\ 883\\ 386\\ 833\\ 887\\ \end{array}$	$\begin{array}{c} 130\\ 630\\ 2,146\\ 32,020\\ 419\\ 586\\ 274\\ 8855\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 630\\ 1,772\\ 769\\ 174\\ 153\\ 903\\ 445\\ 901\\ 902\\ \end{array}$	$\begin{array}{c} 141\\ 549\\ 2,028\\ 32,609\\ 397\\ 565\\ 269\\ 940\\ 4,361\\ 1,537\\ 4,245\\ 575\\ 4,189\\ 320\\ 625\\ 1,749\\ 787\\ 190\\ 0147\\ 9711\\ 451\\ 897\\ 875\\ \end{array}$	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 367 755 559 4,567 286 673 1,775 886 203 120 940 431 865 921	$\begin{array}{c} 182\\ 5600\\ 2,105\\ 36,269\\ 441\\ 581\\ 311\\ 1,002\\ 4,373\\ 1,954\\ 5,859\\ 400\\ 781\\ 595\\ 4,773\\ 320\\ 709\\ 1,827\\ 834\\ 216\\ 6137\\ 952\\ 486\\ 886\\ 919\\ \end{array}$
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 113 121 131 132 133 139 241 242	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 3457\\ 1,492\\ 665\\ 127\\ 118\\ 760\\ 315\\ 692\\ 675\\ 262\\ \end{array}$	453 1,728 24,764 357 569 241 613 3,356 629 579 1,554 505 1,534 653 155 1,534 746 3166 676 640 293	99 501 1,718 25,344 383 534 240 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 120 120 774 311 707 725 310	$509 \\ 5009 \\ 509 \\ 1,787 \\ 26,169 \\ 353 \\ 534 \\ 266 \\ 747 \\ 3,449 \\ 892 \\ 3,654 \\ 440 \\ 629 \\ 626 \\ 1,812 \\ 289 \\ 626 \\ 1,812 \\ 289 \\ 567 \\ 1,705 \\ 736 \\ 148 \\ 131 \\ 753 \\ 301 \\ 760 \\ 763 \\ 347 \\ \end{pmatrix}$	$\begin{array}{c} 108\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 145\\ 145\\ 145\\ 774\\ 716\\ 356\\ \end{array}$	90 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 6455 630 2,023 280 556 1,620 719 173 114 14 784 344 742 666 6311	99 496 1,670 27,070 410 541 287 7,057 3,955 417 689 624 2,083 249 545 5 1,617 674 141 141 127 774 341 723 791 375	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 644 2,306 279 481 1,649 677 138 136 783 309 779 700 342	$\begin{array}{c} 105\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 1333\\ 726\\ 758\\ 361\\ \end{array}$	555 1,931 29,953 438 525 280 3,967 1,137 4,058 3967 1,137 4,058 393 594 1,743 735 201 1,743 735 201 1,743 864 355 866 803 396	$\begin{array}{c} 106\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 723\\ 160\\ 125\\ 883\\ 386\\ 838\\ 837\\ 377\end{array}$	$\begin{array}{c} 139\\ 630\\ 2,146\\ 32,020\\ 419\\ 586\\ 274\\ 885\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 3,733\\ 295\\ 630\\ 1,772\\ 769\\ 174\\ 157\\ 903\\ 445\\ 901\\ 902\\ 361\\ \end{array}$	$\begin{array}{c} 141\\ 559\\ 2,028\\ 32,609\\ 397\\ 565\\ 269\\ 940\\ 4,361\\ 1,537\\ 4,245\\ 371\\ 682\\ 575\\ 4,189\\ 320\\ 6225\\ 1,749\\ 787\\ 190\\ 1451\\ 897\\ 875\\ 432\\ \end{array}$	584 2,195 34,411 573 320 921 4,288 1,608 4,888 367 7555 559 4,567 286 673 1,775 886 203 1,775 886 203 1,775 886 203 1,775 886 203 1,411	$\begin{array}{c} 182\\ 560\\ 2,105\\ 36,269\\ 441\\ 581\\ 311\\ 1,002\\ 4,373\\ 1,954\\ 5,859\\ 400\\ 781\\ 595\\ 4,773\\ 320\\ 709\\ 1,827\\ 834\\ 216\\ 137\\ 952\\ 486\\ 886\\ 919\\ 463\\ \end{array}$
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 131 132 133 139 241 242 243	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 1,492\\ 665\\ 127\\ 1188\\ 760\\ 315\\ 692\\ 675\\ 262\\ 1,085\\ \end{array}$	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,534 505 1,534 6316 676 640 293 1,059	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 129 774 3110 1,130	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131 753 301 760 763 347 71,150	$\begin{array}{c} 108\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 114\\ 775\\ 794\\ 716\\ 356\\ 1,127\\ \end{array}$	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 3,837 3,837 2,023 2,800 556 1,620 719 173 114 784 344 742 6666 311 1,170	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 4141 127 774 341 723 791 3755 1,148	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138 136 779 700 342 1,234	$\begin{array}{c} 165\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 141\\ 852\\ 333\\ 726\\ 758\\ 361\\ 1,142\\ \end{array}$	1,137 29,953 438 525 280 3,967 1,137 4,058 3,967 1,137 4,058 3,967 3,967 3,967 3,380 303 594 1,743 7355 201 108 864 303 596 1,123	$\begin{array}{c} 496\\ 2,005\\ 30,643\\ 396\\ 540\\ 244\\ 801\\ 4,058\\ 1,354\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 723\\ 160\\ 125\\ 883\\ 838\\ 837\\ 377\\ 1,226\end{array}$	$\begin{array}{c} 1630\\ 2,146\\ 32,020\\ 419\\ 586\\ 274\\ 885\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 630\\ 1,772\\ 769\\ 174\\ 153\\ 901\\ 902\\ 361\\ 1,270\\ \end{array}$	141 141 159 2,028 32,609 940 4,361 1,537 4,245 371 682 575 4,189 320 625 1,749 7877 190 147 971 451 897 875 432 1,160	584 2,195 34,411 451 573 320 921 4,288 1,608 4,288 1,608 4,288 367 755 559 4,567 286 673 1,775 886 203 120 9431 865 921 4,400 4,31 865 921 4,200	162 5600 2,105 36,269 441 581 311 1,002 4,373 1,954 5,859 4,773 320 709 1,827 834 216 137 952 486 886 919 463 1,200
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 131 132 133 139 241 242 243 249	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 301\\ 457\\ 1,492\\ 665\\ 127\\ 118\\ 760\\ 315\\ 692\\ 675\\ 202\\ 1,085\\ 169\end{array}$	453 1,728 24,764 357 569 241 613 3,356 897 3,539 495 629 579 1,554 294 505 1,534 655 118 746 3165 155 118 746 3166 676 640 293 1,059 190	99 501 1,718 25,344 383 534 240 701 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 129 774 310 1,20 1,130 1,176	99 5009 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131 753 307 1,753 347 1,150 760 763 347 1,89	$\begin{array}{c} 108\\ 474\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 723\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 510\\ 1,666\\ 691\\ 145\\ 774\\ 716\\ 356\\ 1,127\\ 794\\ 716\\ 356\\ 1,127\\ 191\\ \end{array}$	96 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 280 2,023 280 556 1,620 719 173 114 784 344 742 666 311 1,170 202	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 141 11 127 774 3,751 1,148 186	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138 136 783 379 779 700 342 1,234 4,171	$\begin{array}{c} 105\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 141\\ 852\\ 333\\ 726\\ 758\\ 361\\ 1,142\\ 214\\ \end{array}$	555 1,931 29,953 438 525 280 3,967 1,137 4,058 3,380 535 3,380 594 1,743 735 201 108 864 303 396 1,123 201 108 864 336 866 803 396 1,255 866 803 396 201 108 864 205 866 803 396 205 205 205 205 205 205 205 205	$\begin{array}{c} 106\\ 2,005\\ 30,643\\ 396\\ 540\\ 2,44\\ 861\\ 4,058\\ 1,354\\ 4,070\\ 414\\ 677\\ 596\\ 3,599\\ 275\\ 574\\ 1,765\\ 723\\ 160\\ 125\\ 883\\ 837\\ 377\\ 1,226\\ 210\\ \end{array}$	$\begin{array}{c} 130\\ 630\\ 2,146\\ 32,020\\ 419\\ 586\\ 274\\ 885\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 630\\ 1,772\\ 769\\ 174\\ 153\\ 9003\\ 445\\ 901\\ 902\\ 361\\ 1,270\\ 235\\ \end{array}$	$\begin{array}{c} 141\\ 549\\ 2,028\\ 32,609\\ 397\\ 565\\ 269\\ 940\\ 4,361\\ 1,537\\ 4,245\\ 371\\ 682\\ 575\\ 4,189\\ 320\\ 625\\ 1,749\\ 787\\ 190\\ 147\\ 9711\\ 451\\ 897\\ 875\\ 432\\ 1,160\\ 254\\ \end{array}$	584 2,195 34,411 451 573 320 921 4,288 1,608 4,888 4,888 4,888 559 4,567 286 673 1,775 886 203 120 940 431 200 940 431 200 940 440 1,200 301	$\begin{array}{c} 182\\ 5600\\ 2,105\\ 36,269\\ 441\\ 581\\ 311\\ 1,002\\ 4,373\\ 1,954\\ 5,859\\ 400\\ 781\\ 595\\ 4,773\\ 320\\ 709\\ 1,827\\ 834\\ 2166\\ 137\\ 952\\ 486\\ 919\\ 463\\ 1,200\\ 344\\ \end{array}$
251 999 All 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 113 113 113 132 133 139 241 242 243 249 251	$\begin{array}{c} 460\\ 1,667\\ 24,494\\ 315\\ 581\\ 271\\ 621\\ 3,436\\ 1,006\\ 3,340\\ 507\\ 648\\ 612\\ 1,417\\ 301\\ 457\\ 1,492\\ 665\\ 127\\ 118\\ 760\\ 315\\ 665\\ 127\\ 262\\ 108\\ 675\\ 262\\ 1,085\\ 169\\ 1,036\end{array}$	453 1,728 24,764 357 569 241 613 3,356 629 579 1,554 505 1,554 505 1,534 653 155 1,534 653 155 1,534 653 1059 1,059 1,059 1,059 1,059	99 501 1,718 25,344 383 534 240 3,537 920 3,518 438 629 598 1,651 302 475 1,633 651 120 774 311 707 725 310 1,130 1,162	509 509 1,787 26,169 353 534 266 747 3,449 892 3,654 440 629 626 1,812 289 567 1,705 736 148 131 753 301 763 347 1,150 189 1,150 1,033 1,103 1,03	$\begin{array}{c} 108\\ 474\\ 1,795\\ 26,491\\ 358\\ 549\\ 298\\ 549\\ 298\\ 3,609\\ 1,027\\ 3,749\\ 444\\ 643\\ 634\\ 1,902\\ 300\\ 510\\ 1,666\\ 691\\ 145\\ 794\\ 716\\ 356\\ 1,127\\ 794\\ 716\\ 356\\ 1,127\\ 191\\ 1,105\\ \end{array}$	90 461 1,767 26,762 359 463 280 738 3,754 1,113 3,837 394 645 630 2,023 280 556 1,620 719 173 173 174 784 344 784 344 784 344 784 344 784 341 1,170 202 202 1,138	99 496 1,670 27,070 410 541 287 795 3,757 1,057 3,955 417 689 624 2,083 249 545 1,617 674 141 127 774 341 777 375 1,148 186 (1,162)	490 1,714 27,613 418 505 316 773 3,867 1,068 4,179 372 641 624 2,306 279 481 1,649 677 138 677 138 677 138 677 138 309 779 770 342 1,234 171 1,183	$\begin{array}{c} 160\\ 475\\ 1,774\\ 28,039\\ 398\\ 546\\ 305\\ 789\\ 3,774\\ 1,237\\ 4,018\\ 417\\ 687\\ 577\\ 2,494\\ 280\\ 532\\ 1,759\\ 675\\ 160\\ 532\\ 1,759\\ 675\\ 160\\ 758\\ 333\\ 726\\ 675\\ 141\\ 852\\ 333\\ 726\\ 675\\ 141\\ 852\\ 214\\ 41,188\end{array}$	555 1,931 29,953 438 525 280 859 3,967 1,137 4,058 3967 1,137 4,058 3967 1,137 4,058 3967 1,743 735 201 108 864 355 864 355 803 396 1,123 246 803 396 1,123 246 1,235 803 1,235 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255 1,255	496 2,005 30,643 396 540 244 861 4,058 1,354 4,070 414 677 596 3,599 275 574 1,765 574 1,765 723 160 160 125 883 3868 837 377 1,226 210 (1,300	$\begin{array}{c} 1630\\ 2,146\\ 32,020\\ 419\\ 586\\ 2745\\ 855\\ 4,147\\ 1,448\\ 4,244\\ 392\\ 701\\ 576\\ 3,733\\ 295\\ 630\\ 1,772\\ 769\\ 174\\ 174\\ 174\\ 174\\ 903\\ 445\\ 903\\ 445\\ 901\\ 2361\\ 1,270\\ 2361\\ 1,275\\ 1,453\\ 1,453\end{array}$	$\begin{array}{c} 1519\\ 2,028\\ 32,609\\ 397\\ 565\\ 269\\ 940\\ 4,361\\ 1,537\\ 4,245\\ 575\\ 4,189\\ 320\\ 682\\ 575\\ 4,189\\ 320\\ 682\\ 575\\ 4,189\\ 320\\ 682\\ 575\\ 4,189\\ 320\\ 682\\ 575\\ 4,189\\ 375\\ 432\\ 1,749\\ 787\\ 875\\ 432\\ 1,160\\ 254\\ 4,385\\ \end{array}$	584 2,195 34,411 573 320 921 4,288 1,608 4,888 3,608 4,888 3,608 4,888 3,608 4,555 559 4,567 286 673 1,775 886 673 1,775 886 673 1,775 886 203 120 940 431 440 1,200 301 1,468	$\begin{array}{c} 182\\ 560\\ 2,105\\ 36,269\\ 441\\ 581\\ 311\\ 1,002\\ 4,373\\ 1,954\\ 5,859\\ 400\\ 781\\ 595\\ 4,773\\ 320\\ 709\\ 1,827\\ 834\\ 216\\ 616\\ 886\\ 886\\ 886\\ 819\\ 463\\ 1,200\\ 344\\ 1,464\\ \end{array}$

(Continued)

		doca		
	2010	2011	2012	All
Males All 22 26 28 33 51 70 91 92 101 103 113 121 131	17,752 360 390 231 504 2,326 883 34 4,149 264 498 1,302 537 52 711 572	18,213 383 363 289 529 2,324 999 30 4,348 289 495 1,378 479 68 81	18,139 431 326 268 515 2,368 995 42 4,328 317 466 1,270 492 78 91	266,404 5,370 6,322 3,539 7,338 39,137 11,053 473 54,308 5,243 6,649 22,736 7,246 901 1,350
133	237	279	252	3,833

T1D	and	cancer

139 241 242 243 249 251 999	511 453 233 633 193 893 2,425	504 437 216 638 115 865 2,521	488 426 221 646 140 932 2,449	8,249 6,161 3,173 11,040 2,013 13,545 38,278
Allo Allo 21 22 26 28 33 51 70 82 83 84 101 103 113 121 133 139 241 133 139 241 242 243 249 251 999 991 Allo	$17,546\\126\\185\\118\\468\\2,236\\995\\5,149\\356\\732\\570\\235\\474\\423\\175\\61\\449\\180\\364\\555\\257\\2532\\175\\550\\2,181$	$17,639\\141\\195\\105\\477\\2,234\\1,169\\4,689\\409\\817\\573\\248\\474\\383\\208\\63\\454\\178\\374\\600\\254\\194\\622\\2,262$	$17,123\\148\\182\\133\\465\\2,201\\1,071\\4,565\\361\\793\\559\\264\\434\\198\\600\\432\\170\\345\\606\\2641\\135\\573\\2,173$	272,659 2,112 3,511 1,807 7,588 32,285 13,314 75,189 7,390 12,461 10,642 3,990 7,391 4,6377 2,329 995 7,154 2,902 6,189 8,607 3,674 9,918 2,217 9,448 34,646
All 21 22 28 33 51 70 82 83 84 91 92 101 103 113 121 131 132 133 139 241 242 243 249 251 999	$\begin{array}{c} 35,298\\ +486\\ 575\\ 3499\\ 972\\ 4,562\\ 1,878\\ 5,183\\ 356\\ 732\\ 5700\\ 4,149\\ -264\\ 733\\ 1,776\\ 960\\ 227\\ 1,022\\ 417\\ 875\\ 1,028\\ 490\\ 1,165\\ 368\\ 1,443\\ 4,606\end{array}$	$\begin{array}{c} 35,852\\ 524\\ 558\\ 394\\ 1,006\\ 4,558\\ 2,168\\ 4,719\\ 409\\ 817\\ 573\\ 4,348\\ 289\\ 743\\ 1,852\\ 862\\ 276\\ 144\\ 1,037\\ 457\\ 878\\ 1,047\\ 4,78\\ 309\\ 1,487\\ 4,783\end{array}$	$\begin{array}{c} 35,262\\ 579\\ 508\\ 401\\ 980\\ 4,569\\ 2,066\\ 4,607\\ 361\\ 793\\ 559\\ 4,328\\ 317\\ 730\\ 1,716\\ 926\\ 276\\ 1,030\\ 422\\ 833\\ 1,032\\ 489\\ 1,187\\ 275\\ 1,505\\ 4,622 \end{array}$	539,063 7,482 9,833 5,346 14,926 71,422 24,367 75,662 7,390 12,461 10,642 54,308 5,243 10,639 30,650 13,623 3,230 2,345 15,601 6,735 14,438 14,768 6,847 20,958 4,230 22,993 72,924

doca

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	A11
Males O																			
30	1				1	1		1	4	4		3	3	2	2	4	6	4	36
35						1	1			1	2	5	5	2	6	3	4	12	42
40		1	1	1		3	5	3	3	6	8	10	8	6	6	11	15	20	107
1																			
30		2			5	2		1	5	2	2	8	5	3	6	2	7	11	61
35	1	1	2	1	1		4	1	1	1	1	5	3	5	4	5	6	7	49
40	2	4	5	6	4	5	6	7	8	5	5	5	9	12	14	10	17	11	135
A11																			
30	1	2			6	3		2	9	6	2	11	8	5	8	6	13	15	97
35	1	1	2	1	1	1	5	1	1	2	3	10	8	7	10	8	10	19	91
40	2	5	6	7	4	8	11	10	11	11	13	15	17	18	20	21	32	31	242
Female	s																		
0																			
30				2	1	1	3	5	1	4		5	4	6	13	9	12	18	84
35	1			1	3	1	2	2	1	6	3	4	4	12	11	15	12	13	91
40				5	2	2	6	9	6	5	13	9	11	18	25	17	14	22	164
1																			
30	3	5		5	3	3	7	5	7	2	13	5	7	6	12	11	7	10	111
35	2	4	2	2	5	5	6	3	3	15	2	6	5	8	7	5	7	7	94
40	2	7	6	2	5	2	5	9	5	8	4	13	8	14	13	19	5	12	139

All 30 35 40	3 3 2	5 4 7	2 6	7 3 7	4 8 7	4 6 4	10 8 11	10 5 18	8 4 11	6 21 13	13 5 17	10 10 22	11 9 19	12 20 32	25 18 38	20 20 36	19 19 19	28 20 34	195 185 303
A11 0 30 35	1 1	:		2 1	2 3	2 2	3 3	6 2	5 1	8 7	5	8 9	7 9	8 14	15 17	13 18	18 16	22 25	120 133
40 1 30	3	1 7	1	6 5	2 8	5 5	11 7	12 6	9 12	11 4	21 15	19 13	19 12	24 9	31 18	28 13	29 14	42 21	271 172
35 40 411	3 4	5 11	4 11	3 8	6 9	5 7	10 11	4 16	4 13	16 13	3 9	11 18	8 17	13 26	11 27	10 29	13 22	14 23	143 274
30 35 40	4 4 4	7 5 12	4 12	7 4 14	10 9	7 7 12	10 13 22	12 6 28	17 5 22	12 23 24	15 8 30	21 20 37	19 17 36	17 27 50	33 28 58	26 28 57	32 29 51	43 39 65	292 276 545
A11 40	12	24	16	25	30	26	45	46	44	59	53	78	72	94	119	111	112	147	1,113
	1995	1996	1997	1998	1999	2000	2001	2002	doo 2003	ca 2004	2005	2006	2007	2008	2009	2010	2011	2012	4 11
Males	1000	1000	1001	1000	1000	2000	2001	2002	2000	2004	2000	2000	2001	2000	2000	2010	2011	2012	
All 21	4	8	8	8	11	12	16	13	21	19	18	36	33 1	30	38 1	35 1	55	65 1	430 4
22 26	•	•	•	1	1	•	•	1	1	•	•	. 2	1	•	2	2	1	3	6
28				:	1	1		1	2			1	4	1	1		2	1	15
53 51		1	:		•	1	1			4	2	3	5 4		2	4	3 4	5	21
91 92	•	1	1	1	3	2	1		1 4	3	1	1	3	3 1	2 3	1	2 5	3 5	12 37
101	•	•	2		•	1	•	1	1	1		4	1	2	3	1	4	2	23
113	2	1	1		2	1	:	2	1	2	1	2	1	2 4	2	3	2	4 5	31
121 131	·	1	•	•	1	1 1	•	1	3	1	1	1	1	•	•	•	2	2 1	6 11
132	•		•			3	•	•	1	2	2	4	2	3	2	3	3	1	26
133	:	:	:	:	•	:	1	1		:		3		2	1	3	1	2	4 14
241 242	1	1	•	•	•	•	1	•	•	•	•	1	•	:	1	3 1	1	2	9 7
243			;		1					1				1	2		2	1	8
249 251	:	:	1	:	•	•	1	1	1	:	:	•	3	•	1	•	3	1 3	13
999 Fomalog	•	3	2	4	2	1	8	3	4	5	9	8	6	8	8	11	18	16	116
All	8	16	8	17	19	14	29	33	23	40	35	42	39	64	81	76	57	82	683
21 22	•	:	:	:	•	:	1	:	1	2	2	2	:	4	1	1	:	:	1 14
26	•		•	:	•		•		1	•	•	1	2	:	:	:	1	1	6
33	:	1	:	1	:	1	1	1	2	3	2	1	4	5	3	2	6	5	38
51 70	1	1	3	4	2	3	1	2 12	3	5	3	10	3 13	6 18	7 24	8 20	6 13	12 25	59 184
82	1	3	2	3	1	1	2	2	3	6	2	3	2	3	5	4	1	4	48
83 84	:	:	2	:	1 2	:	2	2	1	2	1 2	2	3.	4 3	2	4 2	1	2	40 25
101 103	•	•	•	•	•	•	•	• • •	•	1	3	•	•	2	1	1	2	5 1	15 7
113	3	1	1	1	2	1	5	4	2	1	2	3	2	1	4	2	4	3	42
121 131	:	:	:	1	1	2	1	i	:	2	3.	:	2	1	5.	3	4	4	29 4
132	•	1	•	•	•	•	•	•	1	1	1	•	•	3	3	3	1		14
139	:	1	:	1	:	1		:	1	1	•	2	:	2	2	3		2	16
241 243	·	:	:	:	2	:	•	1	•	·	1	2	i	1	2	1	•	i	4 10
249	•		•	•	•	•	•	;	•	•	:	1		•	1		•		2
251 999	3	3	:	5	1	3	5	3	:	10	1 5	2	6	9	11	3 15	8	2 6	101
A11 A11	12	24	16	25	30	26	45	46	44	59	53	78	72	94	119	111	112	147	1.113
21							1		:				1	:	1	1	:	1	5
22	:	:	:	·i	i	:	1	i	2	2	2	23	3	4	3	3.	1 1	4	20 15
28 33	1	1	•	1	1	2	4	1	3 7	7	⊿	2 ⊿	4 a	2	2	1	3 0	2 10	24 77
51	:	2	•		2	1	2	2	3	5	3	3	7	6	9	8	10	17	80
70 82	1 1	4 3	3 2	4 3	7	3 1	9 2	12 2	6 3	6 6	6 2	10 3	13 2	18 3	24 5	20 4	13 1	25 4	184 48
83 84		•	2	•	1	•	2	2	1	2	1	2	3	4	7	4	7	2	40
91		:	:	:	. 2	:			1	:	. 2		:	3	2	2	2	3	12
92 101	•	1	1	1	3	2 1	1	1	4 1	3	1	1 4	3 1	1 4	3 ⊿	2	5 6	5 7	37 38
103		:	1	1	:		:	4			1	4		2	3	1	2	5	24

113	5	2	2	1	4	2	5	5	3	3	3	5	3	5	6	5	6	8	73
121				1	1	3	1	1		2	4		3	1	5	3	4	6	35
131		1			1	1		1	3	1		1	1	1		1	2	1	15
132		1				3			2	3	3	4	2	6	5	6	4	1	40
133						1			1		1		1		2	1	1	1	9
139		1		1		1	1	1	1	1		5		4	3	6	1	4	30
241	1						1	1			1			1	1	4	1	2	13
242		1										1		1		1	1	2	7
243					3			1		1	1	2	1	1	4		2	2	18
249			1									1			1			1	4
251		1					1	2	1		1	2	3		1	3	3	5	23
999	3	6	2	9	3	4	13	6	4	15	14	16	12	17	19	26	26	22	217

The central point in this SAS-program is that we construct a variable, T1D, which takes the value 40 if the person is included in the diabetes register in ages 35–39 (*i.e.* between his 35^{th} and 40^{th} birthdays), 35 if the person is included in the register at ages 30-34 (*i.e.* between his 30^{th} and 35^{th} birthdays), and 30 if the person is included in the register at age 29 or younger (*i.e.* before his 30^{th} birthday). The variable is coded 42 if the patient is included in the register in age over 40, and 0 if the person does not have a diagnosis of diabetes.

The variable DMprev is the indicator of being diagnosed before 1.1.1995, that is the indicator of being a prevalent case as of 1.1.1995. Note we only collect some of the persons diagnosed below age 40 before 1995. Some persons may have been diagnosed before 1995 in age under 40, but not picked up by the registers till after their 40th birthday, and some may have died before 1.1.1995. Hence we can only follow persons for cancer occurrence after 1.1.1995. By the age of the Danish Cancer Registry we are pretty sure that all tumours diagnosed in these person's lives are recorded.

We now read the constructed SAS-dataset:

```
> options( width=90 )
> crg <- read.xport( "../data/DMCR.xpt" )
> names( crg ) <- tolower( names(crg) )
> crg <- transform( crg, sex = factor( sex, labels=c("M","F") ),
+ t1d = factor( t1d ),
+ dmprev = factor( dmprev, levels=0:2, labels=c("Inc","Prv","Pop") ) )
> levels( crg$t1d )[c(1,5)] <- c("NoDM","T2D")</pre>
```

We tabulate the number of cancers and diabetes cases in it. Note however that the number of diabetes patients is slightly exaggerated, since some of them are represented by more than one record (namely those who are recorded with more than one cancer):

```
> with( crg, table(dmprev,t1d,exclude=NULL) )
     t1d
                   30
dmprev NoDM
                           35
                                   40
                                          T<sub>2D</sub>
                                                <NA>
                         8114
  Inc
             0
                15715
                               11340 345142
                                                   0
  Prv
             0
                 7332
                         3212
                                 4006
                                       86460
                                                   0
             0
                                                   0
  Pop
                    0
                            0
                                    0
                                            0
  <NA> 584717
                    0
                            0
                                    0
                                            0
                                                   0
> with( subset(crg, is.na(doca)), table( table(id) ) )
     1
381938
> with( subset(crg,!is.na(doca)), table( table(id) ) )
             2
                    3
                            4
                                    5
                                            6
552566 57451
                 4956
                          409
                                   22
                                            3
```

The last two tables here illustrate that persons without a cancer diagnosis only have one entry in the dataset, whereas persons with a cancer diagnosis may have more entries, that is be registered with more than one cancer.

3.1.1 Dates in cal.yr format

We have got the dates as SAS-dates, that is as number of days since 1 January 1960, so we convert them to cal.yr objects, that is years since A.D., using 365.25 as the length of a year.

```
> library(Epi)
> names( crg ) [wh<-grep("do", names(crg))]
[1] "doca" "dobt" "dodm" "doi" "dox" "dodd"
> for( i in wh ) crg[,i] <- cal.yr( as.Date( crg[,i], origin="1960-01-01" ) )</pre>
```

Finally we also define the date of entry into the study (only relevant for the diabetes patients), which is the latest of date of diabetes diagnosis and 1.1.1995:

> crg\$doe <- with(crg, pmax(1995, dodm, na.rm=TRUE))</pre>

Finally we make a few sanity checks:

```
> with( crg, ftable( "bt<dm"= dobt <= dodm | is.na(dodm),</pre>
                       "bt<ca"= dobt <= doca | is.na(doca),
+
+
                       "dm<dd"= dodm <= dodd | is.na(dodm) | is.na(dodd),
                       "ca<dd"= doca <= dodd | is.na(doca) | is.na(dodd) ) )
+
                                     TRUE
                           FALSE
                   ca<dd
bt<dm bt<ca dm<dd
FALSE FALSE FALSE
                                0
                                         0
                                         0
                                0
             TRUE
      TRUE
            FALSE
                                0
                                         0
             TRUE
                                0
                                         1
TRUE FALSE FALSE
                                0
                                        0
             TRUE
                                0
                                        40
      TRUE
            FALSE
                                       86
                                5
                              187 1065719
             TRUE
```

Finally we exclude persons with dates that does not meet all of these normal sanity checks:

3.1.2 Overview of data

For completeness we first reproduce the table from the SAS-program, where we note that the allocation of the dates of diagnosis to years is slightly different, because this program uses years of equal length, whereas SAS uses the traditional years of unequal length. But the distribution by

```
> options( width=91 )
> with( subset( crg, dodm<doca & doca>1995 & t1d %in% c("30","35","40") ),
+ addmargins( table( diag, floor(doca), useNA="ifany" ) ) )
```

diag 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 131 132 133 139 241 242 243 249 251 999 Sum	1995 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	1996 0 0 1 1 4 3 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 5 20	1997 0 0 0 0 0 0 0 0 0 0 0 0 0	1998 0 1 1 2 0 4 3 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 25	$ 1999 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 2 \\ 8 \\ 1 \\ 1 \\ 2 \\ 0 \\ 4 \\ 0 \\ 0 \\ 5 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \\ 5 $	2000 0 0 2 1 1 2 1 0 0 0 1 1 0 0 1 1 2 1 3 1 1 0 0 0 0 0 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2001 1 1 0 0 4 2 9 2 2 2 1 0 1 0 0 5 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$2002 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 4 \\ 5 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1$	2003 0 2 1 3 3 5 3 1 1 1 1 4 1 0 3 0 3 2 1 1 0 0 0 0 1 4 3	$\begin{array}{c} 2004 \\ 0 \\ 2 \\ 0 \\ 0 \\ 7 \\ 5 \\ 6 \\ 6 \\ 2 \\ 0 \\ 0 \\ 3 \\ 2 \\ 0 \\ 3 \\ 2 \\ 1 \\ 3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 5 \\ 9 \end{array}$	$\begin{array}{c} 2005 \\ 0 \\ 2 \\ 0 \\ 0 \\ 4 \\ 3 \\ 6 \\ 2 \\ 1 \\ 2 \\ 0 \\ 1 \\ 3 \\ 1 \\ 3 \\ 4 \\ 0 \\ 3 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 14 \\ 53 \end{array}$	$\begin{array}{c} 2006 \\ 0 \\ 2 \\ 3 \\ 2 \\ 4 \\ 3 \\ 10 \\ 3 \\ 2 \\ 3 \\ 0 \\ 1 \\ 4 \\ 4 \\ 5 \\ 0 \\ 1 \\ 4 \\ 0 \\ 5 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 16 \\ 78 \end{array}$	$2007 \\ 1 \\ 0 \\ 3 \\ 4 \\ 9 \\ 7 \\ 13 \\ 2 \\ 3 \\ 0 \\ 0 \\ 3 \\ 1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 3 \\ 1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 3 \\ 12 \\ 72 \\ 72 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	2008 0 4 0 2 7 6 18 3 4 3 3 1 4 2 5 1 1 6 0 4 1 1 1 0 0 0 17 94	$\begin{array}{c} 2009 \\ 1 \\ 3 \\ 0 \\ 2 \\ 7 \\ 9 \\ 24 \\ 5 \\ 7 \\ 2 \\ 2 \\ 3 \\ 4 \\ 3 \\ 6 \\ 5 \\ 2 \\ 3 \\ 1 \\ 0 \\ 4 \\ 1 \\ 19 \\ 119 \end{array}$	2010 1 3 0 1 6 8 20 4 4 2 1 2 2 1 5 3 1 6 1 6 1 6 1 6 1 0 1 2 2 1 5 3 1 6 1 1 2 2 1 5 3 1 6 1 1 2 2 1 5 3 1 6 1 1 1 1 2 2 1 5 3 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	20111 () 11 22 10 12 12 12 12 12 12 12 12 12 12	
diag 21 22 26 28 33 51 70 82 83 84 91 92 101 103 113 121 131 132 133 139 241 242 243 249 251 999 Sum	$\begin{array}{c} 2012 \\ 1 \\ 0 \\ 4 \\ 2 \\ 10 \\ 17 \\ 25 \\ 4 \\ 2 \\ 7 \\ 3 \\ 5 \\ 7 \\ 5 \\ 8 \\ 6 \\ 1 \\ 1 \\ 1 \\ 4 \\ 2 \\ 2 \\ 2 \\ 1 \\ 5 \\ 22 \\ 147 \end{array}$	Sum 5 20 15 24 77 80 184 48 40 25 12 37 38 24 73 35 15 40 9 30 13 7 18 4 23 217 1113																
> tt · + +	<- wit	ch(cr "S	rg, ta St.199 has.	able(95" = ca =	t1d, dmpre doca useNA	ev, >dodm A="ifa	& doc any")	ca>199))	95,									
> ftai	ble(a	addmar	rgins((tt,	marg	in=1), rou	v.vars	s=1)		-					T A		
1	st.199 has.ca	95 L FA	1nc LSE	TRUE	2	NA 1	Prv FALSE	TRU	JE	NA	Pop FALSE	D E TH	RUE	NA	N FALS	IA SE]	TRUE	NA
t1d NoDM			0	()	0	0		0	0	()	0	0	12697	' 9	0	457517

30 35 40 T2D	115 92 182 34750	120 133 271 41126	15480 7887 10887 269171	31 28 50 7584	172 143 274 14270	7128 3041 3682 64606	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Sum	35139	41650	303425	7693	14859	78457	0	0	0 12	6979	0 45	57517
> sum(tt[[c("30","35	5","40")), ,2])									
[1] 1113												
> sum(tt["30"		, ,2])									
[1] 292												
> sum(tt[[c("30","35	5","40"),1,2])									
[1] 524												
> sum(tt[5","40"), ,])									
[1] 49716												

So we see that we have 1113 recorded tumours among (verified) T1 patients after 1995, but only 292 if we use the "normal" strict definition of T1D (diagnosis before age 30). If we further restrict to T1D patients diagnosed after 1995, we only have 524, by the broad definition, and a mere 120 by the narrow definition.

We also see that the maximal number of persons that we will be following is 49,716 (somewhat less because these are *records* in the dataset, not persons), less than 1% of the population (but presumably a bit more in the age-bracket we are looking at), so when doing the comparison with the rest of the population, we can to a very close approximation use the rates of all the cancers in the entire population. Formally the T1D patients are then counted twice in follow-up but the error will be tiny.

3.2 T1D analysis dataset

On the basis of this total dataset with all cancers and diabetes diagnoses, we now set up an analysis dataset, which for the tabulated follow-up of the T1D patients will have the following variables:

• Response variables

dxx no. of events in diagnosis group xx (cancer type)

- Y person-years (corresponding to each diagnosis group)
- Classification (explanatory) variables:

 $\texttt{sex } \mathsf{sex}$

- age age at follow-up, 1-year classes
- per date of follow-up, 1 year classes
- dur time since diagnosis, left end point of intervals 0, 1, 2, 5, 10, 15
- t
1d T1 diabetes status: 30 DM diagnosis < 30, 35 DM diagnosis aged 30–34, 40 DM diagnosis aged 35–39

DMprev T1D present at 1.1.1995: Yes/No

The dataset will be constructed from multi-way tables of cases and person-years derived from the dataset of cases.

For the comparison population (which will be the entire population) we will construct a similar dataset. In the population dataset there will of course be separte values for the variables dur, t1d and DMprev — these variables will enter the analysis models, and must therefore also be present in the population dataset, but with a special value that allows for a special (reference) level of their effect for the population part of data. Stacking the two datasets appropriately will then enable a joint analysis, similar to an SMR-analysis.

3.2.1 Follow-up of T1D patients

We first construct the follow-up *time* for T1D patients from entry to death, *i.e.* disregarding cancer occurrence as termination of follow-up. We later discuss this omission. Subsequently, we tabulate the number of cancer cases and construct the T1D part of the analysis dataset.

3.2.1.1 Lexis object of total follow-up

Intuitively, the follow-up would be for T1D patients without cancer¹ from date of diagnosis of T1D (or 1.1.1995) until the end of the follow-up period. However, if we follow persons for *any* type of cancer regardless of other previous cancers, we should logically also follow persons for (other) cancers even if they have a cancer previous to the diagnosis of diabetes (which is what will be done).

The end of the follow-up period is in this case the end of 2012, but not for the diabetes patients:

```
> max( crg$dodm, na.rm=T )
[1] 2011.996
> max( crg$doca, na.rm=T )
[1] 2012.998
> max( crg$dodd, na.rm=T )
[1] 2012.998
> with( subset( crg, !is.na(dodm) & is.na(doca) ),
+ max( dodd, na.rm=T ) )
[1] 2011.996
```

Diabetes patients are only followed till the end of 2011. If we were to extend follow-up till the end of 2012, we would include too much risk time among diabetes patients, namely that after death (wihout cancer) in 2012, and thus underestimate the rates of cancer among T1D pateinst in 2012. The error would however likely be small because we would only erroneousle include a very small amount of follow-up.

We can assess how much this is by looking at the year 2011 and tabulate the entire follow-up during the year and relate to the extra follow-up (without events) we would see if we did not know about the deaths:

> dim(crg) [1] 1065719 13

¹Meaning either any cancer or a specific cancer type

```
> sb <- subset( crg,</pre>
          # Only the T1D persons
+
           (t1d %in% c("30","35","40")) &
+
          # diagnosed with dm before end of 2011
+
          ( dodm < 2012 ) &
+
          # not diagnosed with cancer before 2011
+
+
           ( pmin( doca, 2011.001, na.rm=TRUE ) > 2011 ) &
+
            and no cancer before diabetes
          #
            pmin( doca, dodm, na.rm=TRUE ) < doca | is.na(dodm) | is.na(doca) ) &</pre>
+
          (
          # and alive sometime in 2011
+
            pmin( dodd, 2011.001, na.rm=TRUE ) > 2011 ) )
> dim( sb )
[1] 46018
             13
> real.fu <- with( sb, pmin( 2012, dodd, doca, na.rm=TRUE ) -</pre>
                       pmax( 2011, dodm, na.RM=TRUE ) )
> summary( real.fu )
    Min. 1st Qu.
                    Median
                                Mean 3rd Qu.
                                                   Max
0.002053 1.000000 1.000000 0.969400 1.000000 1.000000
```

The persons in **sb** those at risk of cancer at some time during 2011. If we did know the data of death of these persons we would erroneously include risk time after death until the end of 2011. Thus it only concerns those with a death recorded in 2011:

```
> dsb <- subset( sb, !is.na(dodd) & dodd>2011 & dodd<2012 )
> false.fu <- with( dsb, 2012 - dodd )
> summary( false.fu )
    Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01232 0.25330 0.53520 0.51390 0.78710 0.99790
> sum( false.fu )
[1] 112.5352
> sum( real.fu )
[1] 44611.33
> sum( false.fu ) /
+ sum( real.fu )
[1] 0.002522571
```

So we see that missing out on the deaths among the T1D patients for the year 2011 would overestimate the person-years by some 0.3% and hence *under*estimate the rate by a similar amount. We are likely to commit an error of the same order of magnitude by including the follow-up of the diabetes patients during 2012. Thus the error by including 2012 in the follow-up of the diabetes patients would be tiny, but we would gain another year's worth of cancer events and thus strengthen the study.

We then tabulate the follow-up for these persons until death or end of 2012, knowing that a few will be counted at risk after their (unknown) death date. The point of this is that while tabulation of events is simple (see below), the person-years to be used for a given type of event (cancer diagnosis of a certain type) is from date of entry to date of exit or event date, and hence requires a complete tabulation of person-years for every type of cancer.

However, the correct risk time for a specific type of cancer can also be computed by subtracting the follow-up time after event (for those persons with an event) from the total lived follow-up, and since the tabulation of follow-up after any of the relatively few events is computationally a rather minor task, this is preferable to a tabulation of the follow-up of the entire cohort of the T1D patients to different endpoints.

However, the follow-up after cancer is most likely so small that it will not matter much anyway; we shall look into this in more detail below. In order to tabulate the follow-up of the persons we set up a Lexis object for the T1D persons. First we need to subset the data frame to the T1D patients, and then shave it down to one record per patient. Note that we use aggregate with FUN=min, so that the date of cancer diagnosis in the resulting dataset corresponds to the date of the *first* cancer in a patient:

```
> t1dfr <- subset( crg, t1d %in% c("30","35","40") )
 table( table(t1dfr$id) )
>
          2
    1
49552
         79
                2
> t1fu <- aggregate( x = t1dfr[,c("dobt","doe","doca","dodm","dox","dodd")],</pre>
                    by = t1dfr[,c("id", "sex", "t1d", "dmprev")],
+
                   FUN = min )
+
 table( table(t1fu$id) )
>
   1
49633
> str( t1fu )
'data.frame':
                      49633 obs. of 10 variables:
$ id
         : num
               15386837 15386934 15387012 15387068 15387287 ...
         : Factor w/ 2 levels "M","F": 1 1 1 1 1 1 1 1 1 ...
$ sex
         : Factor w/ 5 levels "NoDM", "30", "35",...: 2 2 2 2 2 2 2 2 2 2 ...
$
  t1d
$ dmprev: Factor w/ 3 levels "Inc", "Prv", "Pop": 1 1 1 1 1 1 1 1 1 1 ...
$ dobt : num
                1978 1999 1986 2004 1975 ...
$ doe
         : num
                1995 2009 1995 2010 2004
                NA NA NA NA NA NA NA NA NA ...
$ doca
        : num
$ dodm
         : num
                1995 2009 1995 2010 2004 ...
$ dox
         :
           num
                2013 2013 2013 2013 2013
                NA ...
$ dodd : num
> summary( t1fu )
       id
                                 t1d
                                             dmprev
                                                               dobt
                                                                               doe
                    sex
Min.
       :15386193
                    M:23200
                               NoDM:
                                         0
                                             Inc:35123
                                                          Min.
                                                                :1934
                                                                         Min.
                                                                                :1995
                                  :23028
1st Qu.:15904736
                                                         1st Qu.:1964
                    F:26433
                               30
                                                                         1st Qu.:1995
                                             Prv:14510
Median :16431359
                               35
                                   :11302
                                             Pop:
                                                     0
                                                          Median :1971
                                                                         Median :2001
Mean
       :16423549
                               40
                                   :15303
                                                          Mean
                                                                 :1972
                                                                         Mean
                                                                                 :2001
3rd Qu.:16938796
                               T2D :
                                                          3rd Qu.:1979
                                         0
                                                                         3rd Qu.:2007
        :17452016
                                                                 :2011
Max.
                                                          Max.
                                                                         Max.
                                                                                 :2012
                      dodm
                                                      dodd
      doca
                                      dox
                                                        :1995
Min.
       :1956
                 Min.
                        :1942
                                 Min.
                                        :1995
                                                 Min.
1st Qu.:1999
                 1st Qu.:1994
                                 1st Qu.:2013
                                                 1st Qu.:2002
Median :2006
                 Median :2001
                                 Median :2013
                                                 Median :2006
Mean
        :2003
                 Mean
                         :2000
                                 Mean
                                         :2013
                                                 Mean
                                                         :2005
                                 3rd Qu.:2013
3rd Qu.:2010
                 3rd Qu.:2007
                                                 3rd Qu.:2009
        :2013
                         :2012
                                         :2013
                                                         :2013
Max.
                 Max.
                                 Max.
                                                 Max.
                                                 NA's
NA's
        :48105
                                                         :46595
```

As expected and as it should be, the only variables in the dataset with missing values is the date of first cancer and date of death.

Now we set up a Lexis-object representing follow-up of the T1D patients until death or end of study period (dox), along timescales age, calendar time and duration. Since we are only interested in person risk time here we do not define any entry or exit status:

```
> Lt1 <- Lexis( entry = list( per = doe,
                                age = doe-dobt,
+
                                dur = doe-dodm ),
                  exit = list( per = dox ),
                  data = t1fu )
> summary( Lt1 )
Transitions:
     То
From
         0
            Records:
                       Events: Risk time:
                                             Persons:
   0 49627
                49627
                              0
                                  552879.5
                                                49627
```

>	head(Lt.	1)										
	per	age	dur	lex.dur	lex.Cst	lex.Xst	<pre>lex.id</pre>	id	sex	t1d	dmprev	dobt
1	1995.194	17.418207	0	17.804244	0	0	1	15386837	М	30	Inc	1977.775
2	2008.615	9.941136	0	4.383299	0	0	2	15386934	М	30	Inc	1998.674
3	1995.095	8.670773	0	17.902806	0	0	3	15387012	М	30	Inc	1986.424
4	2009.639	5.390828	0	3.359343	0	0	4	15387068	М	30	Inc	2004.248
5	2003.952	28.561259	0	9.045859	0	0	5	15387287	М	30	Inc	1975.391
6	2009.014	11.509925	0	3.983573	0	0	6	15387518	М	30	Inc	1997.504
	doe	doca d	dodm	dox	dodd							
1	1995.194	NA 1995	.194	2012.998	NA							
2	2008.615	NA 2008	.615	2012.998	NA							
3	1995.095	NA 1995	.095	2012.998	NA							
4	2009.639	NA 2009	.639	2012.998	NA							
5	2003.952	NA 2003	.952	2012.998	NA							
6	2009.014	NA 2009	.014	2012.998	NA							

We must tabulate the risk time by current age, calendar time and duration, so we split the follow-up by these three factors. Due to memory restrictions we do this separately in 10 chunks of the data:

```
> S.all <- NULL
> n.chunks <- 10
> lm <- round( seq(0,nrow(Lt1),,n.chunks+1) )</pre>
> system.time(
+ for( i in 1:n.chunks )
+ {
+ whr <- (lm[i]+1):(lm[i+1])
                                    0:120 , time.scale="age"
1990:2020 , time.scale="per"
+ sa <- splitLexis( Lt1[whr,],
+ sap <- splitLexis( sa ,</pre>
                                                      , time.scale="per"
                         sa , 1990:2020 , time.scale="per" )
sap, c(0,1,2,5,10,15), time.scale="dur" )
+ sapd <- splitLexis(
+ S.all <- rbind(S.all, sapd)
+ } )
   user system elapsed
 144.95
           2.81 148.03
> summary( Lt1 )
Transitions:
     То
          O Records: Events: Risk time: Persons:
From
   0 49627
             49627
                          0 552879.5
                                                 49627
> summary( S.all )
Transitions:
    То
           0 Records: Events: Risk time:
From
                                                Persons:
   0 1284080
               1284080
                                 0
                                     552879.5
                                                    49627
```

Finally we create a table with the total alive-follow-up among the T1D patients:

```
> system.time(
+ PYtab <- xtabs( lex.dur ~ timeBand(S.all, "age", "left") +
                                  timeBand(S.all, "per", "left") +
timeBand(S.all, "dur", "left") +
+
+
+
                                  sex + t1d + dmprev,
                      data = S.all ) )
+
         system elapsed
   user
   9.08
          0.22 9.41
> names( dimnames( PYtab ) )[1:3] <- c("age","per","DMdur")</pre>
> str( PYtab )
 xtabs [1:77, 1:18, 1:6, 1:2, 1:5, 1:3] 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, "dimnames")=List of 6

..$ age : chr [1:77] "0" "1" "2" "3" ...

..$ per : chr [1:18] "1995" "1996" "1997" "1998" ...
  ...$ DMdur : chr [1:6] "0" "1" "2" "5" ...
  ..$ sex : chr [1:2] "M" "F"
  ..$ t1d : chr [1:5] "NoDM" "30" "35" "40"
..$ dmprev: chr [1:3] "Inc" "Prv" "Pop"
 - attr(*, "class")= chr [1:2] "xtabs" "table"
 - attr(*, "call")= language xtabs(formula = lex.dur ~ timeBand(S.all, "age", "left") + timeBand(S.a
```

> dimnames(PYtab)

\$age [1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15" "16" [18] "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29" "30" "31" "32" "33" [35] "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44" "45" "46" "47" "48" "49" "50" [52] "51" "52" "53" "54" "55" "56" "57" "58" "59" "60" "61" "62" "63" "64" "65" "66" "67" [69] "68" "69" "70" "71" "72" "73" "74" "75" "76" \$per [1] "1995" "1996" "1997" "1998" "1999" "2000" "2001" "2002" "2003" "2004" "2005" "2006" [13] "2007" "2008" "2009" "2010" "2011" "2012" \$DMdur [1] "0" "1" "2" "5" "10" "15" \$sex [1] "M" "F" \$t1d [1] "NoDM" "30" "35" "40" "T2D" \$dmprev [1] "Inc" "Prv" "Pop"

(This could actually have been done somewhat more parsimoniously if we had used aggregate insted of xtabs).

```
> table( PYtab>0 )
FALSE TRUE
236663 12817
> summary( as.vector(PYtab[PYtab>0]) )
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0007 6.2670 21.8300 43.1400 58.2400 345.9000
```

Now the PYtab table contains person-years *alive* among T1D patients in the period 1.1.1995 to 31.12.2012.

However it is not for all follow-up time we can trust the subdivision by duration, so any analyses by DM duration must be restricted to those coded with dmprev equal to Inc:

```
> PYdur <- addmargins( apply( PYtab, c(3,5,6), sum ), margin=2:1 )
> print( round( ftable( PYdur, row.vars=c(3,2) ), 1), zero.print="-" )
          DMdur
                      0
                              1
                                       2
                                                      10
                                                              15
                                              5
                                                                      Sum
dmprev t1d
Inc
      NoDM
                 15667.2 15062.6 38358.2 44507.7 22040.5 3437.5 139073.7
      30
      35
                 8075.8
                         7759.8 19972.1 23274.6 11857.9 1894.9 72835.1
      40
                 11264.6 10800.2 27497.1 31035.3 13994.5
                                                           2111.2 96702.8
      T2D
                 35007.5 33622.6 85827.4 98817.6 47893.0
                                                           7443.6 308611.6
      Sum
                                             -
Prv
      NoDM
                    _
                                    _
      30
                   428.8
                         1867.9 12265.0 34758.6 35034.1 42393.7 126748.1
                   282.3
                         1076.7 5850.4 15170.9 14689.1 16007.1 53076.5
      35
                         1415.4
      40
                   352.5
                                 7492.3 18672.1 17836.5 18674.5 64443.4
      T2D
                  1063.5
                         4360.0 25607.8 68601.5 67559.8 77075.3 244267.9
      Sum
Pop
      NoDM
                   -
                          -
                                  -
                                          -
                     _
                            _
                                     _
                                             _
                                                     _
      30
                            _
                                     _
                                             _
      35
                                                     -
                                    -
                            _
                                             -
                    _
      40
                                                     _
                                                              _
                                                                      _
                    _
                            _
                                     _
                                             _
                                                     -
      T<sub>2</sub>D
      Sum
                     _
                             _
                                     _
                                             _
```

Thus we see slightly less than half of the follow-up time is among DM-patients prevalent in 1995. Hence when we show the distribution of follow-up time by diabetes duration, we exclude the prevalent cases, because we do not know the date of diagnosis with any certainty:

```
> ah <- apply( PYtab, 1, sum )</pre>
> ph <- apply( PYtab, 2, sum )
> dh <- apply( PYtab[,,,,,1], 3, sum )
> layout( rbind(1:3), widths=c(70,17,15)+2 )
 >
>
>
 whl <- 0:7*10+1
 axis( side=1, at=aa[whl]-0.5, labels=names(ah)[whl] )
>
 pp <- barplot( ph/1000, space=0, xaxt="n", ylim=c(0,48),</pre>
>
                col=gray(0.4), border=FALSE, xlab="Date of follow-up" )
>
 whl <- 0:5*5+1
 axis( side=1, at=aa[whl]-0.5, labels=names(ph)[whl] )
>
>
 wd <- c(1,1,3,5,5)
 dd <- barplot( dh[-6]/1000/wd, width=wd, space=0, xaxt="n", ylim=c(0,48),
>
                col=gray(0.4), border=FALSE, xlab="DM duration" )
 axis( side=1 )
>
> mtext( "PYers (1000s) in 1-year interval", side=2, line=1, outer=TRUE, las=0 )
```


Figure 3.1: Distribution of the follow-up time in the T1D patients (till death) by age, date and DM-duration at follow-up. The rightmost figure is only for DM-patients diagnosed after 1.1.1995, hence the smaller total area.

From figure 4.4 it is seen that the distribution of follow-up time is largely in age-classes where cancer occurrence is quite small.

3.2.1.2 Follow-up after cancer

Formally, we will for each type of event have to subtract the follow-up after the particular type of event from this total time alive. In order to see how large this fraction is, we set up a Lexis object with the follow-up after the earliest cancer, that is the maximally possible follow-up time erroneously included.

Note that we in the aggregate function above used "min" as function, thus the doca in this dataset is the date of the earliest recorded cancer. Thus when constructing a Lexis object we only take follow-up among those with a cancer, and take the follow-up time from cancer of DM whichever is the *latest*. This will be the follow-up that should not really have been counted:

```
> Ct1 <- Lexis( entry = list( per = pmax( doca, dodm, 1995 ),</pre>
                               age = pmax( doca, dodm, 1995 ) - dobt,
                               dur = pmax( doca, dodm, 1995 ) - dodm ),
                 exit = list( per = dox ),
+
+
                 data = subset( t1fu, !is.na(doca) ) )
> summary( Ct1 )
Transitions:
     То
From
        0
           Records: Events: Risk time:
                                          Persons:
   0 1526
               1526
                           0
                                8344.47
                                              1526
> head( Ct1 )
         per
                                  lex.dur lex.Cst lex.Xst lex.id
                            dur
                                                                         id sex t1d dmprev
                   age
170 2010.230 39.890486 10.35729
                                 1.160849
                                               0
                                                      0
                                                            1 15438451
                                                                              М
                                                                                 30
                                                                                       Inc
240 2011.659 25.171800
                        0.00000
                                  1.338809
                                                 0
                                                         0
                                                                 2 15464895
                                                                              М
                                                                                 30
                                                                                       Inc
             9.938398
303 2001.551
                                                                                 30
                        0.00000 11.446954
                                                 0
                                                         0
                                                                3 15485118
                                                                              М
                                                                                       Inc
372 2011.435 28.539357
                                                                                 30
                        0.00000
                                 1.563313
                                                 0
                                                         0
                                                                4 15505899
                                                                              М
                                                                                       Inc
395 2006.052 26.603696
                        0.00000
                                 6.945927
                                                 0
                                                         0
                                                                5 15514176
                                                                              М
                                                                                 30
                                                                                       Inc
445 2002.808 21.544148
                        0.00000 10.190281
                                                 0
                                                         0
                                                                6 15529803
                                                                              М
                                                                                 30
                                                                                       Inc
        dobt
                  doe
                                                      dodd
                          doca
                                    dodm
                                              dox
170 1970.339 1999.873 2010.230 1999.873 2011.391 2011.391
240 1986.487 2011.659 2008.825 2011.659 2012.998
                                                        NA
303 1991.613 2001.551 2000.749 2001.551 2012.998
                                                        NA
372 1982.895 2011.435 2011.049 2011.435 2012.998
                                                        NA
395 1979.448 2006.052 1996.248 2006.052 2012.998
                                                        NA
445 1981.264 2002.808 2000.248 2002.808 2012.998
                                                        NA
> round( c( "pct Y" = sum(Ct1$lex.du) / sum(S.all$lex.du);
             "pct N" = with( t1fu, mean( !is.na(doca) ) ) ) * 100, 2 )
pct Y pct N
 1.51 3.08
```

From this it is seen that the total risk time is about 1.5% too large; and some 3.1% of the diabetes patients experience a cancer diagnosis. However, differences might be larger for some combinations of sex, age or calendar time, so we split and tabulate the follow-up time after cancer to make a more detailed assessment:

```
<- splitLexis( Ct1 ,
                               0{:}120 , time.scale="age"
> sa
> sap <- splitLexis( sa , 1990:2020, time.scale="per")
> sapd <- splitLexis( sap, c(0,1,2,5,10,15), time.scale="dur" )</pre>
> summary( sapd )
Transitions:
     То
         0 Records:
From
                      Events: Risk time:
                                           Persons:
   0 19654
               19654
                            0
                                 8344.47
                                               1526
```

```
> PCtab <- xtabs( lex.dur ~ timeBand(sapd,"age","left")</pre>
                                 timeBand(sapd,"per","left")
timeBand(sapd,"dur","left")
+
                                                                    +
+
                                                                    +
+
                                  sex + t1d + dmprev,
+
                      data = sapd)
 names( dimnames( PCtab ) )[1:3] <- c("age", "per", "DMdur")</pre>
>
 rbind( dim( PYtab ),
>
          dim( PCtab ) )
      [,1] [,2] [,3] [,4] [,5] [,6]
[1,]
        77
              18
                     6
                            2
                                 5
                                        3
[2,]
        67
              18
                     6
                            2
                                  5
                                        3
```

We see that follow-up after cancer is represented in fewer age classes that the entire follow-up from entry to death.

Now we plot the total amount of person-time in each of the different sex, age- and period classes, against the ratio of the post-cancer follow-up:

```
> Rtab <- PCtab / PYtab[dimnames(PCtab)[[1]],,,,,]
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1 )
> plot( as.vector(Rtab)*100, as.vector(PCtab),
+ pch=16, cex=0.5, bty="n",
+ xlab="% PY missing", ylab="PY missing" )
> axis( side=1, at=1:9*10, labels=rep("",9) )
> abline( v=c(0,2,5,10,15), col="red" )
```


Figure 3.2: Absolute versus relative difference between correct and approximate follow-up time.

From figure 3.2 it is seen that except for units where only a tiny amount of risk time is missing, the excess risk time from failing to remove patients from follow-up at cancer diagnosis is generally under 5% and mostly under 2%.

Thus we shall subtract this amount of risk time from the risk time for T1D patients in the analysis of all cancers, but not in the analysis of the single cancer diagnoses as single cancer sites maximally constitute 13% ($\approx 1/8$) of all cases, and hence the relative error in rates will be substantially below 1%:

```
> tD <- table( t1dfr$diag )</pre>
> cbind( tD, round(tD/sum(tD)*100,1) )
      t.D
21
      5
          0.3
22
     22
          1.4
26
     17
          1.1
28
     32
          2.0
33
     84
          5.2
    129
51
          8.0
70
    208 12.9
82
     69
          4.3
83
     47
          2.9
84
     35
          2.2
91
     12
          0.7
92
    101
          6.3
101
     46
          2.9
103
     28
          1.7
113 180 11.2
121
     49
          3.0
131
     40
          2.5
132
     50
          3.1
133
     10
          0.6
139
     94
          5.8
241
     16
          1.0
242
      8
          0.5
243
     22
          1.4
249
      6
          0.4
251
     28
          1.7
999 273 16.9
```

Note that we shall not analyze the group 999 ("Other cancers"), which constitutes some 17% of all cancers, as this would not be biologically meaningful, so we construct the adjusted person-years for analysis of the category of "All cancers":

```
> PYadj <- PYtab
> PYadj[dimnames(PCtab)[[1]],,,,,] <-
+ PYtab[dimnames(PCtab)[[1]],,,,,] - PCtab
```

Thus we have the two tables of person-years classified by sex, age, calendar time, as well as by the two variables that classifies the T1D patients by the age-bracket of diagnosis and by whether they were diagnosed before or after 1.1.1995.

3.2.1.3 Cancer cases

We then set up the proper analysis table, with number of events and the unique values of diag in the dataset tldfr; this is but a simple tabulation of the cancers occurring *after* diagnosis of diabetes from the data frame tldfr:

data = subset(t1dfr, doca>1995 & doca>dodm)) > names(dimnames(Dtab))[2:4] <-</pre> + names(dimnames(PYtab))[1:3] > dimnames(Dtab) \$diag [1] "21" "22" "26" "28" "33" "51" "70" "82" "83" "84" "91" "92" "101" "103" [15] "113" "121" "131" "132" "133" "139" "241" "242" "243" "249" "251" "999" \$age [Ĭ] "6" "7" "10" "13" "15" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" [18] "29" "30" "31" "32" "33" "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44" "45" [35] "46" "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59" "60" "61" "62" [52] "63" "64" "65" "68" "70" \$per [1] "1995" "1996" "1997" "1998" "1999" "2000" "2001" "2002" "2003" "2004" "2005" "2006" [13] "2007" "2008" "2009" "2010" "2011" "2012" \$DMdur [1] "0" "1" "2" "5" "10" "15" \$sex [1] "M" "F" \$t1d [1] "NoDM" "30" "35" "40" "T2D" \$dmprev [1] "Inc" "Prv" "Pop"

However we note that the age-dimension is a bit smaller in Dtab, than in the PYtab, so we make an amended version of Dtab, and make sure that all is filled with 0s where it should be:

```
> dnam <- dimnames( Dtab )</pre>
> dnam[[2]] <- dimnames( PYtab )[[1]]</pre>
> Atab <- NArray( dnam )</pre>
> str( Dtab )
xtabs [1:26, 1:56, 1:18, 1:6, 1:2, 1:5, 1:3] 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, "dimnames")=List of 7
  ..$ diag : chr [1:26] "21" "22" "26" "28" ...
..$ age : chr [1:56] "6" "7" "10" "13" ...
  ..$ per
            : chr [1:18] "1995" "1996" "1997" "1998" ...
  ..$ DMdur : chr [1:6] "0" "1" "2" "5" ...
  ..$ sex : chr [1:2] "M" "F"
            : chr [1:5] "NoDM" "30" "35" "40" ...
  ..$ t1d
  ..$ dmprev: chr [1:3] "Inc" "Prv" "Pop"
 - attr(*, "class")= chr [1:2] "xtabs" "table"
 - attr(*, "call")= language xtabs(formula = !is.na(doca) ~ diag + floor(doca - dobt) + floor(doca)
> str( Atab )
 logi [1:26, 1:77, 1:18, 1:6, 1:2, 1:5, 1:3] NA NA NA NA NA NA ...
 - attr(*, "dimnames")=List of 7
  ..$ diag : chr [1:26] "21" "22" "26" "28" ...
             : chr [1:77] "0" "1" "2" "3" ...
  ..$ age
             : chr [1:18] "1995" "1996" "1997" "1998" ...
  ..$ per
  ..$ DMdur : chr [1:6] "0" "1" "2" "5" ...
  ..$ sex : chr [1:2] "M" "F"
  ..$ t1d : chr [1:5] "NoDM" "30" "35" "40" ...
..$ dmprev: chr [1:3] "Inc" "Prv" "Pop"
> Atab[,dimnames(Dtab)[[2]],,,,,] <- Dtab</pre>
> Atab[is.na(Atab)] <- 0</pre>
```

3.2.1.4 All cancers

We also need a tabulation of "All cancers", that is the first of any of the known cancers, but this is precisely what we have in the dataset tlfu, where there is one record per T1D patient, and where the doca is the earliest of the cancer diagnosis dates:

```
> D0tab <- xtabs( !is.na(doca) ~ floor(doca-dobt) +</pre>
                                   floor(doca) +
+
                                   I((doca>(dodm+1))) +
+
                                      (doca>(dodm+2)) +
+
                                      (doca>(dodm+5) )*3 +
+
                                      (doca>(dodm+10))*5 +
+
                                      (doca>(dodm+15))*5 ) +
                                   sex + t1d + dmprev,
                   data = subset( t1fu, doca>1995 & doca>dodm ) )
> names( dimnames(D0tab) )[1:3] <-</pre>
 names( dimnames(PYtab) )[1:3]
```

Once this has been done, we construct the analysis data frame with two columns for person-years and a column with cases for each of the diagnosis groups.

3.2.2 The analysis data frame for T1D patients

So we start by setting up the frame with the person-years, for the analysis of all cancers (YO) and for the specific cancers (Y), and the number of first primary cancers of any type (DO)

```
> Dfr <- as.data.frame( as.table(PYadj[,,,,2:4,1:2]), responseName="Y0" )</pre>
> nxt <- as.data.frame( as.table(PYtab[,,,,2:4,1:2]), responseName="Y"</pre>
                                                                            )
> Dfr <- merge( Dfr, nxt, all=TRUE )</pre>
> nxt <- as.data.frame( as.table(D0tab[,,,,2:4,1:2]), responseName="d0" )</pre>
> Dfr <- merge( Dfr, nxt, all=TRUE )</pre>
> Dfr$d0[is.na(Dfr$d0)] <- 0
> head( Dfr )
  age per DMdur sex t1d dmprev
                                         YO
                                                    Y d0
1
    0 1995
               0
                 M 30
                             Inc 0.8062971 0.8062971
                                                       0
2
                  M 30
    0 1995
               0
                             Prv 0.8596851 0.8596851
                                                        0
3
    0 1995
               0
                  М
                       35
                             Inc 0.0000000 0.0000000
                                                        0
4
    0 1995
               0
                  M 35
                             Prv 0.000000 0.0000000
                                                        0
5
    0 1995
               0
                   M 40
                             Inc 0.0000000 0.0000000
                                                        0
6
    0 1995
                0
                   M 40
                             Prv 0.0000000 0.0000000
                                                        0
```

Then we attach the number of cases for the specific cancers column by column to get the final analysis dataset:

```
> for( i in dimnames(Atab)[[1]] )
+ {
+ nxt <- as.data.frame( as.table(Atab[i,,,,,2:4,1:2]),
                         responseName=paste("d",i,sep="") )
+ Dfr <- merge( Dfr, nxt, all=TRUE )
+ }
> str( Dfr )
        ame': 99792 obs. of 35 variables:
: Factor w/ 77 levels "0","1","2","3",..: 1 1 1 1 1 1 1 1 1 ...
'data.frame':
 $ age
         : Factor w/ 18 levels "1995","1996",...: 1 1 1 1 1 1 1 1 1 1 ...
 $
  per
 $ DMdur : Factor w/ 6 levels "0","1","2","5",..: 1 1 1 1 1 1 1 1 1 ...
        : Factor w/ 2 levels "M", "F": 2 2 2 2 2 2 1 1 1 1 ...
 $ sex
         : Factor w/ 3 levels "30", "35", "40": 1 1 2 2 3 3 1 1 2 2 ...
 $ t1d
 $ dmprev: Factor w/ 2 levels "Inc", "Prv": 1 2 1 2 1 2 1 2 1 2 ...
 $ YO
         : num 0.13 0 0 0 0 ...
 $ Y
         : num 0.13 0 0 0 0 ...
 $ d0
         : num 0000000000...
```

\$ d	121	: num	0 0	00(0 0 0	000)										
\$ d	122	: num	0 0	00(0 0 0	0 0 0)										
\$ d	126	: num	0 0	00(0 0 0	0 0 0)										
\$ d	128	: num	0 0	000	0 0 0	0 0 0)										
\$ d	133	: num	0 0	000	0 0 0	0 0 0)										
\$ d	151	: num	0 0	000	0 0 0	0 0 0)										
\$ d	170	: num	0 0	000	0 0 0	0 0 0)										
\$ d	182	: num	0 0	00(0 0 0	0 0 0)										
\$ d	183	: num	0 0	00(0 0 0	0 0 0)										
\$ d	184	: num	0 0	00(0 0 0	0 0 0)										
\$ d	191	: num	0 0	00(0 0 0	0 0 0)										
\$ d	192	: num	0 0	000	0 0 0	000)										
\$ d	1101	: num	0 0	000	0 0 0	0 0 0)										
\$ d	1103	: num	0 0	0 0 0	0 0 0	0 0 0)										
\$ d	1113	: num	0 0	0 0 0	0 0 0	0 0 0)										
\$ C	1121	: num	0 0	000	0 0 0	0 0 0)										
\$ C	1131	: num	0 0	000	000	000)										
\$ C	1132	: num	0 0	000	000	000)										
\$ C	1133	: num	0 0	000)										
\$ C	1139	: num	0 0	000)										
ት C ተ 2	1241	: num	0 0)										
ф ф	1242	: num	0 0)										
φ φ a	1243	: mum	0 0)										
ф 2	1249	: num	0 0)										
φ 0 ¢ 2	1201	• 11ulli	0 0)										
φυ		. IIulli	00	000	500	000											
> ap	oply(a	as.ma	trix(Dfr[,-(1:8	8)]),	, 2, s	sum)									
dC) d21	d22	d26	d28	d33	d51	d70	d82	d83	d84	d91	d92	d101	d103	d113	d121	d131
1042	2 5	20	15	24	77	80	184	48	40	25	12	37	38	24	73	35	15
d132	2 d133	d139	d241	d242	d243	d249	d251	d999									
40) 9	30	13	7	18	4	23	217									

3.3 The population rates

From the orginal dataset with the entire cancer registry we can tabulate tumours in the different groups for the entire population, and use the corresponding population figures.

First we tabulate the cancer registry by diagnosis group:

```
> system.time(
+ Ctab <- xtabs( !is.na( doca ) ~ diag +
+
                                        floor( doca-dobt ) +
+
                                        floor( doca ) +
+
                                       sex,
                   data = subset( crg, doca>1995 & doca>dobt ) ) )
+
   user system elapsed
            0.20
   5.21
                     5.43
> str( Ctab )
 xtabs [1:26, 1:108, 1:18, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, "dimnames")=List of 4
  ..$ diag : chr [1:26] "21" "22" "26" "28" ...
..$ floor(doca - dobt): chr [1:108] "0" "1" "2" "3" ...
  ..$ floor(doca) : chr [1:18] "1995" "1996" "1997" "1998" ...
                           : chr [1:2] "M" "F"
  ..$ sex
 - attr(*, "class")= chr [1:2] "xtabs" "table"
- attr(*, "call")= language xtabs(formula = !is.na(doca) ~ diag + floor(doca - dobt) + floor(doca)
```

However, we also want to tabulate the the "all cancers" group, that is the occurrence of the first of all "real" cancers. To that end we create a dataset of the first cancers:

```
> ca.only <- subset( crg, !is.na( doca ) )</pre>
> system.time(
+ ca.first <- aggregate( x = ca.only[,c("dobt","doca")],</pre>
                         by = ca.only[,c("id", "sex")],
                        FUN = min ) )
+
   user system elapsed
  37.24
           0.07
                  37.31
> dim( ca.first )
[1] 615153
> COtab <- xtabs( !is.na( doca ) ~ floor( doca-dobt ) +</pre>
                                     floor( doca ) +
+
                                     sex.
+
                   data = subset( ca.first, doca>1995 & doca>dobt ) )
> str( COtab )
xtabs [1:108, 1:18, 1:2] 6 11 7 13 9 14 4 6 1 3 ...
 - attr(*, "dimnames")=List of 3
  ..$ floor(doca - dobt): chr [1:108] "0" "1" "2" "3"
                        : chr [1:18] "1995" "1996" "1997" "1998" ...
: chr [1:2] "M" "F"
  ..$ floor(doca)
  ..$ sex
 - attr(*, "class")= chr [1:2] "xtabs" "table"
 - attr(*, "call")= language xtabs(formula = !is.na(doca) ~ floor(doca - dobt) + floor(doca) + sex,
```

The other part of the data needed is the poplation risk time, where we use the risk time of the entire population.

```
> data( Y.dk )
> str( Y.dk )
'data.frame':
                     16800 obs. of 6 variables:
$ sex : num 1 1 1 1 1 1 1 1 1 ...
       : num 0011223344...
 $ A
               1971 1971 1971 1971 1971
 $ P
        : num
       : num 1971 1970 1970 1969 1969
 $ C
       : num 19195 17944 17969 18165 18179
 $ Y
 $ upper: num 0 1 0 1 0 1 0 1 0 1 ...
 - attr(*, "Contents")= chr "Population risk time in Denmark, in triangles of a Lexis diagram"
> Ptab <- xtabs( Y ~ A + P + sex, data= subset( Y.dk, P>1994 & P<2013 ) )
> str( Ptab )
xtabs [1:100, 1:18, 1:2] 35899 35347 35031 34349 33308 ...
 - attr(*, "dimnames")=List of 3
 ..$ A : chr [1:100] "0" "1" "2" "3" ...
..$ P : chr [1:18] "1995" "1996" "1997" "1998" ...
  ..$ sex: chr [1:2] "1" "2"
 - attr(*, "class")= chr [1:2] "xtabs" "table"
 - attr(*, "call")= language xtabs(formula = Y ~ A + P + sex, data = subset(Y.dk, P > 1994 & P < 201
```

In order to align these two tables with each other and with the data from the T1D patients we change the dimnames and the names of these, and finally we restrict both tables to ages 0-84:

```
> dimnames( Ptab )[["sex"]] <- dimnames( Ctab )[["sex"]]
> names( dimnames(COtab) )[1:2] <-
+ names( dimnames(Ctab) )[2:3] <-
+ names( dimnames(Ptab) )[1:2] <- c("age","per")
> COtab <- COtab[ 1:85,,]
> Ctab <- Ctab[,1:85,,]
> Ptab <- Ptab[ 1:85,,]
> str( COtab )
num [1:85, 1:18, 1:2] 6 11 7 13 9 14 4 6 1 3 ...
- attr(*, "dimnames")=List of 3
...$ age: chr [1:85] "0" "1" "2" "3" ...
...$ per: chr [1:18] "1995" "1996" "1997" "1998" ...
...$ sex: chr [1:2] "M" "F"
> str( Ctab )
```
```
num [1:26, 1:85, 1:18, 1:2] 0 0 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 4
   ..$ diag: chr [1:26] "21" "22" "26" "28" ...
   ..$ age : chr [1:85] "0" "1" "2" "3" ...
   ..$ per : chr [1:18] "1995" "1996" "1997" "1998" ...
   ..$ sex : chr [1:2] "M" "F"
> str( Ptab )
num [1:85, 1:18, 1:2] 35899 35347 35031 34349 33308 ...
- attr(*, "dimnames")=List of 3
   ...$ age: chr [1:85] "0" "1" "2" "3" ...
   ...$ per: chr [1:18] "1995" "1996" "1997" "1998" ...
   ...$ sex: chr [1:2] "M" "F"
```

With these tables in place we can set up the analysis dataset for the entire population with the same variables as for the T1D patients above, so that we eventually can stack these two.

Note that while we shall use different sets of person years for all cancers and for specific sites for the T1D patients (in columns Y0 and Y, respectively), this is not the case for the total population rates, but we will need two separate columns of person-years (with identical numbers) in the dataset in order to stack it together with the T1D data for the final analysis dataset. Likewise we shall also need the columns t1d, DMdur and dmprev, however with a separate factor level, which is going to be used in the analysis of the rates:

```
> Pfr <- as.data.frame( as.table(Ptab), responseName="Y0" )</pre>
> Pfr$Y <- Pfr$Y0
> nxt <- as.data.frame( as.table(COtab), responseName="d0" )</pre>
> Pfr <- merge( Pfr, nxt, all=TRUE )</pre>
> Pfr$t1d <- factor("NoDM" )</pre>
> Pfr$dmprev <- factor( "Pop" )</pre>
> Pfr$DMdur <- factor( "NoDM" )
> str( Pfr )
         came': 3060 obs. of 9 variables:
    Factor w/ 85 levels "0","1","2","3",..: 1 1 1 1 1 1 1 1 1 1 ...
    Factor w/ 18 levels "1995","1996",..: 1 1 2 2 3 3 4 4 5 5 ...
'data.frame':
 $ age
 $ per
         : Factor w/ 2 levels "M", "F": 2 1 2 1 2 1 2 1 2 1 ...
 $ sex
          : num 34126 35899 33539 35489 32936 ...
 $ YO
 $ Y
                  34126 35899 33539 35489 32936 ...
          : num
 $ d0
          : num 866454108115...
         : Factor w/ 1 level "NoDM": 1 1 1 1 1 1 1 1 1 ...
 $ t1d
 $ dmprev: Factor w/ 1 level "Pop": 1 1 1 1 1 1 1 1 1 ...
 $ DMdur : Factor w/ 1 level "NoDM": 1 1 1 1 1 1 1 1 1 ...
```

Then we attach the number of cases for the specific cancers column by column to get the final analysis dataset for the population:

```
> for( i in dimnames(Ctab)[[1]] )
+ {
+ nxt <- as.data.frame( as.table(Ctab[i,,,]),
                            responseName=paste("d",i,sep="") )
+
+ Pfr <- merge( Pfr, nxt, all=TRUE )
+ }
> Afr <- rbind( Pfr, Dfr )</pre>
> str( Afr )
'data.frame':
                         102852 obs. of 35 variables:
         i Factor w/ 85 levels "0","1","2","3",..: 1 1 1 1 1 1 1 1 1 1 1 ...
: Factor w/ 18 levels "1995","1996",..: 1 1 2 2 3 3 4 4 5 5 ...
: Factor w/ 2 levels "M","F": 2 1 2 1 2 1 2 1 2 1 ...
 $ age
 $ per
 $ sex
          : num 34126 35899 33539 35489 32936 ...
 $ YO
          : num 34126 35899 33539 35489 32936 ...
 $ Y
 $ d0
          : num 866454108115...
          : Factor w/ 4 levels "NoDM", "30", "35", ...: 1 1 1 1 1 1 1 1 1 1 ...
 $ t1d
 $ dmprev: Factor w/ 3 levels "Pop", "Inc", "Prv": 1 1 1 1 1 1 1 1 1 ...
 $ DMdur : Factor w/ 7 levels "NoDM","0","1",..: 1 1 1 1 1 1 1 1 1 ...
```

\$ d21	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d22	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d26	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d28	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d33	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d51	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d70	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d82	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d83	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d84	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d91	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d92	:	\mathtt{num}	0	0	0	1	0	0	0	0	0	0	
\$ d101	:	\mathtt{num}	0	2	0	1	0	1	3	0	1	1	
\$ d103	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d113	:	\mathtt{num}	1	2	0	2	1	0	1	0	3	2	
\$ d121	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d131	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d132	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d133	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d139	:	\mathtt{num}	2	0	3	0	0	2	1	0	1	0	
\$ d241	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d242	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d243	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d249	:	\mathtt{num}	0	0	0	0	0	0	0	0	0	0	
\$ d251	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d999	:	num	5	2	3	0	4	1	5	8	6	2	

3.4 The collected analysis datset

We now have a dataset with events and person-years in the T1D population, classified by sex, age and period of follow-up, diagnosis age and prevalence at 1.1.1995, and of course T1D status (no/diag-age).

```
> print(
+ round( ftable( xtabs( cbind(D=d0,Y=Y0/1000) ~ t1d + dmprev, data=Afr ),
                   col.vars=3:2 ), 1 ), zero.print="." )
+
                    D
                                                   Y
                  Рор
                                     Prv
                                                Рор
     dmprev
                            Inc
                                                          Inc
                                                                    Prv
t1d
NoDM
             442530.0
                                            95492.4
                          113.0
                                    163.0
                                                        137.9
                                                                  125.4
30
                                            .
                  .
35
                          124.0
                                    131.0
                                                         71.8
                                                                   52.1
                   •
                                                 •
40
                          255.0
                                    256.0
                                                         94.7
                                                                   62.6
                   .
                                                 .
> print(
+ round( ftable( xtabs( cbind(D=d0,Y=Y0/1000) ~ t1d + dmprev + DMdur, data=Afr ),
                   col.vars=c(4,1)), 1), zero.print=".")
+
                          D
                                                                  Y
                       NoDM
                                   30
                                             35
                                                       40
                                                               NoDM
                                                                           30
                                                                                     35
                                                                                               40
              t1d
dmprev DMdur
                   442530.0
                                                            95492.4
Рор
       NoDM
                                  .
                                            .
                                                      .
                                                                          .
                                                                                               .
       0
                        •
                                  .
                                            .
                                                                .
                                                      •
                                                                          .
                                                                                     .
                                                                                               •
       1
                                  .
                                            .
                                                      .
                        .
                                                                .
                                                                          .
                                                                                    .
                                                                                              .
       2
                                  •
                                            .
                        .
                                                      .
                                                                .
                                                                          .
                                                                                    .
                                                                                               .
       5
                        .
                                  .
                                            .
                                                      .
                                                                .
                                                                          .
                                                                                    .
                                                                                               .
       10
                                  .
                                            .
                                                                          .
                        .
                                                      .
                                                                .
                                                                                    .
                                                                                              .
       15
                                  •
                                                      •
                                                                          •
                        •
                                            .
                                                                .
                                                                                    .
                                                                                               •
Inc
       NoDM
                        .
                                                                .
                                            9.0
                                                     27.0
       0
                                  9.0
                                                                         15.6
                                                                                    8.0
                                                                                             11.1
                        .
                                                                .
                                                                                    7.7
       1
                                  4.0
                                            7.0
                                                     15.0
                                                                         15.0
                                                                                             10.6
                        .
                                                                .
       2
                                 24.0
                                           21.0
                                                     54.0
                                                                         38.1
                                                                                   19.7
                                                                                             27.0
                        .
                                                                .
                                 39.0
                                           37.0
                                                     89.0
                                                                                   23.0
                                                                                             30.4
       5
                                                                         44.1
                        •
                                                                •
       10
                                 29.0
                                           45.0
                                                     57.0
                                                                         21.8
                                                                                   11.6
                                                                                             13.5
                        .
                                                                .
```

	15	8.0	5.0	13.0	3.4	1.8	2.0
Prv	NoDM						
	0		1.0		0.4	0.3	0.3
	1	1.0			1.9	1.1	1.4
	2	3.0	6.0	17.0	12.2	5.8	7.4
	5	29.0	19.0	43.0	34.5	15.0	18.3
	10	39.0	33.0	72.0	34.7	14.4	17.3
	15	91.0	72.0	124.0	41.7	15.6	17.8

However, we must render age and period continuous variables that take on the mean value of the variables in each observational unit.

```
> Afr <- transform( Afr, A = as.numeric(as.character(age))+0.5,
                 P = as.numeric(as.character(per))+0.5 )
> with( Afr, table( A )
                 )
Α
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5
18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5
36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5 51.5 52.5 53.5
54.5 55.5 56.5 57.5 58.5 59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5
72.5 73.5 74.5 75.5 76.5 77.5 78.5 79.5 80.5 81.5 82.5 83.5 84.5
1332 1332 1332 1332 1332
                   36
                      36
                          36
                             36
                                 36
                                    36
                                        36
                                           36
> with( Afr, table( P ) )
Ρ
1995.5 1996.5 1997.5 1998.5 1999.5 2000.5 2001.5 2002.5 2003.5 2004.5 2005.5 2006.5 2007.5
                5714
                     5714
                          5714
                               5714
                                   5714
 5714
      5714
           5714
                                         5714
                                              5714
                                                   5714
                                                        5714
                                                             5714
2008.5 2009.5 2010.5 2011.5 2012.5
 5714
      5714
           5714
                5714
                     5714
```

The analysis dataset has been set up as a big table, but it is superfluous to include the units where there are no person-years anyway:

```
> with( Afr, ftable( D0=d0>0, Y0=Y0>0, Y=Y>0 ) )
             Y FALSE TRUE
DO
      Y0
FALSE FALSE
               86975
                         61
      TRUE
                   0 11915
TRUE
      FALSE
                   0
                      0
                   0 3901
      TRUE
> Afr <- subset( Afr, Y>0 )
> str( Afr )
'data.frame':
                      15877 obs. of 37 variables:
         : Factor w/ 85 levels "0","1","2","3",..:
                                                      1 1 1 1 1 1 1 1 1 1 ...
 $ age
         : Factor w/ 18 levels "1995", "1996", ...: 1 1 2 2 3 3 4 4 5 5 ...
 $ per
         : Factor w/ 2 levels "M", "F": 2 1 2 1 2 1 2 1 2 1 ...
 $ sex
         : num 34126 35899 33539 35489 32936 ...
 $ YO
                 34126 35899 33539 35489 32936 ...
 $ Y
         : num
 $ d0
           num
                 8 6 6 4 5 4 10 8 11 5
         :
 $ t1d : Factor w/ 4 levels "NoDM","30","35",..: 1 1 1 1 1 1 1 1 1 1 ...
$ dmprev: Factor w/ 3 levels "Pop","Inc","Prv": 1 1 1 1 1 1 1 1 1 ...
 $ DMdur : Factor w/ 7 levels "NoDM","0","1",..: 1 1 1 1 1 1 1 1 1 ...
                 0 0 0 0 0 0 0 0 0 0 ...
         : num
 $ d21
                 0 0 0 0 0 0 0 0 0 0 ...
 $ d22
         : num
                 0 0 0 0 0 0 0 0 0 0 ...
 $ d26
         : num
                 0 0 0 0 0 0 0 0 0 0 ...
 $ d28
         : num
                 0 0 0 0 0 0 0 0 0 0 ...
 $ d33
         : num
                 0 0 0 0 0 0 0 0 0 0 ...
 $ d51
         : num
                 0 0 0 0 0 0 0 0 0 0 0 ...
 $ d70
         : num
                 0 0 0 0 0 0 0 0 0 0 . . .
 $ d82
         : num
 $ d83
         : num 0000000000...
```

\$ d84	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d91	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d92	:	num	0	0	0	1	0	0	0	0	0	0	
\$ d101	:	num	0	2	0	1	0	1	3	0	1	1	
\$ d103	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d113	:	num	1	2	0	2	1	0	1	0	3	2	
\$ d121	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d131	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d132	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d133	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d139	:	num	2	0	3	0	0	2	1	0	1	0	
\$ d241	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d242	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d243	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d249	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d251	:	num	0	0	0	0	0	0	0	0	0	0	
\$ d999	:	num	5	2	3	0	4	1	5	8	6	2	
\$ А	:	num	0	.5	0	. 5	0	.5	0	. 5	0	. 5	0.5 0.5 0.5 0.5 0.5
\$ Р	:	num	19	996	3 1	199	96	19	996	3 1	199	96	1998

3.5 Names and definition of sites

We do not have power to analyse the single subsites of colon, so we introduce two new sites: 24 — Colon (the sum of d241, d242, d243 and d249), and also 251 — Colorectal, the sum of these *and* d25:

```
> Afr$d24 <- with( Afr, d241+d242+d243+d249 )
> Afr$d25 <- Afr$d251
> Afr$d251 <- with( Afr, d24+d25 )
> save( Afr, file="../data/Afrtmp.Rda" )
```

We now rename the diagnosis groups to comply with the NorCAN numbering. For annotation of the cancer sites in question, we get the names of the diagnostic groups:

```
> load( file="../data/conv.Rda" )
> load( file="../data/Afrtmp.Rda" )
> dk.ana <- Afr[,c(3,36,37,7:9,4:6,10:34,38,39)]
> nn <- c("T1D", "DMprev", "DMdur", "y0", "y")
> cbind( names( dk.ana )[4:8], nn )
              nn
[1,] "t1d"
              "T1D"
[2,] "dmprev" "DMprev"
[3,] "DMdur"
              "DMdur"
[4,] "YO"
              "y0"
[5,] "Y"
              "y"
>
         names( dk.ana )[4:8] <- nn
```

```
> names( dk.ana )
                       "P"
 [1] "sex"
              "A"
                                 "T1D"
                                                                       "y"
                                                                                "d0"
                                          "DMprev" "DMdur"
                                                             "y0"
[10] "d21"
                       "d26"
                                 "d28"
                                                             "d70"
                                                                      "d82"
              "d22"
                                          "d33"
                                                   "d51"
                                                                                "d83"
                                                             "d121"
[19] "d84"
              "d91"
                       "d92"
                                 "d101"
                                          "d103"
                                                                      "d131"
                                                   "d113"
                                                                                "d132"
                                                                      "d24"
                                                                                "d25"
[28] "d133"
              "d139"
                       "d241"
                                 "d242"
                                          "d243"
                                                   "d249"
                                                             "d251"
```

Now compute which of the column names in dk.ana match a name in the conv data frame; these should be transferred to the final analysis dataset, and given names as the corresponding NorCAN names.

```
> ( wh <- match( conv$DKnam, names(dk.ana) ) )
[1] 9 NA NA NA NA NA 10 11 NA 35 36 12 NA 13 NA NA 14 NA 16 17 18 19 NA 20 21 NA 22 23 15
[30] NA 24 25 NA NA 27 26 28 29 NA NA 34</pre>
```

```
> dk.ana <- dk.ana[,c(1:8,wh[!is.na(wh)])]
> names( dk.ana )[-(1:8)] <- conv$NCnam[!is.na(wh)]</pre>
```

Before we finally we save the data frame, we make a revision of the factor DMdur, since we are never going to use the duration information for the prevalent cases anyway.

```
> with( dk.ana, table( T1D, DMdur ) )
      DMdur
T1D
       NoDM
                0
                     1
                          2
                                5
                                    10
                                         15
  NoDM 3060
               0
                     0
                          0
                               0
                                    0
                                          0
          0 1175 1177 1371 1565 1525 1598
  30
  35
          0
             228 229
                        325
                             420
                                   402
                                        623
  40
          0 228 228
                       324 420
                                   396
                                        583
> with( dk.ana, table( DMprev, DMdur ) )
      DMdur
DMprev NoDM
               0
                     1
                          2
                               5
                                    10
                                         15
   Pop 3060
               0
                  0
                          0
                               0
                                     0
                                          0
          0 1546 1463 1551 1371 821
                                        277
   Inc
   Prv
          0
               85
                  171 469 1034 1502 2527
> ndur <- nlevels(dk.ana$DMdur)</pre>
> xx <- factor( ifelse( dk.ana$DMprev=="Prv", ndur+1, as.integer(dk.ana$DMdur) ),
                 levels = 1:(ndur+1),
                 labels = c(levels(dk.ana$DMdur),"Unkn") )
+
> dk.ana$DMdur <- factor( xx )</pre>
> with( dk.ana, table( DMprev, DMdur ) )
      DMdur
DMprev NoDM
               0
                     1
                          2
                                5
                                    10
                                         15 Unkn
   Pop 3060
               0
                   0
                          0
                                0
                                     0
                                          0
                                                0
   Inc
          0 1546 1463 1551 1371
                                   821
                                        277
                                                0
   Prv
          0
               0
                    0
                          0
                                0
                                     0
                                          0 5788
> with( dk.ana, table(
                         T1D, DMdur ) )
      DMdur
T1D
                0
                     1
                          2
                                5
                                    10
       NoDM
                                         15 Unkn
  NoDM 3060
               0
                     0
                          0
                                0
                                     0
                                          0
                                                0
  30
          0 1114 1054 1050
                             890
                                        192 3571
                                   540
  35
             216
                  205
                        251
                              241
                                         43 1130
          0
                                   141
  40
             216
                   204
                        250
                             240
                                         42 1087
          0
                                   140
> tt <- xtabs( cbind(D=d0,Y=y/1000) ~ DMdur, data=dk.ana )</pre>
> tt <- tt[c(1:8,8),]</pre>
> tt[8,] <- apply( tt[2:7,], 2, sum )
> rownames(tt)[8] <- "All dur"</pre>
> cbind( Cancers=round( tt[,1], 0 ), "PY(1000)"=round( tt[,2], 1 ) )
        Cancers PY(1000)
NoDM
         442530
                  95492.4
0
              45
                     35.0
1
              26
                     33.6
2
             99
                     85.8
5
            165
                     98.8
10
            131
                     47.9
                      7.4
15
             26
All dur
            492
                    308.6
            550
                    244.3
Unkn
```

Finally we create the country-code and save the data:

```
> dk.ana$Cnt <- "DNK"
> save( dk.ana, file="../data/DKana.Rda" )
```

3.6 Analysis of SMR

We load the dataset and the dataframe with the tumour labels in it:

```
> load( file="../data/DKana.Rda" )
> load( file="../data/conv.Rda" )
> dk.ana <- subset( dk.ana, y0>0 )
> dk.ana$T1 <- Relevel( dk.ana$T1D, list( NoDM=1, T1D=2:4 ) )</pre>
```

3.6.1 All cancers

We first set out the simplest possible analysis with age-period-cohort effects for the baseline rates. First we devise a couple of knots for the splines:

```
> library( splines )
> ( a.kn <- seq(5,80,,7) )
[1] 5.0 17.5 30.0 42.5 55.0 67.5 80.0
> ( p.kn <- seq(1996,2009,,4) )
[1] 1996.000 2000.333 2004.667 2009.000
> ( c.kn <- seq(1920,1990,,6) )
[1] 1920 1934 1948 1962 1976 1990</pre>
```

We then fit 3 models for the RR for T1D patients relative to the general population, using a common shape of the underlying cancer incidence rates as an age-period cohort model with 1 + (7 - 1) + (4 - 1) + (6 - 1) - 1 = 14 parameters². The first model (m3) is one with separate effects for persons diagnosed in ages < 30, 30–35 and 35–40, the second (m1) is a simplification where the three groups are pooled, and the third (mc) is an extension of m3 where each group is subdivided by diabetes status at 1.1.1995:

```
> m3 <- glm( d0 ~ Ns(
                        A, knots=a.kn ) +
                   Ns( P , knots=p.kn ) +
+
                   Ns( P-A, knots=c.kn ) +
+
+
                   T1D,
              offset = log(y0),
+
+
              family = poisson,
                data = dk.ana )
> m1 <- update( m3, . ~ . - T1D + T1 )
> mc <- update( m3, . ~ . - T1D + factor(interaction(T1D,DMprev)) )</pre>
> anova( mc, m3, m1, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    factor(interaction(T1D, DMprev))
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    T1D
Model 3: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    T1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      15796
                  26605
      15799
                  26607 -3 -1.9505
2
                                        0.5827
3
                  26609 -2 -1.8206
                                        0.4024
      15801
```

The tests of the models show that there is no substantial difference between them, and that does not either shown up if we list the estimated RRs from the models:

²There is first an intercept, then the three natural splines, where k knots gives k - 1 parameters, and finally 1 aliased parameter from the linear relationship between P - A and P and A.

```
> round( rbind( ci.exp( m3, subset="T1" ),
                ci.exp( m1, subset="T1" ),
+
                ci.exp( mc, subset="T1" ) ), 3 )
+
                                        exp(Est.)
                                                   2.5% 97.5%
T1D30
                                            1.103 0.980 1.241
T1D35
                                            0.983 0.869 1.111
T1D40
                                            1.057 0.969 1.153
                                            1.049 0.987 1.115
T1T1D
factor(interaction(T1D, DMprev))30.Inc
                                            1.155 0.960 1.390
factor(interaction(T1D, DMprev))35.Inc
                                            1.034 0.867 1.234
factor(interaction(T1D, DMprev))40.Inc
                                            1.105 0.977 1.250
                                            1.070 0.917 1.248
factor(interaction(T1D, DMprev))30.Prv
                                            0.939 0.791 1.114
factor(interaction(T1D, DMprev))35.Prv
factor(interaction(T1D, DMprev))40.Prv
                                            1.013 0.896 1.145
```

In summary, the comparison of the models show that there is no heterogeneity between the six groups of T1D patients w.r.t. the occurrence of cancer; which is also evident in figure 7.1, where the RR estimates from the three models are shown together:

```
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( rbind( ci.exp( m3, subset="T1"),
                  ci.exp( mc, subset="T1" ),
                  ci.exp( m1, subset="T1") )
+
             y = c(4,3,2,c(4,3,2)-0.2,c(4,3,2)-0.4,0.5), 
  txt = c("","","", 
+
+
                    +
+
+
            xlog=TRUE, xtic=c(5:10,15,20)/10, grid=TRUE,
+
            xlab="RR of any cancer, T1D vs. population"
            lwd=4, cex=2, vref=1, col=rep(gray(c(5,8,0)/10),c(3,6,1)) )
```

3.6.2 Analysis by duration

We have also devised a variable indication different time bands after diagnosis:

```
> round(
+ ftable( xtabs( cbind(d0,y0/1000) ~ DMdur + DMprev, data=dk.ana ),
           col.vars=3:2), 1)
                    d0
                                                  V2
                                                 Pop
      DMprev
                   Pop
                             Inc
                                       Prv
                                                           Inc
                                                                     Prv
DMdur
              442530.0
                                            95492.4
NoDM
                             0.0
                                       0.0
                                                           0.0
                                                                     0.0
                            45.0
                                                          34.6
0
                   0.0
                                       0.0
                                                 0.0
                                                                     0.0
1
                   0.0
                            26.0
                                       0.0
                                                 0.0
                                                          33.3
                                                                     0.0
2
                   0.0
                            99.0
                                       0.0
                                                 0.0
                                                          84.9
                                                                     0.0
5
                                                          97.5
                   0.0
                           165.0
                                       0.0
                                                 0.0
                                                                     0.0
10
                   0.0
                           131.0
                                       0.0
                                                 0.0
                                                          46.9
                                                                     0.0
15
                   0.0
                            26.0
                                       0.0
                                                 0.0
                                                           7.2
                                                                     0.0
Unkn
                   0.0
                             0.0
                                     550.0
                                                 0.0
                                                           0.0
                                                                   240.1
```

The above analyses showed virtually no difference between the groups of patients by age at inclusion, so we pool these groups and restrict the analysis to DM patients diagnosed after 1995. Also we fit models with smaller datasets corresponding to more restrictive definitions of T1D:

> levels(dk.ana\$T1D)
[1] "NoDM" "30" "35" "40"
> levels(dk.ana\$DMprev)
[1] "Pop" "Inc" "Prv"

Figure 3.3: Estimated RRs relative to the general population, the different shades of gray correspond to the different models. The upper of the light gray bars are for T1D patients diagnosed after 1995, the lower for those diagnosed before 1.1.1995. There are no significant differences anywhere.

```
> md40 <- update( m3, . ~ . - T1D + DMdur,
                       data=subset( dk.ana, DMprev!="Prv" & y0>0 ) )
> md35 <- update( md40, data=subset( dk.ana, DMprev!="Prv" & y0>0 & T1D %in% levels(T1D)[1:3] ) )
> md30 <- update( md40, data=subset( dk.ana, DMprev!="Prv" & y0>0 & T1D %in% levels(T1D)[1:2] ) )
> anova( md40, update( md40, . ~ . - DMdur + DMprev ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMprev
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      10069
                 24960
                 24967 -5 -7.5658 0.1818
2
      10074
> anova( md35, update( md35, . ~ . - DMdur + DMprev ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
   DMprev
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
       8977
                 24290
2
       8982
                 24295 -5 -5.6827 0.3383
> anova( md30, update( md30, . ~ . - DMdur + DMprev ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
```

```
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
DMprev
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 7880 23826
2 7885 23829 -5 -2.9219 0.712
```

We see that there are formally no effect of duration, but this might well be because of the many degrees of freedom, for the most liberal definition of T1D (and hence also that which likely includes the the largest number of T2D patients), the χ^2 is over 7, hence significant even it were on 2 d.f.

```
> round( cbind( RR40 <- ci.exp( md40, subset="DMdur" ),</pre>
+
                 RR35 <- ci.exp( md35, subset="DMdur"</pre>
        RR30 <- ci.exp( md30, subset="DMdur" ) ), 2 )
exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
+
                                    1.27 0.80 2.01
DMdur0
              1.46 1.09 1.96
                                                           1.46 0.76 2.80
DMdur1
              0.81 0.55 1.18
                                    0.73 0.41 1.33
                                                           0.61 0.23 1.63
                                    0.98 0.74 1.32
DMdur2
              1.02 0.84 1.24
                                                           1.19 0.80 1.78
DMdur5
              1.07 0.92
                         1.25
                                    1.02 0.81
                                                1.28
                                                           1.15 0.84
                                                                       1.58
              1.19 1.00 1.41
DMdur10
                                    1.32 1.05
                                                1.66
                                                           1.13 0.78
                                                                       1.62
              1.10 0.75 1.62
                                    1.07 0.62 1.84
                                                           1.46 0.73
                                                                       2.92
DMdur15
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( rbind(NA,RR40),
            txt=c("Years since DM", "0-1", "1-2", "2-5", "5-10", "10-15", "15+"),
+
            xlog=TRUE, xtic=c(3:10,15,20,25,30)/10, grid=TRUE,
+
            xlab="RR of any cancer, T1D vs. population",
            lwd=4, cex=2, vref=1, y=c(6.7,6:1)+0.2 )
+
>
 linesEst( rbind(NA,RR35),
+
             lwd=3, cex=1.5, col=gray(0.5), y=7:1 )
 linesEst( rbind(NA,RR30),
>
             lwd=3, cex=1.5, col=gray(0.7), y=7:1-0.15 )
+
```

From figure 7.2 it seems that there is an ascertainment effect for T1DM as well as what have been shown for all diabetes under one. However this is clearly attenuated if a stricter definition of T1D is applied, so we may conjecture that any ascertainment bias is if not confined to, the at least more pronounced among T2D patients.

3.6.3 Site-specific analyses

3.6.3.1 Analyses of site specific cancers

We first set up an array to hold the resulting RRs for each of the sites that we analyse, we do the analyses by sex, but also make a pooled analysis, except for the sex-specific cancers (including breast):

```
> ( vnam <- names(dk.ana)[9:32] )</pre>
 [1] "d0" "d6" "d7" "d9" "d10" "d11" "d13" "d16" "d18" "d19" "d20" "d22"
[13] "d24" "d25" "d27" "d28" "d29" "d32" "d33" "d36" "d37" "d38" "d40" "d52"
> site <- conv[match(vnam,conv$NCnam),"Clab"]</pre>
> RRtab <- NArray( list( site = site,</pre>
                            sex = c(levels(dk.ana$sex), "Both"),
+
                          what = c("N.pop", "N.T1", "RR", "lo", "hi") ) )
> dimnames( RRtab )
$site
                                                      "Stomach"
 [1] "All sites"
                              "Oesophagus"
 [4] "Colon"
                              "Rectum"
                                                      "Liver"
 [7] "Pancreas"
                              "Lung"
                                                      "Breast"
                              "Corpus uteri"
[10] "Cervix uteri"
                                                      "Ovary"
[13] "Prostate"
                              "Testis"
                                                      "Kidney"
[16] "Bladder"
                              "Melanoma of skin"
                                                      "Brain, CNS"
```


Figure 3.4: The effect of duration on the RR of cancer. The two gray sets of effecs are from the models where data are further restricted to patients diagnosed under 35 and 30, respectively.

```
[19] "Thyroid" "Non-Hodgkin lymphoma" "Hodgkin lymphoma"
[22] "Multiple myeloma" "Leukaemia" "Colorectal"
$sex
[1] "M" "F" "Both"
$what
[1] "N.pop" "N.T1" "RR" "lo" "hi"
```

With this fixed we can the make a loop doing the analysis for all sites:

```
> system.time(
  for( i in 1:length(vnam) )
+
+
       Ł
+
       aset <- dk.ana[,c(vnam[i],</pre>
                                  paste("y",if(i==1) "0", sep=""),
"A","P","T1","sex")]
+
+
       names( aset )[1:2] <- c("D", "Y")</pre>
+
+
       mB <- glm(D)
                          ~ Ns ( A, knots=a.kn ) +
                             Ns(P, knots=p.kn) +
Ns(P-A, knots=c.kn) +
+
+
+
                             Τ1,
+
                   offset = log(Y),
+
                   family = poisson,
                      data = aset )
+
       mM <- update( mB, data=subset(aset,sex=="M") )</pre>
+
       mF <- update( mB, data=subset(aset,sex=="F") )</pre>
+
                           ,3:5] <- ci.exp( mM, subset="T1" )
+
       RRtab[i,"M"
       RRtab[i, "F" ,3:5] < ci.exp( mM, Subset= "T1 )
RRtab[i, "F" ,3:5] <- ci.exp( mF, subset="T1" )
RRtab[i, "Both",3:5] <- ci.exp( mB, subset="T1" )
RRtab[i,,1:2] <- addmargins( with( aset, tapply(D,list(sex,T1),sum) ), 1 )</pre>
+
+
+
       })
+
```

user system e	elapsed					
52.57 0.57	32.10					
> RKorg <- KKtab						
<pre>> for(i in 1:dim)</pre>	(RRtab)[1])					
+ for(j in 1:dim)	(RRtab)[2]) if	(RRtab[i,j	,5]==Inf)	RRtab[i, j	,] <- NA
> for(i in 1:dim)	(RRtab)[1]) if	(any(is.na)	(RRtab[i,	,5]==Inf)))	RRtab[i,"Bo	th",] <- NA
<pre>> round(ftable(</pre>	RRtab), 2)					
	what	N.pop	N.T1	RR	lo	hi
site	sex					
All sites	M	222404.00	401.00	1.10	1.00	1.21
	F Doth	220126.00	641.00	1.00	0.92	1.08
Negophagus	M	442530.00	1042.00	1.05	0.99	1.12
desopliagus	F	1826.00	1.00	0.42	0.22	3.00
	Both	6865.00	5.00	0.53	0.22	1.28
Stomach	М	5833.00	6.00	0.72	0.32	1.61
	F	2986.00	14.00	2.65	1.55	4.52
	Both	8819.00	20.00	1.46	0.94	2.27
Colon	M	20463.00	26.00	1.29	0.88	1.91
	r Both	20769.00	16.00	0.73	0.44	1.19
Rectum	M	12585 00	42.00	0.90	0.74	1.55
	F	8224.00	10.00	0.82	0.44	1.52
	Both	20809.00	23.00	0.86	0.57	1.29
Liver	М	3371.00	9.00	2.07	1.07	4.00
	F	1596.00	6.00	2.48	1.10	5.60
D	Both	4967.00	15.00	2.20	1.32	3.67
Pancreas	M	6576 00	15.00	1.87	1.12	3.12
	r Both	13432 00	24 00	1.57	1 09	2.00
Lung	M	37120.00	39.00	1.24	0.91	1.71
0	F	30664.00	38.00	0.98	0.71	1.35
	Both	67784.00	77.00	1.10	0.88	1.38
Breast	М	NA	NA	NA	NA	NA
	F	70345.00	184.00	0.74	0.64	0.86
Corvix utori	Вотп м					
CELVIX ULEII	F	7098 00	48 00	0.85	0 64	1 13
	Both	NA	NA	NA NA	NA	NA
Corpus uteri	М	NA	NA	NA	NA	NA
-	F	11658.00	40.00	2.24	1.64	3.07
-	Both	NA	NA	NA	NA	NA
Uvary	M	NA	NA OF OO	NA 1 O1	NA O CS	
	r Both	10067.00 NA	25.00 NA	1.01 NA	U.08 NA	1.50 NA
Prostate	M	50154.00	12.00	0.53	0.30	0.93
	F	NA	NA	NA	NA	NA
	Both	NA	NA	NA	NA	NA
Testis	М	5210.00	37.00	0.78	0.56	1.07
	F	NA	NA	NA	NA	NA
Vidnor	Both	NA		NA 1 66	NA 1 10	
Kidney	F	3674 00	25.00	1.00 2.27	1.10	2.51
	Both	10045.00	38.00	1.83	1.33	2.52
Bladder	М	20887.00	17.00	0.93	0.57	1.50
	F	7051.00	7.00	0.98	0.46	2.06
	Both	27938.00	24.00	0.93	0.62	1.38
Melanoma of skin	M	10532.00	21.00	0.50	0.32	0.77
	r Roth	12539.00	59.00	0.69	0.54	0.90
Brain, CNS	M	7005.00	31.00	1.15	0.81	1.64
	F	6017.00	42.00	1.49	1.09	2.02
	Both	13022.00	73.00	1.32	1.05	1.67
Thyroid	М	879.00	6.00	1.16	0.52	2.59
	F	2239.00	29.00	1.63	1.13	2.35

	Both	3118.00	35.00	1.59	1.13	2.22
Non-Hodgkin lymphoma	М	7976.00	26.00	1.32	0.90	1.95
	F	6485.00	14.00	0.93	0.55	1.57
	Both	14461.00	40.00	1.14	0.83	1.56
Hodgkin lymphoma	М	1331.00	11.00	1.42	0.78	2.58
	F	968.00	4.00	0.58	0.22	1.56
	Both	2299.00	15.00	1.02	0.61	1.70
Multiple myeloma	М	3571.00	4.00	1.00	0.37	2.68
	F	2608.00	5.00	1.51	0.62	3.66
	Both	6179.00	9.00	1.23	0.64	2.37
Leukaemia	М	7612.00	14.00	1.03	0.61	1.74
	F	5399.00	16.00	1.43	0.87	2.34
	Both	13011.00	30.00	1.20	0.83	1.72
Colorectal	М	33048.00	39.00	1.13	0.82	1.55
	F	28993.00	26.00	0.76	0.51	1.12
	Both	62041.00	65.00	0.94	0.74	1.20

Of course we would also like to see the results as a forest plot, so we extract the relevant quantities for doing this:

```
> eM <- RRtab[,"M",3:5]
> eF <- RRtab[,"F",3:5]
> eB <- RRtab[,"Both",3:5]
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( eB, y=nrow(eM):1, txtpos=nrow(eM):1,
+ col="lightgray", xlog=TRUE,
+ xtic=c(1:10/10,1.5,2:7), xlim=c(0.095,7),
+ grid=TRUE, vref=1, xlab="Cancer incidence RR, T1D vs. population" )
> linesEst( eF, y=nrow(eM):1-0.2, col="red" )
> linesEst( eM, y=nrow(eM):1+0.2, col="blue" )
> text( rep(0.095,dim(RRtab)[1]), dim(RRtab)[1]:1+0.2, RRtab[,"M",2], col="blue", adj=1, cex=0.7 )
> text( rep(0.095,dim(RRtab)[1]), dim(RRtab)[1]:1-0.2, RRtab[,"F",2], col="red" , adj=1, cex=0.7 )
```

We see that the only sites with appreaciable increased RR and sufficiently narrow confidence intervals are liver, pancreas, corpus uteri and kidney; whereas there seems to a lower risk for melanoma, breast and testis cancer among T1D patients.

Figure 3.5: RRs of cancer incidence among T1D patients (i.e. diagnosed < 40 years of age) in Denmark relative to the general population. The numbers to the left are the number of cancers observed among the T1D patients. Men: Blue, Women: Red, Both sexes: Light gray.

Chapter 4

Swedish data

4.1 Reading T1D data

We have the follow-up of some 93,000 diabetes patients in a file:

```
> library( Epi )
> clear()
> SE <- read.csv("../data/diabetesalla.csv",header=T,as.is=TRUE,na.strings="")
> ( names( SE ) <- tolower( names(SE) ) )
[1] "lpnr" "sant_diadat" "sant_foddat"</pre>
                                                          "diaalder"
                                                                            "diaalder39"
 [6] "diaalder34"
                      "diaalder29"
                                        "dodsdat_d"
                                                                           "icd7"
                                                          "canc_alder"
                      "lip"
                                        "oralcavity_all" "tongue"
[11] "candat"
                                                                           "mouth"
[16] "salivary"
                      "pharynx"
                                        "esophagus"
                                                         "stomach"
                                                                           "smallintest"
[21] "colon"
                      "colorect"
                                        "rectal"
                                                          "liver"
                                                                           "gall"
[26] "pancreas"
                      "nose"
                                        "larynx"
                                                          "lung"
                                                                           "pleura"
[31] "bone"
                      "melanoma"
                                                                           "othfemgen"
                                        "softtissue"
                                                          "breast"
[36] "cervix"
                      "corpus"
                                        "othuterus"
                                                         "ovary"
                                                                           "penis"
[41] "prostate"
                      "testis"
                                        "kidney"
                                                                           "eye"
                                                          "bladder"
[46] "brain"
                      "thyroid"
                                        "hodgkin"
                                                          "nonhodgkin"
                                                                           "multmyelom"
[51] "leukemia"
                      "othleukemia"
                                        "acuteleuk"
                                                          "allcancer"
                                                                           "slutuppf_2"
[56] "f_traff"
                      "persondagar"
                                        "kon_ny"
> str(SE[,1:14])
'data.frame':
                     93402 obs. of 14 variables:
                 : int 24 31 34 50 64 66 90 103 114 132 ...
 $ lpnr
                        "1995-10-29" "1999-05-10" "1978-05-22" "1971-10-12"
 $ sant_diadat
                 : chr
                        "1959-10-29" "1960-05-10" "1949-05-22" "1964-10-12" ...
 $ sant_foddat
                 : chr
                 : int 36 39 29 7 34 29 36 11 37 36 ...
 $ diaalder
 $ diaalder39
                : int 1111111111...
 $ diaalder34
                : int 0011110100...
                : int
                        0 0 1 1 0 1 0 1 0 0 ...
 $ diaalder29
                        NA NA "1984-10-11" NA ...
 $ dodsdat_d
                 : chr
                 : int
                        NA ...
 $ canc_alder
 $ icd7
                 : int NA ...
 $ candat
                 : chr NA NA NA NA ...
 $ lip
                 : int
                        NA ...
 $ oralcavity_all: int
                        NA NA NA NA NA NA NA NA NA ...
                        NA ...
 $ tongue
                : int
> ( wh <- union( grep( "dat", names(SE) ),
                 grep( "f_" , names(SE) ) ) )
[1] 2 3 8 11 55 56
> for( i in wh ) SE[,i] <- cal.yr( as.Date(SE[,i]) )</pre>
> head(SE[,wh])
  sant_diadat sant_foddat dodsdat_d candat slutuppf_2 f_traff
                 1959.823
                                  NA
                                              2011.996 2011.996
1
     1995.823
                                         NA
2
     1999.352
                 1960.355
                                  NA
                                         NA
                                              2011.996 2011.996
3
     1978.386
                 1949.387
                           1984.776
                                         NA
                                              2011.996 1984.776
4
     1971.777
                 1964.779
                                  NA
                                         NA
                                              2011.996 2011.996
5
     2010.537
                                              2011.996 2011.996
                 1976.538
                                  NA
                                         NA
6
     2004.305
                 1975.303
                                  NA
                                         NA
                                              2011.996 2011.996
```

```
> cbind( names(SE)[wh], nnam<-c("dodm","dob","dodd","doca","dend","dox") )</pre>
     [,1]
                    [,2]
[1,] "sant_diadat" "dodm"
[2,] "sant_foddat" "dob"
[3,] "dodsdat_d"
                   "dodd"
[4,] "candat"
                   "doca"
[5,] "slutuppf_2"
                   "dend"
[6,] "f_traff"
                   "dox"
         names(SE)[wh]<-nnam
> head(SE[,wh])
      dodm
                dob
                        dodd doca
                                       dend
                                                  dox
1 1995.823 1959.823
                          NA
                               NA 2011.996 2011.996
2 1999.352 1960.355
                                NA 2011.996 2011.996
                          NA
3 1978.386 1949.387 1984.776
                               NA 2011.996 1984.776
4 1971.777 1964.779
                          NA
                                NA 2011.996 2011.996
5 2010.537 1976.538
                          NA
                                NA 2011.996 2011.996
6 2004.305 1975.303
                          NA
                                NA 2011.996 2011.996
```

Now we have one record per person with T1 diabetes with all the relevant dates.

However, the date of birth is artifically created from date of DM diagnosis and age at diagnosis; hence to avoid strange "bumps" in data we create an artificial date of birth. Since the date of birth is made by subtracting the persons integer age at date of diagnosis, the "real" date of birth is somewhere between 0 and 1 year earlier (because the exact age of a, say, 57 year old is somewhere between 57 and $58-\epsilon$):

> SE\$dob <- SE\$dob - runif(nrow(SE))</pre>

This revised dataset is now going to be used for:

- 1. Tabulation of cancer cases by type of cancer, sex, diabetes duration, age at diabetes diagnosis, age and date of diagnosis.
- 2. Tabulation of follow-up time by sex, diabetes duration, age at diabetes diagnosis, age and date of diagnosis.

4.1.1 Checking of data

```
> pairs( SE[!is.na(SE$doca),wh[-5]], gap=0,
+ panel=function(x,y) {points(x,y,pch=16,cex=0.5) ; abline(0,1,col="red")} )
> pairs( SE[sample(1:nrow(SE),5000),wh[-5]], gap=0,
```

```
+ panel=function(x,y) {points(x,y,pch=16,cex=0.5) ; abline(0,1,col="red")} )
```

Also we would like to see the distribution of dates of diagnosis of diabetes and cancer as well as the ages of these:

From figure 8.1 we see there is a strange excess of patients diagnosed in 2010.

Figure 4.1: Pairwise plots for all diabetes patients with a cancer diagnosis. The red lines are identity lines, so all points should be on one side of this line.

4.1.2 Tumour coding

We shall rename the variables in the dataset so that they correspond to the numbering used in NORDCAN, so we align the names of the Swedish data with those in the conversion data frame, and the rename the columns in the Swedish data correspondingly (after checking that the alignment is correct):

> loa	ad("/data/conv.H	Rda")			
> nar	nes(SE)				
[1]	"lpnr"	"dodm"	"dob"	"diaalder"	"diaalder39"
[6]	"diaalder34"	"diaalder29"	"dodd"	"canc_alder"	"icd7"
[11]	"doca"	"lip"	"oralcavity_all"	"tongue"	"mouth"
[16]	"salivary"	"pharynx"	"esophagus"	"stomach"	"smallintest"
[21]	"colon"	"colorect"	"rectal"	"liver"	"gall"
[26]	"pancreas"	"nose"	"larynx"	"lung"	"pleura"
[31]	"bone"	"melanoma"	"softtissue"	"breast"	"othfemgen"
[36]	"cervix"	"corpus"	"othuterus"	"ovary"	"penis"
[41]	"prostate"	"testis"	"kidney"	"bladder"	"eye"
[46]	"brain"	"thyroid"	"hodgkin"	"nonhodgkin"	"multmyelom"
[51]	"leukemia"	"othleukemia"	"acuteleuk"	"allcancer"	"dend"
[56]	"dox"	"persondagar"	"kon_ny"		
> wh	<- c(54,12,14,16,	15,17,18,19,20,2	1,23:30,		
+	.34 .36 .37	39 38 41 42 40 43	3.44.32		

Figure 4.2: Pairwise plots for a random sample of 5000 diabetes patients. The red lines are identity lines, so all points should be on one side of this line.

+		45:47,31,NA,49,48,50,51,NA	,13,22)
>	cbind(conv[,c("NCnam","Clab")],	
+		nam.SE = names(SE)[wh])	
	NCnam	Clab	nam.SE
1	d0	All sites	allcancer
2	d1	Lip	lip
3	d2	Tongue	tongue
4	d3	Salivary glands	salivary
5	d4	Mouth	mouth
6	d5	Pharynx	pharynx
7	d6	Oesophagus	esophagus
8	d7	Stomach	stomach
9	d8	Small intestine	smallintest
10	d9	Colon	colon
11	d10	Rectum	rectal
12	d11	Liver	liver
13	d12	Gallbladder	gall
14	d13	Pancreas	pancreas
15	d14	Nose, sinuses	nose
16	d15	Larynx	larynx
17	d16	Lung	lung
18	d17	Pleura	pleura
19	d18	Breast	breast
20	d19	Cervix uteri	cervix

Figure 4.3: Histograms of dates and ages of diagnosis of diabetes and cancer in the Swedish diabetes data. It is seen that the period 1970–87 used a more sensitive definition of diabetes.

21	d20	Corpus uteri	corpus
22	d22	Övary	ovary
23	d23	Other female genital organs	othuterus
24	d24	Prostate	prostate
25	d25	Testis	testis
26	d26	Penis etc.	penis
27	d27	Kidney	kidney
28	d28	Bladder	bladder
29	d29	Melanoma of skin	melanoma
30	d31	Eye	eye
31	d32	Brain, CNS	brain
32	d33	Thyroid	thyroid
33	d34	Bone	bone
34	d35	Soft tissues	<na></na>
35	d36	Non-Hodgkin lymphoma	nonhodgkin
36	d37	Hodgkin lymphoma	hodgkin
37	d38	Multiple myeloma	multmyelom
38	d40	Leukaemia	leukemia
39	d48	Other and unspecified cancers	<na></na>
40	d51	Oral etc.	oralcavity_all
41	d52	Colorectal	colorect

> names(SE)[wh[!is.na(wh)]] <- d.SE <- conv\$NCnam[!is.na(wh)]
> names(SE)

[1]	"lpnr"	"dodm"	"dob"	"diaalder"	"diaalder39"	"diaalder34"	
[7]	"diaalder29	" "dodd"	"canc_alder"	"icd7"	"doca"	"d1"	
[13]	"d51"	"d2"	"d4"	"d3"	"d5"	"d6"	
[19]	"d7"	"d8"	"d9"	"d52"	"d10"	"d11"	
[25]	"d12"	"d13"	"d14"	"d15"	"d16"	"d17"	
[31]	"d34"	"d29"	"softtissue"	"d18"	"othfemgen"	"d19"	
[37]	"d20"	"d23"	"d22"	"d26"	"d24"	"d25"	
[43]	"d27"	"d28"	"d31"	"d32"	"d33"	"d37"	
[49]	"d36"	"d38"	"d40"	"othleukemia"	"acuteleuk"	"d0"	
[55]	"dend"	"dox"	"persondagar"	"kon_ny"			
> d.,	SE			-			
[1]	"d0" "d1"	"d2" "d3"	"d4" "d5" "d6"	"d7" "d8" "o	d9" "d10" "d1	1" "d12" "d13"	"d14" "d15'
[17]	"d16" "d17"	"d18" "d19'	' "d20" "d22" "d23"	"d24" "d25" "d	d26" "d27" "d2	8" "d29" "d31"	"d32" "d33'
[33]	"d34" "d36"	"d37" "d38'	' "d40" "d51" "d52"				

The variable d.SE now contains the (nicely sorted) names of the variables in the SE data frame that holds the tumour counts for each type of tumour, that will be available from NORDCAN data.

4.2T1D analysis dataset

On the basis of this total dataset with all cancers and diabetes diagnoses, we now set up an analysis dataset, which for the tabulated follow-up of the T1D patients will have the following variables:

• Response variables

dxx no. of events in diagnosis group xx (cancer type)

Y person-years (corresponding to each diagnosis group)

• Classification (explanatory) variables:

sex sex

age age at follow-up, 1-year classes

per date of follow-up, 1 year classes

- DMdur time since diagnosis, left end point of intervals 0, 1, 2, 5, 10, 15, 30
- T1D T1 diabetes status: 30 DM diagnosis < 30, 35 DM diagnosis aged 30-34, 40 - DM diagnosis aged 35-39
- DMprev T1D present at 1.1.1987: Inc/Prv essentially an indicator of whether a particular DM patient is followed from diagnosis.

We furthermore only include follow-up from 1987 (which is the period from which we have population rates — see below), and we define sex as a factor, and the grouping of patients by interval of age at diagnosis:

```
> table(SE$doca>1969,exclude=NULL)
FALSE TRUE <NA>
    9 4421 88972
> SE <- transform( SE, sex = factor( kon_ny, labels=c("M", "F") ),</pre>
                            doe = pmax( dodm, 1987, na.rm=TRUE ),
T1D = pmin( pmax( ceiling((dodm-dob)/5)*5, 30 ), 40 ),
+
+
                        DMprev = factor( dodm<1987, labels=c("Inc", "Prv") ) )</pre>
  table( SE$T1D )
```

30 35 40 56473 14993 21936

The analysis dataset will be constructed from multi-way tables of cases and person-years derived from the dataset of cases.

For the comparison population (which will be the entire population) we will construct a similar dataset. In the population dataset there will of course be a separate value for each of the variables DMdur, T1D and DMprev — these variables will enter the analysis models, and must therefore also be present in the population dataset, but with a special value that allows for a special (reference) level of their effect for the population part of data. Stacking the two datasets appropriately will then enable a joint analysis, similar to an SMR-analysis.

4.2.1 Follow-up of T1D patients

We first construct the follow-up *time* for T1D patients from entry to death, *i.e.* disregarding cancer occurrence as termination of follow-up. We later discuss this omission. Subsequently, we tabulate the number of cancer cases and construct the T1D part of the analysis dataset.

4.2.1.1 Lexis object of total follow-up time

Intuitively, the follow-up would be for T1D patients without cancer¹ from date of diagnosis of T1D (or 1.1.1995) until the end of the follow-up period. However, if we follow persons for *any* type of cancer regardless of other previous cancers, we should logically also follow persons for (other) cancers even if they have a cancer previous to the diagnosis of diabetes (which is what will be done).

We then tabulate the follow-up for the diabetes persons until death or end of 2011 (dend). The point of this is that while tabulation of events is simple (see below), the person-years to be used for a given type of event (cancer diagnosis of a certain type) is from date of entry to date of exit or event date, and hence in principle requires a complete tabulation of person-years for every type of cancer.

But as discussed with the Danish data, we will just use follow-up till death for each of the specific cancer sites, but until cancer for the category of all cancers. In the SE dataset, the variable dox is the exitdate for follow-up for all cancers, so when doing follow-up for the specific cancers we need to follow persons till pmin(dend,dodd), but for all cancers only till dox.

Now we set up a Lexis-object representing follow-up of the T1D patients until death or end of study period (dox), along timescales age, calendar time and duration. We define the state of observation to be "textttnoCA", because we will introduce follow-up after 1st cancer later as a separate state of follow-up, and thus tabulate the follow-up time by this too:

¹Meaning either any cancer or a specific cancer type

Those excluded are those with all follow-up before 1.1.1987 plus a few persons with date of DM diagnosis equal to date of death or end of study.

```
> summary( Lt1 )
Transitions:
     То
       noCa Records: Events: Risk time:
From
                                             Persons:
 noCa 91056
                 91056
                              0
                                   1392555
                                                91056
> system.time(
+ Lc1 <- cutLexis( Lt1, cut = Lt1$doca,
                  new.state = "anyCa"
+
                  precursor = "noCa" ) )
+
  user system elapsed
  9.631
         0.021
                 9.649
> ( ss <- summary( Lc1 )$Transitions )</pre>
Transitions:
     То
         noCa anyCa Records: Events: Risk time:
From
                                                    Persons:
  noCa 87052 4004
                        91056
                                   4004
                                        1369807.0
                                                       91056
                         4004
                                   0
                                                        4004
  anyCa
            0 4004
                                           22748.1
       87052 8008
                        95060
                                   4004
                                         1392555.1
                                                       91056
  Sum
> round( ss[2,5] / ss[3,5] * 100, 1 )
[1] 1.6
```

This Lexis object now represents follow-up through two states; before and after any cancer; we see that the fraction of the follow-up after (any) cancer diagnosis is 1.6%.

We must tabulate the risk time by current age, calendar time and duration, so we split the follow-up by these three factors. Due to memory restrictions we do this separately in 10 chunks of the data:

```
> S.all <- NULL
> n.chunks <- 10
> lm <- round( seq(0,nrow(Lc1),,n.chunks+1) )</pre>
> cat( format(Sys.time()) )
2015-05-06 13:40:18
> system.time(
+ for( i in 1:n.chunks )
+ {
+ whr
      <- (lm[i]+1):(lm[i+1])
                                                    , time.scale="age" )
+ sa
       <- splitLexis( Lc1[whr,],
                                        0:120
                                                     , time.scale="per"
+ sap <- splitLexis(
                                     1987:2012
                            sa ,
                            sap, c(0,1,2,5,10,15,30), time.scale="dur"
+ sapd <- splitLexis(
+ S.all <- rbind( S.all, sapd )
+ cat( "chunk", i, ", now", nrow(S.all), "rows, at", format(Sys.time()), "\n")
+ } )
chunk 1 , now 307130 rows, at 2015-05-06 13:40:38
chunk 2 , now 614245 rows, at 2015-05-06 13:40:58
chunk 3 , now 923362 rows, at 2015-05-06 13:41:18
chunk 4 , now 1230174 rows, at 2015-05-06 13:41:38
chunk 5 , now 1536599 rows, at 2015-05-06 13:41:58
chunk 6 , now 1842666 rows, at 2015-05-06 13:42:18
chunk 7 , now 2150075 rows, at 2015-05-06 13:42:38
chunk 8 , now 2458792 rows, at 2015-05-06 13:42:59
chunk 9 , now 2764681 rows, at 2015-05-06 13:43:20
chunk 10 , now 3073565 rows, at 2015-05-06 13:43:41
   user system elapsed
202.128 0.328 202.387
> summary( Lc1 )
Transitions:
     To
From
         noCa anyCa
                    Records: Events: Risk time:
                                                   Persons:
  noCa 87052
              4004
                        91056
                               4004 1369807.0
                                                      91056
              4004
                        4004
                                   0
                                          22748.1
                                                       4004
  anyCa
            0
        87052 8008
                        95060
                                  4004 1392555.1
                                                      91056
  Sum
```

```
> summary( S.all )
Transitions:
    То
From
           noCa anyCa Records: Events: Risk time:
                                                     Persons:
       3019566 4004
                       3023570
                                    4004 1369807.0
  noCa
                                                        91056
  anyCa
             0 49995
                          49995
                                      0
                                            22748.1
                                                         4004
       3019566 53999
                                    4004 1392555.1
  Sum
                        3073565
                                                        91056
> save( S.all, file="../data/S.all.Rda" )
```

Finally we use this to create a data frame with the total alive-follow-up among the T1D patients:

```
> # load( file="../data/S.all.Rda" )
> S.all <- transform( S.all, A = floor(age),
                             P = floor(per),
                         DMdur = (dur \ge 1) +
+
+
                                  (dur>=2) +
+
                                  (dur>=5)*3 +
+
                                  (dur>=10)*5 +
+
                                  (dur>=15)*5 +
                                  (dur>=30)*15)
> system.time(
+ PYtab <- aggregate( S.all$lex.dur,
                      by = S.all[,c("A", "P", "sex", "T1D", "DMdur", "DMprev", "lex.Cst")],
                     FUN = sum ) )
   user system elapsed
         0.000 23.806
 23.822
> # Only follow-up time prior to first cancer
> PY.noc <- subset( PYtab, lex.Cst=="noCa" )[,c("A","P","sex","T1D","DMdur","DMprev","x")]
> names( PY.noc )
            ייקיי
[1] "A"
                                "T1D"
                                         "DMdur" "DMprev" "x"
                      "sex"
> dim( PY.noc )
[1] 24376
> # Aggregate the follow-up time before AND after cancer diagnosis
> PY.all <- aggregate( PYtab$x,
                       by = PYtab[,c("A", "P", "sex", "T1D", "DMdur", "DMprev")],
                      FUN = sum )
+
> dim( PY.all )
[1] 24411
              7
> names( PY.all )[match("x",names(PY.all))] <- "y"</pre>
> names( PY.noc )[match("x",names(PY.noc))] <- "y0"</pre>
> PYtab <- merge( PY.all, PY.noc )</pre>
> names( PYtab )[c(1:2)] <- c("age","per")</pre>
> str( PYtab )
                     24376 obs. of 8 variables:
'data.frame':
        : num 0000000000...
 $ age
         : num 1987 1987 1987 1988 1988 ...
 $ per
        : Factor w/ 2 levels "M", "F": 2 1 1 2 1 2 1 2 1 2 ...
 $ sex
        : num 30 30 30 30 30 30 30 30 30 30 ...
 $ T1D
 $ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
 $ DMprev: Factor w/ 2 levels "Inc","Prv": 2 1 2 1 1 1 1 1 1 1 ...
        : num 1.35 1.84 2.17 3.89 3.29 ...
 $ y
 $ y0
       : num 1.35 1.84 2.17 3.89 3.29 ...
> head(PYtab)
  age per sex T1D DMdur DMprev
                            Prv 1.349857 1.349857
    0 1987
             F
                30
                       0
1
    0 1987
                            Inc 1.841272 1.841272
2
             М
                30
                       0
3
                            Prv 2.166590 2.166590
    0 1987
             М
                30
                       0
             F
                30
4
    0 1988
                       0
                            Inc 3.886703 3.886703
5
    0 1988
             М
                30
                       0
                            Inc 3.292552 3.292552
6
    0 1989
             F
                30
                       0
                            Inc 1.217798 1.217798
```

```
> ah <- with( PYtab, tapply( y, age, sum ) )</pre>
> ph <- with( PYtab, tapply( y, per, sum ) )</pre>
>
 dh <- with( PYtab, tapply( y, DMdur, sum ) )</pre>
>
 layout( rbind(1:3), widths=c(length(names(ah)),
                              length(names(ph)),
                              30)+2)
 par(mar=c(3,1,1,1), oma=c(0,3,0,0), mgp=c(3,1,0)/1.6, las=1)
>
 >
>
 whl <- 0:9*10+1
>
 axis( side=1, at=aa[whl]-0.5, labels=names(ah)[whl] )
>
 pp <- barplot( ph/1000, space=0, xaxt="n", ylim=c(0,85),</pre>
                col=gray(0.4), border=FALSE, xlab="Date of follow-up" )
4
>
  whl <- 0:8*5+2
 axis( side=1, at=aa[whl]-0.5, labels=names(ph)[whl] )
>
 wd <- c(1,1,3,5,5,15)
>
>
 dd <- barplot( dh[-7]/1000/wd, width=wd, space=0, xaxt="n", ylim=c(0,85),
+
                col=gray(0.4), border=FALSE, xlab="DM duration" )
 axis( side=1 )
>
 mtext( "PYears (1000s) in 1-year intervals", side=2, line=1, outer=TRUE, las=0 )
>
```


Figure 4.4: Distribution of the follow-up time in the T1D patients (till death) by age, date and DM-duration at follow-up.

From figure 4.4 it is seen that the distribution of follow-up time is largely in age-classes where cancer occurrence is quite small.

4.2.1.2 Number of cancer cases

Since we now are going to tabulate the cancer cases we must classify them by age, date and diabetes duration *at date of cancer*, so we define these for all persons in the data frame:

```
> SEca <- transform( subset( SE, !is.na(doca) & doca>doe ),
                      A = floor(doca-dob),
+
+
                      P = floor(doca),
+
                  DMdur = ((doca-dodm) >= 1) +
                          ((doca-dodm)>=2) +
+
                          ((doca-dodm)>=5)*3 +
+
+
                          ((doca-dodm)>=10)*5 +
+
                          ((doca-dodm)>=15)*5 +
                          ((doca-dodm)>=30)*15 )
> dim( SEca )
[1] 4083
           65
> system.time(
+ Catab <- aggregate( SEca[,d.SE],
                       by = SEca[,c("A","P","sex","T1D","DMdur","DMprev")],
+
                      FUN = sum ) )
   user
        system elapsed
  0.923
         0.000
                  0.923
> dim( Catab )
[1] 3040
           45
> names( Catab )[1:2] <- c("age","per")</pre>
> names( Catab )
              "per"
 [1] "age"
                        "sex"
                                  "T1D"
                                           "DMdur"
                                                     "DMprev" "d0"
                                                                        "d1"
                                                                                 "d2"
                                                                                           "d3"
[11] "d4"
              "d5"
                        "d6"
                                  "d7"
                                           "d8"
                                                              "d10"
                                                                        "d11"
                                                                                  "d12"
                                                     "d9"
                                                                                           "d13"
[21] "d14"
              "d15"
                        "d16"
                                  "d17"
                                           "d18"
                                                     "d19"
                                                              "d20"
                                                                        "d22"
                                                                                  "d23"
                                                                                           "d24"
[31] "d25"
                                           "d29"
                                                     "d31"
                                  "d28"
                                                              "d32"
              "d26"
                        "d27"
                                                                        "d33"
                                                                                  "d34"
                                                                                           "d36"
[41] "d37"
                        "d40"
              "d38"
                                  "d51"
                                           "d52"
> names( PYtab )
[1] "age"
             "per"
                       "sex"
                                 "T1D"
                                          "DMdur"
                                                    "DMprev" "v"
                                                                       "v0"
> dim( PYtab )
[1] 24376
              8
> dim( Catab )
[1] 3040
           45
> CaFU <- merge( PYtab, Catab, all=TRUE )</pre>
> dim( CaFU )
[1] 24376
             47
> names( CaFU )
 [1] "age"
              "per"
                        "sex"
                                  "T1D"
                                           "DMdur"
                                                     "DMprev" "y"
                                                                        "v0"
                                                                                  "d0"
                                                                                           "d1"
                                                              "d8"
[11] "dŽ"
              "d3"
                        "d4"
                                  "d5"
                                           "d6"
                                                     "d7"
                                                                        "d9"
                                                                                  "d10"
                                                                                           "d11"
[21] "d12"
              "d13"
                        "d14"
                                  "d15"
                                           "d16"
                                                     "d17"
                                                              "d18"
                                                                        "d19"
                                                                                  "d20"
                                                                                           "d22"
                                                     "d28"
[31] "d23"
              "d24"
                        "d25"
                                  "d26"
                                           "d27"
                                                              "d29"
                                                                        "d31"
                                                                                 "d32"
                                                                                           "d33"
                                                     "d51"
[41] "d34"
              "d36"
                        "d37"
                                  "d38"
                                           "d40"
                                                              "d52"
> save( CaFU, file="../data/SE-CaFU.Rda" )
> load( file="../data/SE-CaFU.Rda" )
```

Thus we now have the dataset of events and follow-up among the T1D patients.

4.3 Reading population data

Now we load the population rates from NORDCAN; they are in a dataframe called Pfr:

```
> load( file="../data/Sweden-NORCAN.RData" )
> str( Pfr )
```

n

'd	ata.fram	e':	850 obs. of 62 variables:	:			
\$	ageg :	int	1 2 3 4 5 6 7 8 9 10				
ֆ Տ	A : per :	num	2.5 7.5 12.5 17.5 22.5 27.5 32.	.5 37.5 42.5 47.5			
\$	P :	num	1988 1988 1988 1988 1988				
\$	sex :	Fact	or w/ 2 levels "M","F": 1 1 1 1	1 1 1 1 1 1			
\$	t1d :	Fact	or w/ 1 level "NoDM": 1 1 1 1 1 or v/ 1 level "Dep": 1 1 1 1 1 1				
Φ \$	YO :	num	251121 245929 272783 289835 314	4322			
\$	Y :	num	251121 245929 272783 289835 314	1322			
\$	d0 :	num	74 30 28 54 65 100 137 206 317	417			
\$	d1 :	int int	0 0 0 0 0 0 0 0 1 4				
φ \$	d2 . d3 :	int	0 0 0 2 0 0 2 3 2 0				
\$	d4 :	int	0 0 0 0 1 1 1 4 4 5				
\$	d5 :	int	0 0 0 0 0 0 0 1 5 3				
\$	d6 :	int	$0 0 0 0 0 0 2 0 2 6 \dots$ 0 0 0 0 0 0 1 5 16 17				
\$	d8 :	int	0 0 0 0 1 1 0 0 2 6				
\$	d9 :	int	0 0 0 0 0 1 5 10 14 17				
\$	d10 :	int	0 0 0 0 0 1 3 4 14 19				
Փ \$	d11 : $d12$:	int					
\$	d13 :	int	0 0 0 1 0 1 1 2 7 15				
\$	d14 :	int	0 0 0 0 1 0 0 0 0 3				
\$ ¢	d15 :	int int	0 0 0 0 0 0 0 0 2 2				
φ \$	d10 . d17 :	int	0 0 0 0 0 0 0 0 4 8				
\$	d18 :	int	0 0 0 0 0 0 0 0 0 2				
\$	d19 :	int	NA N				
ֆ Տ	d20 :	int int	NA N				
\$	d22 :	int	NA .	· · ·			
\$	d23 :	int	NA .				
\$ ¢	d24 :	int int	$0 0 0 0 0 0 0 1 3 12 \dots$ 2 1 0 7 17 31 32 40 24 12				
\$	d26 :	int	1 1 0 0 0 0 0 4 2 1				
\$	d27 :	int	4 1 0 0 1 0 2 5 17 28				
\$	d28 :	int	1 0 0 0 1 2 6 10 24 35				
Φ \$	d29 : d30 :	int	0 0 0 2 1 3 8 12 6 16				
\$	d31 :	int	4 0 0 0 0 2 2 0 2 4				
\$	d32 :	int	20 12 11 14 11 18 27 26 30 33 .				
\$	d33 : d34 ·	int	$0 0 0 2 0 2 3 6 10 2 \dots$				
\$	d35 :	int	4 0 0 1 3 2 0 1 5 8				
\$	d36 :	int	5 1 3 4 6 5 2 12 23 21				
\$ ¢	d37 :	int int	0 0 1 8 5 12 11 9 6 2				
φ \$	d40 :	int	25 12 8 4 5 3 6 8 7 12				
\$	d41 :	int	NA .				
\$	d42 :	int	NA				
ֆ Տ	d43 : d44 :	int int	NA N				
\$	d45 :	int	NA .	· · ·			
\$	d46 :	int	NA .				
\$ ¢	d47 :	int int	NA N				
\$	d40 :	int	74 30 28 56 66 103 145 218 323	433			
\$	d50 :	int	74 30 28 54 65 100 137 206 317	417			
\$ ¢	d51 :	int	0 0 0 2 1 1 3 11 13 19				
Ф \$	DMdur :	Fact	or w/ 1 level "NoDM": 1 1 1 1 1	1 1 1 1 1			
-	attr(*,	"sta	tus.info")= chr "Survo data file	e FICA: record=171 bytes,	M1=74 L=64	M=61 N	∛= 850"
-	attr(*,	"sta	tus.description") = chr		(ПППП)		
-	attr(*,	"sta	tus.varname")= chr "AGEG Ag	ge group	(####)		

```
" "4A-
 - attr(*, "status.vartype")= chr "1A
                                            " "4A-
                                                       " "4A-
                                                                            " ...
 - attr(*, "status.varlen")= int 1 4 4 4 1 1 1 4 8 4 ...
> Pfr[1:10,1:13]
                        P sex t1d dmprev
                                                       Y
           A per
                                               Y0
                                                          d0 d1 d2 d3
   ageg
1
         2.5 1987 1987.5
                          M NoDM
                                      Pop 251121 251121
                                                          74
                                                              0
                                                                  0
                                                                     0
      1
2
      2
        7.5 1987 1987.5
                            M NoDM
                                      Pop 245929 245929
                                                          30
                                                              0
                                                                  0
                                                                     0
3
      3 12.5 1987 1987.5
                                      Pop 272783 272783
                                                          28
                                                              0
                            M NoDM
                                                                  0
                                                                     0
4
      4 17.5 1987 1987.5
                            M NoDM
                                      Pop 289835 289835
                                                          54
                                                              0
                                                                  0
                                                                     2
5
      5 22.5 1987 1987.5
                                      Pop 314322 314322
                            M NoDM
                                                          65
                                                              0
                                                                  0
                                                                     0
6
      6 27.5 1987 1987.5
                            M NoDM
                                      Pop 285257 285257
                                                         100
                                                              0
                                                                  0
                                                                     0
7
      7 32.5 1987 1987.5
                            M NoDM
                                      Pop 294904 294904 137
                                                              0
                                                                  0
                                                                     2
8
      8 37.5 1987 1987.5
                            M NoDM
                                      Pop 318215 318215 206
                                                              0
                                                                  3
                                                                     3
9
      9 42.5 1987 1987.5
                            M NoDM
                                      Pop 337540 337540 317
                                                              1
                                                                  1
                                                                     2
                                                                  7
10
     10 47.5 1987 1987.5
                            M NoDM
                                      Pop 253929 253929 417
                                                              4
                                                                     0
> Pfr <- transform( Pfr, y = Y, y0 = Y0, DMprev=dmprev, T1D=t1d )
```

The final analysis dataset is now contructed by stacking the follow-up for the T1D patients and the population as a whole:

```
> CaFU <- transform( CaFU, A = age+0.5,
                            P = per+0.5,
+
                          T1D = factor(T1D),
+
                        DMdur = factor(DMdur) )
 ( avars <- c("sex", "A", "P", "T1D", "DMprev", "DMdur", "y0", "y", d.SE)</pre>
>
                                                              "y0"
              "A"
                        "P"
                                  "T1D"
                                           "DMprev" "DMdur"
                                                                        "v"
                                                                                  "0b"
 [1] "sex"
                                                                                           "d1"
[11] "d2"
              "d3"
                        "d4"
                                  "d5"
                                           "d6"
                                                     "d7"
                                                               "d8"
                                                                        "d9"
                                                                                  "d10"
                                                                                           "d11"
[21] "d12"
              "d13"
                        "d14"
                                  "d15"
                                           "d16"
                                                     "d17"
                                                               "d18"
                                                                        "d19"
                                                                                           "d22"
                                                                                  "d20"
[31] "d23"
                                           "d27"
              "d24"
                        "d25"
                                  "d26"
                                                     "d28"
                                                               "d29"
                                                                        "d31"
                                                                                  "d32"
                                                                                           "d33"
[41] "d34"
              "d36"
                        "d37"
                                  "d38"
                                           "d40"
                                                     "d51"
                                                               "d52"
> se.ana <- rbind( Pfr[,avars], CaFU[,avars] )</pre>
> se.ana[is.na(se.ana)] <- 0</pre>
> str( se.ana )
'data.frame':
                      25226 obs. of 47 variables:
        : Factor w/ 2 levels "M", "F": 1 1 1 1 1 1 1 1 1 ...
 $ sex
 $ A
         : num 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5
 $
  Ρ
         : num
                1988 1988 1988 1988 1988
         : Factor w/ 4 levels "NoDM","30","35",..: 1 1 1 1 1 1 1 1 1 ...
 $ T1D
 $ DMprev: Factor w/ 3 levels "Pop","Inc","Prv": 1 1 1 1 1 1 1 1 1 1 ...
 $ DMdur : Factor w/ 8 levels "NoDM", "0", "1", ... 1 1 1 1 1 1 1 1 1 ...
         : num 251121 245929 272783 289835 314322 ...
 $ y0
$у
                 251121 245929 272783 289835 314322 ...
         : num
 $ d0
         :
           num
                 74 30 28 54 65 100 137 206 317 417 ...
                0 0 0 0 0 0 0 0 1 4 ...
 $ d1
         : num
                0 0 0 0 0 0 0 3 1 7 ...
 $ d2
         : num
 $ d3
         : num
                0 0 0 2 0 0 2 3 2 0 ...
                0 0 0 0 1 1 1 4 4 5 ...
 $ d4
         : num
                 0 0 0 0 0 0 0 1 5 3 ...
 $ d5
         : num
                 0 0 0 0 0 0 2 0 2 6 ...
 $ d6
           num
         :
                0 0 0 0 0 0 1 5 16 17 ...
 $ d7
         : n11m
 $ d8
                0 0 0 0 1 1 0 0 2 6 ...
         : num
                0 0 0 0 0 1 5 10 14 17 ...
 $ d9
         : num
 $ d10
         : num
                0 0 0 0 0 1 3 4 14 19 ...
                 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 3 \ 2 \ 1 \ 4 \ \ldots
 $ d11
           \mathtt{num}
         :
                0 0 0 0 0 0 0 1 3 3 ...
 $ d12
         : num
 $ d13
         : num
                0 0 0 1 0 1 1 2 7 15 ...
 $ d14
         : num
                0 0 0 0 1 0 0 0 3 ...
                0 0 0 0 0 0 0 0 2 2 ...
 $ d15
         : num
                 0 0 0 0 1 0 4 7 20 37 ...
 $ d16
         : num
                0 0 0 0 0 0 0 0 4 8 ...
 $ d17
         : num
 $ d18
         : num
                0 0 0 0 0 0 0 0 0 2 ...
 $ d19
         : num
                0 0 0 0 0 0 0 0 0 0 ...
                0 0 0 0 0 0 0 0 0 0 ...
 $ d20
         : num
                 0 0 0 0 0 0 0 0 0 0 ...
 $ d22
         1
           num
                0 0 0 0 0 0 0 0 0 0 ...
 $ d23
         : num
 $ d24
         : num 00000001312...
```

```
> se.ana <- transform( se.ana,
+ DMprev = Relevel( T1D, list( Pop=1, Inc=2:4 ) ),
+ Cnt = "SWE" )
> save( se.ana, file="../data/SEana.Rda" )
> library( Epi )
> library( splines )
> options( width=90 )
> clear()
```

4.4 Analysis of Swedish data

We load the dataset and the data frame with the tumour labels in it:

```
> load( file="../data/SEana.Rda" )
> load( file="../data/conv.Rda" )
```

We define a factor pooling the ages at diagnosis, t1:

```
> se.ana <- transform( subset( se.ana, y0>0 & P>1987 ),
                         T1 = Relevel(T1D)
                                         list(NoDM=1,T1D=2:nlevels(T1D)) ) )
> with( se.ana,
+
 round( cbind( tt <- addmargins( tapply(d0, list( P, T1D ), sum ), 1 ),</pre>
                 T1D = apply( tt[,-1], 1, sum ) ) ))
         NoDM
                 30
                    35
                           40
                               T1D
1987.5
        34084
                 22
                           13
                     14
                                49
        34000
                 22
                                 62
1988.5
                     13
                           27
1989.5
        34023
                 28
                     18
                           17
                                63
1990.5
        34493
                 30
                      8
                           13
                                51
1991.5
        34756
                 30
                     21
                                77
                           26
                 32
1992.5
        34844
                     14
                           20
                                66
1993.5
        35392
                 38
                     17
                           36
                                91
1994.5
        35835
                 45
                      23
                           26
                                94
                               108
1995.5
        35354
                 50
                     16
                           42
1996.5
                     32
                               108
        35577
                 42
                           34
1997.5
        35743
                 72
                     21
                           38
                               131
        36503
                     26
1998.5
                 65
                           46
                               137
1999.5
        37827
                 62
                      33
                           45
                               140
        37960
2000.5
                 85
                     40
                               175
                           50
2001.5
        38615
                 95
                     33
                           55
                               183
2002.5
        39395
                 79
                     27
                           71
                               177
2003.5
        40918
                 90
                     48
                           70
                               208
2004.5
        42262
                117
                      47
                           80
                               244
2005.5
        42019
                109
                     51
                           70
                               230
2006.5
        41662
                117
                      54
                           78
                               249
2007.5
        41710
                119
                     39
                           76
                               234
2008.5
        42289
                117
                     53
                           93
                               263
2009.5
        44700
                143
                     62
                          120
                               325
2010.5
        44640
                137
                     57
                          110
                               304
        44855
2011.5
                140
                     81
                           93
                               314
       959456 1886 848 1349 4083
Sum
```

Thus we have 4,083 cases of cancer among the T1D patients, and close to 1 mil. in the reference population over the study period.

4.4.1 All cancers

We first set out the simplest possible analysis with age-period-cohort effects for the baseline rates. First we devise a couple of knots for the splines:

```
> with( se.ana, rbind(
+ A = quantile( rep( A,d0), 0:10/10 ),
   P = quantile(rep(P, d0), 0:10/10),
+
   C = quantile( rep(P-A,d0), 0:10/10 ) ) )
0% 10% 20% 30% 40% 50%
+
                                          50%
                                                 60%
                                                         70%
                                                                80%
                                                                        90%
                                                                              100%
                                                72.5
     2.5
           47.5
                  57.5
                          62.5
                                 67.5
                                         67.5
                                                        72.5
                                                               77.5
                                                                       82.5
Α
                                                                              95.5
P 1987.5 1989.5 1992.5 1995.5 1998.5 2000.5 2003.5 2005.5 2007.5 2009.5 2011.5
C 1905.0 1916.0 1921.0 1925.0 1928.0 1932.0 1937.0 1941.0 1946.0 1954.0 2009.0
> ( a.kn <- seq(5,80,,7) )
[1] 5.0 17.5 30.0 42.5 55.0 67.5 80.0
> ( p.kn <- seq(1989,2009,,5) )
[1] 1989 1994 1999 2004 2009
> ( c.kn <- seq(1915,1960,,6) )
[1] 1915 1924 1933 1942 1951 1960
```

We then fit models for the RR for T1D patients relative to the general population, using a common shape of the underlying cancer incidence rates as an age-period cohort model with 1 + (7 - 1) + (5 - 1) + (6 - 1) - 1 = 15 parameters². The first model (m3) is one with separate effects for persons diagnosed in ages < 30, 30–35 and 35–40, the second (m1) is a simplification where the three groups are pooled:

```
> m3 <- glm( d0 ~ Ns(
                       A, knots=a.kn ) +
                  Ns(P, knots=p.kn) +
                  Ns( P-A, knots=c.kn ) +
+
+
                  T1D + sex,
+
             offset = log(y0),
+
             family = poisson,
               data = se.ana )
> m1 <- update( m3, . ~. - T1D + T1 )
> anova( m3, m1, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
   T1D + sex
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    sex + T1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      25207
                 59599
2
                 59602 -2 -2.7938
                                     0.2474
      25209
> round( rbind( ci.exp( m3, subset="T1" ),
                ci.exp( m1, subset="T1" ) ), 3 )
      exp(Est.)
                 2.5% 97.5%
          0.971 0.928 1.016
T1D30
T1D35
          1.033 0.966 1.105
T1D40
          1.016 0.963 1.071
T1T1D
          0.998 0.968 1.029
```

It appears that the risk of cancer is the same in all groups of age at diagnosis; which is also evident in figure 7.1, where the RR estimates from the three models are shown together:

²There is first an intercept, then the three natural splines, where k knots gives k - 1 parameters, and finally 1 aliased parameter from the linear relationship between P - A and P and A.

Figure 4.5: Estimated RRs relative to the general population in two different models. There is no significant differences between the ages at DM diagnosis.

4.4.2 Analysis by duration

30

296.0

16.2

1823.2

We have also have a variable DMdur indicating different time bands after diagnosis:

```
> tt <- xtabs( cbind(d0,y0=y0/1000,r=y0) ~ T1D + DMdur, data=se.ana )
> tt[,,3] <- tt[,,"d0"]/tt[,,"y0"]*100</pre>
y0
                                        r
T1D DMdur
NoDM NoDM
             959456.0 217267.1
                                    441.6
                  0.0
     0
                            0.0
                                      NaN
                  0.0
                            0.0
                                      NaN
     1
     2
                  0.0
                            0.0
                                      NaN
     5
                  0.0
                            0.0
                                      NaN
     10
                  0.0
                            0.0
                                      NaN
                  0.0
                            0.0
     15
                                      NaN
     30
                  0.0
                            0.0
                                      NaN
30
     NoDM
                  0.0
                            0.0
                                     NaN
                 27.0
                           30.5
                                     88.5
     0
                  9.0
                           29.5
                                     30.6
     1
     2
                 32.0
                           83.9
                                     38.1
     5
                 73.0
                          130.8
                                    55.8
     10
                 93.0
                          119.6
                                     77.7
     15
                490.0
                          295.5
                                    165.8
     30
               1162.0
                          200.4
                                    579.7
35
     NoDM
                  0.0
                            0.0
                                      NaN
     0
                 19.0
                            8.9
                                   214.5
                  9.0
                            8.7
                                    103.6
     1
     2
                 27.0
                           25.0
                                    107.9
     5
                 67.0
                           39.4
                                    170.2
     10
                 95.0
                           34.6
                                   274.2
     15
                386.0
                           70.3
                                   548.7
                           19.1
     30
                245.0
                                   1282.3
40
     NoDM
                  0.0
                            0.0
                                      NaN
                                   274.8
     0
                 40.0
                           14.6
                 16.0
                           14.2
                                    112.8
     1
     2
                 59.0
                           40.3
                                    146.5
                147.0
     5
                           59.3
                                    247.9
     10
                169.0
                           46.9
                                    360.3
                622.0
                                   757.9
     15
                           82.1
```

```
> md40 <- update( m1 , . ~ . - T1 + DMdur )
> md35 <- update( md40, data=subset(se.ana,T1D %in% levels(T1D)[- 4 ]) )
> md30 <- update( md40, data=subset(se.ana,T1D %in% levels(T1D)[-(3:4)]) )</pre>
```

We see that there a very strong effect of duration, and that it is the same regardless of the age cut-off:

```
> round( cbind( RR40 <- ci.exp( md40, subset=c("t1","DMdur") ),</pre>
                   RR35 <- ci.exp( md35, subset=c("t1", "DMdur") )
RR30 <- ci.exp( md30, subset=c("t1", "DMdur") )
2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.)
                                                                           ), 3)
2.5% 97.5%
+
         exp(Est.)
DMdur0
              2.736 2.214 3.380
                                        3.251 2.435 4.341
                                                                   3.613 2.477 5.270
DMdur1
              1.026 0.733 1.436
                                        1.216 0.766 1.930
                                                                   1.175 0.611 2.258
              1.060 0.885 1.269
                                        1.191 0.923 1.537
                                                                   1.275 0.901 1.803
DMdur2
DMdur5
              1.212 1.080 1.361
                                        1.293 1.096 1.527
                                                                   1.350 1.073 1.699
DMdur10
              1.156 1.042 1.282
                                         1.254 1.087 1.447
                                                                   1.215 0.992 1.489
              1.008 0.958 1.060
                                        1.052 0.985 1.124
                                                                   1.053 0.964 1.150
DMdur15
DMdur30
              0.905 0.863 0.949
                                         0.883 0.838 0.931
                                                                   0.891 0.841 0.943
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6
                                               > plotEst( rbind(NA,RR40),
             txt=c("Years since DM", "0-1", "1-2", "2-5", "5-10", "10-15", "15-30", "30+"),
                  xlog=TRUE, xtic=c(c(5:10,15,20,25)/10,3:6), grid=TRUE,
xlab="RR of any cancer, T1D vs. population",
+
                  lwd=4, cex=2, vref=1, y=c(7.7,7:1)+0.2 )
  linesEst( rbind(NA,RR35),
>
              lwd=3, cex=1.5, col=gray(0.5), y=8:1 )
+
  linesEst( rbind(NA,RR30),
>
              lwd=3, cex=1.5, col=gray(0.7), y=8:1-0.15 )
```


Figure 4.6: The effect of duration on the RR of cancer. The two gray sets of effects are from the models where data are further restricted to patients diagnosed under 35 and 30, respectively.

From figure 7.2 it seems that there is a strong ascertainment effect for T1DM as well as what have been shown for all diabetes under one, and it is not attenuated if a stricter definition of T1D is applied.

4.4.3 Site-specific analyses

4.4.3.1 Analyses of site specific cancers

With the above results in mind, we first set up an array to hold the resulting RRs for each of the sites that we analyse. We also do the analyses by sex, but also make a pooled analysis, except for the sex-specific cancers (including breast):

```
> wh <- c(9,46,15,16,18,19,47,20,22,25,37,27:30,32,33,35,36,39,40,42:45)
> ( vnam <- names(se.ana)[wh] )</pre>
[1] "d0" "d51" "d6" "d7" "d9" "d10" "d52" "d11" "d13" "d16" "d29" "d18" "d19" "d20"
[15] "d22" "d24" "d25" "d27" "d28" "d32" "d33" "d36" "d37" "d38" "d40"
> cbind( wh, site <- conv[match(vnam,conv$NCnam),"Clab"] )</pre>
      wh
 [1,] "9" "All sites"
 [2,] "46" "Oral etc."
 [3,] "15" "Oesophagus"
 [4,] "16" "Stomach"
 [5,] "18" "Colon"
 [6,] "19" "Rectum"
 [7,] "47" "Colorectal"
 [8,] "20" "Liver"
 [9,] "22" "Pancreas"
[10,] "25" "Lung"
[11,] "37" "Melanoma of skin"
[12,] "27" "Breast"
[13,] "28" "Cervix uteri"
[14,] "29" "Corpus uteri"
[15,] "30" "Ovary"
[16,] "32" "Prostate"
[17,] "33" "Testis"
[18,] "35" "Kidnev"
[19,] "36" "Bladder"
[20,] "39" "Brain, CNS"
[21,] "40" "Thyroid"
[22,] "42" "Non-Hodgkin lymphoma"
[23,] "43" "Hodgkin lymphoma"
[24,] "44" "Multiple myeloma"
[25,] "45" "Leukaemia"
> RRtab <- NArray( list( site = site,</pre>
                          sex = c(levels(se.ana$sex), "Both"),
+
+
                          what = c("N.Pop", "N.T1D", "RR", "lo", "hi") ) )
> dimnames( RRtab )
$site
[1] "All sites"
                             "Oral etc."
                                                     "Oesophagus"
 [4] "Stomach"
                             "Colon"
                                                     "Rectum"
 [7] "Colorectal"
                             "Liver"
                                                     "Pancreas"
[10] "Lung"
                             "Melanoma of skin"
                                                     "Breast"
[13] "Cervix uteri"
                             "Corpus uteri"
                                                     "Ovary"
[16] "Prostate"
                             "Testis"
                                                     "Kidney"
                             "Brain, CNS"
[19] "Bladder"
                                                     "Thyroid"
[22] "Non-Hodgkin lymphoma" "Hodgkin lymphoma"
                                                     "Multiple myeloma"
[25] "Leukaemia"
$sex
[1] "M"
           "F"
                  "Both"
$what
[1] "N.Pop" "N.T1D" "RR"
                             "lo"
                                     "hi"
```

With this fixed we can the make a loop doing the analysis for all sites:

```
> system.time(
+ for( i in 1:length(vnam) )
+
      cat( i, wh[i], site[i], "\n" )
+
      aset <- se.ana[,c(vnam[i],</pre>
+
                           paste("y",if(i==1) "0", sep=""),
"A","P","T1","sex")]
+
+
     +
+
+
                       Ns( P-A, knots=c.kn ) +
+
+
                       Τ1,
+
               offset = log(Y),
+
               family = poisson,
+
                 data = aset )
+
     mM <- update( mB, data=subset(aset,sex=="M") )</pre>
+
     mF <- update( mB, data=subset(aset,sex=="F") )</pre>
                     ,3:5] <- ci.exp( mM, subset="T1" )
     RRtab[i,"M", 3:5] <- ci.exp(mM, subset="T1")
RRtab[i,"F", 3:5] <- ci.exp(mF, subset="T1")
RRtab[i,"Both",3:5] <- ci.exp(mB, subset="T1")
RRtab[i,"Both",3:5] <- ci.exp(mB, subset="T1")
+
+
+
     RRtab[i,,1:2] <- addmargins( with( aset, tapply(D,list(sex,T1),sum) ), 1 )</pre>
+
     })
+
1 9 All sites
2 46 Oral etc.
3 15 Oesophagus
4 16 Stomach
5 18 Colon
6 19 Rectum
7 47 Colorectal
8 20 Liver
9 22 Pancreas
10 25 Lung
11 37 Melanoma of skin
12 27 Breast
13 28 Cervix uteri
14 29 Corpus uteri
15 30 Ovary
16 32 Prostate
17 33 Testis
18 35 Kidney
19 36 Bladder
20 39 Brain, CNS
21 40 Thyroid
22 42 Non-Hodgkin lymphoma
23 43 Hodgkin lymphoma
24 44 Multiple myeloma
25 45 Leukaemia
   user system elapsed
 28.900
          0.085 28.978
> RRorg <- RRtab
> RRtab <- RRorg
> for(i in 1:dim(RRtab)[1])
+ for(j in 1:dim(RRtab)[2]) if( RRtab[i,j,5]==Inf ) RRtab[i, j ,] <- NA > for(i in 1:dim(RRtab)[1]) if(any(is.na(RRtab[i, ,5]==Inf))) RRtab[i,"Both",] <- NA
> round( ftable( RRtab ), 2 )
                               what
                                        N.Pop
                                                     N.T1D
                                                                    RR
                                                                                lo
                                                                                            hi
site
                         sex
All sites
                        М
                                    503211.00
                                                   1892.00
                                                                  0.90
                                                                              0.86
                                                                                          0.94
                        F
                                    456245.00
                                                   2191.00
                                                                  1.13
                                                                              1.08
                                                                                          1.18
                        \mathtt{Both}
                                    959456.00
                                                   4083.00
                                                                  1.01
                                                                              0.98
                                                                                          1.04
Oral etc.
                        М
                                     11894.00
                                                     76.00
                                                                  1.17
                                                                              0.93
                                                                                          1.46
                        F
                                      6611.00
                                                     36.00
                                                                  1.21
                                                                              0.87
                                                                                         1.68
                                                                              1.01
                        Both
                                     18505.00
                                                   112.00
                                                                  1.21
                                                                                         1.46
Oesophagus
                        М
                                       6253.00
                                                     29.00
                                                                  1.04
                                                                              0.72
                                                                                          1.49
                        F
                                       2301.00
                                                     14.00
                                                                  2.01
                                                                              1.19
                                                                                         3.41
                        Both
                                       8554.00
                                                     43.00
                                                                  1.30
                                                                              0.96
                                                                                         1.75
```

Stomach	M F	$15546.00 \\ 9424.00$	64.00 39.00	$1.21 \\ 1.47$	0.95 1.07	1.55 2.02
Colon	Both	24970.00	103.00	1.34	1.10	1.62
	M	35888.00	174.00	1.26	1.08	1.46
	F	36313.00	119.00	1.10	0.92	1.32
Rectum	Both	72201.00	293.00	1.20	1.07	1.34
	M	24608.00	85.00	0.82	0.67	1.02
	F	18648.00	59.00	0.91	0.71	1.18
Colorectal	Both	43256.00	144.00	0.88	0.74	1.03
	M	60496.00	259.00	1.07	0.95	1.21
	F	54961.00	178.00	1.03	0.89	1.19
Liver	Both	115457.00	437.00	1.07	0.97	1.17
	M	7689.00	44.00	1.44	1.07	1.94
	F	4810.00	17.00	1.23	0.76	1.98
Pancreas	Both	12499.00	61.00	1.42	1.10	1.82
	M	11655.00	52.00	1.08	0.82	1.42
	F	11797.00	30.00	0.84	0.59	1.20
Lung	Both	23452.00	82.00	0.98	0.79	1.22
	M	42561.00	135.00	0.79	0.67	0.94
	F	30092.00	128.00	1.01	0.85	1.20
Melanoma of skin	Both M F	72653.00 20955.00	263.00 124.00	0.90	0.79 0.77 0.66	1.01 1.10
Breast	r Both M	41974.00 791.00	229.00 4.00	0.80	0.00	0.98 2.96
Cervix uteri	F	133697.00	713.00	0.95	0.89	1.03
	Both	134488.00	717.00	0.88	0.82	0.94
	M	NA	NA	NA	NA	NA
Corpus uteri	F	11115.00	85.00	1.13	0.91	1.40
	Both	NA	NA	NA	NA	NA
	M	NA	NA	NA	NA	NA
Ovary	F	28485.00	151.00	1.37	1.16	1.60
	Both	NA	NA	NA	NA	NA
	M	NA	NA	NA	NA	NA
Prostate	F	20622.00	114.00	1.19	0.99	1.44
	Both	NA	NA	NA	NA	NA
	M	169292.00	344.00	0.51	0.46	0.56
Testis	F Both M	NA NA 6301_00	NA NA 57 00	NA NA 0 98	NA NA	NA NA 1 28
Vide an	F	NA	NA	NA	NA	NA
	Both	NA	NA	NA	NA	NA
Klaney	M F Both	9379.00 23112.00	62.00 37.00 99.00	0.96 1.17 1.05	0.75 0.84 0.86	1.23 1.61 1.28
Bladder	M	37452.00	125.00	0.87	0.73	1.04
	F	13025.00	35.00	0.87	0.62	1.21
	Both	50477.00	160.00	0.92	0.79	1.08
Brain, CNS	M	14209.00	79.00	0.86	0.69	1.08
	F	16193.00	98.00	1.09	0.90	1.33
	Both	30402.00	177.00	0.97	0.84	1.13
Thyroid	M F Both	2203.00 5531.00 7734.00	15.00 51.00 66.00	1.01 1.45 1.28	0.61 1.10 1.00	$1.68 \\ 1.91 \\ 1.63$
Non-Hodgkin lymphoma	M F Both	17115.00 13690.00 30805.00	111.00 56.00 167.00	1.29 1.07 1.22	1.07 0.82 1.05	1.55 1.39
Hodgkin lymphoma	M F Poth	2474.00 1911.00	20.00	1.17	0.75	1.82 1.58
Multiple myeloma	Both	4385.00	29.00	1.04	0.72	1.50
	M	7137.00	26.00	0.86	0.58	1.26
	F	5706.00	13.00	0.72	0.42	1.25
Leukaemia	Both	12843.00	39.00	0.82	0.60	1.13
	M	13480.00	38.00	0.61	0.44	0.84
	F	9819.00	28.00	0.76	0.52	1.10
	Both	23299.00	66.00	0.68	0.53	0.86

Of course we would also like to see the results as a forest plot, so we extract the relevant quantities for doing this:

```
> eM <- RRtab[,"M",3:5]
> eF <- RRtab[,"F",3:5]
> eB <- RRtab[,"Both",3:5]
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( eB, y=nrow(eM):1, txtpos=nrow(eM):1,
+ col="lightgray", xlog=TRUE,
+ xtic=c(1:10/10,1.5,2:7), xlim=c(0.05,7),
+ grid=TRUE, vref=1, xlab="Cancer incidence RR, T1D vs. population" )
> linesEst( eF, y=nrow(eM):1-0.2, col="red" )
> linesEst( eM, y=nrow(eM):1+0.2, col="blue" )
> text( rep(0.2,dim(RRtab)[1]), dim(RRtab)[1]:1+0.2, RRtab[,"M",2], col="blue", adj=1, cex=0.7 )
> text( rep(0.2,dim(RRtab)[1]), dim(RRtab)[1]:1-0.2, RRtab[,"F",2], col="red" , adj=1, cex=0.7 )
```

We see that the only sites with appreciable increased RR and sufficiently narrow confidence intervals are colon, liver (men only), corpus uteri and thyroid (women only); whereas there seems to a lower risk of melanoma, breast and prostate cancer and leukaemia among T1D patients.

Figure 4.7: RRs of cancer incidence among T1D patients (i.e. diagnosed < 40 years of age) in Sweden relative to the general population. The numbers to the left are the number of cancers observed among the T1D patients. Men: Blue, Women: Red, Both sexes: Light gray.
Chapter 5 Finnish T1D data

> library(Epi)
> options(width=90)

5.1 The updated dataset

The Finnish dataset has been updated at the end of May 2013; now compatible with the agreed standard, but with the twist that we need colorectal cancer as group in d52

```
> clear()
> load( file="../data/FInew.Rda" )
> lls()
 name
        mode class
                          size
1 fi.ana list data.frame 30538 50
> names( fi.ana )
               "A"
 [1] "sex"
                          ייףיי
                                                                               "y"
                                               "T1D"
                                                                    "y0"
                                     "DMdur"
                                                          "DMprev"
 [9] "d0"
               "d1"
                          "d2"
                                     "d3"
                                               "d4"
                                                          "d5"
                                                                    "ď6"
                                                                               "ď7"
[17] "d8"
               "d9"
                          "d10"
                                    "d11"
                                               "d12"
                                                         "d13"
                                                                    "d14"
                                                                               "d15"
[25] "d16"
               "d17"
                          "d18"
                                    "d19"
                                               "d20"
                                                          "d21"
                                                                    "d22"
                                                                               "d23"
[33] "d24"
               "d25"
                          "d26"
                                    "d27"
                                               "d28"
                                                          "d29"
                                                                    "d31"
                                                                               "d32"
[41] "d33"
               "d34"
                                               "d37"
                                                                               "d48"
                          "d35"
                                     "d36"
                                                          "d38"
                                                                    "d40"
[49] "DMdur.1" "T1"
> fi.ana <- fi.ana[,-49]
> fi.ana$d52 <- fi.ana$d9 + fi.ana$d10</pre>
```

Also we note that we have the right coding of the varibales:

> lev	els(fi	.ana\$I	Mprev)[3]	<- '	"Prv"							
> wit	h(fi.a	na, ft	table(DMdu	r, Dl	<i>Iprev</i>	, T1D,	row.	vars	=1)))		
	DMprev	Pop				Inc				Prv			
	T1D	NoDM	30	35	40	NoDM	30	35	40	NoDM	30	35	40
DMdur													
NoDM		1360	0	0	0	0	0	0	0	0	0	0	С
0		0	0	0	0	0	2471	535	540	0	59	12	12
1		0	0	0	0	0	2413	520	524	0	119	26	25
2		0	0	0	0	0	2500	654	657	0	312	77	75
5		0	0	0	0	0	2431	727	731	0	636	163	161
10		0	0	0	0	0	2076	619	620	0	636	163	161
15		0	0	0	0	0	2038	817	827	0	1326	383	379
30		0	0	0	0	0	706	222	222	0	1015	298	290

Finally note that the numbering of the cancer sites already is as in NordCAN:

T1D and cancer

```
> load( file="../data/conv.Rda" )
> wh.fi <- which( substr( names(fi.ana), 1, 1 )=="d" )</pre>
  >
>
  dd <- data.frame( tum,
          round(tum/tum[rep(1,nrow(tum)),]*100,2),
          site = conv[match(rownames(tum), conv$NCnam), "Clab"],
+
          stringsAsFactors=FALSE)
+
  names( dd ) <- c("N DM", "N pop", "% DM", "% pop")
>
>
 dd
                  % DM % pop
    N DM N pop
                                                            NA
d0
    2408 707026 100.00 100.00
                                                    All sites
           4959
d1
      10
                  0.42
                          0.70
                                                           Lip
d2
      14
           2857
                   0.58
                          0.40
                                                       Tongue
                          0.25
d3
      11
           1755
                  0.46
                                              Salivary glands
d4
      20
           2791
                  0.83
                          0.39
                                                        Mouth
d5
      12
           2916
                   0.50
                          0.41
                                                      Pharynx
d6
      21
           8114
                  0.87
                          1.15
                                                   Oesophagus
d7
      97
          35881
                  4.03
                          5.07
                                                      Stomach
d8
      13
           2488
                   0.54
                          0.35
                                              Small intestine
d9
     122
          39333
                   5.07
                          5.56
                                                        Colon
d10
          27486
                   3.61
                          3.89
      87
                                                       Rectum
d11
      42
           9607
                   1.74
                          1.36
                                                        Liver
d12
      18
           8738
                  0.75
                          1.24
                                                  Gallbladder
d13
      95
          26541
                   3.95
                          3.75
                                                     Pancreas
d14
       5
           1288
                  0.21
                          0.18
                                                Nose, sinuses
d15
      15
           4866
                  0.62
                          0.69
                                                       Larvnx
d16
     177
          85554
                  7.35
                         12.10
                                                          Lung
d17
           2068
                  0.21
       5
                          0.29
                                                       Pleura
     548 102164
                  22.76
d18
                         14.45
                                                       Breast
d19
      36
           6803
                   1.50
                          0.96
                                                 Cervix uteri
d20
      97
          22465
                   4.03
                          3.18
                                                 Corpus uteri
d21
       1
            505
                   0.04
                          0.07
                                                          <NA>
                                                        Ovary
d22
      80
          16605
                   3.32
                          2.35
d23
       7
           3197
                   0.29
                          0.45
                                 Other female genital organs
d24
     148
          88045
                   6.15
                         12.45
                                                     Prostate
d25
                          0.42
      23
           2947
                   0.96
                                                       Testis
d26
            764
                  0.17
       4
                          0.11
                                                   Penis etc.
d27
     114
          22598
                   4.73
                          3.20
                                                       Kidney
d28
      65
          25679
                  2.70
                          3.63
                                                      Bladder
d29
     119
          21261
                   4.94
                          3.01
                                             Melanoma of skin
d31
       9
           1989
                  0.37
                          0.28
                                                           Eve
d32
      67
          25224
                   2.78
                          3.57
                                                   Brain, CNS
d33
     122
          11315
                   5.07
                          1.60
                                                      Thyroid
d34
      10
           1820
                  0.42
                          0.26
                                                          Bone
d35
      29
           5031
                   1.20
                          0.71
                                                 Soft tissues
     102
d36
          26149
                   4.24
                          3.70
                                         Non-Hodgkin lymphoma
                                             Hodgkin lymphoma
d37
      23
           5081
                   0.96
                          0.72
d38
      22
           9667
                   0.91
                          1.37
                                             Multiple myeloma
      72
d40
          18558
                   2.99
                          2.62
                                                    Leukaemia
d48
      87
          21917
                   3.61
                          3.10 Other and unspecified cancers
     209
          66819
                  8.68
                          9.45
d52
                                                   Colorectal
```

We see that the only major discrepancy in the site-distribution of tumours between is for Thyroid cancers.

There are also cases with unknown duration (although they have e acoded duration), we tag them as "Unkn" in the DMdur variable:

>	round(ftable(xtabs(cbind(d0, PY=y	7/1000) ~ DMd	ur + T11	D + DMp	rev, da	ata = fi	.ana),		
+			col.var	s=3:2,	row.vars	s=c(4,1	1)))		_					
		DMprev	Рор				Inc				Prv			
		T1D	NoDM	30	35	40	NoDM	30	35	40	NoDM	30	35	40
	DMdur													
d0	NoDM		707026	0	0	0	0	0	0	0	0	0	0	0
	0		0	0	0	0	0	25	14	38	0	0	0	0

РҮ	1 2 5 10 15 30 NoDM 0 1 2 5 10 15 30	0 0 0 0 198320 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 10\\ 30\\ 60\\ 58\\ 349\\ 147\\ 0\\ 41\\ 39\\ 104\\ 138\\ 105\\ 185\\ 32\\ \end{array} $	$ \begin{array}{c} 14\\ 35\\ 57\\ 86\\ 270\\ 77\\ 0\\ 15\\ 14\\ 36\\ 45\\ 32\\ 50\\ 7\\ \end{array} $	21 56 128 151 358 81 0 18 17 44 55 37 50 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 2 \\ 6 \\ 53 \\ 125 \\ 0 \\ 0 \\ 1 \\ 6 \\ 14 \\ 14 \\ 40 \\ 28 \end{array}$	2 0 2 6 23 26 0 0 0 1 2 2 5 3	$ \begin{array}{c} 1\\2\\3\\10\\47\\35\\0\\0\\0\\1\\3\\3\\6\\3\end{array} $
> + + + + > +	fi.ana round(\$DMdur <- with(ftable(xtabs(col.va	fi.ana, cbind(rs=3:2,	factor(d0, PY=y row.vars	(ifels leve 7/1000 s=c(4,1	e(DMpr "Unk as.c els = c() ~ DMd)))	ev=="Pr n", haracte "NoDM", ur + T1	v1972", er(DMdur "Unkn", D + DMp)), levels rev, da	(DMdur)[ata = fi	-1])) .ana),)	
		DMprev Pop T1D NoDM	30	35	40	Inc NoDM	30	35	40	Prv NoDM	30	35	40
d0 PY	NoDM Unkn 0 1 2 5 10 15 30 NoDM Unkn 0 1 2 5 10 15 30 15 30	707026 0 0 0 0 0 0 0 198320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{array}{c} 0 \\ 25 \\ 10 \\ 30 \\ 60 \\ 58 \\ 349 \\ 147 \\ 0 \\ 0 \\ 41 \\ 39 \\ 104 \\ 138 \\ 105 \\ 185 \\ 32 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 14 \\ 14 \\ 35 \\ 57 \\ 86 \\ 270 \\ 77 \\ 0 \\ 0 \\ 15 \\ 14 \\ 36 \\ 45 \\ 32 \\ 50 \\ 7 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 38 \\ 21 \\ 56 \\ 128 \\ 151 \\ 358 \\ 81 \\ 0 \\ 0 \\ 18 \\ 17 \\ 44 \\ 55 \\ 37 \\ 50 \\ 6 \end{array}$		$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 2\\ 6\\ 53\\ 125\\ 0\\ 0\\ 0\\ 1\\ 6\\ 14\\ 14\\ 40\\ 28 \end{array}$	0 0 2 6 23 26 0 0 0 0 1 2 2 5 3	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 10 \\ 47 \\ 35 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 3 \\ 3 \\ 6 \\ 3 \end{array}$

Also we make a brife overview of the data by calendar time:											
> round(ftab	ole(xt	abs(cb	ind(d	ю, ру	-y/100	0)~	floor(P) + T1D,	data = fi.ana),	
+		со	l.vars=	3:2))						
		d0				PY					
	T1D	NoDM	30	35	40	NoDM	30	35	40		
floor(P)											
1972		11487	0	2	2	4627	3	1	1		
1973		11559	0	1	1	4651	4	1	1		
1974		11773	1	1	1	4674	5	1	1		
1975		12060	1	1	2	4693	6	1	2		
1976		12587	0	0	0	4705	7	1	2		
1977		12903	0	3	1	4717	8	2	2		
1978		13158	6	1	4	4729	8	2	2		
1979		13500	3	1	5	4740	9	2	2		
1980		13892	3	1	5	4753	10	2	3		
1981		13961	8	8	4	4771	11	3	3		
1982		14320	6	4	13	4796	11	3	3		
1983		14546	7	5	7	4822	12	3	3		
1984		14648	5	2	8	4845	13	3	4		
1985		14978	5	3	7	4863	13	4	4		
1986		15404	8	6	10	4877	14	4	4		
1987		15707	11	6	5	4888	15	4	4		
1988		15718	9	6	15	4901	15	4	5		

1989	15658	19	10	18	4916	16	4	5
1990	16034	11	8	14	4936	17	4	5
1991	16489	4	5	11	4960	17	5	5
1992	17184	14	16	27	4985	18	5	5
1993	17196	15	11	18	5007	18	5	5
1994	17886	15	11	24	5026	19	5	6
1995	18267	17	20	25	5042	20	5	6
1996	19296	14	16	26	5056	21	6	7
1997	19312	27	21	37	5069	21	6	7
1998	19747	27	13	31	5080	22	6	7
1999	19959	21	21	31	5089	23	7	8
2000	20389	34	20	32	5098	24	7	8
2001	20715	32	21	34	5109	25	7	9
2002	21495	30	21	37	5120	26	8	9
2003	22003	38	22	37	5131	28	8	9
2004	23410	38	25	47	5145	29	9	10
2005	23905	48	45	49	5160	30	9	11
2006	23697	47	36	57	5175	32	10	11
2007	23140	52	36	54	5193	33	10	12
2008	23689	63	46	51	5212	35	11	13
2009	24873	66	46	72	5233	36	12	13
2010	24879	77	47	53	5252	37	12	14
2011	25602	83	44	56	5272	33	11	13
2012	0	0	0	0	0	0	0	0

We actually have population rates and follow-up all the way back to 1972, so we include the entire peiod in the analysis dataset.

Finally we include a country variable, Cnt and save the dataset.

```
> fi.ana$Cnt <- "FIN"
```

```
> save( fi.ana, file="../data/FIana.Rda" )
```

5.2 Analysis of Finnish data

5.2.1 All cancers

For the sake of choice of parameters we list the quantiles of the events in the population: > load(file="../data/Flana.Rda")

```
> with( subset(fi.ana,T1D=="NoDM"),
           rbind( A = quantile( rep( A,d0), probs=0:10/10 ),

        P = quantile( rep(P ,d0), probs=0:10/10 ),

        C = quantile( rep(P-A,d0), probs=0:10/10 )

        10% 20% 30% 40% 50% 60% 70%
+
+
+
                                                                                     )
                                                                                        )
        0%
                                                                                         80%
                                                                                                    90%
                                                                                                              100%
                                                                                         77.5
A
       2.5
                47.5
                          52.5
                                     57.5
                                               62.5
                                                          67.5
                                                                    72.5
                                                                              72.5
                                                                                                   82.5
                                                                                                              82.5
  1972.5 1977.5 1983.5 1987.5 1992.5 1996.5 1999.5 2003.5 2006.5 2009.5 2011.5
Ρ
C 1890.0 1908.0 1915.0 1920.0 1925.0 1929.0 1933.0 1939.0 1945.0 1952.0 2009.0
```

We first set out the simplest possible analysis with age-period-cohort effects for the baseline rates. First we devise a couple of knots for the splines:

```
> library( splines )
> ( a.kn <- seq(5,80,,7) )
[1] 5.0 17.5 30.0 42.5 55.0 67.5 80.0
> ( p.kn <- seq(1975,2009,,5) )
[1] 1975.0 1983.5 1992.0 2000.5 2009.0
> ( c.kn <- seq(1895,1990,,6) )
[1] 1895 1914 1933 1952 1971 1990</pre>
```

We then fit 3 models for the RR for T1D patients relative to the general population, using a common shape of the underlying cancer incidence rates as an age-period cohort model with 1 + (7 - 1) + (5 - 1) + (6 - 1) - 1 = 15 parameters¹. The first model (m3) is one with

¹There is first an intercept, then the three natural splines, where k knots gives k - 1 parameters, and finally 1 aliased parameter from the linear relationship between P - A and P and A.

separate effects for persons diagnosed in ages < 30, 30-35 and 35-40, the second (m1) is a simplification where the three groups are pooled, and the third (mc) is an extension of m3 where each group is subdivided by diabetes status at 1.1.1995:

```
> m3 <- glm( d0 ~ Ns(
                          A, knots=a.kn ) +
                    Ns( P , knots=p.kn ) +
                    Ns(P-A, knots=c.kn) +
+
+
                    T1D,
+
              offset = log(y0),
+
              family = poisson,
                data = fi.ana )
+
> m1 <- update( m3, . ~ . - T1D + Relevel(T1D,list(1,2:4)) )
> mc <- update( m3, . ~ . - T1D + factor(interaction(T1D,DMprev)) )</pre>
> anova( mc, m3, m1, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    factor(interaction(T1D, DMprev))
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    T1D
Model 3: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    Relevel(T1D, list(1, 2:4))
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      30517
                   70539
1
2
      30520
                   70543 -3 -4.2970
                                         0.2311
3
                   70543 -2 -0.1201
      30522
                                         0.9417
```

The tests of the models show that there is no substantial difference between them, and that does not either shown up if we list the estimated RRs from the models:

```
> round( RR <- rbind( ci.exp( m3, subset="T1" ),</pre>
                      ci.exp( mc, subset="T1" ),
+
                      ci.exp( m1, subset="T1" ) ), 3 )
+
                                        exp(Est.) 2.5% 97.5%
T1D30
                                            1.085 1.015 1.160
T1D35
                                            1.102 1.018 1.193
T1D40
                                            1.084 1.017 1.157
factor(interaction(T1D, DMprev))30.Inc
                                            1.106 1.026 1.193
factor(interaction(T1D, DMprev))35.Inc
                                            1.130 1.040 1.228
factor(interaction(T1D, DMprev))40.Inc
                                            1.090 1.018 1.166
factor(interaction(T1D, DMprev))30.Prv
                                            1.015 0.879 1.172
factor(interaction(T1D, DMprev))35.Prv
                                            0.897 0.695 1.158
factor(interaction(T1D, DMprev))40.Prv
                                            1.042 0.855 1.270
Relevel(T1D, list(1, 2:4))30+35+40
                                            1.089 1.046 1.134
```

In summary, the comparison of the models show that there is no heterogeneity between the six groups of T1D patients w.r.t. the occurrence of cancer; which is also evident in figure 7.1, where the RR estimates from the three models are shown together:

```
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( RR, y = c(4,3,2,c(4,3,2)-0.25,c(4,3,2)-0.4,0.5),
+ txt = c("","","",
+ "<30","30-35","35-40",
+ "',"","","Pooled"),
+ xlog=TRUE, xtic=c(5:20)/10, grid=TRUE,
+ xlab="RR of any cancer, T1D vs. population",
+ lwd=3, cex=1.5, vref=1, col=rep(gray(c(4,7,0)/10),c(3,6,1)) )
```

5.2.2 Analysis by duration

We have also devised a variable indicating different time bands after diagnosis:

Figure 5.1: Finland: Estimated RRs relative to the general population, the different shades of gray correpsond to the different models. The upper of the light gray bars are for T1D patients diagnosed after 1972, the lower for those diagnosed before 1.1.1972. There are no significant differences anywhere.

> rour	nd(bal chindle	10 w 0-w0/	(1000) ~	DMdur + D	Marou dat	a-fi ana)	
' Ital	TE(YPS	$1 = 2 \cdot 2$	10, y0 - y07	1000)	Dhaui ' Dh	mpiev, uau	,a-11.alla),	
+	<i>CO</i> _	L.vars=3:2 ,	, 1)					
		d0			у0			
	DMprev	Рор	Inc	Prv	Рор	Inc	Prv	
DMdur	-				-			
NoDM		707026.0	0.0	0.0	198320.5	0.0	0.0	
Unkn		0.0	0.0	0.0	0.0	0.0	0.0	
0		0.0	77.0	0.0	0.0	73.0	0.5	
1		0.0	45.0	3.0	0.0	69.0	1.3	
2		0.0	121.0	2.0	0.0	182.6	8.6	
5		0.0	245.0	7.0	0.0	236.0	19.1	
10		0.0	295.0	22.0	0.0	172.3	18.6	
15		0.0	977.0	123.0	0.0	279.1	50.7	
30		0.0	305.0	186.0	0.0	42.6	31.4	

The above analyses showed virtually no difference between the groups of patients by age at inclusion, so we pool these groups and restrict the analysis to DM patients diagnosed after 1972. Also we fit models with smaller datasets corresponding to more restrictive definitions of T1D:

```
DMprev
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      30516
                 70512
2
                 70540 -5 -28.187 3.346e-05
      30521
> anova( md35, update( md35, . ~ . - DMdur + DMprev ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMprev
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
                 67915
1
      25292
2
                 67927 -5 -12.151 0.03278
      25297
> anova( md30, update( md30, . ~ . - DMdur + DMprev ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMprev
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
                 65997
      20076
1
2
      20081
                 66014 -5 -16.336 0.005946
```

We see that there is significant effects of duration, for all three definitions of diabetes:

```
> round( cbind( RR40 <- ci.exp( md40, subset="DMdur" ),</pre>
                RR35 <- ci.exp( md35, subset="DMdur" ),</pre>
+
                RR30 <- ci.exp( md30, subset="DMdur" ) ), 2 )</pre>
+
        exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
                                   1.98 1.44 2.71
DMdur0
             2.00 1.60 2.50
                                                         2.45 1.65 3.63
             1.20 0.91 1.60
                                   1.28 0.87 1.89
DMdur1
                                                         0.96 0.52
                                                                    1.79
DMdur2
             0.98 0.82 1.16
                                   1.02 0.80 1.30
                                                        0.93 0.65
                                                                    1.33
DMdur5
             1.08 0.95 1.22
                                   1.03 0.86 1.23
                                                         1.06 0.83 1.36
                                                         0.91 0.71
             1.18 1.06 1.32
                                   1.13 0.96 1.32
                                                                   1.16
DMdur10
DMdur15
             1.08 1.02
                        1.15
                                   1.12 1.04
                                              1.20
                                                         1.14 1.03
                                                                    1.26
DMdur30
             1.00 0.92
                        1.09
                                   1.01 0.91
                                              1.12
                                                         1.04 0.92
                                                                    1.17
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
 plotEst( rbind(NA,RR40),
           txt=c("Years since DM", "0-1", "1-2", "2-5", "5-10", "10-15", "15-30", "30+"),
               xlog=TRUE, xtic=c(3:10,15,20,25,30)/10, grid=TRUE,
+
+
               xlab="RR of any cancer, T1D vs. population",
               lwd=4, cex=2, vref=1, y=c(6.7,6:0)+0.2 )
  linesEst( rbind(RR35),
>
            lwd=3, cex=1.5, col=gray(0.5), y=6:0 )
+
>
 linesEst( rbind(RR30),
            lwd=3, cex=1.5, col=gray(0.7), y=6:0-0.15 )
```

From figure 7.2 we see an ascertainment effect for T1DM as well as what have been shown for all diabetes under one, and it seems to be the same even if a stricter definition of T1D is applied.

5.2.3 Site-specific analyses

5.2.3.1 Analyses of site specific cancers

We first set up an array to hold the resulting RRs for each of the sites that we analyse, we do the analyses by sex, but also make a pooled analysis, except for the sex-specific cancers (including breast):

Figure 5.2: Finland: The effect of duration on the RR of cancer. The two gray sets of effects are from the models where data are further restricted to patients diagnosed under 35 and 30, respectively.

```
> wh <- c(9,15,16,18,19,20,22,25,38,27:29,31,33,34,36,37,40,41,44:47)
> ( vnam <- names(fi.ana)[wh] )
[1] "d0" "d6" "d7" "d9" "d10" "d11" "d13" "d16" "d29" "d18" "d19" "d20" "d22" "d24"
[15] "d25" "d27" "d28" "d32" "d33" "d36" "d37" "d38" "d40"
> site <- conv[match(vnam,conv$NCnam),"Clab"]</pre>
> data.frame( wh, vnam, site )
   wh vnam
                             site
1
    9
        d0
                        All sites
2
   15
        d6
                       Oesophagus
3
   16
        d7
                          Stomach
4
   18
        d9
                             Colon
5
   19
       d10
                           Rectum
6
   20
       d11
                            Liver
7
   22
       d13
                         Pancreas
8
   25
       d16
                             Lung
9
   38
       d29
                Melanoma of skin
10 27
       d18
                           Breast
11 28
       d19
                     Cervix uteri
12 29
       d20
                     Corpus uteri
13 31
       d22
                            Ovary
14 33
       d24
                         Prostate
15 34
       d25
                           Testis
16 36
       d27
                           Kidney
17 37
       d28
                          Bladder
18 40
                       Brain, CNS
       d32
19 41
       d33
                          Thyroid
       d36 Non-Hodgkin lymphoma
20 44
21 45
       d37
                Hodgkin lymphoma
22 46
       d38
                Multiple myeloma
23 47
       d40
                        Leukaemia
> RRtab <- NArray( list( site = site,</pre>
                             sex = c(levels(fi.ana$sex), "Both"),
```

+	what = $c("N.pop", "N.T1", "H)$	RR","lo","hi")))
> dimnames(RRtab)		
\$site		
<pre>[1] "All sites" [4] "Colon" [7] "Pancreas" [10] "Breast" [13] "Ovary" [16] "Kidney" [19] "Thyroid"</pre>	"Oesophagus" "Rectum" "Lung" "Cervix uteri" "Prostate" "Bladder" "Non-Hodgkin lymphoma"	"Stomach" "Liver" "Melanoma of skin" "Corpus uteri" "Testis" "Brain, CNS" "Hodgkin lymphoma"
[22] "Multiple myeloma"	"Leukaemia"	
\$sex [1] "M" "F" "Both"		
\$what [1] "N.pop" "N.T1" "RR"	"lo" "hi"	

With this fixed we can the make a loop doing the analysis for all sites:

```
> system.time(
+ for( i in 1:length(vnam) )
+
      ł
      aset <- fi.ana[,c(vnam[i],</pre>
+
                           paste("y",if(i==1) "0", sep=""),
"A","P","T1","sex")]
+
+
     names( aset )[1:2] <- c("D","Y")
+
     mB \leq glm(D \sim Ns (A, knots=a.kn) +
+
                       Ns(P, knots=p.kn) +
Ns(P-A, knots=c.kn) +
+
+
+
                       T1,
+
               offset = log(Y),
+
               family = poisson,
+
                 data = aset )
     mM <- update( mB, data=subset(aset,sex=="M") )</pre>
+
+
     mF <- update( mB, data=subset(aset,sex=="F") )</pre>
                    ,3:5] <- ci.exp( mM, subset="T1" )
     RRtab[i,"M"
+
     RRtab[i, "F" ,3:5] <- ci.exp( mF, subset="T1" )
RRtab[i, "Both",3:5] <- ci.exp( mB, subset="T1" )
RRtab[i,,1:2] <- addmargins( with( aset, tapply(D,list(sex,T1),sum) ), 1 )</pre>
+
+
+
     })
+
   user system elapsed
  59.78
            0.98
                     60.87
> RRorg <- RRtab
> RRtab <- RRorg
> for(i in 1:dim(RRtab)[1])
                                               RRtab[i,j,5]==Inf ) RRtab[i, j
+ for(j in 1:dim(RRtab)[2]) if(
                                                                                      ,] <- NA
> for(i in 1:dim(RRtab)[1]) if(any(is.na(RRtab[i, ,5]==Inf))) RRtab[i, "Both",] <- NA
> round( ftable( RRtab ), 2 )
                                                      N.T1
                                                                   RR
                              what
                                        N.pop
                                                                                10
                                                                                           hi
site
                        sex
All sites
                                    359417.00
                                                  1000.00
                                                                 1.18
                                                                                         1.26
                        М
                                                                             1.11
                        F
                                                  1408.00
                                    347609.00
                                                                  1.00
                                                                              0.95
                                                                                         1.06
                        Both
                                    707026.00
                                                  2408.00
                                                                  1.09
                                                                              1.05
                                                                                         1.13
Oesophagus
                        М
                                      4723.00
                                                     16.00
                                                                 1.33
                                                                              0.81
                                                                                         2.18
                        F
                                       3391.00
                                                      5.00
                                                                 1.20
                                                                              0.50
                                                                                         2.90
                        Both
                                      8114.00
                                                     21.00
                                                                 1.18
                                                                             0.77
                                                                                         1.81
                        М
                                     20048.00
                                                     47.00
Stomach
                                                                 1.48
                                                                             1.11
                                                                                         1.97
                        F
                                     15833.00
                                                     50.00
                                                                  1.83
                                                                             1.39
                                                                                         2.43
                                                                             1.32
                        \mathtt{Both}
                                     35881.00
                                                     97.00
                                                                  1.61
                                                                                         1.97
                                     17793.00
                                                                 1.23
                                                                              0.95
Colon
                        М
                                                     56.00
                                                                                         1.60
                        F
                                     21540.00
                                                     66.00
                                                                 1.15
                                                                              0.90
                                                                                         1.46
                                     39333.00
                        Both
                                                   122.00
                                                                 1.18
                                                                              0.99
                                                                                         1.41
Rectum
                        М
                                     14678.00
                                                     46.00
                                                                  1.31
                                                                              0.98
                                                                                         1.75
                        F
                                     12808.00
                                                     41.00
                                                                  1.17
                                                                              0.86
                                                                                         1.59
                                     27486.00
                                                     87.00
                                                                 1.22
                                                                              0.98
                                                                                         1.50
                        Both
```

Liver	M F	5809.00 3798.00	34.00	2.65	1.88	3.71
	Both	9607.00	42.00	1.94	1.43	2.63
Pancreas	М	13050.00	54.00	1.89	1.45	2.47
	F	13491.00	41.00	1.58	1.16	2.15
	Both	26541.00	95.00	1.70	1.39	2.08
Lung	М	68937.00	119.00	1.20	1.00	1.44
0	F	16617.00	58.00	1.15	0.89	1.49
	Both	85554.00	177.00	1.14	0.99	1.33
Melanoma of skin	М	10682.00	60.00	1.17	0.90	1.50
	F	10579.00	59.00	0.86	0.66	1.11
	Both	21261.00	119.00	0.99	0.83	1.19
Breast	М	428.00	2.00	1.30	0.32	5.32
	F	101736.00	546.00	0.88	0.81	0.96
	Both	102164.00	548.00	1.00	0.92	1.09
Cervix uteri	М	NA	NA	NA	NA	NA
	F	6803.00	36.00	0.99	0.71	1.38
	Both	NA	NA	NA	NA	NA
Corpus uteri	М	NA	NA	NA	NA	NA
-	F	22465.00	97.00	1.29	1.05	1.57
	Both	NA	NA	NA	NA	NA
Ovary	М	NA	NA	NA	NA	NA
•	F	16605.00	80.00	1.16	0.93	1.45
	Both	NA	NA	NA	NA	NA
Prostate	М	88045.00	148.00	0.79	0.67	0.93
	F	NA	NA	NA	NA	NA
	Both	NA	NA	NA	NA	NA
Testis	М	2947.00	23.00	0.89	0.59	1.34
	F	NA	NA	NA	NA	NA
	Both	NA	NA	NA	NA	NA
Kidney	М	12724.00	67.00	1.75	1.37	2.22
	F	9874.00	47.00	1.67	1.25	2.23
	Both	22598.00	114.00	1.65	1.38	1.99
Bladder	М	19488.00	49.00	1.33	1.00	1.76
	F	6191.00	16.00	1.34	0.82	2.19
	Both	25679.00	65.00	1.24	0.97	1.58
Brain, CNS	М	10524.00	35.00	0.69	0.50	0.96
	F	14700.00	32.00	0.38	0.27	0.54
	Both	25224.00	67.00	0.51	0.40	0.64
Thyroid	М	2563.00	18.00	1.28	0.80	2.04
	F	8752.00	104.00	1.54	1.27	1.87
	Both	11315.00	122.00	1.60	1.34	1.92
Non-Hodgkin lymphoma	М	13454.00	56.00	1.08	0.83	1.41
	F	12695.00	46.00	0.92	0.69	1.23
	Both	26149.00	102.00	0.99	0.81	1.20
Hodgkin lymphoma	М	2869.00	14.00	0.83	0.49	1.40
5 7 1	F	2212.00	9.00	0.64	0.33	1.23
	Both	5081.00	23.00	0.72	0.48	1.09
Multiple myeloma	М	4625.00	14.00	1.35	0.80	2.28
1 0	F	5042.00	8.00	0.79	0.39	1.58
	Both	9667.00	22.00	1.05	0.69	1.60
Leukaemia	М	10013.00	39.00	1.39	1.01	1.90
	F	8545.00	33.00	1.30	0.92	1.83
	Both	18558.00	72.00	1.32	1.05	1.67

Of course we would also like to see the results as a forest plot, so we extract the relevant quantities for doing this:

```
> eM <- RRtab[,"M",3:5]
> eF <- RRtab[,"F",3:5]
> eB <- RRtab[,"Both",3:5]
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( eB, y=nrow(eM):1, txtpos=nrow(eM):1,
+ col="lightgray", xlog=TRUE,
+ xtic=c(1:10/10,1.5,2:7), xlim=c(0.095,7),
+ grid=TRUE, vref=1, xlab="Cancer incidence RR, T1D vs. population" )
```

```
> linesEst( eF, y=nrow(eM):1-0.2, col="red" )
> linesEst( eM, y=nrow(eM):1+0.2, col="blue" )
> text( rep(0.095,dim(RRtab)[1]), dim(RRtab)[1]:1+0.2, RRtab[,"M",2], col="blue", adj=1, cex=0.7 )
> text( rep(0.095,dim(RRtab)[1]), dim(RRtab)[1]:1-0.2, RRtab[,"F",2], col="red", adj=1, cex=0.7 )
```


Figure 5.3: RRs of cancer incidence among T1D patients (i.e. diagnosed < 40 years of age) in Sweden relative to the general population. The numbers to the left are the number of cancers observed among the T1D patients. Men: Blue, Women: Red, Both sexes: Light gray.

We see that the only sites with appreaciable increased RR and sufficiently narrow confidence intervals are rectum, liver, pancreas, lung, corpus uteri, kidney and thyroid; whereas there seems to a lower risk for breast and prostate and brain cancer among T1D patients in Finland.

Chapter 6 Scottish T1D data

The following is a technical account of the approach to construction and analysis of data from Scotland.

```
> library( Epi )
> library( foreign )
> sessionInfo()
R version 3.2.3 (2015-12-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS
locale:
                                                         LC_TIME=en_US.UTF-8
                             LC_NUMERIC=C
 [1] LC_CTYPE=en_US.UTF-8
 [4] LC_COLLATE=en_US.UTF-8
                                LC_MONETARY=en_US.UTF-8
                                                           LC_MESSAGES=en_US.UTF-8
                            LC_NAME=C
 [7] LC_PAPER=en_US.UTF-8
                                                           LC_ADDRESS=C
[10] LC_TELEPHONE=C
                               LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
              datasets graphics grDevices stats
[1] utils
                                                     methods base
other attached packages:
[1] foreign_0.8-66 Epi_1.1.71
loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 MASS_7.3-44 parallel_3.2.3 survival_2.38-3 etm_0.6-2
[7] grid_3.2.3 lattice_0.20-31
                                                                                     splines_3.2.3
[7] grid_3.2.3
```

6.1 Naming of sites and files

First we read the file with the SCottish coding of the sites in order to make sure that the naming is consistent with the standard for the study:

```
> scn <- read.table( "../data/scotcodes.txt" )</pre>
> names( scn ) <- c("site", "code", "N")</pre>
> scn$code <- tolower( gsub( "D0", "D", scn$code ) )</pre>
> head( scn )
      site code
                  N
1 Allsites d0 533
2
      Lip
             d1 0
             d2 5
3
    Tongue
4 Salivary
             d3
                  1
                 5
5
             d4
    Mouth
6
 Pharynx
             d5
                 1
```

To check the consistency with the reference we load this too:

>	load(file="	/data/conv.Rda")		
>	head(conv)			
	DKnam	NCnam	Clab		
1	d0	d0	All sites		
2	d11	d1	Lip		
3	d12	d2	Tongue		
4	d14	d3	Salivary glands		
5	d13	d4	Mouth		
6	d15	d5	Pharynx		
>	marga	CONV	scn by y="NCnam" by y="code"	")	
1	merge(CUIIV,	sen, by.x- wonam , by.y- code		37
	NCnam	DKnam	Clab	site	N
1	dU	dU	All sites	Allsites	533
2	d1	d11	Lip	Lip	0
3	d10	d25	Rectum	Rectum	21
4	d11	d26	Liver	Liver	15
5	d12	d27	Gallbladder	GallBladder	0
6	d13	d28	Pancreas	Pancreas	12
7	d14	d31	Nose, sinuses	Nose	0
8	d15	d32	Larynx	Larynx	4
9	d16	d33	Lung	Lung	56
10) d17	d36	Pleura	Pleura	1
11	. d18	d70	Breast	Breast	100
12	2 d19	d82	Cervix uteri	Cervix	14
13	3 d2	d12	Tongue	Tongue	5
14	d20	d83	Corpus uteri	Endometrium	12
15	d22	d84	Ovary	Ovary	11
16	d23	d85	Other female genital organs	OthFemGen	2
17	′ d24	d91	Prostate	Prostate	12
18	d25 d25	d92	Testis	Testis	20
19	d26	d93	Penis etc.	Penis	34
20) d27	d101	Kidney	Kidney	18
21	. d28	d103	Bladder	Bladder	17
22	2 d29	d51	Melanoma of skin	Melanoma	31
23	d3 d3	d14	Salivary glands	Salivary	1
24	d31	d111	Eve	Eve	2
25	d32	d113	Brain, CNS	Brain	46
26	d33	d121	Thvroid	Thvroid	16
27	d34	d40	Bone	Bone	0
28	d35	d63	Soft tissues	SoftTissue	4
29	d36	d132	Non-Hodgkin lymphoma	OtherNHL	29
30	d37	d131	Hodgkin lymphoma	Hodgkin	6
31	d38	d133	Multiple myeloma	Mveloma	3
32	d4	d13	Mouth	Mouth	5
33	. d40	d139	Leukaemia	Leukaemia	22
34	. d19	d140	Other and unspecified cancers	Unspecified	19
35	1 u-20 3 A5	d15	Pharuny	Pharwny	1
36	, uo 3 451	d151	Oral etc	OralCavity	12
27	, 101 , 101	4051	Colorostol	Coloroctol	12
20	200 26 2	401	Occorborat	Negophagua	16
30	, uu 17 47	400	Store of Sto	Stomach	0
10	ים איז סג (402	Scollacii Small intestine	Smallintost	9
±0 ⊿1	00 v 05	404		Color	2
-+1	. u9	uz4	10100	COTOU	21

6.2 Reading the data

Then we can read the data proper from Scotland and generate the correct names:

> s	<pre>scana <- read.csv(file="/data/ScotlandT1D.csv", header=TRUE)</pre>									
> n	names(scana)									
[1] "per"	"Age"	"SEX"	"dur"	"t1d"	"DMprev"	"Pyr"	"DO"	"PyrDO"	"D01"
[11] "PyrD01"	"D02"	"PyrD02"	"D03"	"PyrD03"	"D04"	"PyrD04"	"D05"	"PyrD05"	"D06"
[21] "PyrD06"	"D07"	"PyrD07"	"D08"	"PyrD08"	"D09"	"PyrD09"	"D10"	"PyrD10"	"D11"
[31] "PyrD11"	"D12"	"PyrD12"	"D13"	"PyrD13"	"D14"	"PyrD14"	"D15"	"PyrD15"	"D16"

PyrD52

30542

0.03

[41]	"PyrD16"	"D17"	"PyrD17"	"D18"	"PyrD18"	"D19"	"PyrD19"	"D20"	"PyrD20"	"D22"
[51]	"PyrD22"	"D23"	"PyrD23"	"D24"	"PyrD24"	"D25"	"PyrD25"	"D26"	"PyrD26"	"D27"
[61]	"PyrD27"	"D28"	"PyrD28"	"D29"	"PyrD29"	"D31"	"PyrD31"	"D32"	"PyrD32"	"D33"
[71]	"PyrD33"	"D34"	"PyrD34"	"D35"	"PyrD35"	"D36"	"PyrD36"	"D38"	"PyrD38"	"D40"
[81]	"PyrD40"	"D48"	"PyrD48"	"D51"	"PyrD51"	"D52"	"PyrD52"		-	
> nai	nes(scana	a)[1:5]	<- c("P",	'A","sex",	,"DMdur",	"T1D")				

The "PyrDxx" variables contain the person-years lived *after* diagnosis of cancer. So we tabulate this and see how large a percentage of the total follow-up time we erroneouly include:

```
> names( scana ) [wh<-7+(0:40)*2]
[1] "Pyr" "PyrD0" "PyrD01" "PyrD02" "PyrD03" "PyrD04" "PyrD05" "PyrD06" "PyrD07" "PyrD08"
[11] "PyrD09" "PyrD10" "PyrD11" "PyrD12" "PyrD13" "PyrD14" "PyrD15" "PyrD16" "PyrD17" "PyrD18"
[11] "PyrD09" "PyrD10" "PyrD11" "PyrD12" "PyrD13" "PyrD14" "PyrD15" "PyrD16" "PyrD17" "PyrD18"</pre>
[21] "PyrD19" "PyrD20" "PyrD22" "PyrD23" "PyrD24" "PyrD25" "PyrD26" "PyrD27" "PyrD28" "PyrD29"
[31] "PýrD31" "PýrD32" "PýrD33" "PýrD34" "PýrD35" "PýrD36" "PýrD38" "PýrD40" "PýrD48" "PýrD51"
[41] "PyrD52"
> tt <- apply( scana[,wh], 2, sum )</pre>
> cbind( N=round(tt), pct=round(tt/tt[1]*100,2) )
                 Ν
                       pct
Pvr
        87267584 100.00
PyrD0
           225853
                      0.26
PyrD01
              477
                      0.00
PyrD02
              1404
                      0.00
PyrD03
              393
                      0.00
PyrD04
              1748
                      0.00
PyrD05
              1902
                      0.00
              7043
PyrD06
                      0.01
              7356
PyrD07
                      0.01
              703
PyrD08
                      0.00
PyrD09
            20032
                      0.02
PyrD10
            10902
                      0.01
              2727
                      0.00
PyrD11
PvrD12
             1326
                      0.00
PyrD13
             5558
                      0.01
PyrD14
              309
                      0.00
              2596
PvrD15
                      0.00
PyrD16
            40874
                      0.05
PyrD17
             1431
                      0.00
PyrD18
            32136
                      0.04
PyrD19
              2735
                      0.00
PyrD20
              4440
                      0.01
PyrD22
              5371
                      0.01
             1093
                      0.00
PyrD23
            21644
                      0.02
PyrD24
PyrD25
             1792
                      0.00
PyrD26
            23852
                      0.03
PyrD27
             5413
                      0.01
PyrD28
            13663
                      0.02
             7268
PvrD29
                      0.01
              526
PyrD31
                      0.00
PyrD32
              7255
                      0.01
              1434
PyrD33
                      0.00
PyrD34
               373
                      0.00
PvrD35
              1018
                      0.00
PyrD36
              7881
                      0.01
              3087
                      0.00
PyrD38
              6073
PyrD40
                      0.01
PyrD48
            12934
                      0.01
PyrD51
             5299
                      0.01
```

So we see that it is only for all cancers that the person-years lived after cancer constitutes any appreaciable part of the total amount of FU in the Scottish population (and then only 0.26%).

We can now finalize the data so the are in the same form as the other datasets before we save it; first we tabulate how the three DM-classification variables relate in order to get the recoding correct:

```
> with( scana, ftable(DMdur,DMprev,T1D,row.vars=1) )
       DMprev
                 -1
                                          0
                                                                  1
                             35
       T1D
                 -1
                       30
                                   40
                                         -1
                                               30
                                                     35
                                                           40
                                                                 -1
                                                                       30
                                                                             35
                                                                                   40
DMdur
               3094
                                          0
                                                                              0
                                                                                    0
-1
                        0
                              0
                                                0
                                                      0
                                                                  0
                                                                        0
0
                   0
                                             1053
                                                    238
                                                          238
                        0
                              0
                                    0
                                          0
                                                                  0
                                                                        2
                                                                              0
                                                                                    3
1
                   0
                        0
                              0
                                    0
                                          0
                                              997
                                                    224
                                                          224
                                                                  0
                                                                      66
                                                                             14
                                                                                   14
2
                   0
                        0
                              0
                                    0
                                          0
                                              989
                                                    264
                                                          264
                                                                  0
                                                                     262
                                                                             66
                                                                                   67
5
                   0
                        0
                              0
                                    0
                                              825
                                                    244
                                                          244
                                                                           178
                                                                                 180
                                          0
                                                                  0
                                                                     619
                                                                           289
10
                   0
                        0
                              0
                                    0
                                          0
                                              472
                                                    134
                                                          134
                                                                  0
                                                                    969
                                                                                 289
                   0
                        0
                              0
                                    0
15
                                          0
                                              126
                                                     30
                                                           30
                                                                  0 1237
                                                                           457
                                                                                 457
> sc.ana <- transform( scana, y = Pyr,</pre>
                                  y0 = Pyr-PyrD0,
+
+
                                   A = A + 0.5,
                                   P = P + 0.5,
+
                                 sex = factor( sex, labels=c("M", "F") ),
+
+
                                 T1D = factor(T1D)
+
                                                 levels=c(-1,30,35,40,Inf),
                                                 labels=c("NoDM","30","35","40","Inf") ),
+
                              DMdur = factor( DMdur ),
                             DMprev = factor( DMprev, labels=c("Pop", "Inc", "Prv") ) )
  levels( sc.ana$DMdur )[1] <- "NoDM"</pre>
```

So for the rest of the analyses we do not need the Pyr-variables, so we leave them out

> names(sc.ana)[wh] [1] "Pyr" "PyrD0" "PyrD01" "PyrD02" "PyrD03" "PyrD04" "PyrD05" "PyrD06" "PyrD07" "PyrD08" [11] "PyrD09" "PyrD10" "PyrD11" "PyrD12" "PyrD13" "PyrD14" "PyrD15" "PyrD16" "PyrD17" "PyrD18" [21] "PyrD19" "PyrD20" "PyrD22" "PyrD23" "PyrD24" "PyrD25" "PyrD26" "PyrD27" "PyrD28" "PyrD29" "PyrD31" "PyrD32" "PyrD33" "PyrD34" "PyrD35" "PyrD36" "PyrD38" "PyrD40" "PyrD48" "PyrD51" [31] [41] "PyrD52" > sc.ana <- sc.ana[,-wh]</pre> > names(sc.ana)[match("D0",names(sc.ana))] <- "D00" # Otherwise d0 is lost</pre> > names(sc.ana) <- gsub("D0", "D", names(sc.ana))</pre> > names(sc.ana)[wh <- 7:46] [1] "DO" "D1" "D2" "D3" "D4" "D5" "D6" "D7" "D8" "D9" "D10" "D11" "D12" "D13" "D14" "D15" "D16" "D17" "D18" "D19" "D20" "D22" "D23" "D24" "D25" "D26" "D27" "D28" "D29" "D31" "D32" "D33" [17] [33] "D34" "D35" "D36" "D38" "D40" "D48" "D51" "D52" > names(sc.ana)[wh] <- tolower(names(sc.ana)[wh])</pre> > sc.ana <- subset(sc.ana, y0>0) > names(sc.ana) [1] "P" "A" "T1D" "d1" "d2" "sex" "DMdur" "DMprev" "d0" "d3" [11] "d4" "d5" "d6" "d7" "d8" "d9" "d10" "d11" "d12" "d13" [21] "d14" "d17" "d19" "d15" "d16" "d18" "d20" "d22" "d23" "d24" "d25" "d31" "d28" "d29" "d33" "d35" "d26" "d27" "d32" "d34" [31] "d38" "d52" [41] "d36" "d40" "d48" "d51" "y" "y0" > with(sc.ana, ftable(DMdur, DMprev, T1D, row.vars=1)) Pop DMprev Inc Prv T1D NoDM Inf NoDM Inf NoDM Inf DMdur NoDM

Finally we put in the country-variable and save data

> sc.ana\$Cnt <- "SCO"

> save(sc.ana, file="../data/SCana.Rda")

6.3 Analysis of SMR

We load the dataset and the dataframe with the tumour labels in it:

```
> load( file="../data/SCana.Rda" )
> levels( sc.ana$T1D )
[1] "NoDM" "30"
                    "35"
                            "40"
                                   "Inf"
> levels( sc.ana$DMdur )
[1] "NoDM" "O"
                    "1"
                            "2"
                                   "5"
                                           "10"
                                                   "15"
> sc.ana <- subset( sc.ana, y>0 )
> round( addmargins( xtabs( d0 ~ P + T1D, data=sc.ana ), 1 ) )
         T1D
Ρ
            NoDM
                      30
                              35
                                     40
                                            Inf
  1995.5
           24129
                       7
                               3
                                       4
                                              0
                               3
  1996.5
                       6
                                       6
                                              0
           25614
  1997.5
           24913
                       5
                               2
                                      9
                                              0
                               2
  1998.5
           24531
                       7
                                       6
                                              0
  1999.5
           24679
                       9
                               6
                                              0
                                     11
  2000.5
           25023
                       9
                               4
                                      8
                                              0
  2001.5
           25118
                       4
                               2
                                     12
                                              0
  2002.5
           25700
                      14
                               4
                                     13
                                              0
  2003.5
           25762
                      16
                              11
                                      10
                                              0
  2004.5
           26310
                       8
                              12
                                              0
                                     15
                              7
  2005.5
           25927
                      14
                                      7
                                              0
  2006.5
           26556
                       5
                              13
                                     19
                                              0
  2007.5
                      18
                              10
                                              0
           27136
                                     16
  2008.5
           27768
                      12
                              13
                                     15
                                              0
                      17
  2009.5
           28146
                              10
                                     19
  2010.5
           27967
                      24
                              8
                                     26
                                              0
  2011.5
           28273
                      12
                              14
                                     26
                                              0
                             124
                                    222
          443552
                     187
                                              0
  Sum
> round( addmargins( xtabs( y0 ~ P + T1D, data=sc.ana ), 1 ), 1 )
        T1D
Ρ
                NoDM
                               30
                                           35
                                                       40
                                                                  Inf
  1995.5
           5091461.3
                          9356.8
                                       1703.0
                                                   1855.7
                                                                  0.0
  1996.5
           5079611.8
                          9844.0
                                       1830.6
                                                   2002.3
                                                                  0.0
          5070610.7
                         10308.4
                                                   2161.7
  1997.5
                                       1938.5
                                                                  0.0
  1998.5
           5064583.9
                         10788.4
                                      2042.7
                                                   2300.3
                                                                  0.0
  1999.5
           5059422.0
                         11257.6
                                      2162.0
                                                   2458.5
                                                                  0.0
                                      2287.6
  2000.5
           5050174.1
                         11765.7
                                                   2622.2
                                                                  0.0
  2001.5
           5051504.7
                         12273.4
                                       2394.1
                                                   2772.2
                                                                  0.0
  2002.5
                         12767.4
                                       2492.1
                                                   2943.7
           5041800.9
                                                                  0.0
  2003.5
           5044338.8
                         13256.9
                                       2602.1
                                                   3123.2
                                                                  0.0
  2004.5
           5065145.0
                         13750.1
                                       2712.4
                                                   3292.8
                                                                  0.0
  2005.5
           5081762.6
                         14279.2
                                       2823.4
                                                   3472.4
                                                                  0.0
           5103607.0
                         14836.4
                                       2928.7
  2006.5
                                                   3652.5
                                                                  0.0
  2007.5
           5130564.2
                         15364.5
                                       3043.3
                                                   3814.0
                                                                  0.0
  2008.5
           5154420.2
                         15891.1
                                       3144.6
                                                   3983.6
                                                                  0.0
  2009.5
           5179873.5
                         16404.8
                                       3241.0
                                                   4168.9
                                                                  0.0
                                                   4336.2
  2010.5
           5207980.5
                         16933.4
                                       3352.7
                                                                  0.0
           5240694.2
                         17496.0
                                       3480.1
                                                   4462.4
                                                                  0.0
  2011.5
  Sum
          86717555.4
                        226574.1
                                     44178.9
                                                  53422.7
                                                                  0.0
```

```
> load( file="../data/conv.Rda" )
```

6.3.1 All cancers

We first set out the simplest possible analysis with age-period-cohort effects for the baseline rates. First we devise a couple of knots for the splines:

```
> library( splines )
> with( sc.ana, rbind(
                A = quantile( rep( A,d0), 0:10/10 ),
P = quantile( rep(P ,d0), 0:10/10 ),
                                                                                                                                                    ,d0), 0:10/10
 +
                C = \frac{1}{0\%} \frac{1}{10\%} \frac{1}{20\%} \frac{1}{30\%} \frac{1}{40\%} \frac{1}{50\%} \frac{1}{10\%} \frac{1}{20\%} \frac{1}{30\%} \frac{1}{40\%} \frac{1}{50\%} \frac{1}{10\%} \frac
 +
                                                                                                                                                                                                                                                     50%
                                                                                                                                                                                                                                                                                                   60%
                                                                                                                                                                                                                                                                                                                                              70%
                                                                                                                                                                                                                                                                                                                                                                                          80%
                                                                                                                                                                                                                                                                                                                                                                                                                                      90%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           100%
 Α
                               0.5
                                                                    48.5
                                                                                                               56.5
                                                                                                                                                           61.5
                                                                                                                                                                                                      65.5
                                                                                                                                                                                                                                                  69.5
                                                                                                                                                                                                                                                                                             72.5
                                                                                                                                                                                                                                                                                                                                        76.5
                                                                                                                                                                                                                                                                                                                                                                                     79.5
                                                                                                                                                                                                                                                                                                                                                                                                                                84.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           90.5
P 1995.5 1996.5 1998.5 2000.5 2002.5 2003.5 2005.5 2007.5 2008.5 2010.5 2011.5
C 1905.0 1919.0 1923.0 1927.0 1931.0 1934.0 1938.0 1943.0 1948.0 1957.0 2011.0
> ( a.kn <- seq(5,85,,7) )
 [1] 5.00000 18.33333 31.66667 45.00000 58.33333 71.66667 85.00000
> ( p.kn <- seq(1996,2010,,4) )
 [1] 1996.000 2000.667 2005.333 2010.000
 > ( c.kn <- seq(1910,1990,,6) )
 [1] 1910 1926 1942 1958 1974 1990
```

We then fit 3 models for the RR for T1D patients relative to the general population, using a common shape of the underlying cancer incidence rates as an age-period cohort model with 1 + (7 - 1) + (4 - 1) + (6 - 1) - 1 = 14 parameters¹. The first model (m3) is one with separate effects for persons diagnosed in ages < 30, 30–35, 35–40, 40–45 and 45+, the second (m1) is a simplification where these groups are pooled:

```
> m3 <- glm( d0 ~ Ns(
                         A, knots=a.kn ) +
                   Ns(P, knots=p.kn) +
+
                    Ns( P-A, knots=c.kn ) +
+
                   T1D,
+
+
              offset = log(y),
+
              family = poisson,
                data = sc.ana )
+
> m1 <- update( m3, . ~ . - T1D + Relevel(T1D,list(1,2:4)) )
> mp <- update( m3, . ~ . - T1D + DMprev )</pre>
> anova( m3, m1, mp, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    T1D
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    Relevel(T1D, list(1, 2:4))
              Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
Model 3: d0
    DMprev
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
                  26892
1
      14893
2
      14895
                  26898 -2
                             -6.7189 0.034754
3
      14894
                  26888
                         1
                              9.7262 0.001817
```

The tests of the models show that there is a detectable difference between the age at diagnosis groups, and it appears that the risk is higher the older the patients are at diagnosis. However it also seems that the risk is higher among more recently diagnosed T1D patients compared to those prevalent at study strat in 1995:

```
> round( rbind( ci.exp( m3, subset="T1" ),
                 ci.exp( m1, subset="T1" ),
                 ci.exp( mp, subset="DM" ) ), 3 )
exp(Est.) 2.5% 97.5%
+
T1D30
                                          0.880 0.763 1.016
T1D35
                                          1.051 0.881 1.253
T1D40
                                          1.134 0.994 1.293
Relevel(T1D, list(1, 2:4))30+35+40
                                          1.013 0.930 1.103
                                          1.270 1.084 1.488
DMprevInc
DMprevPrv
                                          0.936 0.846 1.035
```

¹There is first an intercept, then the three natural splines, where k knots gives k - 1 parameters, and finally 1 aliased parameter from the linear relationship between P - A and P and A.

In summary, the comparison of the models show that there is some heterogeneity between groups of T1D patients w.r.t. the occurrence of cancer; which is also evident in figure 7.1, where the RR estimates from the three models are shown together:

```
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( rbind( ci.exp( m3, subset="T1D"),
+ ci.exp( m1, subset="T1D") ),
+ y = 4:1,
+ txt = c("<30", "30-35", "35-40", "Pooled"),
+ xlog=TRUE, xtic=c(5:10,15,20)/10, grid=TRUE,
+ xlab="RR of any cancer, T1D vs. population",
+ lwd=4, cex=2, vref=1 )
```


Figure 6.1: Estimated RRs relative to the general Scottish population in two different models.

6.3.2 Analysis by duration

We have also devised a variable indicating different time bands after diagnosis:

> rour	nd(ftab	ole(xtabs	<pre>(cbind(Ca</pre>	=d0,PY=y/1	1000) ~ D.	Mprev + D	Mdur,
+			data=sc.	ana), col	l.vars=c(1,3)), 1)
	DMprev	Рор		Inc		Prv	
		Ca	PY	Ca	РҮ	Ca	PY
DMdur							
NoDM		443552.0	86941.3	0.0	0.0	0.0	0.0
0		0.0	0.0	25.0	8.2	0.0	0.0
1		0.0	0.0	16.0	15.0	1.0	0.7
2		0.0	0.0	24.0	38.4	8.0	6.9
5		0.0	0.0	41.0	43.2	22.0	26.3
10		0.0	0.0	38.0	20.0	68.0	48.3
15		0.0	0.0	10.0	2.3	280.0	117.0

We now fit models with the smaller datasets corresponding to more restrictive definitions of T1D:

```
> md40 <- update( m3, . ~ . - T1D + DMdur,
                         data=subset( sc.ana, T1D %in% levels(T1D)[1:4] & DMdur != "Unkn" ) )
> md35 <- update( md40, data=subset( sc.ana, T1D %in% levels(T1D)[1:3] & DMdur != "Unkn" )</pre>
> md30 <- update( md40, data=subset( sc.ana, T1D %in% levels(T1D)[1:2] & DMdur != "Unkn" ) )
> anova( m3, md40, update( md40, .
Analysis of Deviance Table
                                      . + T1D ), test="Chisq" )
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    T1D
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 3: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur + T1D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      14893
                 26892
                             43.895 1.589e-09
2
      14890
                 26848
                        3
3
      14888
                 26843
                        2
                              4.384
                                     0.1117
             md35, update( md35, . ~
                                      . + T1D ), test="Chisq" )
> anova(
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur + T1D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      12782
                  25959
1
                                      0.1978
2
      12781
                 25957
                        1
                             1.6584
```

We see that there a very strong effect of duration, but that it is the same regardless of the age cut-off:

```
RR30 <- ci.exp( md30, subset="DMdur" ) ), 2 )
exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
+
DMdur0
             5.24 3.54 7.75
                                  6.10 3.61 10.29
                                                       5.57 2.66 11.69
             1.75 1.09 2.81
DMdur1
                                  2.14 1.15
                                            3.99
                                                       2.36 1.06 5.25
            0.98 0.70 1.39
                                  0.75 0.43 1.32
                                                       0.92 0.46 1.85
DMdur2
DMdur5
            0.94 0.73 1.20
                                  0.82 0.57
                                                       0.81 0.49 1.32
                                            1.18
             1.12 0.92 1.35
                                  1.10 0.85
                                                       1.09 0.79
                                            1.41
DMdur10
                                                                 1.51
DMdur15
             0.91 0.81 1.03
                                  0.85 0.74
                                            0.99
                                                       0.77 0.64
                                                                 0.93
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( rbind(NA,RR40),
           txt=c("Years since DM", "0-1", "1-2", "2-5", "5-10", "10-15", "15+"),
               xlog=TRUE, xtic=c(c(5:10,15,20,25)/10,3:6), grid=TRUE,
+
               xlab="RR of any cancer, T1D vs. population",
               lwd=4, cex=2, vref=1, y=c(6.7,6:1)+0.15)
 linesEst( rbind(NA,RR35),
>
            lwd=3, cex=1.5, col=gray(0.5), y=7:1-0.00 )
 linesEst( rbind(NA,RR30),
>
            lwd=3, cex=1.5, col=gray(0.7), y=7:1-0.15 )
```

From figure 7.2 it seems that there is a strong ascertainment effect for T1DM as well as what have been shown for all diabetes under one, and that it is not changes if a stricter definition of T1D is applied.

6.3.3 Site-specific analyses

6.3.3.1 Analyses of site specific cancers

We first set up an array to hold the resulting simple RRs for each of the sites; we do the analyses by sex, but also make a pooled analysis, except for the sex-specific cancers (including breast):

Figure 6.2: The effect of duration on the RR of cancer in the Scottish population. The gray sets of effecs are from the models where data are further restricted to patients diagnosed under 35 and 30, respectively.

```
> wh <- c(46:7)
> vnam <- names(sc.ana)[wh]</pre>
 site <- conv[match(vnam,conv$NCnam),"Clab"]</pre>
>
>
  data.frame( vnam, site )
   vnam
                                    site
1
    d52
                              Colorectal
2
    d51
                               Oral etc.
3
    d48 Other and unspecified cancers
4
    d40
                               Leukaemia
5
    d38
                       Multiple myeloma
6
    d36
                   Non-Hodgkin lymphoma
7
    d35
                           Soft tissues
8
    d34
                                    Bone
9
    d33
                                 Thyroid
10
                              Brain, CNS
    d32
                                     Eye
11
    d31
12
    d29
                       Melanoma of skin
13
    d28
                                 Bladder
14
    d27
                                  Kidney
15
    d26
                              Penis etc.
16
    d25
                                  Testis
17
    d24
                                Prostate
18
    d23
           Other female genital organs
19
                                   Ovary
    d22
20
    d20
                           Corpus uteri
21
    d19
                           Cervix uteri
22
    d18
                                  Breast
23
    d17
                                  Pleura
24
    d16
                                    Lung
25
    d15
                                  Larynx
26
    d14
                          Nose, sinuses
27
    d13
                                Pancreas
```

```
28 d12
                           Gallbladder
29
   d11
                                 Liver
30
   d10
                                 Rectum
31
     d9
                                  Colon
32
    d8
                       Small intestine
33
    d7
                               Stomach
34
    d6
                            Oesophagus
35
     d5
                                Pharynx
36
     d4
                                  Mouth
37
     d3
                       Salivary glands
38
     d2
                                 Tongue
39
     d1
                                    Lip
40
                             All sites
     d0
> RRtab <- NArray( list( site = site,</pre>
                           sex = c(levels(sc.ana$sex), "Both"),
+
                          what = c("N.Pop", "N.T1D", "RR", "lo", "hi") ) )
+
> str( RRtab )
 logi [1:40, 1:3, 1:5] NA NA NA NA NA NA ...
 - attr(*, "dimnames")=List of 3
  ...$ site: chr [1:40] "Colorectal" "Oral etc." "Other and unspecified cancers" "Leukaemia" ...
  ..$ sex : chr [1:3] "M" "F" "Both"
  ..$ what: chr [1:5] "N.Pop" "N.T1D" "RR" "lo" ...
```

With this fixed we can the make a loop doing the analysis for all sites:

```
> system.time(
+ for( i in 1:length(vnam) )
     { # i <- 1
+
     aset <- sc.ana[,c(vnam[i],</pre>
+
                          paste("y",if(i==1) "0", sep=""),
"A","P","DMprev","sex")]
+
+
     names( aset )[1:2] <- c("D","Y")
+
     mB <- glm( D ~ Ns ( A, knots=a.kn ) +</pre>
+
                      Ns(P, knots=p.kn) +
Ns(P-A, knots=c.kn) +
+
+
+
                      Relevel(DMprev,list(1,2:3)),
+
               offset = log(Y),
               family = poisson,
+
                 data = aset )
+
+
     mM <- update( mB, data=subset(aset,sex=="M") )</pre>
     mF <- update( mB, data=subset(aset,sex=="F") )</pre>
+
     RRtab[i,"M" ,3:5] <- ci.exp( mM, subset="DMprev" )
RRtab[i,"F" ,3:5] <- ci.exp( mF, subset="DMprev" )
RRtab[i,"Both",3:5] <- ci.exp( mB, subset="DMprev" )</pre>
+
+
+
     RRtab[i,,1:2] <- addmargins( with( aset,</pre>
                                             tapply(D,list(sex,Relevel(DMprev,list(1,2:3))),sum) ), 1 )
+
     })
   user system elapsed
 30.555
           0.037 30.585
> RRorg <- RRtab
> RRtab <- RRorg
> for(i in 1:dim(RRtab)[1])
                                              RRtab[i,j,5]==Inf ) RRtab[i, j
+ for(j in 1:dim(RRtab)[2]) if(
                                                                                       ,] <- NA
> for(i in 1:dim(RRtab)[1]) if(any(is.na(RRtab[i, ,5]==Inf))) RRtab[i, "Both",] <- NA</pre>
> round( ftable( RRtab ), 2 )
                                        what
                                                      N.Pop
                                                                      N.T1D
                                                                                          RR
                                                                                                          10
site
                                  sex
Colorectal
                                  М
                                              3.203200e+04 3.300000e+01 1.210000e+00 8.600000e-01
                                                                                                              1.7
                                  F
                                              2.828700e+04 1.500000e+01 8.900000e-01
                                                                                              5.300000e-01
                                                                                                              1.4
                                  Both
                                              6.031900e+04 4.800000e+01 1.110000e+00 8.300000e-01 1.4
Oral etc.
                                  М
                                              6.921000e+03 8.000000e+00 5.700000e-01
                                                                                              2.800000e-01
                                                                                                              1.1
                                  F
                                              3.609000e+03 4.000000e+00 9.200000e-01
                                                                                              3.40000e-01 2.4
                                  Both
                                              1.053000e+04
                                                              1.200000e+01
                                                                              7.000000e-01
                                                                                              3.90000e-01
                                                                                                              1.2
                                              1.214100e+04 9.000000e+00 1.030000e+00 5.400000e-01
                                                                                                             1.9
Other and unspecified cancers M
                                  F
                                              1.334700e+04 1.000000e+01 1.530000e+00 8.200000e-01 2.8
```

6.3 Analysis of SMR **91**

	Both	2.548800e+04	1.900000e+01	1.250000e+00	8.000000e-01	1.9
Leukaemia	М	6.744000e+03	1.300000e+01	1.460000e+00	8.500000e-01	2.5
	F	5.076000e+03	9.000000e+00	1.800000e+00	9.300000e-01	3.4
	Both	1.182000e+04	2.200000e+01	1.620000e+00	1.070000e+00	2.4
Multiple myeloma	М	3.143000e+03	3.000000e+00	1.010000e+00	3.300000e-01	3.3
	F	NA	NA	NA	NA	
	Both	NA	NA	NA	NA	
Non-Hodgkin lymphoma	M	7.707000e+03	2.100000e+01	1.470000e+00	9.600000e-01	2.2
	F	7.594000e+03	8.000000e+00	1.020000e+00	5.100000e-01	2.0
	Both	1.530100e+04	2.900000e+01	1.340000e+00	9.300000e-01	1.9
Soft tissues	M	1.129000e+03	1.000000e+00	3.800000e-01	5.000000e-02	2.1
	F	8.470000e+02	3.000000e+00	2.060000e+00	6.600000e-01	6.4
P	Both	1.976000e+03	4.000000e+00	1.010000e+00	3.800000e-01	2.1
Bone	M	NA	NA	NA NA	NA	
	r Poth	IN A M A	IN A N A		IN A M A	
Thursd	M		NA 000000000	1 520000a±00	E 700000-01	Λ (
Illyfold	F	1 9800000+02	4.000000000000000000000000000000000000	1.320000e+00	1 000000e-01	2 .
	r Both	2.70500000+03	1.2000000000000000000000000000000000000	1.77000000+00 1.5900000+00	9 7000000-01	2.6
Brain CNS	M	6 172000e+03	1 800000e+01	1.050000e+00	6 600000e-01	1 6
brain, onb	F	7 8750000+03	2.80000000+01	1 5900000+00	1 0900000000000000000000000000000000000	2 3
	Both	1.404700e+04	4 600000e+01	1.300000e+00	9 700000e-01	1 1
Eve	M	5.240000e+02	1.000000000000000000000000000000000000	9.100000e-01	1.300000e-01	6.5
	F	5.300000e+02	1.000000e+00	1.400000e+00	2.000000e-01	1.0
	Both	1.054000e+03	2.000000e+00	1.120000e+00	2.800000e-01	4.5
Melanoma of skin	М	6.247000e+03	1.600000e+01	9.40000e-01	5.700000e-01	1.5
	F	8.114000e+03	1.500000e+01	6.900000e-01	4.200000e-01	1.1
	Both	1.436100e+04	3.100000e+01	7.800000e-01	5.500000e-01	1.1
Bladder	М	1.849800e+04	1.100000e+01	8.300000e-01	4.600000e-01	1.5
	F	8.557000e+03	6.000000e+00	1.530000e+00	6.900000e-01	3.4
	Both	2.705500e+04	1.700000e+01	1.060000e+00	6.600000e-01	1.7
Kidney	М	6.328000e+03	1.400000e+01	1.480000e+00	8.700000e-01	2.5
	F	4.368000e+03	4.000000e+00	1.010000e+00	3.800000e-01	2.7
	Both	1.069600e+04	1.800000e+01	1.410000e+00	8.800000e-01	2.2
Penis etc.	M	4.662500e+04	3.300000e+01	7.300000e-01	5.200000e-01	1.(
	F	NA	NA	NA	NA	
-	Both	NA	NA	NA NA	NA .	
Testis	M	3.345000e+03	2.000000e+01	8.800000e-01	5.600000e-01	1.3
	F Deth	NA	NA	NA	NA	
Dreastate	BOTH		NA 1 100000-101	NA	NA 2 000000 01	0.
Prostate	M	4.248400e+04	1.100000e+01	5.400000e-01	3.000000e-01	9.1
	r Poth	INA MA	INA NA	IN A N A	INA NA	
Other female genital ergans	M	NA NA	IVA NA	NA NA	INA NA	
Uther remare genitar organs	н F	2 1790000+03	2 0000000+00		1 7000000-01	2 7
	Both	2.1700000.00 NA	2.00000000.00 NA	0.000000 01 NA	1.7000000 01 NA	2.1
Ovary	M	NΔ	NΔ	NΔ	ΝA	
ovary	F	1.063500e+04	1.100000e+01	7.400000e-01	4.100000e-01	1.3
	Both	NA	NA	NA	NA	
Corpus uteri	M	NA	NA	NA	NA	
I	F	8.752000e+03	1.200000e+01	1.430000e+00	8.100000e-01	2.5
	Both	NA	NA	NA	NA	
Cervix uteri	М	NA	NA	NA	NA	
	F	5.383000e+03	1.400000e+01	7.100000e-01	4.200000e-01	1.2
	Both	NA	NA	NA	NA	
Breast	М	3.360000e+02	1.000000e+00	2.690000e+00	3.700000e-01	1.9
	F	6.257900e+04	9.900000e+01	9.100000e-01	7.500000e-01	1.1
	Both	6.291500e+04	1.000000e+02	7.800000e-01	6.400000e-01	9.5
Pleura	М	2.387000e+03	1.000000e+00	8.800000e-01	1.200000e-01	6.2
	F	NA	NA	NA	NA	
-	Both	NA	NA	NA	NA	
Lung	M	4.430700e+04	3.700000e+01	1.410000e+00	1.020000e+00	1.9
	F	3.614600e+04	1.900000e+01	1.120000e+00	(.200000e-01	1.1
T	Both	8.045300e+04	5.600000e+01	1.310000e+00	1.010000e+00	1.1
Larynx	M	4.026000e+03	4.000000e+00	8.200000e-01	3.100000e-01	2.2
	г	1.060000e+03	0.000000e+00	u.uuuuuue+00	u.uuuuuue+00	5.08

T1D and cancer

Nose, sinuses M NA NA NA NA NA NA Pancreas F NA NA NA NA NA Pancreas M 5.26500e+03 5.00000000 1.490000e+00 7.10000e+01 4.7000e+01 Gallbladder F 1.533000e+03 0.00000e+00 0.00000e+00 0.00000e+00 2.43 Gallbladder M NA NA NA NA NA Liver M 3.482000e+03 1.20000e+01 3.68000e+00 2.88000e+00 2.15000e+00 5. Rectum M 1.25520e+04 1.50000e+01 1.19000e+07 7.20000e-01 1.5 Rectum M 1.25520e+04 1.50000e+00 7.200000e-01 1.5 Colon M 1.94840e+04 1.80000e+00 1.50000e+00 7.200000e-01 1.6 Small intestine M NA NA NA NA NA Stomach M 8.78700e+03 5.00000e+00 1.50000e+00		Both	5.086000e+03	4.000000e+00	7.600000e-01	2.900000e-01	2.0
F NA NA NA NA NA Pancreas M 5.265000e+03 7.00000e+00 1.490000e+00 8.10000e-01 3.1 Galbladder M 5.265000e+03 5.00000e+00 1.950000e+00 8.10000e-01 3.1 Galbladder M NA NA NA NA Both 1.102300e+03 3.00000e+00 0.00000e+00 2.40000e+00 2.43 Liver M 3.482000e+03 3.00000e+01 3.460000e+00 2.58000e+00 2.50000e+01 8.5 Rectum M 1.255200e+04 1.50000e+01 3.580000e+00 2.20000e-01 1.5 Rectum M 1.255200e+04 1.50000e+01 3.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.50000e-01 1.60000e+02 2.00000e+00 3.50000e-01 1.60000e+02 1.50000e+01 1.50000e+01 1.50000e+01 1.50000e+01 1.50000e+01 1.500000e+01 1.500000e+01 1.50000e	Nose, sinuses	М	NA	NA	NA	NA	
Both NA NA NA NA NA NA Pancreas F 5.758000e+03 7.00000e+00 1.490000e+00 7.100000e-01 3.3 Gallbladder F 5.758000e+03 5.00000e+00 1.70000e+00 9.600000e+00 2.43 Gallbladder M NA NA NA NA NA Liver M 3.482000e+03 3.00000e+00 2.88000e+00 9.20000e+01 8.50000e+00 9.20000e+01 8.50000e+00 2.50000e+00 1.500000e+01		F	NA	NA	NA	NA	
Pancreas M 5.265000e+03 7.000000e+00 7.100000e-01 4.7 Gallbladder Both 1.102300e+04 1.20000e+00 1.950000e+00 0.00000e+00 2.43 Gallbladder M NA NA NA NA NA Liver M 3.482000e+03 1.00000e+00 3.46000e+00 9.20000e+01 3.45000e+00 9.20000e+01 5.00000e+00 5.25000e+01 3.58000e+00 9.20000e-01 5.25 Rectum M 1.255200e+04 1.50000e+00 3.580000e-01 1.50000e-01 1.50000e	_	Both	NA	NA	NA	NA	_
F 5.758000e+03 5.00000e+00 1.950000e+00 8.100000e-01 3.000000e-00 9.000000e-01 3.0 Gallbladder M NA NA NA NA NA Liver M 3.482000e+03 3.00000e+00 3.46000e+00 9.20000e+01 8.1 Liver M 3.482000e+03 3.00000e+01 3.46000e+00 9.20000e+01 8.5 Rectum M 3.48200e+03 3.00000e+01 3.58000e+00 9.20000e+01 8.5 Rectum M 1.25520e+04 1.50000e+01 3.58000e+00 7.20000e-01 1.5 Rectum M 1.94800e+04 1.00000e+00 8.50000e+01 1.50000e+01	Pancreas	М	5.265000e+03	7.000000e+00	1.490000e+00	7.100000e-01	3.1
Both 1.102300e+04 1.20000e+01 1.70000e+00 9.600000e+00 NA NA Gallblader M NA NA NA NA NA NA Both NA NA NA NA NA NA Liver M 3.482000e+03 3.20000e+01 3.46000e+00 1.96000e+00 6.7 Rectum M 1.255200e+04 1.50000e+01 3.580000e+00 7.20000e=01 1.6 Rectum M 1.255200e+04 1.50000e+01 1.10000e+00 7.20000e=01 1.6 Colon M 1.994800e+04 2.100000e+01 1.10000e+00 7.20000e=01 1.6 Small intestine M NA NA NA NA NA Stomach F 6.30000e+02 2.00000e+00 3.50000e=01 2.1 0.0000e+00 7.40000e=01 1.6 Stomach M NA NA NA NA NA NA Stomach F 5.770000e+03		F	5.758000e+03	5.000000e+00	1.950000e+00	8.100000e-01	4.7
Gallbladder M NA NA NA NA NA Er 1.533000er03 0.00000er00 6.00000er00 1.96000er00 5.35000er00 5.28000er00 5.28000er00 5.20000er01 5.55000er00 5.20000er01 5.550000er01 5.20000er01 5.20000er01 5.20000er01 5.20000er01 5.20000er01 5.20000er01 5.20000er01 1.500000er01 5.20000er01 1.500000er01 1.500000er01 1.500000er01 1.50000er01 1.500000er01 1.500000er01 1		Both	1.102300e+04	1.200000e+01	1.700000e+00	9.600000e-01	3.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gallbladder	М	NA	NA	NA	NA	
Both NA Stable (0.00000000000000000000000000000000000		F	1.533000e+03	0.000000e+00	0.000000e+00	0.000000e+00	2.43
Liver M 3.482000e+03 1.200000e+01 3.460000e+00 1.960000e+06 6. F 1.899000e+03 3.00000e+00 3.280000e+00 9.200000e+00 5. Rectum M 1.255200e+04 1.500000e+01 1.190000e+00 7.200000e-01 1.6 F 8.917000e+03 6.00000e+00 1.180000e+01 7.200000e-01 1.6 Colon M 1.994800e+04 4.800000e+01 1.180000e+00 7.200000e-01 1.6 F 1.966200e+04 9.000000e+00 8.70000e-01 4.50000e-01 1.6 Small intestine M NA NA NA NA Stomach M 8.787000e+03 5.00000e+00 8.50000e-01 1.6 Stomach M 8.787000e+03 8.70000e+01 1.07000e+00 7.400000e-01 1.6 Both 3.96100e+04 2.700000e+00 8.70000e+01 7.400000e-01 1.6 Small intestine M NA NA NA NA NA Stomach M 8.787000e+03 5.00000e+00 8.50000e-01 3.500000e-01 1.6 Both NA NA NA NA NA Stomach M 8.787000e+03 5.000000e+00 1.500000e+00 7.400000e-01 4.6 Both 1.455700e+03 5.00000e+00 1.500000e+00 5.500000e-01 4.6 Both 1.455700e+03 9.000000e+00 1.00000e+00 5.500000e-11 2.0 F 5.272000e+03 7.00000e+00 1.00000e+00 5.50000e-01 2.0 Pharynx M 2.733000e+03 1.00000e+00 1.070000e+00 5.50000e-01 2.0 F 5.272000e+03 1.000000e+00 1.700000e+00 1.20000e+00 8.6 Both 3.781000e+03 1.000000e+00 1.700000e+00 1.200000e+00 8.6 Solut 3.781000e+03 1.000000e+00 1.000000e+00 1.200000e-02 1.2 F 1.327000e+03 3.000000e+00 1.000000e+00 1.000000e+00 2.00000e+00 1.2 Salivary glands M S49000e+03 1.000000e+00 1.000000e+00 1.000000e+00 1.2 Salivary glands M NA NA NA NA F 3.490000e+02 1.000000e+00 1.030000e+00 1.00000e+01 2.0 Solut 3.490000e+02 1.000000e+00 1.030000e+01 1.00000e+01 2.0 F 1.3270000e+03 3.000000e+00 1.830000e+00 1.030000e+01 2.0 Salivary glands M NA NA NA NA F 3.490000e+02 1.000000e+00 1.830000e+00 1.030000e+01 2.0 Solut 3.490000e+02 1.000000e+00 1.030000e+01 1.0 F 3.490000e+02 1.000000e+00 1.030000e+00 2.600000e-01 1.0 Solut NA NA NA NA F 3.490000e+02 1.000000e+00 1.030000e+00 2.00000e+01 1.2 Solut NA NA NA NA NA A NA NA NA		Both	NA	NA	NA	NA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Liver	М	3.482000e+03	1.200000e+01	3.460000e+00	1.960000e+00	6.1
Both 5.381000e+03 1.50000e+01 3.58000e+00 2.150000e+01 1.50000e+01 1.9000e+00 7.20000e-01 1.9 Rectum F 8.917000e+03 6.00000e+01 1.9000e+00 7.20000e-01 1.9 Colon M 1.94800e+04 2.100000e+01 1.10000e+00 7.20000e-01 1.6 Colon M 1.94800e+04 2.00000e+00 8.70000e+01 7.30000e-01 1.6 Small intestine M NA NA NA NA NA Stomach M S.61000e+02 2.00000e+00 3.50000e+01 1.70 7.40000e-01 1.7 Stomach M NA NA NA NA NA NA Stomach M 8.787000e+03 5.00000e+00 8.50000e+01 2.0 2.00000e+01 1.00000e+01 2.70000e+01 2.0 2.00000e+01 2.0 2.00000e+01 2.0 2.00000e+01 2.0 2.00000e+01 2.0 2.00000e+01 2.0 2.00000e+01 2.0 2.0000e+01		F	1.899000e+03	3.000000e+00	2.880000e+00	9.200000e-01	8.9
Rectum M 1.255200e+04 1.50000e+01 1.19000e+00 7.20000e-01 1.5 Both 2.146900e+04 2.10000e+01 1.10000e+00 7.20000e-01 1.6 Colon M 1.994800e+04 1.80000e+01 1.10000e+00 7.40000e-01 1.6 Small intestine M 1.994800e+04 2.70000e+01 1.07000e+00 7.40000e-01 1.6 Small intestine M NA NA NA NA NA Stomach M NA NA NA NA NA NA Stomach M 8.787000e+03 5.00000e+00 1.50000e+00 5.60000e-01 2.0 Desophagus M 8.787000e+03 9.00000e+00 1.00000e+00 5.70000e+02 2.0 Desophagus M 8.557000e+03 9.00000e+00 1.00000e+00 5.70000e+02 2.0 Desophagus M 8.557000e+03 9.00000e+00 1.040000e+00 2.00000e+02 2.0 M 2.7200e+03 1.00000e+00		Both	5.381000e+03	1.500000e+01	3.580000e+00	2.150000e+00	5.9
F 8.917000e+03 6.00000e+00 8.50000e+01 3.80000e+01 1.1 Colon M 1.994800e+04 1.80000e+01 1.10000e+00 7.40000e-01 1.6 F 1.966200e+04 9.00000e+00 8.70000e+01 4.50000e+01 1.6 Small intestine M NA NA NA NA NA Stanch M NA NA NA NA NA NA Stanch M S.77000e+03 5.00000e+00 8.50000e-01 2.0 2.00000e+00 5.60000e-01 2.0 Desophagus M 8.75700e+03 5.00000e+00 1.50000e+00 5.50000e-01 2.0 Desophagus M 8.55700e+03 9.00000e+00 1.00000e+00 1.82000e+02 2.0 Pharynx M 2.73300e+03 1.00000e+00 1.82000e+02 2.0 2.00000e+02 1.2 Mouth M 2.16700e+03 1.00000e+00 1.00000e+00 1.00000e+01 2.00000e+02 1.2 Mouth	Rectum	М	1.255200e+04	1.500000e+01	1.190000e+00	7.200000e-01	1.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F	8.917000e+03	6.000000e+00	8.500000e-01	3.800000e-01	1.9
Colon M 1.994800e+04 1.80000e+01 1.180000e+00 7.40000e-01 1.5 Small intestine M NA NA NA NA NA Stomach M NA NA NA NA NA Stomach M NA NA NA NA NA Stomach M 8.787000e+03 5.00000e+00 8.50000e-01 3.50000e-01 2.0 Both NA NA NA NA NA NA Stomach M 8.787000e+03 5.00000e+00 1.50000e+01 5.70000e-01 2.0 Desophagus M 8.55700e+04 9.00000e+00 1.0000e+00 5.70000e+02 2.0 Pharynx M 2.733000e+03 1.00000e+00 1.700000e+00 2.000000e+02 1.7 Mouth M 2.167000e+03 1.00000e+00 1.50000e+01 2.00000e+01 2.7 Salivary glands M NA NA NA NA NA NA		Both	2.146900e+04	2.100000e+01	1.100000e+00	7.200000e-01	1.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Colon	М	1.994800e+04	1.800000e+01	1.180000e+00	7.400000e-01	1.8
Both 3.961000e+04 2.70000e+01 1.070000e+00 7.300000e-01 1.1 Small intestine M NA NA NA NA NA Stomach F 6.430000e+02 2.00000e+00 3.00000e+00 7.40000e-01 1.7 Stomach M 8.787000e+03 4.000000e+00 8.550000e-01 2.7 Desophagus M 8.78700e+03 9.00000e+00 1.50000e+00 5.50000e-01 2.7 Desophagus M 8.55700e+03 9.00000e+00 1.070000e+00 5.50000e-01 2.7 Desophagus M 8.55700e+03 9.00000e+00 1.070000e+00 1.040000e+00 2.7 Desophagus M 2.733000e+03 1.00000e+00 1.070000e+00 1.040000e+00 2.000000e+00 2.000000e+00 2.000000e+00 1.040000e+00 2.000000e+00 2.000000e+00 1.040000e+00 2.000000e+01 2.000000		F	1.966200e+04	9.000000e+00	8.700000e-01	4.500000e-01	1.6
Small intestine M NA NA NA NA F 6.43000e+02 2.00000e+00 3.00000e+00 7.40000e-01 1.7 Stomach M 8.787000e+03 5.00000e+00 8.50000e-01 3.50000e-01 2.0 Stomach M 8.787000e+03 5.00000e+00 1.50000e+00 5.60000e-01 2.0 Desophagus M 8.55700e+03 9.00000e+00 1.07000e+00 5.50000e-01 2.0 Desophagus M 8.55700e+03 9.00000e+00 1.07000e+00 5.50000e-01 2.0 Desophagus M 8.55700e+03 9.00000e+00 1.070000e+00 1.82000e+00 2.0 Desophagus M 2.73300e+03 1.00000e+00 1.70000e+00 2.00000e+02 1.0 Mouth 2.167000e+03 1.00000e+00 1.50000e-01 2.0 2.00000e+02 1.0 Mouth M 2.167000e+03 1.00000e+00 1.05000e+00 2.60000e-01 2.5 Salivary glands M NA NA		Both	3.961000e+04	2.700000e+01	1.070000e+00	7.300000e-01	1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Small intestine	М	NA	NA	NA	NA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		F	6.430000e+02	2.000000e+00	3.000000e+00	7.400000e-01	1.2
Stomach M 8.787000e+03 5.00000e+00 8.50000e-01 3.50000e-01 2.0 F 5.77000e+03 4.00000e+00 1.50000e+00 5.60000e-01 2.0 Both 1.455700e+04 9.00000e+00 1.0000e+00 5.70000e+01 2.0 Desophagus M 8.55700e+03 9.00000e+00 1.07000e+00 5.50000e-01 2.0 Pharynx M 2.73300e+03 7.00000e+00 1.70000e+00 1.04000e+00 2.1 Pharynx M 2.73300e+03 1.00000e+00 1.70000e+01 2.00000e-02 1.0 Pharynx M 2.73300e+03 1.00000e+00 1.70000e+01 2.00000e-02 1.0 Mouth Soft 3.78100e+03 1.00000e+00 1.50000e-01 2.00000e+02 1.00000e+00 3.90000e-01 2.7 Mouth M 2.16700e+03 1.00000e+00 1.050000e+01 1.100000e-01 5.7 Salivary glands M NA NA NA NA NA F 3.490000e+02		Both	NA	NA	NA	NA	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Stomach	М	8.787000e+03	5.000000e+00	8.500000e-01	3.500000e-01	2.0
Both 1.455700e+04 9.00000e+00 1.100000e+00 5.70000e-01 2.5 Desophagus M 8.55700e+03 9.00000e+00 1.070000e+00 5.50000e-01 2.6 F 5.272000e+03 7.00000e+00 3.84000e+00 1.82000e+00 8.6 Both 1.382900e+04 1.60000e+01 1.700000e+00 1.040000e+00 2.7 Pharynx M 2.733000e+03 1.00000e+00 1.700000e-01 2.000000e+00 4.5 Mouth M 2.167000e+03 0.00000e+00 1.50000e-01 2.00000e-02 1.6 Mouth M 2.167000e+03 1.00000e+00 1.04000e+03 3.00000e+01 1.100000e-01 2.00000e-01 2.5 Mouth M 2.167000e+03 1.00000e+00 1.00000e-01 2.60000e-01 2.5 Salivary glands M NA NA NA NA NA Tongue M 1.79600e+03 3.00000e+00 1.58000e+01 2.50000e-01 2.4 Lip M NA		F	5.770000e+03	4.000000e+00	1.500000e+00	5.600000e-01	4.0
Desophagus M 8.557000e+03 9.000000e+00 1.070000e+00 5.500000e-01 2.0 F 5.272000e+03 7.00000e+00 3.840000e+00 1.82000e+00 8.0 Pharynx M 2.733000e+03 1.00000e+00 1.70000e+00 1.040000e+00 2.0 Pharynx M 2.733000e+03 1.000000e+00 1.700000e+01 2.000000e+02 1.0 Mouth M 2.16700e+03 0.00000e+00 1.50000e-01 2.000000e-02 1.0 Mouth M 2.16700e+03 1.00000e+00 1.04000e+00 3.90000e-01 2.7 Mouth M 2.16700e+03 1.00000e+00 1.040000e+00 3.90000e-01 2.7 Salivary glands M NA NA NA NA NA NA F 3.49000e+03 5.00000e+00 1.05000e+00 2.60000e-01 1.5 Salivary glands M NA NA NA NA NA F 3.49000e+02 1.00000e+00 1.830000e+00		Both	1.455700e+04	9.000000e+00	1.100000e+00	5.700000e-01	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Oesophagus	М	8.557000e+03	9.000000e+00	1.070000e+00	5.500000e-01	2.0
Both 1.382900e+04 1.60000e+01 1.70000e+00 1.04000e+00 2.7 Pharynx M 2.733000e+03 1.00000e+00 1.700000e-01 2.000000e+02 1.5 F 1.048000e+03 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+01 2.000000e+02 1.0 Mouth M 2.167000e+03 1.00000e+00 1.040000e+01 3.90000e+01 2.7 Mouth M 2.167000e+03 1.00000e+00 1.04000e+01 5.7 Both 3.494000e+03 5.00000e+00 1.05000e+01 1.100000e-01 2.5 Salivary glands M NA NA NA NA NA Tongue M 1.796000e+03 3.00000e+00 1.830000e+00 2.500000e+01 2.5 Lip M 1.796000e+03 3.00000e+00 1.030000e+00 4.300000e-01 2.4 F 9.880000e+02 2.0		F	5.272000e+03	7.000000e+00	3.840000e+00	1.820000e+00	8.0
Pharynx M 2.733000e+03 1.00000e+00 1.700000e-01 2.000000e+02 1.2 F 1.048000e+03 0.00000e+00 0.00000e+00 0.00000e+00 1.50000e-01 2.00000e+02 1.6 Mouth M 2.167000e+03 4.00000e+00 1.040000e+00 3.90000e-01 2.7 Mouth M 2.167000e+03 4.00000e+00 1.040000e+00 3.90000e-01 2.7 Mouth M 2.167000e+03 1.00000e+00 8.100000e-01 1.100000e-01 5.7 Salivary glands M NA NA NA NA NA NA Solut 3.490000e+02 1.00000e+00 1.830000e+00 2.600000e-01 1.5 Salivary glands M NA NA NA NA F 3.490000e+02 1.00000e+00 1.830000e+00 2.600000e-01 1.5 Solth NA NA NA NA NA NA NA Iongue M 1.796000e+03 3.00000e+00 1.030000e+00 3.900000e-01 2.4 Lip M NA		Both	1.382900e+04	1.600000e+01	1.700000e+00	1.040000e+00	2.7
F 1.048000e+03 0.000000e+00 0.000000e+00 0.000000e+00 4.54 Mouth M 2.167000e+03 1.000000e+00 1.500000e-01 2.000000e-02 1.0 Mouth M 2.167000e+03 4.00000e+00 1.040000e+00 3.900000e-01 2.7 Salivary glands F 1.327000e+03 1.00000e+00 8.100000e-01 1.100000e-01 5.7 Salivary glands M NA NA NA NA NA Tongue M 1.796000e+03 3.000000e+00 1.83000e+01 2.500000e-01 2.4 Lip M 1.796000e+03 3.000000e+00 7.70000e-01 2.500000e-01 2.4 Lip M 1.796000e+03 3.000000e+00 1.030000e+00 3.900000e-01 2.4 H 1.796000e+03 3.000000e+00 1.030000e+00 3.900000e-01 2.4 Lip M 1.796000e+03 3.000000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA <t< td=""><td>Pharynx</td><td>М</td><td>2.733000e+03</td><td>1.000000e+00</td><td>1.700000e-01</td><td>2.000000e-02</td><td>1.2</td></t<>	Pharynx	М	2.733000e+03	1.000000e+00	1.700000e-01	2.000000e-02	1.2
Both 3.781000e+03 1.00000e+00 1.500000e-01 2.000000e-02 1.00000e+02 Mouth M 2.167000e+03 4.00000e+00 1.040000e+00 3.900000e-01 2.7 F 1.327000e+03 1.00000e+00 8.100000e-01 1.100000e-01 5.7 Both 3.494000e+03 5.00000e+00 1.050000e+00 4.400000e-01 2.5 Salivary glands M NA NA NA NA NA F 3.490000e+02 1.000000e+00 1.830000e+00 2.600000e-01 1.5 Soth NA NA NA NA NA NA Tongue M 1.796000e+03 3.00000e+00 7.70000e-01 2.500000e-01 2.4 F 9.880000e+02 2.000000e+00 1.580000e+00 3.900000e-01 2.4 Lip M 1.79600e+03 5.00000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA NA NA NA NA All si	°	F	1.048000e+03	0.000000e+00	0.000000e+00	0.000000e+00	4.54
Mouth M 2.167000e+03 4.00000e+00 1.040000e+00 3.90000e-01 2.7 F 1.327000e+03 1.00000e+00 8.10000e-01 1.100000e-01 5.7 Both 3.494000e+03 5.00000e+00 1.050000e+00 4.400000e-01 2.8 Salivary glands M NA NA NA NA NA F 3.490000e+02 1.000000e+00 1.830000e+00 2.600000e-01 1.3 Soth NA NA NA NA NA NA Tongue M 1.796000e+03 3.00000e+00 7.70000e-01 2.500000e-01 2.4 F 9.880000e+02 2.00000e+00 1.580000e+00 3.900000e-01 2.4 Lip M 1.796000e+03 5.000000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.5 Both NA NA NA NA NA NA NA		Both	3.781000e+03	1.000000e+00	1.500000e-01	2.000000e-02	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mouth	М	2.167000e+03	4.000000e+00	1.040000e+00	3.900000e-01	2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		F	1.327000e+03	1.000000e+00	8.100000e-01	1.100000e-01	5.7
Salivary glands M NA NA NA NA F 3.490000e+02 1.000000e+00 1.830000e+00 2.600000e-01 1.3 Both NA NA NA NA NA NA Tongue M 1.796000e+03 3.00000e+00 7.700000e-01 2.500000e-01 2.4 F 9.880000e+02 2.000000e+00 1.580000e+00 3.900000e-01 6.3 Both 2.784000e+03 5.000000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1		Both	3.494000e+03	5.000000e+00	1.050000e+00	4.400000e-01	2.5
F 3.490000e+02 1.000000e+00 1.830000e+00 2.600000e-01 1.33 Both NA NA NA NA NA NA Tongue M 1.796000e+03 3.000000e+00 7.700000e-01 2.500000e-01 2.4 F 9.880000e+02 2.000000e+00 1.580000e+00 3.900000e-01 6.3 Both 2.784000e+03 5.000000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1	Salivary glands	М	NA	NA	NA	NA	
Both NA NA NA NA Tongue M 1.796000e+03 3.00000e+00 7.700000e-01 2.500000e-01 2.4 F 9.880000e+02 2.000000e+00 1.580000e+00 3.900000e-01 6.3 Both 2.784000e+03 5.00000e+00 1.03000e+00 4.300000e-01 2.4 Lip M NA NA NA NA F NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.5 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.5 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.5		F	3.490000e+02	1.000000e+00	1.830000e+00	2.600000e-01	1.3
Tongue M 1.796000e+03 3.00000e+00 7.700000e-01 2.500000e-01 2.4 F 9.88000e+02 2.000000e+00 1.580000e+00 3.900000e-01 6.3 Both 2.784000e+03 5.000000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA NA NA F NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1		Both	NA	NA	NA	NA	
F 9.88000e+02 2.00000e+00 1.58000e+00 3.90000e-01 6.3 Both 2.784000e+03 5.00000e+00 1.03000e+00 4.30000e-01 2.4 Lip M NA NA NA NA F NA NA NA NA Both 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.5 All sites M 2.170780e+05 2.530000e+02 1.030000e+00 9.300000e-01 1.5 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.5 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.5	Tongue	М	1.796000e+03	3.000000e+00	7.700000e-01	2.500000e-01	2.4
Both 2.784000e+03 5.000000e+00 1.030000e+00 4.300000e-01 2.4 Lip M NA NA NA NA NA NA F NA NA NA NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1	0	F	9.880000e+02	2.000000e+00	1.580000e+00	3.900000e-01	6.3
Lip M NA NA NA NA NA F NA NA NA NA NA Both NA NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.3 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.3 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.3		Both	2.784000e+03	5.000000e+00	1.030000e+00	4.300000e-01	2.4
F NA NA NA NA Both NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1	Lip	М	NA	NA	NA	NA	
Both NA NA NA NA All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1	1	F	NA	NA	NA	NA	
All sites M 2.170780e+05 2.530000e+02 1.050000e+00 9.300000e-01 1.1 F 2.264740e+05 2.800000e+02 1.030000e+00 9.200000e-01 1.1 Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1		Both	NA	NA	NA	NA	
F2.264740e+052.800000e+021.030000e+009.200000e-011.1Both4.435520e+055.330000e+021.010000e+009.300000e-011.1	All sites	М	2.170780e+05	2.530000e+02	1.050000e+00	9.300000e-01	1.1
Both 4.435520e+05 5.330000e+02 1.010000e+00 9.300000e-01 1.1		F	2.264740e+05	2.800000e+02	1.030000e+00	9.200000e-01	1.1
		Both	4.435520e+05	5.330000e+02	1.010000e+00	9.300000e-01	1.:

Of course we would also like to see the results as a forest plot, so we extract the relevant quantities for doing this:

```
> eM <- RRtab[,"M",3:5]
> eF <- RRtab[,"F",3:5]
> eB <- RRtab[,"Both",3:5]
> nr <- nrow( eM )
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( eB, y=1:nr, txtpos=1:nr,
+ col="lightgray", xlog=TRUE,
+ xtic=c(1:10/10,1.5,2:7), xlim=c(0.095,7),
+ grid=TRUE, vref=1, xlab="Cancer incidence RR, T1D vs. population" )
> linesEst( eF, y=1:nr-0.2, col="red" )
> linesEst( eM, y=1:nr+0.2, col="blue" )
> text( rep(0.095, nr), nr:1+0.2, RRtab[,"M",2],
+ col="blue", adj=1, cex=0.7 )
> text( rep(0.095, nr), nr:1-0.2, RRtab[,"F",2],
+ col="red", adj=1, cex=0.7 )
```

We see that the only sites with appreaciable increased RR and sufficiently narrow confidence intervals are liver, corpus uteri, thyroid (women) and leukaemia; whereas there seems to be a lower risk for prostate cancer among T1D patients.

Figure 6.3: RRs of cancer incidence among T1D patients (i.e. diagnosed < 40 years of age) in Scotland relative to the general population. The numbers to the left are the number of cancers observed among the T1D patients. Men: Blue, Women: Red, Both sexes: Light gray.

Chapter 7 Australian T1D data

> library(Epi)
> library(foreign)

7.1 Naming of sites and files

We start by laying out the correct naming of the files with incidence and population data from each site, and link these to the common naming of response variables in the project:

		~	
>	clear()	
>	load("/da	ta/conv.Rda")
>	conv	NG	
	DKnam	NCnam	Clab
1	d0	dU	All sites
2	d11	d1	Lip
3	d12	d2	Tongue
4	d14	d3	Salivary glands
5	d13	d4	Mouth
6	d15	d5	Pharynx
1	d21	d6	Uesophagus
8	d22	d/	Stomach
9	d23	d8	Small intestine
10	d24	d9	Colon
11	d25	d10	Rectum
12	d26	d11	Liver
13	d27	d12	Gallbladder
14	d28	d13	Pancreas
15	d31	d14	Nose, sinuses
16	d32	d15	Larynx
17	d33	d16	Lung
18	d36	d17	Pleura
19	d70	d18	Breast
20	d82	d19	Cervix uteri
21	. d83	d20	Corpus uteri
22	d84	d22	Uvary
23	d85	d23	Uther female genital organs
24	d91	d24	Prostate
25	d92	d25	Testis
26	d93	d26	Penis etc.
27	d101	d27	Kidney
28	d103	d28	Bladder
29	d51	d29	Melanoma of skin
30	d111	d31	Eye
31	d113	d32	Brain, CNS
32	d121	d33	Thyroid

Bone	d34	d40	33
Soft tissues	d35	d63	34
Non-Hodgkin lymphoma	d36	d132	35
Hodgkin lymphoma	d37	d131	36
Multiple myeloma	d38	d133	37
Leukaemia	d40	d139	38
Other and unspecified cancers	d48	d140	39
Oral etc.	d51	d151	40
Colorectal	d52	d251	41

Here are the names of variable names, the names of the site-specific files with incidence data (fnam), and the names of the site-specific population rate files (pnam):

```
> dnam <- c(0,6,7,52,11,13,16,18,19,20,22,24,
             25,27,28,29,32,33,36,37,38)
+
> dnam <- paste( "d", dnam, sep="" )</pre>
> fnam <- c(
+ "allcancer"
+ "oesophagus",
+ "stomach",
+ "colorectal",
+ "liver",
+ "pancreas"
+ "lung",
+ "breast"
+ "cervical",
+ "uterine",
+ "ovarian"
+ "prostate"
+ "testicular",
+ "kidney",
+ "bladder"
+ "melanoma",
+ "brain",
+ "thyroid",
+ "nhlymphoma",
+ "hlymphoma",
+ "myeloma")
> pnam <- c(
+ "all",
+ "oesophageal",
+ "stomach",
+ "bowel",
+ "liver",
+ "pancreatic",
+ "lung",
+ "breast"
+ "cervical",
+ "uterine",
+ "ovarian"
+ "prostate"
+ "testicular",
+ "kidney",
+ "bladder"
+ "melanoma",
+ "brain",
+ "thyroid",
+ "nhlymphoma",
+ "hlymphoma",
```

+ "myeloma")

We can now list the filenames used for the population rates (fnam), from the T1D rates (pnam) together with the eventual variable names that we shall use (which also will be used in the joint analysis) and finally the labelling of the estimates as we shall use them in the reporting of teh analysis. The latter two are from the object conv:

>	cbind(fnam,	pnam,	dnam,	conv\$Clab[match((dnam,conv\$NCnam)])
---	--------	-------	-------	-------	-------------------	---------------------	---

	inam	pnam	dnam	
[1,]	"allcancer"	"all"	"d0"	"All sites"
[2,]	"oesophagus"	"oesophageal"	"d6"	"Oesophagus"
[3,]	"stomach"	"stomach"	"d7"	"Stomach"
[4,]	"colorectal"	"bowel"	"d52"	"Colorectal"
[5,]	"liver"	"liver"	"d11"	"Liver"
[6,]	"pancreas"	"pancreatic"	"d13"	"Pancreas"
[7,]	"lung"	"lung"	"d16"	"Lung"
[8,]	"breast"	"breast"	"d18"	"Breast"
[9,]	"cervical"	"cervical"	"d19"	"Cervix uteri"
[10,]	"uterine"	"uterine"	"d20"	"Corpus uteri"
[11,]	"ovarian"	"ovarian"	"d22"	"Ovary"
[12,]	"prostate"	"prostate"	"d24"	"Prostate"
[13,]	"testicular"	"testicular"	"d25"	"Testis"
[14,]	"kidney"	"kidney"	"d27"	"Kidney"
[15,]	"bladder"	"bladder"	"d28"	"Bladder"
[16,]	"melanoma"	"melanoma"	"d29"	"Melanoma of skin"
[17,]	"brain"	"brain"	"d32"	"Brain, CNS"
[18,]	"thyroid"	"thyroid"	"d33"	"Thyroid"
[19,]	"nhlymphoma"	"nhlymphoma"	"d36"	"Non-Hodgkin lymphoma'
[20,]	"hlymphoma"	"hlymphoma"	"d37"	"Hodgkin lymphoma"
[21,]	"myeloma"	"myeloma"	"d38"	"Multiple myeloma"

7.2 Cancer incidences in T1 patients

7.2.1 Person-years

The Australian incidence data is provided in form of a tabulation of the follow up of *all* known T1D patients and a tabulation of the patients with known date of diagnosis subdivided by duration during follow-up.

However, we want the cases subdivided by *whether* DM duration is available or not; this is done by adding an extra level to the duration classification. This mean that we must take the non-duration classified cases and classify them *only* by sex, age, period and age band at dagnosis 1

First we read the person-years (and deaths in the variable _d) and make the relevant tabulation, and subsequent subtract the person-years among those with duration from that among those without duration:

```
> pya <- read.dta( file="../data/aus/all/person-years.dta" )</pre>
> pyd <- read.dta( file="../data/aus/dmdur/person-years.dta" )</pre>
> names( pya )
                     "t1d_status" "_age"
                                                     "_year"
                                                                     "_d"
[1] "asex"
                                                                                     "_y"
> names( pyd )
                     "t1d_status" "_age"
[1] "asex"
                                                     "_year"
                                                                     "dmdur"
                                                                                     "_d"
                                                                                                     "_У"
> names( pyd )[-5] <- names( pya ) <- c("sex","T1D","A","P","dd","y")
> names( pyd )[ 5] <- "DMdur"</pre>
> pyD <- aggregate( pyd[,6:7], pyd[,1:4], sum )
> c( sum( pya$y ), sum( pyd$y ), sum( pyD$y ) )
[1] 752864 214558 214558
> names( pyD )
[1] "sex" "T1D" "A" "P"
                                  "dd" "v"
```

¹Superficially this sounds a bit odd, since duration of diabetes should be known if both age at diagnosis and current age were known. However the classification by age at inclusion is quite broad.

```
> names( pyD )[5:6] <- c("DD", "Y")
> pyp <- merge( pya, pyD, all=TRUE )
> pyp$y[is.na(pyp$y)] <- 0
> pyp$Y[is.na(pyp$Y)] <- 0
> c( sum(pyp$y), sum(pyp$Y) )
[1] 752864 214558
> pyp <- transform( pyp,
+ dd = dd-DD,
+ y = y-Y,
+ DMdur = factor("Unkn") )
```

So pyp now contains the person-years (y) and the no. of deaths (dd) in the group of patients *without* duration information, whereas pyd contains the person-years (y) and the no. of deaths (dd) among those *with* duration information, further classified by diabetes duration.

Then we can stack the two datsets, and check that the total risk time is the same in the new dataset as in the original dataset:

```
> py <- rbind( subset( pyp, y>0, select=-c(DD,Y) ),
               transform( subset( pyd, y>0 ), DMdur=factor(DMdur) ) )
> round( addmargins( xx <- xtabs( y ~ DMdur, data=py ) ), 1 )</pre>
DMdur
                                                   10
    Unkn
               0
                                 2
                                                            15
                                                                    30
                         1
                                          5
                                                                             Sum
538306.0 23366.2 23371.5 59518.0 61403.1 16758.3 22292.8
                                                                 7848.2 752864.0
> sum( xx[-1] )
[1] 214558
```

7.2.2 Cancer cases

The next exercise is to read the datasets with cases among *all* diabetes patients and those with known duration and merge them to one where the duration is a factor with a separate level for those with unknown duration.

We have the correct names of the variables that we need in the variables pnam, dnam and fnam, so we make a loop over thes and read the two dataset for each site, and do the correct subtractions:

```
> au.ana <- py[,c(1,3,4,2,7,6,5)]
> names( au.ana )
[1] "sex" "A"
                                       "DMdur" "y"
                      "P"
                              "T1D"
                                                         "dd"
> durlab <- levels( au.ana$DMdur )</pre>
 for( dn in dnam ) # ( dn <- dnam[4] )
>
     # Cancers in ALL DM patients
+
+
     da <- read.dta( file=paste("../data/aus/all/",</pre>
+
                                   wh<-fnam[match(dn,dnam)],
                                   ".dta", sep="" ) )
+
     print( paste(dn,wh) )
+
     nnam <- c("sex","T1D","A","P",dn)
+
+
     names(da) <- nnam
     # Cancers in DM patients with known duration
+
+
     dd <- read.dta( file=paste("../data/aus/dmdur/"</pre>
                                   fnam[match(dn,dnam)],
+
                                   ".dta", sep="" ) )
+
     nnam <- c("sex", "T1D", "A", "P", "dur", dn)
+
+
     names(dd) <- nnam</pre>
+
     dd <- transform( dd, DMdur = factor( 1 + (dur>0.99)
+
                                                 + (dur>1.99)
+
                                                 + (dur>4.99)
                                                 + (dur>9.99)
```

+ (dur>14.99) + + + (dur>29.99), + levels = 0:7, + labels = durlab)) # Aggregate the cancers with known duration in duration classes + dd <- aggregate(dd[,dn], dd[,c(nnam[1:4],"DMdur")], FUN=sum)</pre> + + names(dd)[6] <- dn dD <- aggregate(dd[,dn], dd[, nnam[1:4]
Merge and subtract from alll cancers in DM ptt</pre> +], FUN=sum) + dx <- merge(da, dD, all=TRUE)</pre> + dx[is.na(dx)] < -0+ + dx[,dn] <- dx[,dn] - dx[,"x"]dx\$DMdur <- factor(0, levels = 0:7, labels = durlab)</pre> + dx <- subset(dx, select=-x)
au.ana <- merge(rbind(dx, dd), au.ana, all=TRUE)</pre> + + au.ana[is.na(au.ana)] <- 0 + + } [1] "d0 allcancer" [1] "d6 oesophagus" [1] "d7 stomach" [1] "d52 colorectal" [1] "d11 liver" [1] "d13 pancreas" [1] "d16 lung" [1] "d18 breast" [1] "d19 cervical" [1] "d20 uterine" [1] "d22 ovarian" [1] "d24 prostate" [1] "d25 testicular" [1] "d27 kidney" [1] "d28 bladder" [1] "d29 melanoma" [1] "d32 brain" [1] "d33 thyroid" [1] "d36 nhlymphoma" [1] "d37 hlymphoma" [1] "d38 myeloma" > names(au.ana) [1] "sex" "T1D" "A" "P" "DMdur" "d38" "d37" "d36" "d33" "d32" "d29" "d28" [13] "d27" "d25" "d24" "d22" "d20" "d19" "d18" "d16" "d7" "d13" "d11" "d52" [25] "d6" "d0" "v" "dd" > nlev <- c(30,35,40,45,Inf) > cbind(levels(au.ana\$T1D), nlev) nlev [1,] "<30" "30" [2,] "30-<35" "35" [3,] "35'<40" "40" [4,] "40-<45" "45" [5,] ">45" "Inf" levels(au.ana\$T1D) <- nlev</pre> > > levels(au.ana\$sex) <- c("M","F")</pre> > au.ana <- transform(au.ana, A = A+0.5,</pre> P = P + 0.5) + > summary(au.ana) d38 sex T1D А Ρ DMdur Min. : 0.50 M:9074 30 :7882 Min. :1998 Unkn :4734 Min. :0.0000000 F:9492 35 :2913 1st Qu.: 30.50 1st Qu.:2000 15 :2494 1st Qu.:0.0000000 40 :2805 Median : 45.50 Median :2004 30 :2402 Median :0.0000000 45 :2602 Mean : 44.66 Mean :2003 5 :2082 Mean :0.0009157 3rd Qu.: 59.50 3rd Qu.:2006 Inf:2364 2 :1926 3rd Qu.:0.0000000 Max. :103.50 Max. :2008 10 :1781 Max. :1.0000000 (Other):3147 d33 d37 d36 d32 d29 :0.0000000 Min. :-1.000000 Min. :-1.000000 Min. :-1.000000 Min. :-1.00000 Min.

1st Qu.:0.0000000 Median :0.0000000 Mean :0.0007541	1st Qu.: 0.000000 Median : 0.000000 Mean : 0.005386	1st Qu.: 0.000000 Median : 0.000000 Mean : 0.004578	1st Qu.: 0.000000 Median : 0.000000 Mean : 0.002692	0 1st Qu.: 0.00000 0 Median : 0.00000 3 Mean : 0.01454
Max. :1.0000000	Max. : 3.000000	Max. : 2.000000	Max. : 2.000000) 3rd Qu.: 0.00000) Max. : 4.00000
d28 Min. :-1.00000 1st Qu.: 0.000000 Median : 0.001777 3rd Qu.: 0.000000 Max. : 1.000000	d27 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.003717 3rd Qu.: 0.000000 Max. : 2.000000	d25 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.001293 3rd Qu.: 0.000000 Max. : 2.000000	d24 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.000000 Mean : 0.007056 3rd Qu.: 0.000000 Max. : 6.000000)))))
d22 Min. :-1.00000 1st Qu.: 0.000000 Median : 0.001993 3rd Qu.: 0.000000 Max. : 2.000000	d20 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.002909 3rd Qu.: 0.000000 Max. : 2.000000	d19 Min. :0.000000 1st Qu.:0.000000 Median :0.001077 3rd Qu.:0.000000 Max. :1.000000	d18 Min. :-1.0000 1st Qu.: 0.0000 Median : 0.0000 Mean : 0.0175 3rd Qu.: 0.0000 Max. : 4.0000	d16 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.000000 Mean : 0.007487 3rd Qu.: 0.000000 Max. : 3.000000
d13 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.003501 3rd Qu.: 0.000000 Max. : 2.000000	d11 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.002801 3rd Qu.: 0.000000 Max. : 2.000000	d52 Min. :-1.00000 1st Qu.: 0.00000 Median : 0.00000 Mean : 0.01287 3rd Qu.: 0.00000 Max. : 3.00000	d7 Min. :-1.000000 1st Qu.: 0.000000 Median : 0.002101 3rd Qu.: 0.000000 Max. : 2.000000	d6 Min. :0.000000 1st Qu.:0.000000 Median :0.001347 3rd Qu.:0.000000 Max. :2.000000
d0 Min. :-1.0000 1st Qu.: 0.0000 Median : 0.0000 Mean : 0.1129 3rd Qu.: 0.0000 Max :11.0000	y Min. : 0.000 Min 1st Qu.: 1.383 1st Median : 6.034 Med Mean : 40.551 Mea 3rd Qu.: 22.872 3rd Max. : 639.337 Max	dd 1. : 0.0000 ; Qu.: 0.0000 lian : 0.0000 un : 0.3822 l Qu.: 0.0000 ; 558.0000		

The dataset **au.ana** (in principle) now contains the number of cases and amount of person-years for the different types of cancer in Australia, among T1D patients.

However, due to the uncertainty of the NDSS scheme before 2000, we exclude cases and follow-up for the period before 1 January 2000:

```
> au.ana <- subset( au.ana, P>2000 )
> ftable( xtabs( d0 \sim sex + P + T1D, data = au.ana ), col.vars=c(1,3) )
                            F
       sex M
       T1D 30 35 40 45 Inf 30 35 40 45 Inf
Ρ
2000.5
         12 14 14 23
                         3 10 19 13 25
                                         1
          14 10 22 29
2001.5
                         0 14 12 25 29
                                         1
2002.5
          19 7 17 16
                         1 30 16 20 30
                                         5
2003.5
          16 15 12 46
                         5 24 15 26 25
                                         1
          13 18 25 36
                         4 26 22 21 23
2004.5
                                         2
2005.5
          27 13 23 42
                         1 28 17 29 28
                                         1
          19 15 34 50
                         3 28 16 21 37
2006.5
                                         0
2007.5
          16 11 29 54
                         5 28 20 29 27
                                         3
2008.5
           24 18 39 46
                         3 34 22 29 28
                                         3
```

7.2.2.1 Fishy data

However there is still a small problem:

```
> table(au.ana$d0)
```

-1 27	1326	0	1 799	2 201	3 79	4 36	1	5	6 4		7 3	9 1	1	LO 1	11 2							
> nam	es(a	11. ai	na)[wh<-6:	261		-		-		Ŭ	-		-	_							
[1] [17]	"d38" "d11"	"d3 "d8	37" " 52" "	d36" "(d7" "(d33" "d3 d6" "d0	32" ')"	'd29"	' "d2	28" '	'd27'	' "d2	25"	"d24'	' "d2	22"	"d20"	"d1	L9"	"d18"	"d1	6" '	'd13'
> sub	set(au.a	ana,	apply(au.ana	[,wh]	1, 1,	mir	1)<())												
	sex	T1D	А	1	P DMdur	d38	d37	d36	d33	d32	d29	d28	d27	d25	d24	d22	d20	d19	d18	d16	d13	d11
775	М	30	13.5	2007.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
910	М	30	15.5	2005.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1468	M	30	22.5	2002.	5 Unkn	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1874	M	30	27.5	2000.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
3063	M M	30	21.5	2001.3	5 Ulikii 5 Ulikii	0	0	0	0	0	0	_1	0	0	0	0	0	0	0	0	0	0
3213	M	30	51.5	2001.	5 Unkn	Ő	õ	ŏ	Ő	Ő	Ő	0	Ő	Ő	Ő	õ	Ő	Ő	Ő	-1	ŏ	Ő
4082	М	35	33.5	2008.	5 Unkn	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0
5283	М	35	89.5	2008.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5808	М	40	45.5	2003.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
5874	M	40	47.5	2001.	5 Unkn	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
6792	M M	40 45	59.5 13 5	2000.0	5 Ulikii 5 Ulikii	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_1	0
7137	M	45	51.5	2002.	5 Unkn	Ő	õ	0	1	Ő	Ő	0	Ő	0	0	Ő	Ő	Ő	Ő	õ	-1	Ő
7248	М	45	54.5	2001.	5 Unkn	Ő	Õ	1	0	Ő	Ő	Ő	Ő	Ő	Ő	Õ	Õ	Ő	Õ	-1	ō	Ő
7787	М	45	77.5	2001.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
7932	M	Inf	46.5	2000.	5 Unkn	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
9298	F	30	5.5	2004.	b Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9310	ר ד	30	0.0 6 5	2000.0	5 Ulikii 5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9785	F	30	13.5	2000.	5 Unkn	Ő	Õ	Ő	Ő	Ő	Ő	Ő	Ő	Ő	0	Ő	Ő	Ő	Ő	Õ	Õ	Ő
9796	F	30	13.5	2002.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9814	F	30	13.5	2005.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10125	F	30	17.5	2005.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10759	F	30	25.5	2000.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11011	г F	30	28.5	2000.3	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14111	F	35	53.5	2001.	5 Unkn	Ő	Õ	Õ	Ő	Õ	Õ	Õ	Õ	Õ	Ő	Õ	Ő	Ő	Ő	Õ	Õ	Õ
14200	F	35	59.5	2000.	5 Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0
15406	F	40	50.5	2005.	5 Unkn	0	0	0	0	0	-1	0	0	0	0	0	0	0	1	0	0	0
16155	F	45	40.5	2007.	b Unkn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
17283	ר ד	45 45	44.5	2000.0	5 Ulikii 5 Ulikii	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0
17200	d52	d7 0	16 d0	2002.0	V UIIKII V	dd	Ŭ	v	Ŭ	v	v	Ŭ	Ŭ	v	Ŭ	Ŭ	Ŭ	Ŭ	v	Ŭ	v	Ŭ
775	0	0	0 -1	5.144	285e+01	0																
910	0	0	0 -1	1.3314	403e+02	0																
1468	0	0	0 -1	3.095	708e+02	2																
1874	0	0	0 - 1 0 - 1	3 958	1380+02	1																
3063	0	0	0 -1	5.5879	935e-09	0																
3213	0	0	0 -1	2.600	958e-02	0																
4082	0	0	0 -1	1.0098	856e+01	0																
5283	0	-1	0 0	0.000	000e+00	0																
5808	0	0	0 -1	1.8850	024e+02	0																
6223	-1	0	0 - 1	0.000	0.00e+0.0	0																
6792	Ō	Õ	0 -1	3.078	029e+00	Õ																
7137	0	0	0 1	3.319	083e+02	6																
7248	0	0	0 2	5.967	201e+02	14																
7787	0	0	0 -1	0.000	000e+00	0																
1932 9298	0	0	0 - 1 0 - 1	7 0294	1330-01	0																
9318	0	0	0 -1	4.733	744e+00	õ																
9335	0	0	0 -1	4.266	667e+01	0																
9785	0	0	0 -1	1.945	661e+02	0																
9796	0	0	0 -1	1.453	101e+02	0																
9814 10125	0	0	0 -1 0 -1	8.191 1 9000	013e+01	0																
10759	0	0	0 -1	3.610	062e+02	0																
	-		_																			

11011	0	0	0 () 4.483457e+02	4
11046	0	0	0 -1	3.361485e+02	1
14111	0	0	0 -1	0.000000e+00	0
14200	0	0	0 (0.000000e+00	0
15406	0	0	0 () 2.281520e+02	2
16155	0	0	0 -1	2.138946e+00	0
16330	0	0	0 -1	5.734839e+01	0
17283	-1	0	0 -1	0.000000e+00	0

We will have to look into this at a later time, but for now we bypass it bluntly, by replacing negative or missing counts by 0:

> for(i in wh) a	u ana[i] <- nmax(au ana[i] O	na rm=TRIIE)		
> summarv(au.ana)	aa.ana[,1], 0, .			
sex T1D	A	Р	DMdur	d38	
M:7043 30 :6033	Min. : 0.50	Min. :2000	Unkn :3759	Min. :	0.00000
F:7392 35 :2270	1st Qu.: 31.50	1st Qu.:2002	15 :1906	1st Qu.:	0.00000
40 :2170	Median : 46.50	Median :2004	30 :1892	Median :	0.00000
45 :2000	Mean : 45.42	Mean :2005	5 :1670	Mean :	0.001039
Inf:1962	3rd Qu.: 60.50	3rd Qu.:2006	2 :1487	3rd Qu.:	0.00000
	Max. :103.50	Max. :2008	10 :1393	Max. :	1.000000
			(Other):2328		
d37	d36	d33	d3:	2	d29
Min. :0.000000	Min. :0.000000	Min. :0.00	0000 Min.	:0.000000	Min. :0.00000
1st Qu.:0.0000000	1st Qu.:0.000000	1st Qu.:0.00	0000 1st Qu.	:0.000000	1st Qu.:0.00000
Median :0.0000000	Median :0.000000	Median :0.00	0000 Median	:0.000000	Median :0.00000
Mean :0.0009699	Mean :0.005542	Mean :0.00	4849 Mean	:0.002355	Mean :0.01469
3rd Qu.:0.0000000	3rd Qu.:0.000000	3rd Qu.:0.00	0000 3rd Qu.	:0.000000	3rd Qu.:0.00000
Max. :1.0000000	Max. :2.000000	Max. :2.00	0000 Max.	:1.000000	Max. :4.00000
d28	d27	d25	d24		d22
Min. :0.000000	Min. :0.000000	Min. :0.000	000 Min. :(0.000000	Min. :0.000000
1st Qu.:0.000000	1st Qu.:0.000000	1st Qu.:0.000	000 1st Qu.:(0.000000	1st Qu.:0.000000
Median :0.000000	Median :0.000000	Median :0.000	000 Median :(0.000000	Median :0.000000
Mean :0.002286	Mean :0.003949	Mean :0.001	593 Mean :(0.008521	Mean :0.002355
3rd Qu.:0.000000	3rd Qu.:0.000000	3rd Qu.:0.000	000 3rd Qu.:(0.000000	3rd Qu.:0.000000
Max. :1.000000	Max. :2.000000	Max. :2.000	000 Max. :	6.000000	Max. :2.000000
d20	d19	d18	d16		d13
Min. :0.000000	Min. :0.000000	Min. :0.000	00 Min. :0	.000000	Min. :0.000000
1st Qu.:0.000000	1st Qu.:0.000000	1st Qu.:0.000	00 1st Qu.:0	.000000	1st Qu.:0.000000
Median :0.000000	Median :0.000000	Median :0.000	00 Median :0	.000000	Median :0.000000
Mean :0.003325	Mean :0.001178	Mean :0.018	84 Mean :0	.008452	Mean :0.004087
3rd Qu.:0.000000	3rd Qu.:0.000000	3rd Qu.:0.000	00 3rd Qu.:0	. 000000	3rd Qu.:0.000000
Max. :2.000000	Max. :1.000000	Max. :4.000	00 Max. :3	.000000	Max. :2.000000
d11	d52	d7	d6		d0
Min. :0.00000	Min. :0.00000	Min. :0.00000	0 Min. :0.0	000000 M	in. : 0.0000
1st Qu.:0.00000	1st Qu.:0.00000	1st Qu.:0.00000	0 1st Qu.:0.0	000000 1	st Qu.: 0.0000
Median :0.00000	Median :0.00000	Median :0.00000	0 Median :0.0	ОООООО М	edian : 0.0000
Mean :0.00291	Mean :0.01386	Mean :0.00277	1 Mean :0.0	001663 M	ean : 0.1214
3rd Qu.:0.00000	3rd Qu.:0.00000	3rd Qu.:0.00000	0 3rd Qu.:0.0	000000 3	rd Qu.: 0.0000
Max. :2.00000	Max. :3.00000	Max. :2.00000	0 Max. :2.0	ОООООО М	ax. :11.0000
У	dd				
Min. : 0.000	Min. : 0.0000				
1st Qu.: 1.540	1st Qu.: 0.0000				
Median : 7.455	Median : 0.0000				
Mean : 41.319	Mean : 0.4242				
3rd Qu.: 26.107	3rd Qu.: 0.0000				
Max. :611.554	Max. :58.0000				

The dataset au.ana, thus now contains the number of cancers and person-years lived by the Australian T1D population 2000–2008 incl., classified by sex, age (A), calendar time (P) (both in 1-year classes, coded as the mispoint of the intervals), as well as by diabetes

duration, a factor taking the values of the left endpoint of the intervals or the value "Unkn" for those with unknown duration of diabetes.

7.3 Australian population rates

Here we access the Excel sheets downloaded from Australian Institute of Health and Welfare, at https://www.aihw.gov.au/acim-books/. The filenames have been changed after download to simplify the code that runs through them.

7.3.1 Population risk time

We start by getting the population figures (we use the mid-year population numbers as given in any of the sheets).

```
> library( XLConnect )
>
 cpop <- readWorksheetFromFile( paste("../data/aus/pop/all.xls",sep=""),</pre>
                                  sheet = "Populations"
                               startRow = 13
                                              > cpop <- subset( cpop, Year %in% 2000:2008 )
> str( cpop )
                      9 obs. of 65 variables:
'data.frame':
$ Year
                  2000 2001 2002 2003 2004
           : num
$ X0.4
           : num
                  653221 653053 650563 650616 651502 ...
$ X5.9
           : num
                  688195 689098 686788 682601 679483 ...
$ X10.14
                  680131 688396 695811 703262 708387 ...
          : num
  X15.19
                  671954 684154 689986 693648 697859 ...
$
           : num
  X20.24
             num
                  649535 654544 668791 686750
                                                703491
           :
                                                       . . .
  X25.29
$
           :
             \texttt{num}
                  716339 694298 682089 676288 675089
                                                        . . .
                  704211 722451 738914 747724 748782 ...
  X30.34
$
           : num
  X35.39
                  744059 736877 728346 720877 720531 ...
$
           : num
                  715742 729922 745106 755254 759473
$
  X40.44
           : num
                                                       . . .
                                                706985 ...
  X45.49
           :
             num
                  663238
                         670907
                                 681079 692759
$ X50.54
           : num
                  630498 648130 644584 647251 652232
                                                       . . .
                  487075 509420 545884 578102 597807 ...
$ X55.59
           : num
$ X60.64
           : num
                  398235 411183 423058 433865 450490 ...
$ X65.69
           : num
                  329907 333321 341402 350695 361124 ...
  X70.74
                  297685 301501 301422 299204 297740
$
           : num
                                                       . . .
$
  X75.79
           :
             num
                  218191 225821 231304 237596
                                                243017
                                                        . . .
$ X80.84
                  118211 127383 135732 143958 152166
           :
             num
                                                       . . .
$ X85.
           :
             num
                  77038 81367 84624 87147 89793 ...
$ Col20
           : logi
                   NA NA NA NA NA NA
                  9443465 9561826 9675483 9787597 9895951 ...
$
  Total
           : num
  Co122
           :
             logi
                   NA NA NA NA NA NA
                                      . .
                  2000 2001 2002 2003 2004
$
  Year.1
           :
             num
$ X0.4.1
           : num
                  620507 620632 618479 618520 618674 ...
$ X5.9.1
                  653189 653425 650643 647081 645030 ...
           : num
$ X10.14.1: num
                  648099 655629 662322 667589 671148 ...
  X15.19.1: num
                  643833 655832 661925
                                        666720 670030
                                                       . . .
  X20.24.1: num
                  630318 635585 646892 663262 677235
$
                                                       . . .
$ X25.29.1: num
                  721080 699510 681715 673022 668629
                                                       . . .
$
  X30.34.1: num
                  714004 735150 751776 761226 760318 ...
  X35.39.1: num
$
                  752101 746155 737748 730935 730858 ...
  X40.44.1: num
                  724739
                          740243 755459
                                         765722
                                                770759
                                                       . . .
  X45.49.1:
                  670207 679338 689625
                                        702917
                                                717332
¢
             num
                                                       . . .
$ X50.54.1: num
                  619246 643855 643712 650127 657784
                                                       . . .
$ X55.59.1: num
                  470468 492559 532020 566080 589127
                                                       . . .
$ X60.64.1: num
                  394318 405285 416226 427212 444830 ...
$ X65.69.1: num
                  342887
                          344577 352056 360951 371550
                                                       . . .
  X70.74.1: num
                  331527
                          332562 329725
                                         325975
$
                                                322990
                                                       . . .
                  285927 290027 292051 294773 296501
$ X75.79.1: num
                                                       . . .
$ X80.84.1: num
                  188803 200436 209425 218712 227491 ...
```

```
$ X85..1 : num 174084 182075 187928 192316 196485 ...
 $ Col42
          : logi NA NA NA NA NA NA ...
 $ Total.1 : num 9585337 9712875 9819727 9933140 10036771 ...
           : logi NA NA NA NA NA NA ...
  Co144
          : num 2000 2001 2002 2003 2004
 $ Year.2
 $ X0.4.2 : num 1273728 1273685 1269042 1269136 1270176 ...
 $ X5.9.2 : num 1341384 1342523 1337431 1329682 1324513 ...
 1328230 1344025 1358133 1370851 1379535 \ldots
 $ X15.19.2: num
                  1315787 1339986 1351911 1360368 1367889 ...
 $ X20.24.2: num 1279853 1290129 1315683 1350012 1380726 ...
 $ X25.29.2: num 1437419 1393808 1363804 1349310 1343718 ...
 $ X30.34.2: num 1418215 1457601 1490690 1508950 1509100 ...
 $ X35.39.2: num 1496160 1483032 1466094 1451812 1451389 ...
 $ X40.44.2: num 1440481 1470165 1500565 1520976 1530232 ...
$ X45.49.2: num 1333445 1350245 1370704 1395676 1424317 ...
 $ X50.54.2: num 1249744 1291985 1288296 1297378 1310016 ...
 $ X55.59.2: num 957543 1001979 1077904 1144182 1186934 ...
 $ X60.64.2: num 792553 816468 839284 861077 895320 ...
 $ X65.69.2: num 672794 677898 693458 711646 732674 ...
                 629212 634063 631147 625179 620730 ...
 $ X70.74.2: num
 $ X75.79.2: num 504118 515848 523355 532369 539518 ...
 $ X80.84.2: num 307014 327819 345157 362670 379657 ...
 $ X85..2 : num 251122 263442 272552 279463 286278 ...
 $ Col64 : logi NA NA NA NA NA NA ...
 $ Total.2 : num 19028802 19274701 19495210 19720737 19932722 ...
> cpop[1:3,1:19]
         X0.4
                 X5.9 X10.14 X15.19 X20.24 X25.29 X30.34 X35.39 X40.44 X45.49 X50.54 X55.59 X60.64
   Year
33 2000 653221 688195 680131 671954 649535 716339 704211 744059 715742 663238 630498 487075 398235
34 2001 653053 689098 688396 684154 654544 694298 722451 736877 729922 670907 648130 509420 411183
35 2002 650563 686788 695811 689986 668791 682089 738914 728346 745106 681079 644584 545884 423058
   X65.69 X70.74 X75.79 X80.84 X85.
33 329907 297685 218191 118211 77038
34 333321 301501 225821 127383 81367
35 341402 301422 231304 135732 84624
> cpop[1:3,1:19+22]
   Year.1 X0.4.1 X5.9.1 X10.14.1 X15.19.1 X20.24.1 X25.29.1 X30.34.1 X35.39.1 X40.44.1 X45.49.1
     2000 620507 653189 648099 643833 630318 721080
33
                                                             714004 752101
                                                                                 724739
                                                                                          670207
                                                                                 740243
34
     2001 620632 653425
                         655629
                                   655832
                                            635585
                                                     699510
                                                               735150
                                                                        746155
                                                                                          679338
35
     2002 618479 650643
                         662322
                                   661925
                                            646892
                                                     681715
                                                               751776
                                                                        737748
                                                                                 755459
                                                                                          689625
   X50.54.1 X55.59.1 X60.64.1 X65.69.1 X70.74.1 X75.79.1 X80.84.1 X85..1
33
    619246
            470468
                      394318 342887
                                        331527
                                                 285927
                                                           188803 174084
                       405285
                                344577
34
     643855
             492559
                                         332562
                                                   290027
                                                            200436 182075
35
     643712
              532020
                      416226
                                352056
                                         329725
                                                   292051
                                                            209425 187928
> cpop[,1:5]
   Year X0.4 X5.9 X10.14 X15.19
33 2000 653221 688195 680131 671954
34 2001 653053 689098 688396 684154
35 2002 650563 686788 695811 689986
36 2003 650616 682601 703262 693648
37 2004 651502 679483 708387 697859
38 2005 656043 677441 710978 705932
39 2006 664456 678901 710385 714616
40 2007 686251 680272 709912 729591
41 2008 710252 683671 710306 743757
> md <- reshape( data = cpop[,1:19],</pre>
              varying = -1,
+
              v.names = "y"
+
            direction = "long" )
  fd <- reshape( data = cpop[,c(1,2:19+22)],</pre>
>
              varying = -1,
              v.names = "y"
            direction = "long" )
  au.pop <- transform( rbind( cbind( sex=1, md ),</pre>
>
                              cbind( sex=2, fd ) ),
+
                       sex = factor( sex, labels=c("M", "F") ),
```
```
A = time * 5 - 2.5,
                           P = Year+0.5 )[,c("sex", "A", "P", "y")]
> str( au.pop )
'data.frame':
                      324 obs. of 4 variables:
 $ sex: Factor w/ 2 levels "M","F": 1 1 1 1 1 1 1 1 1 ...
  Α
      : num
             2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 7.5 ...
             2000 2002 2002 2004 2004
 $ P
      : num
      : num 653221 653053 650563 650616 651502 ...
 $ y
> head( au.pop )
          А
                  Ρ
    sex
      M 2.5 2000.5 653221
1.1
2.1
      M 2.5 2001.5 653053
      M 2.5 2002.5 650563
3.1
4.1
      M 2.5 2003.5 650616
5.1
      M 2.5 2004.5 651502
      M 2.5 2005.5 656043
6.1
> round( addmargins( xtabs( y/1000 ~ A + P, data=au.pop ) ), 1 )
      Ρ
                             2002.5
                                                          2005.5
                   2001.5
                                      2003.5
                                                2004.5
                                                                   2006.5
                                                                             2007.5
                                                                                       2008.5
Α
         2000.5
                                                                                                    Sum
  2.5
         1273.7
                   1273.7
                             1269.0
                                      1269.1
                                                1270.2
                                                          1277.5
                                                                   1294.5
                                                                             1336.5
                                                                                       1383.1
                                                                                               11647.4
  7.5
                   1342.5
                                                1324.5
                                                                                               11983.1
         1341.4
                             1337.4
                                                          1321.0
                                                                   1324.3
                                                                             1327.6
                                                                                       1334.7
                                      1329.7
  12.5
         1328.2
                   1344.0
                             1358.1
                                      1370.9
                                                1379.5
                                                          1384.8
                                                                   1383.5
                                                                             1382.8
                                                                                       1383.1
                                                                                               12315.1
  17.5
         1315.8
                   1340.0
                             1351.9
                                      1360.4
                                                1367.9
                                                          1379.5
                                                                   1392.7
                                                                             1420.7
                                                                                       1447.6
                                                                                               12376.5
  22.5
         1279.9
                   1290.1
                                      1350.0
                                                1380.7
                                                                   1448.4
                                                                             1483.1
                                                                                       1526.4
                             1315.7
                                                          1414.6
                                                                                               12489.0
  27.5
         1437.4
                   1393.8
                             1363.8
                                      1349.3
                                                1343.7
                                                          1352.6
                                                                   1381.6
                                                                             1431.0
                                                                                       1500.0
                                                                                               12553.2
  32.5
         1418.2
                   1457.6
                             1490.7
                                      1509.0
                                                1509.1
                                                          1500.5
                                                                   1474.1
                                                                             1457.1
                                                                                       1458.3
                                                                                               13274.6
  37.5
         1496.2
                   1483.0
                                      1451.8
                                                1451.4
                                                                   1508.8
                                                                             1555.7
                                                                                       1589.6
                                                                                               13471.0
                             1466.1
                                                          1468.4
  42.5
         1440.5
                   1470.2
                             1500.6
                                      1521.0
                                                1530.2
                                                          1527.6
                                                                   1516.4
                                                                             1504.2
                                                                                       1499.4
                                                                                               13510.1
                                                1424.3
  47.5
         1333.4
                   1350.2
                             1370.7
                                      1395.7
                                                          1451.1
                                                                   1477.7
                                                                             1509.8
                                                                                       1537.8
                                                                                               12850.9
  52.5
         1249.7
                   1292.0
                             1288.3
                                      1297.4
                                                1310.0
                                                          1325.5
                                                                   1347.8
                                                                             1373.1
                                                                                       1397.8
                                                                                               11881.6
  57.5
          957.5
                   1002.0
                             1077.9
                                      1144.2
                                                1186.9
                                                          1226.4
                                                                   1258.0
                                                                             1254.2
                                                                                       1268.6
                                                                                               10375.8
          792.6
  62.5
                    816.5
                             839.3
                                       861.1
                                                 895.3
                                                           935.3
                                                                    978.8
                                                                             1055.2
                                                                                       1117.6
                                                                                                8291.6
  67.5
          672.8
                    677.9
                              693.5
                                       711.6
                                                 732.7
                                                           754.9
                                                                    773.1
                                                                              800.6
                                                                                        827.2
                                                                                                6644.3
  72.5
          629.2
                    634.1
                              631.1
                                       625.2
                                                 620.7
                                                           619.1
                                                                    624.1
                                                                              640.2
                                                                                        657.9
                                                                                                5681.7
  77.5
          504.1
                    515.8
                              523.4
                                       532.4
                                                 539.5
                                                           543.8
                                                                    546.7
                                                                              547.7
                                                                                        546.9
                                                                                                 4800.4
  82.5
          307.0
                    327.8
                              345.2
                                        362.7
                                                 379.7
                                                           391.9
                                                                     401.4
                                                                              410.9
                                                                                        420.6
                                                                                                 3347.2
  87.5
                    263.4
                              272.6
                                       279.5
                                                 286.3
                                                           302.2
                                                                    318.7
                                                                              337.1
                                                                                        352.6
                                                                                                2663.4
          251.1
                           19495.2
                                     19720.7
                                               19932.7
                                                         20176.8
                                                                  20451.0
                                                                            20827.6
  Sum
        19028.8
                  19274.7
                                                                                      21249.2 180156.8
```

The dataset au.pop now has the Australian population risk time by sex, age (5-year classes, A) and calendar time (one-year classes, P), the latter two coded as the midpoint if the intervals.

7.3.2 Population cancer cases

Then we get the number of cancers and attach these to the dataset with the person-years:

```
> for( pn in pnam ) # (pn <- pnam[4])</pre>
+
+ dn <- dnam[match(pn,pnam)]
+ cat( dn, "\n" ) ; flush.console()
+ cpop <- readWorksheetFromFile( paste("../data/aus/pop/",pn,".xls",sep=""),
                                   sheet = "Raw data",
                               startRow = 2 )
 cpop <- subset( cpop, diagnosis_year %in% 2000:2008 )[1:9,]</pre>
+
 for( i in 1:ncol(cpop) ) cpop[,i] <- round( as.numeric(cpop[,i]))</pre>
+ names( cpop )
+ mc <- 2:19
+ fc <- 21:38
+ md <- reshape( data = cpop[,c(1,mc)],
              varying = -1,
               v.names = dn,
+
            direction = "long" )
```

```
+ fd <- reshape( data = cpop[,c(1,fc)],
              varying = -1,
+
+
              v.names = dn,
            direction = "long" )
+
+ res <- transform( rbind( cbind( sex=1, md ),
                            cbind( sex=2, fd ) ),
                     sex = factor( sex, labels=c("M","F") ),
+
                      A = time*5-2.5,
+
                       P = diagnosis_year+0.5 ) [,c("sex", "A", "P", dn)]
+ names(au.pop)
+ names(res)
+ dim(au.pop)
+ dim(res)
+ au.pop <- merge( au.pop, res, all.x=TRUE )
+ cat( names(au.pop), "\n" )</pre>
+
      7
d0
sex A P y d0
d6
sex A P y d0 d6
d7
sex A P y d0 d6 d7
d52
sex A P y d0 d6 d7 d52
d11
sex A P y d0 d6 d7 d52 d11
d13
sex A P y d0 d6 d7 d52 d11 d13
d16
sex A P y d0 d6 d7 d52 d11 d13 d16
d18
sex A P y d0 d6 d7 d52 d11 d13 d16 d18
d19
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19
d20
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20
d22
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22
d24
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24
d25
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25
d27
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27
d28
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28
d29
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28 d29
d32
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28 d29 d32
d33
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28 d29 d32 d33
d36
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28 d29 d32 d33 d36
d37
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28 d29 d32 d33 d36 d37
d38
sex A P y d0 d6 d7 d52 d11 d13 d16 d18 d19 d20 d22 d24 d25 d27 d28 d29 d32 d33 d36 d37 d38
```

7.4 The analysis dataset

We can finally put this together, remembering to put in the primary exposure variable, T1D status, and the country variable, "Cnt":

```
> au.ana <- rbind( au.ana,</pre>
                     cbind( au.pop, T1D = factor("NoDM"),
+
+
                                   DMdur = factor("NoDM"),
                                       dd = NA ) )
+
> au.ana <- transform( au.ana,</pre>
                             T1D = relevel( T1D , "NoDM" ),
                          DMdur = Relevel( DMdur, c("NoDM", "Unkn") ) )
+
  au.ana <- transform( au.ana,</pre>
>
                         DMprev = Relevel( T1D, list("Pop" = "NoDM",
                                                         "Inc" = 2:nlevels(T1D)) ),
+
                             y0 = y,
Cnt = "AUS" )
+
> summ <- function(x) sum(x,na.rm=TRUE)</pre>
> with( au.ana, addmargins( tapply(d0, list( P, T1D ), summ ), 1, FUN=summ ) )
                30
          NoDM
                     35
                         40
                             45 Inf
2000.5
        87635
                26
                     33
                         28
                              49
                                   5
2001.5
        90130
                31
                     23
                         48
                              59
                                   1
2002.5
        93886
                51
                     23
                         37
                              48
                                   6
2003.5
        95473
                40
                     30
                         39
                              71
                                   6
2004.5 100314
                40
                     40
                         46
                              59
                                   6
                              70
2005.5 103274
                     30
                         52
                                   2
                59
2006.5 105915
                47
                     31
                         55
                              87
                                   3
2007.5 109557
                45
                     31
                         58
                              82
                                   8
                59
                         68
                             74
                                   6
2008.5 113187
                    41
summ
       899371 398 282 431 599
                                  43
> with( au.ana, addmargins( tapply(d0, list( A, T1D ), summ ), 1, FUN=summ ) )
         NoDM 30
                    35
                        40
                            45 Inf
0.5
           NA
                0
                    NA
                        NA
                            NA
                                 NA
1.5
           NA
                0
                    NA
                        NA
                            NA
                                 NA
2.5
         2452
                1
                    NA
                        NA
                            NA
                                 NA
3.5
                0
                        NA
           NA
                    NA
                            NA
                                 NA
4.5
           NA
                0
                    NA
                        NA
                             NA
                                 NA
5.5
                2
           NA
                    NA
                        NA
                             NA
                                 NA
6.5
                    NA
                        NA
           NA
                1
                            NA
                                 ΝA
7.5
         1246
                0
                    NA
                        NA
                            NA
                                 NA
                0
                        NA
8.5
           NA
                   NA
                            NA
                                 NA
                    NA
9.5
           NA
                1
                        NA
                            NA
                                 NA
10.5
           NA
                0
                    NA
                        NA
                            NA
                                 NA
11.5
           NA
                0
                   NA
                        NA
                            NA
                                 NA
12.5
         1498
                1
                    NA
                        NA
                            NA
                                 NA
13.5
           NA
                8
                   NA
                        NA
                            NA
                                 NA
14.5
           NA
                    NA
                        NA
                            NA
                                 NA
                1
15.5
           NA
                2
                    NA
                        NA
                             NA
                                 NA
16.5
                3
           NA
                    NA
                        NA
                            NA
                                 NA
17.5
         2992
                3
                    NA
                        NA
                            NA
                                 NA
18.5
           NA
                0
                    NA
                        NA
                            NA
                                 NA
19.5
           NA
                2
                   NA
                        NA
                            NA
                                 NA
20.5
           NA
                 2
                    NA
                        NA
                             NA
                                 NA
21.5
                3
           NA
                    NA
                        NA
                            NA
                                 NA
22.5
         4885
                6
                        NA
                            NA
                                 NA
                    ΝA
23.5
           NA
                3
                     0
                        NA
                             NA
                                 NA
24.5
                8
                     0
           NA
                         0
                            NA
                                 NA
25.5
                7
                         0
           NA
                     0
                             NA
                                 NA
26.5
                6
           NA
                     1
                         0
                             NA
                                 NA
27.5
         8020
                9
                     0
                         0
                            NA
                                 NA
28.5
           NA
               10
                     0
                         0
                            NA
                                 NA
29.5
           NA
                9
                     0
                         0
                            NA
                                 NA
30.5
           NA
                5
                     0
                         0
                             NA
                                 NA
31.5
           NA
               10
                     0
                         0
                             NA
                                 NA
32.5
        12771
                8
                     0
                         0
                             0
                                 NA
33.5
               11
           NA
                     4
                         0
                              0
                                 NA
34.5
                     3
           NA
               19
                         0
                              0
                                 NA
35.5
           NA
               16
                     4
                         1
                              0
                                  0
36.5
           NA
               11
                     3
                         1
                              0
                                  0
37.5
               22
        19340
                     4
                              0
                                  0
                         1
38.5
           NA
               10
                     5
                         2
                              0
                                  0
```

39.5	NA	12	9	8	0	0	
40 5	NT A		4 -	10	4	0	
40.5	NA	22	15	10	1	0	
41.5	NA	20	10	6	1	0	
10 5	20271	25	10	F	2	0	
42.0	50571	20	13	5	2	0	
43.5	NA	15	18	5	6	0	
44.5	NA	15	12	13	7	0	
4 E E	NT A	10	10	10		õ	
45.5	INA	10	19	10	0	U	
46.5	NA	11	12	7	8	1	
47.5	45468	7	19	30	7	0	
10 F	10 100	10		00	4 4	õ	
48.5	NA	10	20	25	14	0	
49.5	NA	4	16	22	18	1	
50 5	MΛ	5	16	21	23	1	
50.5		0	10	21	20		
51.5	NA	- 2	13	31	17	1	
52.5	65178	2	7	30	27	1	
53 F	NΛ	2	16	3/	26	0	
55.5	IVA	~ ~	10	54	20	0	
54.5	NA	1	1	19	-29	1	
55.5	NA	4	4	23	42	1	
56 5	NT A	1	2	07	<u>Б</u> 1	0	
50.5	IVA	1	2	21	51	0	
57.5	88777	1	0	23	40	4	
58.5	NA	0	2	17	38	1	
	NT A	õ	4	10	20	<u>,</u>	
59.5	NA	0	1	19	39	0	
60.5	NA	1	1	3	47	3	
61 5	NΔ	2	3	3	38	1	
01.0	400000	2	0	0	00	-	
62.5	102983	3	2	4	25	3	
63.5	NA	3	0	5	29	3	
64 5	MΛ	З	1	З	12	2	
	NA NA	4	-	0	12	~ ~	
65.5	NA	1	- 2	0	8	4	
66.5	NA	0	2	1	4	2	
67 5	11////	Λ	3	1	Λ	2	
07.5	114444	4	3	1	4	2	
68.5	NA	0	0	1	- 2	1	
69.5	NA	0	0	3	3	2	
70 5	NT A	2	1	1	2	1	
10.5	IVA	2	1	1	2	1	
71.5	NA	0	1	2	3	1	
72.5	118130	0	1	2	3	0	
72 5	110100 NA	õ	0	-	1	õ	
13.5	IVA	0	0	2	4	2	
74.5	NA	1	0	0	1	0	
75.5	NA	2	0	1	1	0	
76 5	NT A		- 1	-	-	0	
10.5	IN A	T	1	0	2	0	
77.5	117974	1	0	1	2	1	
78.5	NA	1	0	0	2	1	
70 5	NT A	Ā	1	õ	~	4	
19.5	INA	0	1	0	0	T	
80.5	NA	1	0	1	0	0	
81.5	NA	1	1	0	0	1	
00 E	00202	0	0	õ	õ	0	
02.5	90393	0	0	0	2	0	
83.5	NA	1	0	1	1	0	
84.5	NA	0	0	0	0	0	
	NT A	4	õ	õ	õ	õ	
85.5	IN A	1	0	0	0	0	
86.5	NA	0	0	0	0	0	
87 5	72449	0	1	0	0	NΔ	
	12440	~	-	~	~		
88.5	NA	0	0	0	0	0	
89.5	NA	0	0	0	0	0	
00 F	MΛ	0	0	0	0	ΝA	
90.0	IVA	0	0	0	0	IVA	
91.5	NA	0	NA	0	0	NA	
92.5	NA	0	0	ΝA	0	ΝA	
03 E	NT A	Ň	Ň	NT A	Ň	NT A	
33.5	A VI	0	0	A VI	0	IN A	
94.5	NA	0	0	0	0	NA	
95.5	NΔ	NΔ	NΔ	0	NΔ	NΔ	
06 5	TA I			NT A	~	AT A	
90.5	IN A	0	U	NИ	0	ΝA	
102.5	NA	0	NA	NA	0	NA	
103 5	NΔ	NΔ	NΔ	0	0	NΔ	
100.0	000274	200	000	121	EOO	10	
SUMM	0993/1	598	101	4.51	299	4.5	

> summary(au.ana)	
---------------------	--

sex	T1D	А	Р	DMdur	d38
M:7205	NoDM: 324	Min. : 0.50	Min. :2000	Unkn :3759	Min. : 0.0000
F:7554	30 :6033	1st Qu.: 31.50	1st Qu.:2002	15 :1906	1st Qu.: 0.0000
	35 :2270	Median : 46.50	Median :2004	30 :1892	Median : 0.0000

	40	:2170		lean	: 45.41	Mea	an	:20	05	5		:16	70	Mea	n	: (0.75	76	
	45	:2000) 3	Brd Qu	.: 60.50	3rc	d Qu.	:20	06	2		:14	87	3rd	Qu.	.: (0.00	00	
	Inf	:1962	2 1	lax.	:103.50	Maz	x.	:20	08	10		:13	93	Max	•	:13	3.00	00	
										(0	ther):26	52						
d37				d36			d33					d32					d29	1	
Min. :	0.00	00	Min	. :	0.000	Min.	:	0.	0000		Min.	:	0	.0000	Μ	lin.	:	(0.000
1st Qu.:	0.00	00	1st	Qu.:	0.000	1st (Ju.:	0.	0000		1st	Qu.:	0	.0000	1	lst (Qu.:	(0.000
Median :	0.00	00	Med	ian :	0.000	Media	an :	0.	0000		Medi	an :	0	.0000	Μ	ledia	an :	(0.000
Mean :	0.29	33	Mear	ı :	2.349	Mean	:	0.	9172		Mean	:	0	.8619	Μ	lean	:	6	5.082
3rd Qu.:	0.00	00	3rd	Qu.:	0.000	3rd (Ju.:	0.	0000		3rd	Qu.:	0	.0000	3	3rd (Qu.:	(0.000
Max. :3	8.00	00	Max	:30	05.000	Max.	:1	95.	0000		Max.	:	107	.0000	Μ	lax.	:	802	2.000
d28				d27			d25					d24	-				d22		
Min. :	0.0	00	Min		0.000	Min.	:	0.	0000		Min.	:	. (0.000	М	lin.	:	(0.0000
1st Qu.:	0.0	00	1st	Qu.:	0.000	1st (Ju.:	0.	0000		1st	Qu.:	(0.000	1	lst (Ju.:	(0.0000
Median :	0.0	00	Med	ian :	0.000	Media	an :	0.	0000		Medi	an :	(0.000	М	/edi	an :	(0.0000
Mean :	1.3	68	Mear	1 :	1.405	Mean	:	0.	3985		Mean	:	9	9.465	М	lean	:	().7519
3rd Qu.:	0.0	00	3rd	Qu.:	0.000	3rd (Ju.:	0.	0000		3rd	Qu.:	(0.000	3	3rd (յս.։	(0.0000
Max. :3	349.0	00	Max	:24	43.000	Max.	:1	36.	0000		Max.	:	412	5.000	Μ	lax.	:	172	2.0000
100				14.0			14.0					14	~				14	~	
d20	~ ~			d19	0 0000		d18		0 000			d1	.6	0 00	~		d1	3	0 000
Min. :	0.0	00	Min.	. :	0.0000	Min	. :)	Min	•	÷	0.00	0	Min	•	:	0.000
IST QU.:	0.0	00	IST	ųu.:	0.0000	IST	ųu.:)	IST	. Qu.	÷	0.00	0	IST	.ųu.	:	0.000
Median :	0.0	00	Meas	lan :	0.0000	Meas	lan :) 7	Mea	lan	÷	0.00		Mea:	lan	:	0.000
Mean :	1.0	88	Mean	1 :	0.4508	Mear	1 :		1.561		Mea	n	÷	5.57	5	Mean	n O	:	1.328
Sra Qu.:		00	3ra	ųu.:	0.0000	3ra Maara	Qu.:	100)	3ra	ųu.	: 		0	3ra	ųu.	:	0.000
Max. :3	\$34.0	00	Max	. :10	07.0000	Max	. :	188	5.000	J	Max	•	:11	54.00	0	Max	•	:20	50.000
d11				d52			d	7				d	16				d	.0	
Min. :	0.0	000	Mir	1. :	0.000	Miı	ı.	:	0.000)	Min	•	: (0.000	0	Min	•	:	0.00
1st Qu.:	0.0	000	1st	c Qu.:	0.000	1st	t Qu.	:	0.000)	1st	Qu.	: (0.000	0	1st	Qu.	:	0.00
Median :	0.0	000	Med	lian :	0.000	Med	dian	:	0.000)	Med	ian	: (0.000	0	Med:	ian	:	0.00
Mean :	0.6	414	Mea	an :	8.046	Mea	an	:	1.178	3	Mea	n	: (0.721	7	Meaı	n	:	61.06
3rd Qu.:	0.0	000	3rc	l Qu.:	0.000	3rc	d Qu.	:	0.000)	3rd	Qu.	: (0.000	0	3rd	Qu.	:	0.00
Max. :1	.36.0	000	Max	c. ::	1322.000	Max	κ.	:23	3.000)	Max	•	:130	5.000	0	Max	•	:98	302.00
y				dd		DMpi	rev				y0			Cn	t				
Min. :		0.0	Mir	ı. :	0.0000	Pop	: 32	4	Min.		:	0	0.0	AUS	:147	759			
1st Qu.:		1.6	1st	: Qu.:	0.0000	Inc	:1443	5	1st	Qu	. :	1	.6						
Median :		7.9	Med	lian :	0.0000				Medi	ian	:	7	.9						
Mean :	1224	7.0	Mea	an :	0.4242				Mear	ı	: 1	2247	.0						
3rd Qu.:	2	9.0	3rc	l Qu.:	0.0000				3rd	Qu	. :	29	.0						
Max. :8	08008	8.0	Max	c. :!	58.0000				Max.		:80	0808	8.0						
			NA	's ::	324														

> save(au.ana, file="../data/AUana.Rda")

7.5 Analysis of SMR

We load the dataset and the dataframe with the tumour labels in it:

```
> load( file="../data/AUana.Rda" )
> levels( au.ana$T1D )
[1] "NoDM" "30"
                            "40"
                  "35"
                                  "45"
                                            "Inf"
> levels( au.ana$DMdur )
[1] "NoDM" "Unkn" "O"
                          "1"
                                   "2"
                                           "5"
                                                   "10" "15" "30"
> au.ana <- subset( au.ana, y>0 & P>1997 & A<85 )
> round( addmargins( xtabs( d0 ~ P + T1D, data=au.ana ), 1 ) )
        T1D
Ρ
           NoDM
                      30
                              35
                                      40
                                             45
                                                    Inf
  2000.5 80927
                      26
                              33
                                      28
                                              49
                                                       5
  2001.5 83093
                              23
                                      48
                                              59
                      31
                                                       1
  2002.5 86480
                      49
                              22
                                      37
                                              48
                                                       6
```

	2003.5	88023	39	29	39	71	6		
	2004.5	92575	39	40	46	59	6		
	2005.5	94913	59	30	52	70	2		
	2006.5	97165	47	31	55	87	3		
	2007.5	100209	45	31	58	82	8		
	2008.5	103537	58	41	68	74	6		
	Sum	826922	393	280	431	599	43		
>	round(addmarg	gins(xt	abs(y0 ~	P +	T1D, dat	a=au.ana),	, 1), 1)	
	1	Г1D		-					
Ρ			NoDM	30		35	40) 45	. Inf
	2000.5	187776	0.08	30817.6		8651.0	8763.9	9 8988.9	357.2
	2001.5	190112	259.0	32664.4		8875.9	8917.4	9073.1	378.5
	2002.5	192226	58.0	34507.4		9075.3	9023.2	9108.9	398.3
	2003.5	194412	274.0	36379.7		9239.7	9090.1	9116.1	424.3
	2004.5	196464	44.0	38314.5		9396.8	9181.3	9095.3	443.1
	2005.5	198746	53.0	40166.6		9523.6	9245.2	9068.9	461.8
	2006.5	201322	274.0	41997.0		9662.6	9280.4	9034.6	483.0
	2007.5	204904	86.0	43889.4		9811.4	9339.6	9033.4	497.1
	2008.5	208966	643.0	45743.8		9936.5	9368.5	5 8999.2	. 509.0
	Sum	1774933	371.0	344480.4		84172.6	82209.6	8 81518.4	3952.1
>	load(:	file="	/data/c	onv.Rda")				

7.5.1 All cancers

We first set out the simplest possible analysis with age-period-cohort effects for the baseline rates. First we devise a couple of knots for the splines:

```
> library( splines )
 > with( au.ana, rbind(
                A = quantile( rep( A,d0), 0:10/10 ),
P = quantile( rep(P ,d0), 0:10/10 ),
 +
                   C = \frac{1}{2} \frac{1}{10\%} \frac{1}{20\%} \frac{1}{30\%} \frac{
 +
                                                                                                                                                                                                                                                                    50%
                                                                                                                                                                                                                                                                                                                     60%
                                                                                                                                                                                                                                                                                                                                                                   70%
                                                                                                                                                                                                                                                                                                                                                                                                                 80%
                                                                                                                                                                                                                                                                                                                                                                                                                                                               90%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       100%
                                  2.5
                                                                        42.5
                                                                                                                      52.5
                                                                                                                                                                    57.5
                                                                                                                                                                                                                  62.5
                                                                                                                                                                                                                                                                 67.5
                                                                                                                                                                                                                                                                                                               67.5
                                                                                                                                                                                                                                                                                                                                                             72.5
                                                                                                                                                                                                                                                                                                                                                                                                            77.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                          82.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       83.5
А
P 2000.5 2001.5 2002.5 2002.5 2003.5 2004.5 2005.5 2006.5 2007.5 2008.5 2008.5
C 1918.0 1924.0 1928.0 1931.0 1935.0 1939.0 1943.0 1947.0 1952.0 1960.0 2006.0
> ( a.kn <- seq(5,80,,7) )
 [1] 5.0 17.5 30.0 42.5 55.0 67.5 80.0
> ( p.kn <- seq(1998,2008,,4) )
 [1] 1998.000 2001.333 2004.667 2008.000
> ( c.kn <- seq(1925,1960,,6) )
 [1] 1925 1932 1939 1946 1953 1960
```

We then fit 3 models for the RR for T1D patients relative to the general population, using a common shape of the underlying cancer incidence rates as an age-period cohort model with 1 + (7 - 1) + (4 - 1) + (6 - 1) - 1 = 14 parameters². The first model (m3) is one with separate effects for persons diagnosed in ages < 30, 30–35, 35–40, 40–45 and 45+, the second (m1) is a simplification where these groups are pooled:

```
> m3 <- glm( d0 ~ Ns(
                      A, knots=a.kn ) +
                  Ns( P , knots=p.kn ) +
+
+
                  Ns(P-A, knots=c.kn) +
                  T1D,
+
             offset = log(y),
+
+
             family = poisson,
               data = au.ana )
> m1 <- update( m3, . ~ . - T1D + DMprev )
> m1r <- update( m1, data=subset( au.ana, T1D %in% levels(T1D)[1:4] ) )</pre>
>
 anova( m1, m3, test="Chisq" )
```

²There is first an intercept, then the three natural splines, where k knots gives k - 1 parameters, and finally 1 aliased parameter from the linear relationship between P - A and P and A.

```
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMprev
            ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
Model 2: d0
    T1D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      14267
                 61046
1
2
      14263
                 61041
                        4
                            4.3721
                                       0.358
```

The tests of the models show that there is no detectable difference between the groups, but it does appear that the risk is lower the older the patients are at diagnosis:

```
> round( rbind( ci.exp( m3 , subset="T1" ),
                ci.exp( m1 , subset="DMprev"
+
+
                ci.exp(m1r, subset="DMprev" ) ), 3 )
          exp(Est.) 2.5% 97.5%
T1D30
              1.073 0.972 1.185
              1.071 0.952 1.204
T1D35
              1.067 0.971 1.172
T1D40
              0.967 0.893 1.048
T1D45
T1DInf
              0.941 0.698 1.268
DMprevInc
              1.029 0.982 1.079
DMprevInc
              1.070 1.009 1.135
```

In summary, the comparison of the models show that there is no heterogeneity between the five groups of T1D patients w.r.t. the occurrence of cancer; which is also evident in figure 7.1, where the RR estimates from the three models are shown together:

7.5.2 Analysis by duration

We have also devised a variable indicating different time bands after diagnosis:

```
> round( xtabs( cbind(Ca=d0,PY=y/1000) ~ DMdur, data=au.ana ), 1 )
DMdur
             Ca
                       ΡY
  NoDM 826922.0 177493.4
         1296.0
  Unkn
                    401.2
  0
           33.0
                     17.5
            14.0
                     19.1
  1
  2
           58.0
                     56.9
  5
           93.0
                     59.5
  10
           48.0
                     15.2
  15
           123.0
                     19.9
  30
           81.0
                      7.1
```

The above analyses showed no statistically significant difference between the groups of patients by age at inclusion, but in line with what was found in previous analyses of cancer occurrende in all Danish diabetes patients, we fit models with the smaller datasets corresponding to more restrictive definitions of T1D:

Figure 7.1: Estimated RRs relative to the general population in two different models.

```
> md45 <- update( m3, . ~ . - T1D + DMdur,
                        data=subset( au.ana, T1D %in% levels(T1D)[1:5] & DMdur != "Unkn" ) )
> md40 <- update( md45, data=subset( au.ana, T1D %in% levels(T1D)[1:4] & DMdur != "Unkn" ) )</pre>
> md35 <- update( md45, data=subset( au.ana, T1D %in% levels(T1D)[1:3] & DMdur != "Unkn" ) )</pre>
> md30 <- update( md45, data=subset( au.ana, T1D %in% levels(T1D)[1:2] & DMdur != "Unkn" ) )</pre>
> anova( md45, update( md45, . ~ . - DMdur + T1D ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
   DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
   T1D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
       9496
                 59225
2
       9499
                 59249 -3 -23.987 2.514e-05
> anova( md40, update( md40, . ~ . - DMdur + T1D ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
   T1D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
       8076
                 58632
1
2
       8080
                 58650 -4 -17.845 0.001323
> anova( md35, update( md35, . ~ . - DMdur + T1D ), test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    DMdur
Model 2: d0 ~ Ns(A, knots = a.kn) + Ns(P, knots = p.kn) + Ns(P - A, knots = c.kn) +
    T1D
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
       6507
                 58103
2
       6512
                 58131 -5 -28.647 2.72e-05
```

We see that there a very strong effect of duration, and it is the same regardless of the age cut-off:

```
> round( cbind( RR45 <- ci.exp( md45, subset="DMdur" ),</pre>
                 RR40 <- ci.exp( md40, subset="DMdur"</pre>
+
                 RR35 <- ci.exp( md35, subset="DMdur"</pre>
        RR30 <- ci.exp( md30, subset="DMdur" ) ), 2 )
exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5%
+
DMdur0
             3.22 2.23 4.63
                                    3.22 2.14 4.85
                                                           3.99 2.63 6.06
                                                                                 4.21 2.61
DMdur1
             1.24 0.74 2.10
                                    1.03 0.54 1.98
                                                           0.61 \ 0.23 \ 1.62
                                                                                 0.64 0.21
                                                          1.05 0.71 1.56
                         1.51
                                                                                 1.20 0.77
DMdur2
             1.15 0.87
                                    1.11 0.81 1.53
DMdur5
              1.17 0.95
                                    1.09 0.85
                                                                                 0.87 0.55
                         1.44
                                               1.41
                                                           1.04 0.75
                                                                      1.43
                                                           0.70 0.36 1.34
                        1.55
                                    1.19 0.82 1.73
              1.16 0.87
                                                                                 0.42 0.14
DMdur10
              1.04 0.87 1.24
                                                          1.11 0.82 1.49
DMdur15
                                    1.15 0.92 1.44
                                                                                 0.93 0.60
DMdur30
             0.99 0.80 1.23
                                    1.01 0.80 1.29
                                                           1.04 0.79 1.38
                                                                                 1.06 0.76
        97.5%
DMdur0
         6.77
DMdur1
         1.98
DMdur2
         1.88
DMdur5
         1.36
         1.31
DMdur10
DMdur15
         1.42
DMdur30
         1.48
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( rbind(NA,RR45),
            txt=c("Years since DM", "0-1", "1-2", "2-5", "5-10", "10-15", "15-30", "30+"),
                xlog=TRUE, xtic=c(c(5:10,15,20,25)/10,3:6), grid=TRUE,
                xlab="RR of any cancer, T1D vs. population",
+
                lwd=4, cex=2, vref=1, y=c(7.7,7:1)+0.21 )
 linesEst( rbind(NA,RR40),
>
            lwd=3, cex=1.5, col=gray(0.5), y=8:1+0.07 )
> linesEst( rbind(NA,RR35),
             lwd=3, cex=1.5, col=gray(0.5), y=8:1-0.07 )
+
>
  linesEst( rbind(NA,RR30),
             lwd=3, cex=1.5, col=gray(0.7), y=8:1-0.21 )
```

From figure 7.2 it seems that there is a strong ascertainment effect for T1DM as well as what have been shown for all diabetes under one, and it is not attenuated if a stricter definition of T1D is applied.

7.5.3 Site-specific analyses

7.5.3.1 Analyses of site specific cancers

We first set up an array to hold the resulting simple RRs for each of the sites; we do the analyses by sex, but also make a pooled analysis, except for the sex-specific cancers (including breast):

```
> wh <- c(26:6)
> vnam <- names(au.ana)[wh]
> site <- conv[match(vnam,conv$NCnam),"Clab"]
> data.frame( vnam, site )
```


Figure 7.2: The effect of duration on the RR of cancer. The three gray sets of effecs are from the models where data are further restricted to patients diagnosed under 40, 35 and 30, respectively.

```
vnam
                          site
1
     d0
                     All sites
2
     d6
                   Oesophagus
3
     d7
                       Stomach
4
    d52
                    Colorectal
5
    d11
                         Liver
6
    d13
                      Pancreas
7
    d16
                          Lung
8
    d18
                        Breast
9
    d19
                 Cervix uteri
10
                 Corpus uteri
    d20
11
    d22
                         Ovary
12
    d24
                      Prostate
13
    d25
                        Testis
14
    d27
                        Kidney
15
                       Bladder
    d28
16
    d29
             Melanoma of skin
17
    d32
                   Brain, CNS
                      Thyroid
18
    d33
    d36 Non-Hodgkin lymphoma
19
20
             Hodgkin lymphoma
    d37
21
             Multiple myeloma
    d38
> RRtab <- NArray( list( site = site,</pre>
                            sex = c(levels(au.ana$sex), "Both")
+
                           what = c("N.Pop", "N.T1D", "RR", "lo", "hi") ) )
+
> dimnames( RRtab )
$site
 [1] "All sites"
                               "Oesophagus"
                                                        "Stomach"
 [4] "Colorectal"
                                                        "Pancreas"
                               "Liver"
 [7] "Lung"
                               "Breast"
                                                        "Cervix uteri"
[10] "Corpus uteri"
                               "Ovary"
                                                        "Prostate"
```

```
[13] "Testis"
                             "Kidney"
                                                     "Bladder"
                             "Brain, CNS"
[16] "Melanoma of skin"
                                                     "Thyroid"
[19] "Non-Hodgkin lymphoma" "Hodgkin lymphoma"
                                                     "Multiple myeloma"
$sex
           "F"
[1] "M"
                  "Both"
$what
[1] "N.Pop" "N.T1D" "RR"
                             "lo"
                                     "hi"
```

With this fixed we can the make a loop doing the analysis for all sites:

```
> system.time(
+ for( i in 1:length(vnam) )
     { # i <- 1
+
+
     aset <- au.ana[,c(vnam[i],</pre>
                         paste("y",if(i==1) "0", sep=""),
"A","P","DMprev","sex")]
+
+
     names( aset )[1:2] <- c("D", "Y")
+
     mB <- glm(D ~ Ns (A, knots=a.kn) +
Ns(P, knots=p.kn) +
Ns(P-A, knots=c.kn) +
+
+
+
+
                      DMprev,
              offset = log(Y),
+
+
              family = poisson,
                 data = aset )
+
+
     mM <- update( mB, data=subset(aset,sex=="M") )</pre>
     mF <- update( mB, data=subset(aset,sex=="F") )</pre>
+
                   ,3:5] <- ci.exp( mM, subset="DMprev" )
     RRtab[i,"M"
+
     RRtab[i,"F" ,3:5] <- ci.exp( mF, subset="DMprev" )
RRtab[i,"Both",3:5] <- ci.exp( mB, subset="DMprev" )</pre>
+
+
+
     RRtab[i,,1:2] <- addmargins( with( aset, tapply(D,list(sex,DMprev),sum) ), 1 )</pre>
+
     7)
   user system elapsed
 13.694
         0.024 13.715
> RRorg <- RRtab
> RRtab <- RRorg
> for(i in 1:dim(RRtab)[1])
+ for(j in 1:dim(RRtab)[2]) if(
                                          RRtab[i,j,5]==Inf ) RRtab[i, j
                                                                                      ,] <- NA
> for(i in 1:dim(RRtab)[1]) if(any(is.na(RRtab[i, ,5]==Inf))) RRtab[i, "Both",] <- NA
> round( ftable( RRtab ), 2 )
                                       N.Pop
                                                  N.T1D
                                                                 RR
                             what
                                                                            10
                                                                                       hi
site
                       sex
                                                               0.97
                                   466839.00
                                                 874.00
                                                                          0.91
                                                                                     1.04
All sites
                       М
                                   360083.00
                                                 872.00
                       F
                                                               1.08
                                                                          1.01
                                                                                     1.15
                       Both
                                   826922.00
                                                1746.00
                                                               1.03
                                                                          0.98
                                                                                     1.08
                                     6672.00
                                                               1.35
                                                                          0.84
                                                  17.00
Oesophagus
                       М
                                                                                     2.18
                       F
                                     2692.00
                                                   6.00
                                                               2.26
                                                                          1.01
                                                                                     5.06
                                                  23.00
                       Both
                                     9364.00
                                                               1.60
                                                                          1.06
                                                                                     2.41
Stomach
                       М
                                    10195.00
                                                  21.00
                                                               1.24
                                                                          0.81
                                                                                     1.90
                       F
                                     5108.00
                                                  18.00
                                                               2.35
                                                                          1.48
                                                                                     3.73
                       Both
                                    15303.00
                                                  39.00
                                                               1.64
                                                                          1.19
                                                                                     2.24
                                                 109.00
Colorectal
                       М
                                    60661.00
                                                               1.05
                                                                          0.87
                                                                                     1.27
                       F
                                    46444.00
                                                  90.00
                                                               1.36
                                                                          1.10
                                                                                     1.67
                                                                          1.03
                       Both
                                   107105.00
                                                 199.00
                                                               1.19
                                                                                     1.37
Liver
                       М
                                     6348.00
                                                  31.00
                                                               2.22
                                                                         1.56
                                                                                     3.16
                       F
                                     2359.00
                                                  11.00
                                                               3.27
                                                                          1.81
                                                                                     5.93
                                                                          1.87
                       Both
                                     8707.00
                                                  42.00
                                                               2.54
                                                                                     3.44
Pancreas
                       М
                                     9111.00
                                                  41.00
                                                               2.65
                                                                          1.95
                                                                                     3.61
                                                               2.14
                       F
                                                                                     3.41
                                    7686.00
                                                  18.00
                                                                          1.35
                                    16797.00
                                                               2.53
                       Both
                                                  59.00
                                                                          1.96
                                                                                     3.27
                                    48270.00
Lung
                       М
                                                  72.00
                                                              1.09
                                                                          0.87
                                                                                     1.38
                                                               1.28
                       F
                                    27576.00
                                                  49.00
                                                                          0.97
                                                                                     1.70
                       Both
                                    75846.00
                                                 121.00
                                                               1.19
                                                                          0.99
                                                                                     1.42
Breast
                       М
                                                    NA
                                                                NA
                                                                           NA
                                                                                       NA
                                          NA
                       F
                                   104938.00
                                                 271.00
                                                               0.89
                                                                          0.79
                                                                                     1.00
```

	Both	NA	NA	NA	NA	NA
Cervix uteri	М	NA	NA	NA	NA	NA
	F	6373.00	17.00	0.72	0.45	1.15
	Both	NA	NA	NA	NA	NA
Corpus uteri	М	NA	NA	NA	NA	NA
-	F	15048.00	48.00	1.46	1.10	1.94
	Both	NA	NA	NA	NA	NA
Ovary	М	NA	NA	NA	NA	NA
-	F	10124.00	34.00	1.49	1.06	2.08
	Both	NA	NA	NA	NA	NA
Prostate	М	130567.00	121.00	0.58	0.48	0.69
	F	NA	NA	NA	NA	NA
	Both	NA	NA	NA	NA	NA
Testis	М	5847.00	23.00	0.87	0.58	1.31
	F	NA	NA	NA	NA	NA
	Both	NA	NA	NA	NA	NA
Kidney	М	12665.00	36.00	1.16	0.83	1.60
-	F	6739.00	21.00	1.58	1.03	2.42
	Both	19404.00	57.00	1.32	1.02	1.71
Bladder	М	13058.00	26.00	1.63	1.11	2.40
	F	4039.00	7.00	1.89	0.90	3.98
	Both	17097.00	33.00	1.79	1.27	2.51
Melanoma of skin	М	48755.00	122.00	0.91	0.76	1.09
	F	35878.00	90.00	0.83	0.68	1.02
	Both	84633.00	212.00	0.89	0.77	1.01
Brain, CNS	М	7157.00	20.00	1.00	0.65	1.55
	F	5034.00	14.00	1.18	0.70	1.99
	Both	12191.00	34.00	1.08	0.77	1.52
Thyroid	М	3308.00	19.00	1.56	1.00	2.46
-	F	9936.00	51.00	1.29	0.98	1.69
	Both	13244.00	70.00	1.34	1.06	1.69
Non-Hodgkin lymphoma	М	17950.00	49.00	1.15	0.86	1.52
	F	14023.00	31.00	1.16	0.81	1.65
	Both	31973.00	80.00	1.16	0.93	1.44
Hodgkin lymphoma	М	2326.00	12.00	1.44	0.81	2.53
	F	1918.00	2.00	0.30	0.08	1.22
	Both	4244.00	14.00	0.94	0.56	1.59
Multiple myeloma	М	5740.00	13.00	1.29	0.75	2.23
	F	4177.00	2.00	0.36	0.09	1.42
	Both	9917.00	15.00	0.98	0.59	1.62

Of course we would also like to see the results as a forest plot, so we extract the relevant quantities for doing this:

```
> eM <- RRtab[,"M",3:5]
> eF <- RRtab[,"F",3:5]
> eB <- RRtab[,"Both",3:5]
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plotEst( eB, y=nrow(eM):1, txtpos=nrow(eM):1,
+ col="lightgray", xlog=TRUE,
+ xtic=c(1:10/10,1.5,2:7), xlim=c(0.095,7),
+ grid=TRUE, vref=1, xlab="Cancer incidence RR, T1D vs. population" )
> linesEst( eF, y=nrow(eM):1-0.2, col="red" )
> linesEst( eM, y=nrow(eM):1+0.2, col="blue" )
> text( rep(0.095,dim(RRtab)[1]), dim(RRtab)[1]:1+0.2, RRtab[,"M",2],
+ col="blue", adj=1, cex=0.7 )
> text( rep(0.095,dim(RRtab)[1]), dim(RRtab)[1]:1-0.2, RRtab[,"F",2],
+ col="red", adj=1, cex=0.7 )
```

We see that the only sites with appreaciable increased RR and sufficiently narrow confidence intervals are colorectal, liver, corpus uteri, ovary and thyroid; whereas there seems to be a lower risk for cancer of the breast, cervix uteri and prostate cancer among T1D patients.

Figure 7.3: RRs of cancer incidence among T1D patients (i.e. diagnosed < 40 years of age) in Australia relative to the general population. The numbers to the left are the number of cancers observed among the T1D patients. Men: Blue, Women: Red, Both sexes: Light gray.

Chapter 8 Joint analyses of 5 countries' data

Here we do all analyses to determine overall estimates of the HR of different cancers associated with the presence of T1D and the duration of it.

8.1 Merging of data frames

8.1.1 Total data sets

We first load the data sets from each country and create an overview of the tumours available in each of the countries:

> load("../data/DKana.Rda")
> load("../data/SEana.Rda")
> load("../data/FIana.Rda")
> load("../data/SCana.Rda")
> load("../data/AUana.Rda")

8.1.2 Merging the data sets

Then we check which types of cancer that are common for all countries:

```
> load( "../data/conv.Rda" )
> str( conv )
'data.frame':
                    41 obs. of 3 variables:
              "d0" "d11" "d12" "d14" ...
 $ DKnam: chr
 $ NCnam: chr "d0" "d1" "d2" "d3" ...
 $ Clab : chr "All sites" "Lip" "Tongue" "Salivary glands" ...
> dk.wh <- match( names(dk.ana), conv$NCnam ) ; (dk.wh <- dk.wh[!is.na(dk.wh)])</pre>
 [1] 1 7 8 10 11 12 14 17 19 20 21 22 24 25 27 28 29 31 32 35 36 37 38 41
> se.wh <- match( names(se.ana), conv$NCnam ) ; (se.wh <- se.wh[!is.na(se.wh)])</pre>
     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 [1]
[33] 33 35 36 37 38 40 41
> fi.wh <- match( names(fi.ana), conv$NCnam ) ; (fi.wh <- fi.wh[!is.na(fi.wh)])</pre>
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
[33] 33 34 35 36 37 38 39 41
> sc.wh <- match( names(sc.ana), conv$NCnam ) ; (sc.wh <- sc.wh[!is.na(sc.wh)])</pre>
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
[33] 33 34 35 37 38 39 40 41
> au.wh <- match( names(au.ana), conv$NCnam ) ; (au.wh <- au.wh[!is.na(au.wh)])
 [1] 37 36 35 32 31 29 28 27 25 24 22 21 20 19 17 14 12 41 8 7 1
```

> (dk.ca <-							
+ :	se.ca <-							
+ ;	fi.ca <-							
+ :	sc.ca <-							
+ ;	au.ca <- rep(" ", nrow(conv,))						
> 0	dk.ca[dk.wh] <- "DK"							
> :	se.ca[se.wh] <- "SE"							
> :	fi.ca[fi.wh] <- "FI"							
> :	sc.ca[sc.wh] <- "SC"							
> a	au.ca[au.wh] <- "AU"							
> 1	which.ctrib <- paste(dk.ca. se	e.ca.	fi.	ca.	sc	.ca	au.	ca)
> (cbind(conv[.3:2], which.ctrib)						
				-				
	Clab	NCnam		wh:	ich	.ctı	cib	
1	All sites	d0	DK	SE	FI	SC	AU	
2	Lip	d1		SE	FΙ	SC		
3	Tongue	d2		SE	FΙ	SC		
4	Salivary glands	d3		SE	FΙ	SC		
5	Mouth	d4		SE	FΙ	SC		
6	Pharynx	d5		SE	FΙ	SC		
7	Oesophagus	d6	DK	SE	FΙ	SC	AU	
8	Stomach	d7	DK	SE	FI	SC	AU	
9	Small intestine	d8		SE	FI	SC		
10	Colon	d9	DK	SE	FI	SC		
11	Rectum	d10	DK	SE	FI	SC		
12	Liver	d11	DK	SE	FI	SC	AU	
13	Gallbladder	d12		SE	FI	SC		
14	Pancreas	d13	DK	SE	FI	SC	AU	
15	Nose, sinuses	d14		SE	FI	SC		
16	Larynx	d15		SE	FI	SC		
17	Lung	d16	DK	SE	FI	SC	AU	
18	Pleura	d17		SE	FI	SC		
19	Breast	d18	DK	SE	FI	SC	AU	
20	Cervix uteri	d19	DK	SE	FI	SC	AU	
21	Corpus uteri	d20	DK	SE	FI	SC	AU	
22	Ovary	d22	DK	SE	FI	SC	AU	
23	Other female genital organs	d23		SE	FI	SC		
24	Prostate	d24	DK	SE	FI	SC	AU	
25	Testis	d25	DK	SE	FT	SC	AU	
26	Penis etc.	d26		SE	FT	SC		
27	Kidnev	d27	DK	SE	FT	SC	AU	
28	Bladder	d28	DK	SE	FT	SC	AU	
29	Melanoma of skin	d29	DK	SE	FT	SC	ΔΠ	
30	Fue	431	DR	SF	FT	SC	110	
31	Brain CNS	432	אס	SF	FT	SC	ΔΤΤ	
32	Thyroid	433	את	SE SE	FT	20		
33	Bone	434	DI	SE SE	FT	20	нU	
34	Soft tiggues	435		ЪГ	FT	20		
35	Non-Hodgkin lymphoma	436	אס	৫৮	FT	20	۸TT	
26	Hodgkin lymphoma	427	JN DV	0E QE	L T	50	AU AII	
30	Multiple mucleme	100	את	0E QE	L T	gr	AU ATI	
20		0050	את	0E QE	L T	20	AU	
20	Leukaemia	440 240	DV	SE	Г I ГТ	20		
39	other and unspecified cancers	a48 2⊑4		CL.	г⊥	20		
40 11	Ural etc.	a51 250	עת	DE CE	E.F.	20	A T T	
41	Colorectal	a52	DK	ЪĘ	г⊥	20	AU	

We see that the Danish and Australian data contain fewer sites than the Swedish, Finnish and Scottish. The sites available in the Australian data are all the major sites of primary relevance, except for leukemia and the subdivision of colorectal in colon and rectum.

We shall therefore restrict the analysis to the sites defined in the Danish data, meaning that colon, rectum and leukemia will be based on 4 countries (not Australia) as will Hodgkin's lymphoma (not Scotland).

> (vars <- names(dk.ana))</pre>

[1 [11 [21 [31] "sex] "d7'] "d24	י יי י י 1 ייי	'A" 'd9" 'd25" 'd52"	"P" "d10" "d27" "Cnt"	"T1D" "d11" "d28"	"DMprev" "d13" "d29"	"DMdur" "d16" "d32"	"y0" "d18" "d33"	"y "d "d	" 19" 36"	"d0" "d20" "d37"	"de "d2 "d2	5" 22" 38"	
101	h an a		uoz Faubata((more 1	1)									
> W	n.ca <	- vars	$s_{lsubstr(}$	vars, 1	(1) = [a]	18.23)7)								
			1.ca[c(1.	. 0,24,0	.0,17,9.10,	10.23/] /								
[1 [17] "d0'] "d27	' "d6' 7" "d28	' "d/" 3" "d32"	"d9" ' "d33" '	"d10" "d52" "d36" "d37"	"d11" "d "d38" "d	13" "d16" 40"	"d29"	"d18"	"d19"	"d20"	"d22"	"d24"	"d25'
> c	bind(wh.ca,	, conv[ma	atch(wh	.ca,conv\$NC	nam),c("N	Cnam","Cla	ab")]))					
	wh.ca	NCnam			Clab									
1	d0	d0		All	sites									
7	d6	d6		Oesor	ohagus									
8	d7	d7		Si	tomach									
10	d9	d9			Colon									
11	d10	d10		H	Rectum									
41	d52	d52		Coloi	rectal									
12	d11	d11			Liver									
14	d13	d13		Par	ncreas									
17	d16	d16			Lung									
29	d29	d29	Mela	anoma of	f skin									
19	d18	d18		H	Breast									
20	d19	d19		Cervix	uteri									
21	d20	d20		Corpus	uteri									
22	d22	d22			Ovary									
24	d24	d24		Pro	ostate									
25	d25	d25		1	Festis									
27	d27	d27		F	Kidney									
28	d28	d28		B	ladder									
31	d32	d32		Braiı	n, CNS									
32	d33	d33		Tł	nyroid									
35	d36	d36	Non-Hodg	gkin lyr	nphoma									
36	d37	d37	Hodg	gkin lyr	nphoma									
37	d38	d38	Mult	tiple my	yeloma									
38	d40	d40		Leul	kaemia									

8.2 Analysis data frame

The analysis data frame is simply constructed by stacking the analysis data sets from different countries. We must however insert the missing columns from Australia and Scotland first. We restrict the analysis dataset to ages under 85 (which is the age-range present in all countries) and units with positive followup time (y > 0) and also order the levels of DMdur in a more sensible way, than that rendered by the rbinding of the analysis data frames:

```
> au.ana$d9 <-
+ au.ana$d10 <-
+ au.ana$d40 <- NA
> sc.ana$d37 <- NA
> all.ana <- rbind( dk.ana[,vars],</pre>
+
                        fi.ana[,vars],
+
                        se.ana[,vars],
                       sc.ana[,vars],
au.ana[,vars] )
+
+
  all.ana <- transform( subset( all.ana, A<85 & y0>0 ),
>
                            Cnt = factor( Cnt,
+
                                             levels=c("DNK","FIN","SWE","SCO","AUS"),
labels=c("DK","FI","SE","SC","AU")),
+
+
+
                             T1 = Relevel(T1D)
+
                                              list("NoDM", "T1DM"=2:nlevels(T1D) ) ),
+
                            T1D = Relevel(T1D, c(1:4,6,5)),
```

```
Joint analyses of 5 countries' data
```

```
DMdur = Relevel(DMdur, c(1:7,9,8)))
> with( all.ana, cbind( tapply( y, y0>0, sum ),
+ tapply( d0, y0>0, sum ) ) )
                 [,2]
          [,1]
TRUE 778028445 3350432
> dim( all.ana )
[1] 99687 34
> apply( all.ana, 2, function(x) sum(is.na(x)) )
         A P
                       T1D DMprev DMdur
                                             y0
                                                    у
О
                                                          d0
                                                                 d6
                                                                        d7
                                                                                d9
                                                                                      d10
                                                                                             d11
  sex
    0
           0
                 0
                               0
                                     0
                                              0
                                                          0
                                                                 0
                                                                        0 14282
                                                                                    14282
                        0
                                                                                              0
   d13
         d16
                d18
                       d19
                              d20
                                     d22
                                            d24
                                                   d25
                                                          d27
                                                                 d28
                                                                        d29
                                                                               d32
                                                                                      d33
                                                                                             d36
          0
                 0
                        0
                               0
                                      0
                                              0
                                                     0
                                                           0
                                                                  0
                                                                          0
                                                                                 0
                                                                                       0
                                                                                               0
    0
                d40
                              \mathtt{Cnt}
   d37
          d38
                       d52
                                      T1
             14282
 14706
           0
                         0
                                0
                                       0
```

We can now make an overview of the number of cancers by T1D status:

> wi	ith(all.ana	, ftab	ple(]	'1, T 1	1D, D	Mdur_))			
		DMdur	NoDM	0	1	2	5	10	15	30	Unkn
T1	T1D)		•						•	
NoDN	1 NoD	M	8466	0	0	0	0	0	0	0	0
	30		0	0	0	0	0	0	0	0	0
	35		0	0	0	0	0	0	0	0	0
	40		0	0	0	0	0	0	0	0	0
	45		0	0	0	0	0	0	0	0	0
	Inf		0	0	0	0	0	0	0	0	0
T1DN	1 NoD	M	0	0	0	0	0	0	0	0	0
	30		0	6856	6815	7540	8087	7375	8570	5264	4923
	35		0	1407	1432	1939	2351	2112	3208	2116	1605
	40		0	1408	1425	1941	2369	2115	3207	1772	1556
	45		0	109	109	166	229	203	357	247	470
	Inf		0	240	255	346	320	146	49	0	582
> wi	ith(all.ana	, ftab	ble(C	nt, I	Mpre	v, T1	D))			
		T1D	NoDM	30	. 3	35	40	45	Inf		
Cnt	DMpr	.ev									
DK	Pop		3060	0		0	0	0	0		
	Inc		0	4840	109	97 1	092	0	0		
	Prv		0	3557	108	39 1	081	0	0		
FI	Рор		1360	0		0	0	0	0		
	Inc		0	14635	409	4	121	0	0		
	Prv		0	4103	112	22 1	103	0	0		
SE	Pop		850	0		0	0	0	Ő		
~_	Inc		0	14738	451	3 4	244	0	Ő		
	Prv		0	0		0	0	0	Ő		
SC	Pop		2890	0		0	Õ	Õ	Ő		
	Inc		0	4450	110)01	100	Õ	Ő		
	Prv		Ő	3154	100)4 1	008	Õ	Ő		
ΔΤΤ	Pop		306	0101	100	0	0	Õ	Ő		
110	Inc		000	5953	215	51 2	044	1890	1938		
	Prv		Ő	0000	210	0 2	0	0	0011		
× 0	- 7 7	<	+ (-	-)	(F I -		()7)	Ŭ	v		
> 0	. all	< func			(X [!]	18.na 1771:	(\mathbf{x})	- [17	171		
> 5.	. M 1	<- IUNC	t10n()	() SUM	(X [-]		s.na(x[-1],	(1)		
> 11	table	e (aaama	rgins		(a1	L.ana	,				
+					taj	орту (a0,	(a.t.			
+							list	(Cnt,	11D),		
+						(7	sum)),	m)	`	
+				FUN=	list	(S.al	1,5.m	1), q [.]	=1),)	
		NoDM	3	30	35		40	4	5	Inf	S.m1
אס		110520	07	76	0EE		511	NT	٨	NT A	1040
DK ET		442000 707006	21	25	200		021		н. Л	N A	1042
CE L T		050456		00 70	012	4	240	IV I	H1 N	A VI	2408
SE CC		909400 404707	101	0	04Z	1	042 000	IN I	H	IN A	4002
SU ATT		404707	15		124				H C	A VI	533
AU C - 7		020922	35	13	280		431 497	599	2	43	1/46
s.a.	LL J	0340641	355	19	2113	<u> </u>	437	599	1	43	9791

> fta	ble(addmargins(with(all.ana,				
+				tapply(d0,			
+					list(Cnt	,DMprev	,T1D),	
+					sum)),			
+			FUN=1:	ist(S.all	,S.m1,S.	m1), q=	Γ))	
		NoDM	30	35	40	45	Inf	S.m1
DK	Рор	442530	NA	NA	NA	NA	NA	0
	Inc	NA	113	124	255	NA	NA	492
	Prv	NA	163	131	256	NA	NA	550
	S.m1	. 0	276	255	511	0	0	1042
FI	Рор	707026	NA	NA	NA	NA	NA	0
	Inc	NA	679	553	833	NA	NA	2065
	Prv	NA	186	59	98	NA	NA	343
	S.m1	. 0	865	612	931	0	0	2408
SE	Pop	959456	NA	NA	NA	NA	NA	0
	Inc	NA	1878	842	1342	NA	NA	4062
	Prv	NA	NA	NA	NA	NA	NA	0
	S.m1	. 0	1878	842	1342	0	0	4062
SC	Pop	404707	NA	NA	NA	NA	NA	0
	Inc	NA	44	28	82	NA	NA	154
	Prv	NA	143	96	140	NA	NA	379
	S.m1	. 0	187	124	222	0	0	533
AU	Pop	826922	NA	NA	NA	NA	NA	0
	Inc	NA	393	280	431	599	43	1746
	Prv	NA	NA	NA	NA	NA	NA	0
	S.m1	. 0	393	280	431	599	43	1746
S.all	Pop	3340641	0	0	0	0	0	0
	Inc	0	3107	1827	2943	599	43	8519
	Prv	0	492	286	494	0	0	1272
	S.m1	0	3599	2113	3437	599	43	9791

With these tables we restrict the analysis to be for persons diagnosed with DM before the age of 40:

```
> all.ana <- transform( subset( all.ana, T1D %in% levels(T1D)[1:4] ),</pre>
                          T1D = factor(T1D))
>
 ftable( addmargins( with( all.ana,
                              tapply( d0,
+
+
                                       list(Cnt,T1D),
                                       sum ) ),
+
                       FUN=list(S.all,S.m1), q=T ) )
35 40 S.m1
+
          NoDM
                     30
        442530
                    276
                             255
DK
                                     511
                                             1042
FI
        707026
                                     931
                                             2408
                    865
                             612
SE
        959456
                   1878
                             842
                                    1342
                                             4062
SC
        404707
                    187
                             124
                                     222
                                              533
AU
        826922
                    393
                             280
                                     431
                                             1104
S.all 3340641
                   3599
                                    3437
                            2113
                                             9149
> round(
+ ftable( addmargins( with( all.ana,
                              tapply( y/1000,
+
                                       list(Cnt,T1D),
+
                                       sum ) ),
+
                        FUN=list(S.all,S.m1), q=T ) ), 1 )
+
            NoDM
                                                   S.m1
                       30
                                 35
                                           40
DK
        95492.4
                    265.8
                              125.9
                                        161.1
                                                 552.8
FΙ
       198320.5
                    747.6
                                        242.9
                                                1201.9
                              211.4
SE
       217267.1
                    900.8
                                        280.0
                              210.3
                                                1391.1
SC
        85386.6
                    227.6
                               44.6
                                         54.1
                                                  326.3
       177493.4
                               84.2
                                         82.2
                                                 510.9
AU
                    344.5
S.all 773960.0
                   2486.3
                              676.4
                                        820.4
                                                3983.0
```

Thus the final analysis dataset has 9,149 cancers in 4.0 mil. person-years among T1D patients defined as persons diagnosed under the age of 40.

8.2.0.1 Non-sex-specific cancers

Besides the category of "all cancers" in the variable d0, we also want a category of all those cancers that are common for both sexes; that is all cancers *except* cancer of breast (d18), cervix (d19), endometrium (d20), ovary (d22), prostate (d24) and testis (d25). We construct this variable as d00 and add a name to it in the conv data frame and the vector wh.ca with the names of variables to be analyzed:

```
> conv <- rbind( conv[1,], c("","d00","Non-sex-specific"), conv[-1,] )
> wh.ca <- c(wh.ca[1],"d00",wh.ca[-1])
> all.ana$d00 <- with( all.ana, pmax(d0-d18-d19-d20-d22-d24-d25,0,na.rm=TRUE) )
> save( all.ana, wh.ca, conv, file = "../data/ALLana.Rda" )
> # load( file = "../data/ALLana.Rda" )
```

8.2.1 Overview of the analysis data frame

We provide an overview of the dataset; the number of units in the data frame, the number of cancers and the amount of follow-up time (person-years):

```
> for( cn in levels(all.ana$Cnt) )
+
+
     cat( "\n", rep("-",70), "\n", cn, "\n", sep="")
+
     print( round(
+
     ftable( addmargins(
              xtabs(cbind(D=d0, Y=y/1000) \sim floor(P) + T1D,
+
+
                       data=subset( all.ana, Cnt==cn ) ),
+
                          margin=1 ),
+
               col.vars=3:2 ) ) )
     7
+
DK
                    D
                                                    Y
          T1D
                                   35
                                                           30
                 NoDM
                           30
                                           40
                                                 NoDM
                                                                   35
                                                                           40
floor(P)
1995
                20980
                            5
                                    4
                                            6
                                                 5144
                                                            8
                                                                    3
                                                                             4
                                                 5172
1996
                19233
                            6
                                    4
                                            9
                                                            8
                                                                     4
                                                                             5
                            0
                                    4
                                           12
                                                                    4
                                                                            5
1997
                21484
                                                 5192
                                                            9
1998
                23752
                            7
                                    4
                                           14
                                                 5209
                                                           10
                                                                    5
                                                                            6
1999
                22490
                           10
                                    8
                                           16
                                                 5225
                                                           11
                                                                    5
                                                                             6
                            7
                                    7
                                                                            7
2000
                                            7
                                                                    6
                20531
                                                 5241
                                                           12
                                           22
                                                                            7
2001
                22708
                           10
                                   11
                                                 5260
                                                           12
                                                                    6
2002
                25185
                           12
                                    7
                                           27
                                                 5277
                                                           13
                                                                    6
                                                                            8
2003
                           16
                                    4
                                           21
                                                 5291
                                                           14
                                                                    7
                                                                            9
                21605
2004
                                   21
                                                                    7
                                                                            9
                24628
                           11
                                           24
                                                 5304
                                                           15
                                           26
                                                                    8
                                                                           10
2005
                25198
                           13
                                    8
                                                 5317
                                                           16
2006
                26202
                           19
                                   17
                                           35
                                                 5332
                                                           17
                                                                    8
                                                                           10
2007
                26515
                           18
                                   17
                                           34
                                                 5355
                                                           18
                                                                    8
                                                                           11
                           17
                                   23
                                           45
                                                                    9
2008
                27705
                                                 5386
                                                           19
                                                                           12
                           30
                                           57
                                                                    9
2009
                29491
                                   26
                                                 5414
                                                           20
                                                                           12
                                                                   10
2010
                28147
                           25
                                   25
                                           47
                                                 5437
                                                           21
                                                                           13
2011
                28622
                           29
                                   27
                                           48
                                                 5458
                                                           22
                                                                   10
                                                                           14
2012
                28054
                           41
                                   38
                                           61
                                                 5478
                                                           22
                                                                   11
                                                                           14
\mathtt{Sum}
               442530
                          276
                                  255
                                          511
                                                95492
                                                          266
                                                                  126
                                                                          161
FI
                                                    Y
                    D
                           30
                                   35
                                                           30
                                                                   35
          T1D
                 NoDM
                                           40
                                                 NoDM
                                                                           40
floor(P)
                                    2
                                            2
                                                            3
1972
                11487
                            0
                                                 4627
                                                                     1
                                                                             1
1973
                11559
                            0
                                    1
                                                 4651
                                                            4
                                                                     1
                                                                             1
                                            1
1974
                11773
                            1
                                    1
                                                 4674
                                                            5
                                                                    1
                                                                             1
                                            1
```

1975 1976		12060 12587	1 0	1 0	2 0	4693 4705	6 7	1 1	2 2
1977		12903	0	3	1	4717	8	2	2
1978		13158	6	1	4	4729	8	2	2
1979		13500	3	1	5	4740	9	2	2
1980		13892	3	1	5	4753	10	2	3
1981		13961	8	8	4	4771	11	3	3
1982		14320	6 7	4	13	4796	10	3	3
1903		14040	<i>г</i> Б	о О	l Q	4022 1815	12	3 3	 ∕I
1025		1/1078	5	2	7	4040	13	З Д	4 /
1986		15404	8	6	10	4803	14	4 4	4 4
1987		15707	11	6	5	4888	15	4	4
1988		15718	9	6	15	4901	15	4	5
1989		15658	19	10	18	4916	16	4	5
1990		16034	11	8	14	4936	17	4	5
1991		16489	4	5	11	4960	17	5	5
1992		17184	14	16	27	4985	18	5	5
1993		17196	15	11	18	5007	18	5	5
1994		17886	15	11	24	5026	19	5	6
1995		18267	17	20	25	5042	20	5	6
1996		19296	14	16	26	5056	21	6	7
1997		19312	27	21	37	5069	21	6	7
1998		19747	27	13	31	5080	22	6	7
1999		19959	21	21	31	5089	23	7	8
2000		20389	34	20	32	5098	24	(8
2001		20715	32	21	34	5109	25	(9
2002		21495	30	21	37	5120	20	0	9
2003		22003	20	22	37	5131	28	0	10
2004		23410	30 // 8	20 45	47	5145	29	9	10
2005		23905	40	36	49 57	5100	30	10	11
2000		23140	52	36	54	5193	33	10	12
2008		23689	63	46	51	5212	35	11	13
2009		24873	66	46	72	5233	36	12	13
2010		24879	77	47	53	5252	37	12	14
2011		25602	83	44	56	5272	33	11	13
2012		0	0	0	0	0	0	0	0
Sum		707026	865	612	931	198320	748	211	243
SE		D				Y			
	T1D	NoDM	30	35	40	NoDM	30	35	40
<pre>floor(P)</pre>									
1987		34084	22	14	13	8267	25	6	7
1988		34000	22	13	27	8301	26	6	7
1989		34023	28	18	17	8352	27	6	7
1990		34493	30	8	13	8412	28	6	7
1991		34756	30	21	26	8465	28	6	8
1992		34844	32	14	20	8510	29	6	8
1993		35392	38	17	36	8554	30	(8
1994		35835	45	23	26	8610	31	1	9
1995		25577	50 40	20	4Z 24	0049	ວ∠ 22	7	9
1990		257/2	42 71	01	20	0007	24	0	10
1008		36503	65	21	30 46	8656	34	o Q	10
1999		37827	61	20 33	40 44	8658	35	0 8	11
2000		37960	84	38	50	8669	36	8	11
2001		38615	94	32	55	8690	37	9	12
2002		39395	79	27	71	8716	38	9	12
2003		40918	89	47	69	8747	40	9	13
2004		42262	117	47	79	8779	41	10	13
2005		42019	109	51	70	8807	42	10	14
2006		41662	117	53	78	8848	43	10	14
0007		41710	117	39	75	8910	44	11	15

2008 2009 2010 2011 Sum	3 9) L		42289 44700 44640 44855 959456	117 142 137 140 1878	52 62 57 81 842	92 119 109 93 1342	8977 9052 9128 9197 217267	45 46 48 49 901	11 11 12 12 210	16 16 17 17 280
SC			D				 Ү			
flor	$r(\mathbf{P})$	T1D	NoDM	30	35	40	NoDM	30	35	40
1995 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2006 2007 2008 2009 2006 2007	5 5 7 3 9 0 1 2 3 3 4 5 5 5 7 7 3 9 0 1		22048 23468 22772 22509 22444 22829 22863 23572 23578 24104 23743 24169 24693 25248 25523 25422 25523	7 6 5 7 9 9 4 14 16 8 14 5 18 12 17 24 12	3 2 2 6 4 2 4 11 12 7 13 10 13 10 8 14	4 6 9 6 11 8 12 13 10 15 7 19 16 15 19 26 26 26	5024 5011 5001 4992 4986 4975 4975 4975 4967 4971 4993 5004 5022 5046 5068 5090 5115 5145	9 10 11 11 12 12 13 13 14 14 15 15 16 17 17 18	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 :
Sum			404707	187	124	222	85387	228	45	54
AU			D				Ŷ			
floc	or(P)	T1D	NoDM	30	35	40	NoDM	30	35	40
2000 2001 2002 2003 2004 2005 2006 2006 2007 2008 Sum) L 2 3 4 5 5 7 3		80927 83093 86480 88023 92575 94913 97165 100209 103537 826922	26 31 49 39 59 47 45 58 393	33 23 22 29 40 30 31 31 41 280	28 48 37 39 46 52 55 58 68 431	18778 19011 19223 19441 19646 19875 20132 20490 20897 177493	31 33 35 36 38 40 42 44 46 344	9 9 9 10 10 10 10 10 84	9 9 9 9 9 9 9 9 82
> ro + +	ound(ftal	ble(xta col	bs(cbind data vars=4:	d(D=d0,1 =all.ana 3))	Y=y/10 a),	00) ~ Cnt	; + DMdı	ır + T1D	و
		ጥ1፣		30	32	10	Y NoDM	30	32	40
Cnt DK	DMdun NoDM O 1	111	442530 0	30 0 9 4	35 0 9 7	40 0 27 15	морм 95492 0 0	30 0 16 15	35 0 8 8	40 0 11 11
FI	2 5 10 15 30 Unkn NoDM 0		0 0 0 0 707026	24 39 29 8 0 163 0 25	21 37 45 5 0 131 0 14	54 89 57 13 0 256 0 38	0 0 0 0 198320 0	38 45 22 3 0 127 0 41	20 23 12 2 0 53 0 15	27 31 14 2 0 64 0 18
	1 2 5 10		0 0 0 0	10 30 62 64	16 35 59 92	22 58 131 161	0 0 0	40 110 153 119	14 37 47 34	17 45 57 40

	15	0	402	293	405	0	225	55	57	
	30 Unkn	0	272	103	0	0	0	10	8 0	
SE	NoDM	959456	0	0	0	217267	0	0	0	
	0	0	27 9	19 9	40 16	0	31 29	9	15 14	
	2	0	32	27	59	0	84	25	40	
	5	0	73	67	147	0	131	40	60	
	10 15	0	93 490	95 386	169 622	0	120 298	35 72	48 86	
	30	0	1154	239	289	0 0	207	20	18	
	Unkn	0	0	0	0	0	0	0	0	
SC	NoDM O	404707	0	0 7	0 11	85387 0	0	0	0	
	1	Ő	6	4	7	Ő	10	2	4	
	2	0	8	4	20	0	28	7	10	
	5 10	0	16 37	13 24	34 45	0	45 48	10	14	
	15	0	113	72	105	Ő	91	14	14	
	30	0	0	0	0	0	0	0	0	
AIJ	Unkn NoDM	0 826922	0	0	0	0 177493	0	0	0	
110	0	020022	17	5	ů 1	0	14	ů 1	1	
	1	0	3	1	5	0	15	2	1	
	2	0	19 19	6 18	12 22	0	42 39	6	5 7	
	10	0	3	6	18	Ő	8	2	2	
	15	0	21	22	34	0	11	2	3	
	30 Unkn	0	35 276	14 208	16 323	0	5 210	1 62	62	
> t	t <- a	ddmargins(xtabs(c	bind(N=	=(y>0),	Ca=d0,	PY=y/10	00)~	Cnt + T1D,	
+		-	d	ata = al	ll.ana),				
+ > d	d < -a	ddmarging	margın=2 "təbə(ə) hind(N-	(a 10	//			
			xLadst C	D = T = T = T = T = T = T = T = T = T =	=(v>())	Ca=dO	PY = v/1()	00) ~	Cnt + T1D	
+	u v at	iumargins(.	d	ata = si	=(y>0), 1bset(a	Ca=d0, 1 11.ana,T	PY=y/10 1D %in%	00) ~ c("30'	Cnt + T1D, ","35","40")))),
++++	+ [<u>G</u>		margin=2	ata = si)	=(y>0), 1bset(a	Ca=d0, 1 11.ana,T	PY=y/10 1D %in%	00) ~ c("30'	Cnt + T1D, ","35","40")))),
+ + > t > r	t[,"Sur	n",] <- dd[ftable(add	d margin=2 ,"Sum",] margins(ata = si) tt, mai	=(y>0), 1bset(a cgin=1	Ca=d0, 1 11.ana,T.), row.va	PY=y/10 1D %in% ars=c(3	00) ~ c("30' ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r	t[,"Sur ound(1 T1I	n",] <- dd[ftable(add) NoDM	d margin=2 ,"Sum",] margins(30	<pre>bind(N- ata = si) tt, mai 35</pre>	=(y>0), 1bset(a cgin=1 40	Ca=d0, 1 11.ana,T), row.va Sum	PY=y/10 1D %in% ars=c(3	00) ~ c("30' ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r	t[,"Sun ound() T1I Cnt	n",] <- dd[ftable(add) NoDM	margin=2 ,"Sum",] margins(30	<pre>bind(N- ata = si) tt, mai 35</pre>	=(y>0), ibset(a cgin=1 40	Ca=d0, 1 11.ana,T.), row.va Sum	PY=y/10 1D %in% ars=c(3	00) ~ c("30' ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r N	t[,"Sur ound(T1I Cnt DK FI	n",] <- dd[ftable(add) NoDM 3060 1360	margin=2 ,"Sum",] margins(30 8397 18738	<pre>bind(N- ata = si) tt, mai 35 2186 5216</pre>	=(y>0), ibset(a cgin=1 40 2173 5224	Ca=d0, 1 11.ana,T.), row.va Sum 12756 29178	PY=y/10 1D %in% ars=c(3	00) ~ c("30' ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r N	t[,"Sur ound(T1I Cnt DK FI SE	n",] <- dd[ftable(add) NoDM 3060 1360 850	d margin=2 ,"Sum",] margins(30 8397 18738 14738	tt, man 35 2186 5216 4513	=(y>0), ibset(a cgin=1 40 2173 5224 4244	Ca=d0, 1 11.ana,T), row.va Sum 12756 29178 23495	PY=y/10 1D %in% ars=c(3	00) ~ c("30' ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r	t[,"Sur ound(T1I Cnt DK FI SE SC	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890	d margin=2 ,"Sum",] margins(30 8397 18738 14738 7604	tt, mar 35 2186 5216 4513 2104	(y>0), ibset(a 2173 5224 4244 2108	Ca=d0, 1 11.ana,T), row.va Sum 12756 29178 23495 11816	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r	t[,"Sur ound(T1I Cnt DK FI SE SC AU Sum	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466	d margin=2 ,"Sum",] margins(30 8397 18738 14738 7604 5953 55430	tt, mar 35 2186 5216 4513 2104 2151 16170	(y>0), ibset(a cgin=1 40 2173 5224 4244 2108 2044 15793	Ca=d0, 1 11.ana,T), row.v Sum 12756 29178 23495 11816 10148 87393	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r N	t[,"Sur ound(T1I Cnt DK FI SE SC AU Sum DK	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 7604 5953 55430 276	tt, mar 35 2186 5216 4513 2104 2151 16170 255	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r N	t[,"Sur cound(T T1I Cnt DK FI SE SC AU Sum DK FI	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 14738 7604 5953 55430 276 865	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + > t > r N	t[,"Sur ound(T1I Cnt DK FI SE SC AU Sum DK FI SE SC	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 7604 5953 55430 276 865 1878 187	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222	Ca=d0, 1 11.ana, T), row.v Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r N	t[,"Sur cound(= T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922	d margin=2 ,"Sum",] margins(30 8397 18738 14738 7604 5953 55430 276 865 1878 187 393	tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r N N Ca	t[,"Sur cound() T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum SE SC AU	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 14738 7604 5953 55430 276 865 1878 187 393 3599	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r N N Ca	t[,"Sur ound(T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI Sum DK FI	<pre>n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320</pre>	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 14738 7604 5953 55430 276 865 1878 1878 187 393 3599 266 748	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r N Ca	t[,"Sum ound() T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267	d margin=2 ,"Sum",] margins(30 8397 18738 14738 7604 5953 55430 276 865 1878 187 393 3599 266 748 901	bind(N- ata = si) tt, man 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280	Ca=d0, 1 11.ana, T.), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t > r N N Ca	t[,"Sum cound() T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU	<pre>n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267 85387 177402</pre>	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 14738 14738 5953 55430 276 865 1878 187 393 3599 266 748 901 228 244	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210 45	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t > r N N Ca	t[,"Sum ound() T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum	<pre>n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267 85387 177493 773960</pre>	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 14738 7604 5953 55430 276 865 1878 1878 187 393 3599 266 748 901 228 344 2486	bind (N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210 45 84 676	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54 82	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326 511 3983	PY=y/10 1D %in% ars=c(3	00) ~ c("30' ,1)))	Cnt + T1D, ","35","40")))),
+ + + > t + > r N N Ca PY > #	t[,"Sum ound() T11 Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267 85387 177493 773960 at cancers	d margin=2 ,"Sum",] margins(30 8397 18738 14738 14738 7604 5953 55430 276 865 1878 187 393 3599 266 748 901 228 344 2486 and PYs	bind(N- ata = si) tt, man 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210 45 84 676 resp:	(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54 820	Ca=d0, 1 11. ana, T.), row. va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326 511 3983	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r N N Ca PY > # + > r	t[,"Sum cound() T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum C FI SE SC AU Sum C FI SE SC AU Sum C FI SE SC AU Sum C SC AU Sum C SC AU Sum C SC SC AU Sum C SC SC AU Sum C SC SC AU Sum C SC SC AU Sum C SC SC SC AU Sum C SC SC SC SC AU Sum C SC SC SC SC SC SC SC SC SC SC SC SC S	n",] <- dd[ftable(add ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267 85387 177493 773960 at cancers f 100*tt[, "Su	<pre>xtabs(c c d margin=2 , "Sum",] margins(</pre>	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 2113 126 2113 126 211 210 45 84 676 resp: t[, "NoDN	<pre>=(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54 820 820 4",-1],</pre>	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326 511 3983 2)	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r N Ca PY > # r Cnt Cnt PY	t[,"Sum ound() T1I Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SC SC AU Sum DK FI SC SC AU Sum DK FI SC SC AU SUM SC SC AU SUM SC SC AU SC SC SC AU SC SC SC AU SC SC AU SC SC SC SC SC SC SC SC SC SC SC SC SC	<pre>n",] <- d[ftable(add) NoDM</pre>	<pre>xtabs(c c d</pre>	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210 45 84 676 resp: t[,"NoDN	<pre>=(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54 820 4",-1],</pre>	Ca=d0, 1 11.ana, T), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 3266 511 3983 2)	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > tr > tr N Ca PY > # Cnt D F	t[,"Sum ound() T11 Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SUM DK FI SE SC AU SU SC AU SUM DK FI SE SC AU SC AU SU SC AU SC SC AU SC AU SC AU SC AU SC SC AU SC SC AU SC SC AU SC SC AU SC SC AU SC SC SC AU SC SC SC SC SC SC SC SC SC SC SC SC SC	n",] <- dd[ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267 85387 177493 773960 nt cancers 100*tt[,"Sui PY 0.58 0.61	<pre>xtabs(c c d</pre>	bind(N- ata = si) tt, man 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210 45 84 676 resp: t[,"NoDN	<pre>(y>0), ibset(a) 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54 820 4",-1],</pre>	Ca=d0, 1 11.ana, T.), row.v. Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326 511 3983 2)	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40"))))),
+ + + > t + > r > r N Ca PY > r Cnt D F S	t[,"Sum found() TII Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum C AU SUM C AU SUM SUM C AU SU SUM C AU SUM SUM SUM SUM SUM SUM SUM SUM SUM SU	n",] <- dd[ftable(add ftable(add) NoDM 3060 1360 850 2890 306 8466 442530 707026 959456 404707 826922 3340641 95492 198320 217267 85387 177493 773960 at cancers f 100*tt[, "Su PY 0.58 0.61 0.64	<pre>xtabs(c c d margin=2 , "Sum",] margins(</pre>	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 2113 126 2113 126 211 210 45 84 676 resp: t[, "NoDN	<pre>=(y>0), ibset(a) 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 280 54 820 4",-1],</pre>	Ca=d0, 1 11.ana, T.), row.va Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326 511 3983 2)	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40")))),
+ + + > tr > r N Ca PY > r Cntt D F S S	t[,"Sum ound() T11 Cnt DK FI SE SC AU Sum DK FI SE SC AU Sum DK FI SE SC AU Sum Ca K 0.24 I 0.34 E 0.42 C 0.13	<pre>n",] <- d[ftable(add) NoDM</pre>	<pre>xtabs(c c d</pre>	bind(N- ata = si) tt, mar 35 2186 5216 4513 2104 2151 16170 255 612 842 124 280 2113 126 211 210 45 84 676 resp: t[,"NoDN	<pre>=(y>0), ibset(a 2173 5224 4244 2108 2044 15793 511 931 1342 222 431 3437 161 243 2800 54 820 4",-1],</pre>	Ca=d0, 1 11.ana, T), row.v Sum 12756 29178 23495 11816 10148 87393 1042 2408 4062 533 1104 9149 553 1202 1391 326 511 3983 2)	PY=y/10 1D %in% ars=c(3	00) ~ c("30" ,1)))	Cnt + T1D, ","35","40")))),

Joint analyses of 5 countries' data % f(x)=f(x)

> +	roun	d(fta	ble(xtabs(cbind(data =	N=(y>0), all.ana	Ca=d0,	PY=y/1000)	~ C.	nt	+	T1D	+	DMdur	,
+				row.vai	cs=c(4,1	1,3)))	~ >									
	a .	DVI	T1D	NoDM	30	35	40									
N	Cnt DK	DMdur NoDM		3060	0	0	0									
		0		0	1114	216	216									
		1		0	1054	205	204									
		2 5		0	890	251	250									
		10		Ő	540	141	140									
		15		0	192	43	42									
		30		0	0	0	0									
	БТ	Unkn NoDM		1260	3557	1089	1081									
	ГТ	0		1300	2530	547	552									
		1		0	2532	546	549									
		2		0	2812	731	732									
		5		0	3067	890	892									
		10		0	3364	1200	1206									
		30		0	1721	520	512									
		Unkn		0	0	0	0									
	SE	NoDM		850	0	0	0									
		0		0	1609	312	314									
		2		0	1833	436	438									
		5		0	2057	560	561									
		10		0	2056	560	561									
		15		0	2866	1120	1119									
		30 Unkn		0	2708	1213	936									
	SC	NoDM		2890	Ő	Ő	Ő									
		0		0	1043	204	207									
		1		0	1062	238	238									
		2		0	1251	330 400	331									
		10		0	1444	423	423									
		15		0	1363	487	487									
		30		0	0	0	0									
	ATT	Unkn		0	0	0	0									
	AU	NODM O		306	560	128	119									
		Ŭ 1		Ő	558	131	119									
		2		0	594	191	190									
		5		0	629	238	254									
		10		0	020 785	200	210									
		30		0	835	383	324									
		Unkn		0	1366	516	475									
Ca	DK	NoDM		442530	0	0	0									
		0		0	9 A	9 7	27									
		2		0	24	21	54									
		5		0	39	37	89									
		10		0	29	45	57									
		15 30		0	8	5	13									
		Unkn		0	163	131	256									
	FI	NoDM		707026	0	0	0									
		0		0	25	14	38									
		1		0	10	16	22									
		∠ 5		0	62	59	131									
		10		Ő	64	92	161									
		15		0	402	293	405									

		30	0	272	103	116
		Unkn	0	0	0	0
	SE	NoDM	959456	0	0	0
		0	0	27	19	40
		1	0	30	9 07	10 50
		5	0	73	67	147
		10	Ő	93	95	169
		15	0	490	386	622
		30	0	1154	239	289
	_	Unkn	0	0	0	0
	SC	NoDM	404707	0	0	0
		0	0	1	(11
		2	0	8	4	20
		5	Ő	16	13	34
		10	0	37	24	45
		15	0	113	72	105
		30	0	0	0	0
	ΔΤΤ	Unkn	0	0	0	0
	AU		826922	17	5	1
		1	0	3	1	5
		2	0	19	6	12
		5	0	19	18	22
		10	0	3	6	18
		15	0	21	22	34
		30 Unirn	0	35	14	202
РҮ	DK	NoDM	95492	270	200	0
	2	0	0	16	8	11
		1	0	15	8	11
		2	0	38	20	27
		5	0	45	23	31
		10 15	0	22	12	14
		30	0	0	0	0
		Unkn	0	127	53	64
	FI	NoDM	198320	0	0	0
		0	0	41	15	18
		1	0	40	14	17
		2	0	110	31 17	45 57
		10	0	119	34	40
		15	Ő	225	55	57
		30	0	60	10	8
		Unkn	0	0	0	0
	SE	NoDM	217267	0	0	0
		0	0	31	9	15 14
		2	0	29 84	9 25	40
		5	Ő	131	40	60
		10	0	120	35	48
		15	0	298	72	86
		30	0	207	20	18
	a a	Unkn NoDM	0	0	0	0
	20		00000	5	1	2
		1	ŏ	10	2	4
		2	0	28	7	10
		5	0	45	10	14
		10	0	48	10	11
		15	0	91	14	14
		3U Unkn	0	0	0	0
	AU	NoDM	177493	0	0	0

0	0	14	1	1
1	0	15	2	1
2	0	42	6	5
5	0	39	8	7
10	0	8	2	2
15	0	11	2	3
30	0	5	1	1
Unkn	0	210	62	62

8.2.2 Histograms of follow-up (events & PY)

In order to provide a graphical overview of how follow-up (cancer events and person-years) is distributed by age, date, DM duration and age at DM we provide histograms of these separately for each country and for the total FU:

```
> # Age at FU
> Af <- addmargins( xtabs( cbind( d0, y/1000 ) ~ floor(A) + Cnt,
                            data=subset(all.ana,T1=="T1DM") ), 2 )
> str( Af )
 table [1:85, 1:6, 1:2] 0 0 0 0 0 0 1 1 0 0 ...
 - attr(*, "dimnames")=List of 3
  ..$ floor(A): chr [1:85] "0" "1" "2" "3"
  ..$ Cnt : chr [1:6] "DK" "FI" "SE" "SC" ...
              : chr [1:2] "d0" "V2"
  ..$
 - attr(*, "class")= chr [1:2] "table" "array"
> # Date of FU
> Pf <- addmargins( xtabs( cbind( d0, y/1000 ) ~ floor(P) + Cnt,
                            data=subset(all.ana,T1=="T1DM") ), 2 )
> str( Pf )
 table [1:41, 1:6, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, "dimnames")=List of 3
  ...$ floor(P): chr [1:41] "1972" "1973" "1974" "1975" ...
              : chr [1:6] "DK" "FI" "SE" "SC" ...
  ..$ Cnt
              : chr [1:2] "d0" "V2"
  ..$
 - attr(*, "class")= chr [1:2] "table" "array"
> # Age at FU for duration-known
> af <- addmargins( xtabs( cbind( d0, y/1000 ) ~ floor(A) + Cnt,</pre>
                            data=subset(all.ana,T1=="T1DM" & DMdur!="Unkn") ), 2 )
> # Date of FU for duration-known
> pf <- addmargins( xtabs( cbind( d0, y/1000 ) ~ floor(P) + Cnt,</pre>
                            data=subset(all.ana,T1=="T1DM" & DMdur!="Unkn") ), 2 )
> # Duration at follow-up
> df <- addmargins( xtabs( cbind( d0, y/1000 ) ~ DMdur + Cnt,</pre>
                            data=subset(all.ana,T1=="T1DM" & DMdur!="Unkn") ), 2 )
> # Color conventions:
> cclr <- c("red", "mediumblue", "darkorange", "forestgreen", "black")</pre>
> xclr <- c( cclr, gray(0.5) )
> # Names
> lcnt <- c("Denmark", "Finland", "Sweden", "Scotland", "Australia")
> xcnt <- c(lcnt, "All")</pre>
> what <- c("cases","PY")</pre>
> # Layout-details
> wd <- c(85,40,85,40,45)
> MM <- matrix( 1:60, 12, 5, byrow=TRUE )
> MM <- rbind( MM[1:6,],61:65,MM[7:12,])</pre>
> par( mar=c(1,3,0,0), oma=c(2,0,0,0), las=1, bty="n", mgp=c(3,1,0)/1.6 )
> layout( MM, widths=wd+3, heights=rep(c(5,2,5),c(6,1,6)) )
> for( it in 1:2 ) # it <- 1
+ for( ic in 1:6 ) # ic <- 1
+
+ aa <- barplot( Af[,ic,it], space=0, xaxt="n", xaxs="i",
+
    #
                  ylim=c(0,130+170*(ic==6)),
                  col=xclr[ic], border="transparent" )
```

```
+ if( ic==6 ){
+ axis( side=1, at=seq(0,80,20) )
+ axis( side=1, at=seq(0,80,10), labels=NA )
+ axis( side=1, at=seq(0,85, 5), labels=NA, tcl=-0.3 )
+ text( par("usr")[1], par("usr")[4], paste(xcnt[ic],", ",what[it], sep=""),
+
        adj=c(-0.1,1.1), col=xclr[ic] )
 +
                  col=xclr[ic], border="transparent" )
+ if( ic==6 ){
+ axis( side=1, at=seq(1980,2010,10)-1972, labels=seq(1980,2010,10))
+ axis( side=1, at=seq(1980,2015, 5)-1972, labels=NA, tcl=-0.3 )
             7
+ aa <- barplot( af[,ic,it], space=0, xaxt="n", xaxs="i",
+
    #
                  ylim=c(0,130+170*(ic==6)),
+
                  col=xclr[ic], border="transparent" )
+ if( ic==6 ){
+ axis( side=1, at=seq(0,80,20) )
+ axis( side=1, at=seq(0,80,10), labels=NA )
+ axis( side=1, at=seq(0,85, 5), labels=NA, tcl=-0.3 )
             7
+ pp <- barplot( pf[,ic,it], space=0, xaxt="n", xaxs="i",</pre>
+
     #
                  ylim=c(0,700+170*(ic==6)),
                  col=xclr[ic], border="transparent" )
+
+ if( ic==6 ){
+ axis( side=1, at=seq(1980,2010,10)-1972, labels=seq(1980,2010,10))
+ axis( side=1, at=seq(1980,2015, 5)-1972, labels=NA, tcl=-0.3 )
+ wi = c(1,1,3,5,5,15,15)
+ dd <- barplot( df[2:8,ic,it]/wi, width=wi, space=0, xaxt="n", xaxs="i",
     #
                  ylim=c(0,300+170*(ic==6)),
+
                  col=xclr[ic], border="transparent" )
+
+ if( ic==6 ){
+ axis( side=1, at=seq(0,40,10) )
+ axis( side=1, at=seq(0,45,5), labels=NA, tcl=-0.3 )
             7
+ }
> mtext( c("Age (all)";
            "Date (all)"
+
+
            "Age (w/duration)"
            "Date (w/duration)",
+
           "DM duration"),
+
+
         side=1, line=1,
         at=(cumsum(c(0,wd))[-6]+wd/2)/sum(wd), outer=TRUE )
```

8.2.3 Site distribution

We provide an overview of the number of cancers by country, site and sex, as well as the relative distribution of these (but only among the sites present in all countries) :

<pre>d0: All sites d00: Non-sex-specific d6: Oesophagus d7: Stomach d9: Colon d10: Rectum d52: Colorectal d11: Liver d13: Pancreas d16: Lung d29: Melanoma of skin d18: Breast d19: Cervix uteri d20: Corpus uteri d22: Ovary d24: Prostate d25: Testis d27: Kidney d28: Bladder d32: Brain, CNS d33: Thyroid d36: Non-Hodgkin lymphoma d37: Hodgkin lymphoma d38: Multiple myeloma d40: Leukaemia > xcl <- c(1,2,5,6,23,24,25) > conv[match(wh.ca[-xcl],conv\$ DKnam NCnam 7 d21 d6 Oesop 8 d22 d7 St d1 d251 d52 Color 12 d26 d11 14 d28 d13 Pan 17 d33 d16 29 d51 d29 Melanoma of 19 d70 d18 B 20 d82 d19 Cervix 21 d83 d20 Corpus 22 d84 d22 24 d91 d24 Pro 25 d92 d25 T 27 d101 d27 K 28 d103 d28 B1 31 d113 d32 Brain 32 d121 d33 Th 35 d132 d36 Non-Hodgkin lym > swpct <- function(mm,dm) swe > pp <- swpct(addmargins(tt[, > print(round(ftable(addmarging)))))))))))))))))))))))))))))))))))</pre>	401 352 4 6 26 13 39 9 15 39 21 12 37 23 17 31 6 26 11 4 14 NCnam Clab hagus omach ectal Liver creas Lung skin reasti uteri uteri otal phoma ep(mm, ,-xcl gins(1000 1 832 1 16 47 56 46 102 34 54 119 60	882 2 480 2 9 64 173 84 257 44 52 134 122	53 50 22 44 9 5 1 18 15 33 6 12 1 7 1 37 4 16 8	<pre>4 4040 3 3329 9 67 2 134 . 273 . 158 1 492 4 113 9 147 1 370 6 305 1 553 2 159 1 187 2 213 7 180 5 58 0 244 1 56 6 53 . 104</pre>	641 351 14 16 10 26 6 9 38 59 184 48 40 25 15 7 42 29 14 4 5 16	1408 2 680 1 5 50 66 41 107 8 41 58 59 546 36 97 80 47 16 32 104 46 9 8 33	nt=" '	280 600 46 364 7 3 9 . 13 9 6 . 15 60 3 7 5 8 19 29 15 72 99 184 12 25 13 12 28 13 12 45 8 19 . 2 9 .	5109 2663 30 120 210 114 384 41 93 272 308 1723 194 323 252 118 66 213 241 143 24 241 143 24 86		
sex Cnt	M DK	I FI	SE	SC	AU	Sum	F DK	FI	SE	SC	AU	Su
<pre>d6: Oesophagus d7: Stomach d52: Colorectal d11: Liver d13: Pancreas d16: Lung d29: Melanoma of skin d18: Breast d19: Cervix uteri d20: Corpus uteri d20: Corpus uteri</pre>	1.4 2.1 13.7 3.2 5.3 13.7 7.4	1.9 5.7 12.3 4.1 6.5 14.4 7.2	9 1.9 7 4.3 8 17.2 . 3.0 5 3.5 9.0 2 8.2	4.1 2.3 15.1 5.5 3.2 17.0 7.3	2.2 3.0 15.2 3.5 4.8 10.2 21.5	2.1 4.2 15.3 3.5 4.6 11.5 9.5	0.2 2.5 4.7 1.1 1.6 6.8 10.6 33.0 8.6 7.2	0.4 3.8 8.0 0.6 3.1 4.4 41.0 2.7 7 6	0.8 2.1 9.6 0.9 1.6 5.6 38.5 4.6 8.1	2.7 1.5 5.7 1.1 1.9 7.3 5.7 37.8 5.3 4.6	0.6 2.5 11.4 1.3 1.5 5.5 13.6 34.8 2.1 4.7	0. 2. 0. 2. 6. 38. 4. 7.
d24: Prostate d25: Testis d27: Kidney	4.2 13.0 8.1	17.9 2.8 8.1	22.9 3.8 4.2	5.0 9.2 6.4	10.2 5.5 5.2	17.2 4.9 5.8	4.5 2.7	3.5	5 2.0	4.2 1.5	4.2 2.8	2

d28:	Bladder	6.0	5.9	8.3	5.0	3.0	6.6	1.3	1.2	1.9	2.3	0.4	1
d32:	Brain, CNS	10.9	4.2	5.3	8.3	4.2	5.6	7.5	2.4	5.3	10.7	2.5	4
d33:	Thyroid	2.1	2.2	1.0	1.8	3.8	1.8	5.2	7.8	2.8	4.6	8.5	5
d36:	Non-Hodgkin lymphoma	9.1	6.8	7.4	9.6	7.5	7.6	2.5	3.5	3.0	3.1	3.6	3
Sum		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100

We also provide a print with the sum across both sex and country for inclusion in the paper:

> TT <- addmargins(t	t, 2))											
> TT <- t(rbind(TT)	["M",,]], TT	["F",,], TI	' <i>["M"</i>	,"Sum"	,]+TT["F	", "Sui	n",]))			
<pre>> colnames(TT)[c(1,</pre>	7,13)	ĺ <- (c("M:	DK","	F	: DK",	" Tota	1")					
> rownames(TT) <- s	substr	(gsul	Ь("[О-	·9] ", "	",ro	wnames	(TT)), 4	, 50)				
> print.table(TT, ze	ero.pr	int="	")										
-	M: DK	FI	SE	SC	AU	Sum	F: DK	FI	SE	SC	AU	Sum	Total
All sites	401	1000	1882	253	504	4040	641	1408	2180	280	600	5109	9149
Non-sex-specific	352	832	1480	222	443	3329	351	680	1122	146	364	2663	5992
Oesophagus	4	16	29	9	9	67	1	5	14	7	3	30	97
Stomach	6	47	64	5	12	134	14	50	39	4	13	120	254
Colon	26	56	173	18		273	16	66	119	9		210	483
Rectum	13	46	84	15		158	10	41	57	6		114	272
Colorectal	39	102	257	33	61	492	26	107	176	15	60	384	876
Liver	9	34	44	12	14	113	6	8	17	3	7	41	154
Pancreas	15	54	52	7	19	147	9	41	30	5	8	93	240
Lung	39	119	134	37	41	370	38	58	128	19	29	272	642
Melanoma of skin	21	60	122	16	86	305	59	59	103	15	72	308	613
Breast							184	546	710	99	184	1723	1723
Cervix uteri							48	36	85	14	11	194	194
Corpus uteri							40	97	149	12	25	323	323
Ovary							25	80	114	11	22	252	252
Prostate	12	148	341	11	41	553							553
Testis	37	23	57	20	22	159							159
Kidney	23	67	62	14	21	187	15	47	37	4	15	118	305
Bladder	17	49	124	11	12	213	7	16	35	6	2	66	279
Brain, CNS	31	35	79	18	17	180	42	32	98	28	13	213	393
Thyroid	6	18	15	4	15	58	29	104	51	12	45	241	299
Non-Hodgkin lymphoma	26	56	111	21	30	244	14	46	56	8	19	143	387
Hodgkin lymphoma	11	14	20		11	56	4	9	9		2	24	80
Multiple myeloma	4	14	26	3	6	53	5	8	13		2	28	81
Leukaemia	14	39	38	13		104	16	33	28	9		86	190

A similarly laid out table for the two versions of person-years:

```
> YY <- xtabs( cbind(y0,y)/1000 ~ Cnt + sex,
+ data = subset(all.ana,T1=="T1DM") ) > YY <- addmargins( YY, 1 )
> YY <- cbind( t(YY[, "M",]), t(YY[, "F",]), YY["Sum", "M",]+YY["Sum", "F",] )
> colnames( YY )[13] <- "Total"</pre>
> round( YY, 1 )
      DK
            FΙ
                   SE
                         SC
                                AU
                                        Sum
                                               DK
                                                      FI
                                                             SE
                                                                    SC
                                                                           AU
                                                                                 Sum Total
y0 255.6 547.9 737.5 178.7 255.5 1975.1 289.0 636.8 631.1 145.5 255.4 1957.7 3932.9
y 258.9 553.8 746.0 179.5 255.5 1993.7 293.9 648.0 645.2 146.8 255.4 1989.3 3983.0
```

8.3 Baseline splines

8.3.1 Case-distribution

In order to have country-specific splines for the underlying population rates, we explore the period-range for each of the countries:

$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	> load(.	file	= "/d	ata/ALL	ana.Rda	L")						
	> print(
+ $data = transform(all.ana, + Tl=Relevel(TlD,list(1,TlD=2:6)))),+ col.vars=c(3,2)), zero.print=".") T1 NoDM Cnt DK FI SE SC AU DK FI SE SC AU 1972 . 11487$	+ ftable	(xta	bs(d0	~ floor	(P) + C	Cnt + T1	,					
+ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	+		dat	a = tra	nsform(all.ar	ia,					
+ $col.vars=c(3,2)$), zero.print=".") T1 NOM T1 DK FI SE SC AU DK FI SE SC AU floor(P) 1972 . 11487	+					T1=Rel	evel(T1	D,list(1	,T1D=2:	6)))))	,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+	col	.vars=c	(3,2))	, zero.	print="	'.")					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		T1	NoDM			-		T1D				
floor(P) 1972 . 11457		Cnt	DK	FI	SE	SC	AU	DK	FI	SE	SC	AU
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>floor(P)</pre>											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1972			11487					4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1973			11559					2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1974			11773					3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1975			12060					4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1976		•	12587	•	•	•	•	-	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1977		•	12007	•	•	•	•	4	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1078		•	12158	•	•	•	•	11	•	•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1070		•	13500	•	•	•	•	0	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000		•	12000	•	•	•	•	9	•	•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1001		•	12061	•	•	•	•	20	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1901		•	14200	•	•	•	•	20	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1982		•	14320	•	•	•	•	23	•	•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1983		•	14546	•	•	•	•	19	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1984		•	14648	•	•	•	•	15	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1985		•	14978	•	•	•	•	15	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1986		•	15404	•	•	•	•	24	•	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1987		•	15707	34084	•	•	•	22	49	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1988		•	15718	34000	•	•	•	30	62	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1989		•	15658	34023	•	•	•	47	63	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1990		•	16034	34493	•	•	•	33	51	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1991		•	16489	34756	•	•	•	20	77	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1992		•	17184	34844	•	•	•	57	66	•	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1993		•	17196	35392			•	44	91	•	
199520980182673535422048.156210814.199619233192963557723468.195610815.199721484193123574322772.168513016.199823752197473650322509.257113715.199922490199593782722444.347313826.2000205312038937960228298092721861722187200122708207153861522863830934387181181022002251852149539395235728648046881773110820032160522003409182357888023419720537107204424628234104226224104925755611024335125200525198239054201923743949134714223028141200626202236974166224169971657114024837133200726515231404171024693100209691422314413420082770523689422892524810353785160261	1994		•	17886	35835			•	50	94	•	
199619233192963557723468.195610815.199721484193123574322772.168513016.199823752197473650322509.257113715.199922490199593782722444.347313826.20002053120389379602282980927218617221872001227082071538615228638309343871811810220022518521495393952357286480468817731108200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346 <td>1995</td> <td></td> <td>20980</td> <td>18267</td> <td>35354</td> <td>22048</td> <td></td> <td>15</td> <td>62</td> <td>108</td> <td>14</td> <td></td>	1995		20980	18267	35354	22048		15	62	108	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1996		19233	19296	35577	23468		19	56	108	15	
199823752197473650322509.257113715.199922490199593782722444.347313826.20002053120389379602282980927218617221872001227082071538615228638309343871811810220022518521495393952357286480468817731108200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.<	1997		21484	19312	35743	22772		16	85	130	16	
199922490199593782722444.347313826.20002053120389379602282980927218617221872001227082071538615228638309343871811810220022518521495393952357286480468817731108200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.201228054	1998		23752	19747	36503	22509		25	71	137	15	
20002053120389379602282980927218617221872001227082071538615228638309343871811810220022518521495393952357286480468817731108200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.201228054140	1999		22490	19959	37827	22444		34	73	138	26	
2001227082071538615228638309343871811810220022518521495393952357286480468817731108200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.201228054140	2000		20531	20389	37960	22829	80927	21	86	172	21	87
20022518521495393952357286480468817731108200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.201228054140	2001		22708	20715	38615	22863	83093	43	87	181	18	102
200321605220034091823578880234197205371072004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.201228054	2002		25185	21495	39395	23572	86480	46	88	177	31	108
2004246282341042262241049257556110243351252005251982390542019237439491347142230281412006262022369741662241699716571140248371332007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.20112862225602448552572210418331452.201228054	2003		21605	22003	40918	23578	88023	41	97	205	37	107
20052519823905420192374394913471422302814120062620223697416622416997165711402483713320072651523140417102469310020969142231441342008277052368942289252481035378516026140167200929491248734470025523.11318432346.201028147248794464025422.9717730358.201128622256024485525722.10418331452.201228054	2004		24628	23410	42262	24104	92575	56	110	243	35	125
20062620223697416622416997165711402483713320072651523140417102469310020969142231441342008277052368942289252481035378516026140167200929491248734470025523.11318432346.201028147248794464025422.9717730358.201128622256024485525722.10418331452.201228054	2005		25198	23905	42019	23743	94913	47	142	230	28	141
2007265152314041710246931002096914223144134200827705236894228925248103537851602614016720092949124873447002552311318432346.2010281472487944640254229717730358.201128622256024485525722.10418331452.201228054	2006		26202	23697	41662	24169	97165	71	140	248	37	133
2008 27705 23689 42289 25248 103537 85 160 261 40 167 2009 29491 24873 44700 25523 113 184 323 46 . 2010 28147 24879 44640 25422 97 177 303 58 . 2011 28622 25602 44855 25722 . 104 183 314 52 . 2012 28054 	2007		26515	23140	41710	24693	100209	69	142	231	44	134
2009 29491 24873 44700 25523 113 184 323 46 . 2010 28147 24879 44640 25422 97 177 303 58 . 2011 28622 25602 44855 25722 . 104 183 314 52 . 2012 28054 . <td>2008</td> <td></td> <td>27705</td> <td>23689</td> <td>42289</td> <td>25248</td> <td>103537</td> <td>85</td> <td>160</td> <td>261</td> <td>40</td> <td>167</td>	2008		27705	23689	42289	25248	103537	85	160	261	40	167
2010 28147 24879 44640 25422 . 97 177 303 58 . 2011 28622 25602 44855 25722 . 104 183 314 52 . 2012 28054 . <t< td=""><td>2009</td><td></td><td>29491</td><td>24873</td><td>44700</td><td>25523</td><td></td><td>113</td><td>184</td><td>323</td><td>46</td><td></td></t<>	2009		29491	24873	44700	25523		113	184	323	46	
2011 28622 25602 44855 25722 104 183 314 52 . 2012 28054 .	2010		28147	24879	44640	25422	•	97	177	303	58	•
2012 28054	2011		28622	25602	44855	25722		104	183	314	52	•
	2012		28054					140				

In order to illustrate how cancers among T1D patients are distributed by age and calendar time in the different countries, we extract these from the database:

```
> with( all.ana, table( T1,T1D ) )
       T1D
T1
          NoDM
                     30
                             35
                                     40
  NoDM 8466
                     0
                              0
                                      0
              0 55430 16170 15793
  T1DM
> ca.all <- subset( all.ana,</pre>
                          d0>0 & T1D %in% c("30","35","40"),
select=c("d0","A","P","Cnt") )
+
+
> ncnt <- xtabs( d0 ~ Cnt, data=ca.all )</pre>
> ca.ind <- ca.all[rep(1:nrow(ca.all),ca.all$d0),]
> ca.ind <- transform( ca.ind, A = A + runif(nrow(ca.ind),-0.5,0.5),</pre>
                                         P = P + runif(nrow(ca.ind), -0.5, 0.5))
+
```

Then we can plot the cancer cases in a Lexis diagram:

```
> ca.ind <- ca.ind[order(runif(nrow(ca.ind))),]</pre>
> cbind( cclr, levels( ca.ind$Cnt ), lcnt )
     cclr
                        lcnt
                   "DK" "Denmark"
[1,] "red"
                   "FI" "Finland"
[2,] "mediumblue"
[3,] "darkorange" "SE" "Sweden"
[4,] "forestgreen" "SC" "Scotland"
                   "AU" "Australia"
[5,] "black"
> # parameters for the graphs
> ypi <- 12
> xli <- c(1970,2013.5)
> yli <- c(0,85)
> # the graphs, 0 corresponds to all countries together
> xtn <- c(".pdf",".eps")
> for( i in 0:5 ) for( j in 1:2 )
+
+ if( j==1 ) pdf(
+ paste("../graph/Joint-Lexis-",levels(ca.ind$Cnt)[i], xtn[j], sep=""),
+
         height=diff(yli)/ypi+1,
          width=diff(xli)/ypi+1 )
+
+ else postscript(
+ paste("../graph/Joint-Lexis-",levels(ca.ind$Cnt)[i], xtn[j], sep=""),
         height=diff(yli)/ypi+1,
          width=diff(xli)/ypi+1 )
+
+ tclr <- cclr
+ tclr[-i] <- "transparent"
+ par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6, las=1 )
              xlim=xli, xaxs="i", ylim=yli, yaxs="i",
+ plot( NA,
              xlab="Date of cancer diagnosis"
              ylab="Age at cancer diagnosis" )
+ abline( v=seq(1975,2010,5), h=seq(5,80,5), col=gray(0.8) )
+ box()
+ with( ca.ind, points( P, A, pch=16, cex=0.8, col=tclr[Cnt] ) )
+ text( rep(1979.5,5), 80+5/4-0:4*5/2, lcnt, col=tclr, font=2, adj=1 )
+ text( rep(1984.5,5), 80+5/4-0:4*5/2, ncnt, col=tclr, font=2, adj=1 )
+
 if( i == 0 ){
                     , 80+5/4- 5*5/2,
                                          "Total", col=gray(0.4), font=2, adj=1 )
      text( 1979.5
+
                     , 80+5/4- 5*5/2, sum(ncnt), col=gray(0.4), font=2, adj=1 )
+
      text( 1984.5
+
              7
+ dev.off()
      7
```

From figures 8.2 and 8.3 we see that the majority of the cancers are in the age-bracket 40-60 years of age.

8.3.2 Spline knots

From this table it is seen that we have T1D data in different time periods, so we use different sets of splines for period and cohort for different countries, but the same age-splines:

```
> a.kn <- seq(10,80,,8)
> # Period knots
> p.dk <- seq(1996,2011,,3)
> p.fi <- seq(1975,2007,,5)
> p.se <- seq(1988,2007,,4)
> p.sc <- seq(1996,2010,,2)
> p.au <- seq(1997,2007,,2)
> # Cohort knots
> c.dk <- seq(1920,1985,,5)
> c.fi <- seq(1900,1985,,7)</pre>
```

135

```
> c.se <- seq(1910,1985,,6)
> c.sc <- seq(1920,1985,,4)
> c.au <- seq(1920,1985,,5)</pre>
```

With these knots for the splines we can set up the design matrices for the baseline-effects for each county:

```
> rnam <- function(M,pre){colnames(M)<-paste(pre,colnames(M),sep="");M}</pre>
> # Denmark
> M.dk <- with( DK.an <- subset(all.ana,Cnt=="DK"),</pre>
              "C.dk." )))
                   rnam( Ns(P-A,knots=c.dk)
+
> # Finland
> M.fi <- with( FI.an <- subset(all.ana,Cnt=="FI"),</pre>
              "C.fi." )))
                   rnam( Ns(P-A,knots=c.fi)
+
> # Sweden
> M.se <- with( SE.an <- subset(all.ana,Cnt=="SE"),
              +
                                            , "P.se." ),
+
                                                          "C.se." )))
                   rnam( Ns(P-A,knots=c.se)
+
> # Scotland
>
 M.sc <- with( SC.an <- subset(all.ana,Cnt=="SC"),</pre>
              cbind(rnam( Ns( A,knots=a.kn, intercept=TRUE), "A.sc." ),
                   rnam( Ns(P ,knots=p.sc)
                                                        , "P.sc." ).
                                                          "C.sc." )))
                   rnam( Ns(P-A,knots=c.sc)
> # Australia
>
 M.au <- with( AU.an <- subset(all.ana,Cnt=="AU"),</pre>
              +
                                                          "C.au." )))
                   rnam( Ns(P-A,knots=c.au)
> # Overview
> c( colnames(M.dk),
    colnames(M.fi),
+
    colnames(M.se),
+
    colnames(M.sc),
+
+
    colnames(M.au) )
 [1] "A.dk.1" "A.dk.2" "A.dk.3" "A.dk.4" "A.dk.5" "A.dk.6" "A.dk.7" "A.dk.8" "P.dk.1" "P.dk.2"
[11] "C.dk.1" "C.dk.2" "C.dk.3" "C.dk.4" "A.fi.1" "A.fi.2" "A.fi.3" "A.fi.4" "A.fi.5" "A.fi.6"
[21] "A.fi.7" "A.fi.8" "P.fi.1" "P.fi.2" "P.fi.3" "P.fi.4" "C.fi.1" "C.fi.2" "C.fi.3" "C.fi.4"
[31] "C.fi.5" "C.fi.6" "A.se.1" "A.se.2" "A.se.3" "A.se.4" "A.se.5" "A.se.6" "A.se.7" "A.se.8"
[41] "P.se.1" "P.se.2" "P.se.3" "C.se.1" "C.se.2" "C.se.3" "C.se.4" "C.se.5" "A.sc.1" "A.sc.2"
[51] "A.sc.3" "A.sc.4" "A.sc.5" "A.sc.6" "A.sc.7" "A.sc.8" "P.sc.1" "C.sc.1" "C.sc.2" "C.sc.3"
[61] "A.au.1" "A.au.2" "A.au.3" "A.au.4" "A.au.5" "A.au.6" "A.au.7" "A.au.8" "P.au.1" "C.au.1"
[71] "C.au.2" "C.au.3" "C.au.4"
> addmargins( rbind( DK=dim(M.dk),
                   FI=dim(M.fi),
+
+
                   SE=dim(M.se),
+
                   SC=dim(M.sc),
                   AU=dim(M.au) ), margin=1 )
    [,1] [,2]
DK
   15816
          14
FI
   30538
          18
SE
   24345
          16
SC
   14706
          12
   10454
AU
          13
Sum 95859
          73
```

With these model matrices in place we can now set up the total model matrix for the baseline rates, basically putting the 5 model matrices diagonally as matrices surrounded by 0s:

```
> c.dk <- ncol(M.dk) ; r.dk <- nrow(M.dk)</pre>
> c.fi <- ncol(M.fi) ; r.fi <- nrow(M.fi)</pre>
> c.se <- ncol(M.se) ; r.se <- nrow(M.se)</pre>
> c.sc <- ncol(M.sc) ; r.sc <- nrow(M.sc)
> c.au <- ncol(M.au) ; r.au <- nrow(M.au)</pre>
> MB <- rbind( cbind(</pre>
                                            M.dk, matrix(0,r.dk,c.fi+c.se+c.sc+c.au) ),
                 cbind( matrix(0,r.fi,c.dk), M.fi, matrix(0,r.fi,c.se+c.sc+c.au) ),
                 cbind( matrix(0,r.se,c.dk+c.fi), M.se, matrix(0,r.se,c.sc+c.au) ),
+
                 cbind( matrix(0,r.sc,c.dk+c.fi+c.se), M.sc, matrix(0,r.sc,c.au) ),
+
                                                                                            ))
                 cbind( matrix(0,r.au,c.dk+c.fi+c.se+c.sc), M.au
+
> dim( MB )
               73
[1] 95859
> colnames( MB ) <- c( colnames(M.dk),</pre>
+
                          colnames(M.fi),
+
                          colnames(M.se),
+
                           colnames(M.sc),
                          colnames(M.au) )
+
```

Since we have the base model matrix set up as one, but ultimately we will be doing analyses by sex, so we must also have it available subdivided by sex:

> MB.m <- MB[all.ana\$sex=="M",] > MB.f <- MB[all.ana\$sex=="F",]</pre>

8.4 Simple models for the HR

8.4.1 All cancer

We now model the effect of T1D for all patients:

```
> system.time(
+ m0.i <- glm( d0 ~ -1 + MB.m + T1:Cnt,
                 family = poisson,
offset = log(y0),
+
+
                 data = subset(all.ana,sex=="M") ) )
   user system elapsed
  2.511 0.012
                     2.523
> m0.j <- update( m0.i, . ~ . - T1:Cnt + T1 )
> f0.i <- update( m0.i, . ~ . - MB.m + MB.f,</pre>
                 data = subset(all.ana,sex=="F") )
> f0.j <- update( f0.i, . ~ . - T1:Cnt + T1 )
> anova( m0.i, m0.j, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ -1 + MB.m + T1:Cnt
Model 2: d0 ~ MB.m + T1 - 1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
       47755
                   21751
1
                   21803 -4 -51.893 1.452e-10
2
       47759
> anova( f0.i, f0.j, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ MB.f + T1:Cnt - 1
Model 2: d0 ~ MB.f + T1 - 1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
       47958
                    22187
2
                    22202 -4 -15.108 0.004483
       47962
```

We see there is a considerable inhomogeneity between countries for the male cancers, this is clearly attributable to the Swedish data:

```
> HR.m < -
+ rbind( ci.exp( m0.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
+
         ci.exp( m0.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
> HR.f <-
+ rbind( ci.exp( f0.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
         ci.exp( f0.j, subset="T1", ctr.mat=rbind(c(-1,1)))))
> rownames( HR.m ) <-</pre>
+ rownames( HR.f ) <- c(levels(all.ana$Cnt), "Joint")
> rownames( HR.m ) <-</pre>
+ rownames( HR.f ) <- c("Denmark", "Finland", "Sweden", "Scotland", "Australia", "Joint")
> round( cbind( HR.m, HR.f ), 3 )
          exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
             1.101 0.998 1.215
                                    1.003 0.928 1.084
Denmark
Finland
              1.179 1.108 1.255
                                    1.005 0.953 1.059
             0.900 0.860 0.941
Sweden
                                    1.131 1.084 1.179
Scotland
             1.061 0.938 1.201
                                    1.054 0.937 1.186
Australia
             1.025 0.940 1.119
                                   1.093 1.009 1.185
Joint
             1.001 0.971 1.033
                                   1.068 1.039 1.098
```

We can plot the results for men and women together, showing this even more clearly:

8.4.1.1 Excluding follow-up in young ages: Interaction

It could be argued that cancers occurring in young ages (under 20, say) are substantially different from cancers in older ages, and these should be excluded from analyses overall. Essentially this is an interaction model with interaction between T1D effect and age dichotomized (at age 20), where only the effect for ages over 20 is reported.

To this there are two objections; one is that the dichotomization point is completely arbitrary, and the other that it is substantially more credible to expect a T1D effect that varies *continuously* with age.

The logical approach would therefore be to include the relevant interaction in the model; just as we subsequently shall include the interaction with T1D duration (although this is slightly different in that the interaction variable is only defined for T1D persons).

We therefore extend the joint models with $T1D \times age$ interactions, using a spline with knots at 10,35,50,65 (3 parameters) using age 50 as reference point for convenience:

```
> ia.kn <- c(10,35,50,65)
> m0.a <- update( m0.j, . ~ . + I((T1=="T1DM")*1):Ns(A,knots=ia.kn) )
> f0.a <- update( f0.j, . ~ . + I((T1=="T1DM")*1):Ns(A,knots=ia.kn) )</pre>
> anova( m0.j, m0.a, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ MB.m + T1 - 1
Model 2: d0 ~ MB.m + T1 + I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn) -
    1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      47759
                 21803
                                84.228 < 2.2e-16
2
      47756
                    21719 3
> anova( f0.j, f0.a, test="Chisq" )
Analysis of Deviance Table
Model 1: d0 ~ MB.f + T1 - 1
```

We see there is a significant $T1 \times age$ interaction, much stronger for man than for women. We can have a look at the estimated shape of the HR by age as for all cancers:

```
> a.pt <- 10:70
> CA <- cbind(-1,1,Ns(a.pt,knots=ia.kn))</pre>
> ci.exp( m0.a, subset="T1" )
                                                 exp(Est.)
                                                                 2.5%
                                                                            97.5%
                                                 1.0983425 0.8178511 1.4750316
T1NoDM
T1T1DM
                                                 1.0000000 1.0000000 1.0000000
I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn)1 1.0449488 0.8549407 1.2771857
I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn)2 1.4923567 0.8103207 2.7484534
I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn)3 0.7563009 0.6682469 0.8559578
> ci.exp( m0.j, subset="T1" )
        exp(Est.)
                        2.5%
                                 97.5%
T1NoDM 0.9985599 0.9681311 1.029945
T1T1DM 1.0000000 1.0000000 1.000000
> mrr.a <- ci.exp( m0.a, subset="T1", ctr.mat=CA )</pre>
> frr.a <- ci.exp( f0.a, subset="T1", ctr.mat=CA )</pre>
> mrr.c <- ci.exp( m0.j, subset="T1", ctr.mat=CA[,1:2] )
> frr.c <- ci.exp( f0.j, subset="T1", ctr.mat=CA[,1:2] )</pre>
> matplot( a.pt, cbind(mrr.a,frr.a,mrr.c,frr.c),
            type="l", lty=rep(c(1,3), each=6), lwd=c(4,1,1),
            col=rep(c("blue", "red"), each=3),
            ylim=c(0.5,2), log="y"
+
+
            xlab="Age at follow-up"
            ylab="All cancer HR T1D vs NoDM" )
+
> abline( h=1 )
```

We see that the interaction is substantially different between man and women.

8.4.2 Sensitivity analysis of PY-approximation

For convenience we will use all time alive as the person-years denominator in the analysis of the specific sites, thus including follow-up after cancer diagnosis as risk time for cancers which is formally wrong. By far the largest error this can induce is in the analysis of all cancers, where the post-diagnosis follow-up constitutes 0.03% of all follow-up among T1D patients:

> dy <- xtabs(cbind	> dy <- xtabs(cbind(" D"=d0,PY=y0/1000,pmil=y0) ~ I(floor(A/10)*10) + Cnt, data=all.ana)											
<pre>> round(ftable(dy</pre>	<- addmargin	ns(swp	ct(dy,2	2:3),1),	col.va	ars=2:3	3), 1)					
	Cnt DK	DK FI					SE			SC		
	D	PY	pmil	D	РҮ	pmil	D	PY	pmil	D	PY]
I(floor(A/10) * 10)			-			-			-			
0	0.5	12.5	12.5	0.6	12.6	12.6	0.5	12.0	12.0	0.4	11.6	1
10	0.5	12.0	12.0	0.6	13.7	13.7	0.4	12.6	12.6	0.4	12.6	1
20	1.5	12.9	12.9	1.3	14.6	14.6	1.1	13.3	13.3	1.2	13.4	
30	3.6	14.9	14.9	3.1	14.7	14.7	2.7	14.1	14.1	3.1	14.7	
40	8.3	14.7	14.7	8.1	14.1	14.1	6.9	14.2	14.2	7.4	14.8	1
50	18.2	13.6	13.6	17.4	12.4	12.4	15.1	12.6	12.6	16.1	12.8	1
60	29.2	10.5	10.5	28.2	9.7	9.7	27.8	10.5	10.5	27.6	10.4	1
70	28.4	6.9	6.9	30.5	6.5	6.5	32.9	8.0	8.0	32.1	7.4	
80	9.8	2.2	2.2	10.3	1.7	1.7	12.6	2.7	2.7	11.6	2.2	
Sum	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1(

> aa0 <-	addmarg	gins(x	tabs()	y0 ~ I(1	floor(A	/10)*10	0) + Cnt	t, data	=all.a	na), 1)			
> aa <-	addmar	gins(x	tabs(y ~I(f	floor(A	/10)*10	0) + Cnt	t, data	=all.a	na), 1)			
> dy[,,3]	<- 100)0*(aa-	-aa0)/aa	a0										
> names(d	limnames	s(dy))[1] <-	- "Agr"										
> round(ftable	(dy, c	col.var	s=2:3),	1)									
Cnt	DK			FI			SE			SC			AU	
	D	РҮ	pmil	D	PY	pmil	D	PY	pmil	D	PY	pmil	D]
Agr			-			-			-			-		
0	0.5	12.5	0.0	0.6	12.6	0.0	0.5	12.0	0.0	0.4	11.6	0.1	0.4	13
10	0.5	12.0	0.0	0.6	13.7	0.0	0.4	12.6	0.0	0.4	12.6	0.1	0.5	13
20	1.5	12.9	0.0	1.3	14.6	0.0	1.1	13.3	0.0	1.2	13.4	0.2	1.6	14
30	3.6	14.9	0.2	3.1	14.7	0.1	2.7	14.1	0.0	3.1	14.7	0.5	3.9	15
40	8.3	14.7	0.2	8.1	14.1	0.2	6.9	14.2	0.1	7.4	14.8	1.2	9.2	14
50	18.2	13.6	0.1	17.4	12.4	0.2	15.1	12.6	0.2	16.1	12.8	3.0	18.6	12
60	29.2	10.5	0.0	28.2	9.7	0.2	27.8	10.5	0.3	27.6	10.4	6.3	26.3	8
70	28.4	6.9	0.0	30.5	6.5	0.1	32.9	8.0	0.2	32.1	7.4	10.4	28.5	5
80	9.8	2.2	0.0	10.3	1.7	0.0	12.6	2.7	0.1	11.6	2.2	12.9	10.9	1
Sum	100.0	100.0	0.1	100.0	100.0	0.1	100.0	100.0	0.1	100.0	100.0	2.4	100.0	100

The above tabulations shows that the largest relative difference (pmil is the fraction follow-up (per 1000) after cancer diagnoses) is in the 90–99 age class where the relative difference in PY is 7% in Sweden, an age-class with 0.1% of the follow-up. For single sites this fraction is of course substantially lower.

In order to substantiate the magnitude of the possible error, we re-do the analysis of all cancers using the follow-up, post cancer too, and compare the results. The differences for the single site analyses will all be substantially smaller, as the amount of follow-up after specific cancers is substantially smaller than for .

```
> system.time(
+ xm0.i <- glm( d0 ~ -1 + MB.m + T1:Cnt,
+
                family = poisson,
                offset = log(y),
+
                data = subset(all.ana,sex=="M") ) )
+
   user system elapsed
          0.016
                    2.366
  2.351
> xm0.j <- update( xm0.i, . ~ . - T1:Cnt + T1 )
> xf0.i <- update( xm0.i, . ~ . - MB.m + MB.f,</pre>
                data = subset(all.ana,sex=="F")
> xf0.j <- update( xf0.i, . ~ . - T1:Cnt + T1 )</pre>
> xHR.m < -
+ rbind( ci.exp( xm0.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
+ ci.exp( xm0.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
> xHR.f <-
+ rbind( ci.exp( xf0.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
          ci.exp( xf0.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
+
> rownames( xHR.m ) <-</pre>
+ rownames( xHR.f ) <- c(levels(all.ana$Cnt), "Joint")
> rownames( xHR.m ) <-</pre>
+ rownames( xHR.f ) <- c("Denmark", "Finland", "Sweden", "Scotland", "Australia", "Joint")
> round( cbind( HR.m, HR.f ), 3 )
          exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
Denmark
              1.101 0.998 1.215
                                       1.003 0.928 1.084
               1.179 1.108 1.255
                                       1.005 0.953 1.059
Finland
Sweden
               0.900 0.860 0.941
                                        1.131 1.084 1.179
Scotland
               1.061 0.938 1.201
                                        1.054 0.937 1.186
               1.025 0.940 1.119
                                       1.093 1.009 1.185
Australia
Joint
               1.001 0.971 1.033
                                       1.068 1.039 1.098
> round( cbind( xHR.m, xHR.f ), 3 )
           exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
               1.080 0.979 1.192
                                        0.977 0.903 1.056
Denmark
               1.136 1.068 1.209
                                        0.966 0.916 1.018
Finland
Sweden
               0.861 0.823 0.901
                                       1.074 1.029 1.120
```

```
Scotland
              1.049 0.927 1.187
                                     1.036 0.921 1.165
              1.025 0.940 1.119
Australia
                                     1.093 1.009 1.185
Joint
              0.969 0.939 0.999
                                     1.029 1.001 1.058
> cbind(
+ round( rbind( cbind( HR.m, HR.f )/
                 cbind( xHR.m, xHR.f ) ), 2 ),
+ round( rbind(
                 cbind( HR.m, HR.f )-
                 cbind( xHR.m, xHR.f ) ), 2 ),
                                HR.f )/
 round( rbind( (cbind(
+
                         HR.m,
                  cbind( xHR.m, xHR.f )-1)*100 ), 1 ) )
          exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
                                                           0.02 0.02 0.02
                                                                                 0.03 0.02
Denmark
               1.02 1.02 1.02
                                     1.03 1.03 1.03
                                                                                            0.03
Finland
               1.04 1.04
                          1.04
                                     1.04 1.04
                                                1.04
                                                           0.04 0.04
                                                                      0.05
                                                                                0.04 0.04
                                                                                            0.04
Sweden
               1.05 1.05
                          1.05
                                     1.05 1.05
                                                1.05
                                                           0.04 0.04
                                                                      0.04
                                                                                0.06 0.05
                                                                                            0.06
Scotland
               1.01 1.01
                          1.01
                                     1.02 1.02
                                                1.02
                                                           0.01 0.01
                                                                      0.01
                                                                                0.02 0.02
                                                                                            0.02
Australia
               1.00 1.00
                          1.00
                                     1.00 1.00
                                                1.00
                                                           0.00 0.00
                                                                      0.00
                                                                                0.00 0.00
                                                                                            0.00
Joint
               1.03 1.03
                          1.03
                                     1.04 1.04
                                                1.04
                                                           0.03 0.03
                                                                      0.03
                                                                                0.04 0.04
                                                                                            0.04
          exp(Est.) 2.5% 97.5% exp(Est.) 2.5%
                                               97.5%
                2.0
                                      2.7
                                           2.7
Denmark
                     2.0
                            2.0
                                                  2.7
                3.8
                     3.8
                            3.8
                                      4.0
Finland
                                           4.0
                                                 4.0
Sweden
                4.5
                     4.5
                            4.5
                                      5.3
                                           5.3
                                                  5.3
Scotland
                1.2
                     1.2
                            1.2
                                      1.8
                                          1.8
                                                 1.8
                                           0.0
                0.0
                     0.0
                            0.0
                                      0.0
                                                 0.0
Australia
Joint
                3.4
                     3.4
                            3.4
                                      3.8
                                           3.8
                                                  3.8
```

We see that the HRs is about 1-5% smaller if we use the incorrect follow-up in the case of *all* cancers. For the specific sites, the deflation of the HR due to the extra person-years used will therefore be smaller than 1% since none of the specific sites constitute more than a third of all cases in any country as seen in the table in page 130.

```
> tt <- sapply( all.ana[,9:32], FUN=function(x) tapply(x,list(all.ana$Cnt,all.ana$sex),sum) )</pre>
> tt <- t(100*sweep( tt[,-1], 1, tt[,1], "/" ))
> dim(tt)
[1] 23 10
> snam <- conv$Clab[match( dimnames(tt)[[1]], conv$NCnam )]</pre>
> dim(tt) <- c(dim(tt)[1],5,2)</pre>
  dimnames(tt) <- list( site = snam,
>
                       country = levels(all.ana$Cnt),
                           sex = levels(all.ana$sex) )
> round(ftable(tt,col.vars=3:2),1)
                                  М
                                                              F
                       sex
                                            SE
                                                  SC
                                                            DK
                                                                  FI
                                                                        SE
                                                                             SC
                                                                                   AU
                                 DK
                                       FT
                                                       AU
                       country
site
                                2.3
Oesophagus
                                      1.3
                                           1.2
                                                4.0
                                                      1.4
                                                            0.8
                                                                 1.0
                                                                      0.5
                                                                            2.2
                                                                                  0.7
                                           3.1
                                2.6
                                      5.6
                                                 4.0
                                                      2.2
                                                                            2.4
Stomach
                                                            1.4
                                                                 4.6
                                                                      2.1
                                                                                  1.4
Colon
                                9.2
                                      5.0
                                           7.1
                                                 9.1
                                                            9.4
                                                                 6.2
                                                                      7.9
                                                                            8.2
                                                       NA
                                                                                  NA
                                5.7
                                           4.9
                                                 5.8
                                                            3.7
                                                                 3.7
                                                                            3.8
Rectum
                                      4.1
                                                       NA
                                                                      4.1
                                                                                  NA
Liver
                                1.5
                                      1.6
                                           1.5
                                                 1.6
                                                      1.4
                                                            0.7
                                                                 1.1
                                                                      1.1
                                                                            0.8
                                                                                  0.7
Pancreas
                                3.1
                                      3.6
                                           2.3
                                                 2.4
                                                      2.0
                                                            3.0
                                                                 3.9
                                                                       2.6
                                                                            2.4
                                                                                  2.1
                               16.7 19.2
                                           8.5 20.4 10.3 13.9
                                                                                  7.7
                                                                 4.8
                                                                           16.3
Lung
                                                                      6.6
                                0.2
                                           0.2
                                                 0.2
                                                      0.2 31.9 29.3 29.3
Breast
                                      0.1
                                                                           28.6 29.1
                                           0.0
                                                           3.2
Cervix uteri
                                0.0
                                      0.0
                                                 0.0
                                                      0.0
                                                                 2.0
                                                                      2.4
                                                                            2.6
                                                                                 1.8
Corpus uteri
                                0.0
                                      0.0
                                           0.0
                                                      0.0
                                                 0.0
                                                            5.3
                                                                 6.5
                                                                      6.2
                                                                            4.1
                                                                                  4.2
                                                 0.0
                                                      0.0
                                0.0
                                      0.0
                                           0.0
                                                                                  2.8
Ovary
                                                            4.6
                                                                 4.8
                                                                       4.5
                                                                            4.9
                               22.5 24.5 33.6 19.2
                                                     27.9
                                                            0.0
                                                                 0.0
                                                                            0.0
                                                                                  0.0
Prostate
                                                                      0.0
Testis
                                2.4
                                      0.8
                                           1.3
                                                 1.7
                                                      1.3
                                                            0.0
                                                                 0.0
                                                                      0.0
                                                                            0.0
                                                                                  0.0
                                           2.7
Kidney
                                2.9
                                      3.5
                                                 3.0
                                                      2.7
                                                            1.7
                                                                 2.8
                                                                      2.1
                                                                            1.9
                                                                                 1.9
                                9.4
                                      5.4
                                           7.4
                                                 8.3
                                                      2.8
                                                            3.2
                                                                 1.8
                                                                      2.8
                                                                            3.6
Bladder
                                                                                 1.1
Melanoma of skin
                                4.7
                                      3.0
                                           4.2
                                                 2.9 10.5
                                                            5.7
                                                                 3.0
                                                                       4.6
                                                                            3.7
                                                                                10.0
                                           2.8
Brain, CNS
                                3.2
                                      2.9
                                                 3.0
                                                            2.7
                                                                 4.2
                                                                            3.6
                                                      1.5
                                                                      3.6
                                                                                  1.4
Thyroid
                                0.4
                                      0.7
                                           0.4
                                                 0.4
                                                      0.7
                                                            1.0
                                                                 2.5
                                                                      1.2
                                                                            0.9
                                                                                 2.8
Non-Hodgkin lymphoma
                                3.6
                                      3.7
                                           3.4
                                                 3.6
                                                      3.8
                                                           2.9
                                                                 3.7
                                                                      3.0
                                                                            3.4
                                                                                 3.9
                                0.6
                                      0.8
                                           0.5
                                                 NA
                                                      0.5
                                                           0.4
                                                                 0.6
                                                                      0.4
                                                                             NA
                                                                                 0.5
Hodgkin lymphoma
Multiple myeloma
                                1.6
                                      1.3
                                           1.4
                                                 1.4
                                                      1.2
                                                            1.2
                                                                 1.4
                                                                      1.2
                                                                            1.2
                                                                                 1.2
                                           2.7
Leukaemia
                                3.4
                                      2.8
                                                 3.1
                                                       NA
                                                            2.5
                                                                 2.5
                                                                       2.1
                                                                            2.2
                                                                                  NA
```

9.0 12.0 14.7 13.0 13.1

14.9

Colorectal

9.9 12.0 11.9 12.9
8.4.2.1 Specific sites

Breast cancer constitutes about 40% of the female cases of cancer, and the second largest of female cancers (endometrial and melanoma) only 7.4%. Among men, prostate cancer constitutes 18% and the second largest of male cancer lung cancer about 10%. Therefore clearly the main concern in terms of inaccuracy is the breast cancer, so we analyze breast cancer using the two extremes, one over- and one under-estimating the HR versus the population:

```
> svstem.time(
+ b0.i <- glm( d18 ~ -1 + MB.f + T1:Cnt,
                family = poisson,
+
+
                offset = log(y),
+
                data = subset(all.ana,sex=="F") ) )
   user system elapsed
  5.885
         0.012
                  5.895
> b0.j <- update( b0.i, . ~ . - T1:Cnt + T1 )
> xb0.i <- glm( d18 ~ -1 + MB.f + T1:Cnt,
                family = poisson,
                offset = log(y0),
+
+
                data = subset(all.ana,sex=="F") )
> xb0.j <- update( xb0.i, . ~ . - T1:Cnt + T1 )</pre>
> bHR <-
+ rbind( ci.exp( b0.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
         ci.exp( b0.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
+
> xbHR <-
+ rbind( ci.exp( xb0.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
+ ci.exp( xb0.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
> rownames( bHR ) <-</pre>
+ rownames( xbHR ) <- c(levels(all.ana$Cnt), "Joint")
> rownames( bHR ) <-</pre>
+ rownames( xbHR ) <- c("Denmark", "Finland", "Sweden", "Scotland", "Australia", "Joint")
> round( cbind( bHR, xbHR ), 3 )
          exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
              0.743 0.642 0.859
                                      0.765 0.661 0.884
Denmark
Finland
              0.881 0.810 0.959
                                      0.916 0.842 0.996
              0.952 0.884 1.025
                                      0.997 0.926 1.074
Sweden
              0.911 0.748 1.110
                                      0.928 0.762 1.131
Scotland
              0.892 0.772 1.031
                                     0.892 0.772 1.031
Australia
              0.894 0.852 0.937
                                      0.926 0.883 0.971
Joint
> round( cbind( bHR/xbHR ), 3 )
          exp(Est.) 2.5% 97.5%
              0.971 0.971 0.971
Denmark
Finland
              0.962 0.962 0.962
              0.954 0.954 0.954
Sweden
Scotland
              0.982 0.982 0.982
Australia
              1.000 1.000 1.000
              0.966 0.966 0.966
Joint
> round( cbind( bHR-xbHR ), 3 )
          exp(Est.)
                      2.5% 97.5%
Denmark
             -0.022 -0.019 -0.025
             -0.035 -0.032 -0.038
Finland
             -0.045 -0.042 -0.049
Sweden
Scotland
             -0.017 -0.014 -0.020
Australia
              0.000 0.000 0.000
              -0.032 -0.030 -0.033
Joint
```

Thus the difference in HR between the value over and under is less than 0.05, which an upper bound of the bias introduced by the convenience follow-up. There is no difference between the estimates for the Australian data because follow-up has only been computed to death / end of FU in Australian data.

8.4.3 Non-sex-specific cancers

We now estimate the HR associated with T1D diagnosis for the non-sex-specific cancers:

```
> system.time(
+ m00.i <- glm( d00 ~ -1 + MB.m + T1:Cnt,
                  family = poisson,
+
                  offset = log(y0),
                  data = subset(all.ana,sex=="M") ) )
+
   user system elapsed
          0.008
                    2.346
  2.339
> m00.j <- update( m00.i, . ~ . - T1:Cnt + T1 )
> f00.i <- update( m00.i, . ~ . - MB.m + MB.f,</pre>
+ data = subset(all.ana,sex=="F")
> f00.j <- update( f00.i, . ~ . - T1:Cnt + T1 )
> anova( m00.i, m00.j, test="Chisq" )
Analysis of Deviance Table
Model 1: d00 ~ -1 + MB.m + T1:Cnt
Model 2: d00 ~ MB.m + T1 - 1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
      47755
                   17717
2
      47759
                   17739 -4 -22.61 0.0001515
> anova( f00.i, f00.j, test="Chisq" )
Analysis of Deviance Table
Model 1: d00 ~ MB.f + T1:Cnt - 1
Model 2: d00 ~ MB.f + T1 - 1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
                  17483
1
      47958
2
      47962
                   17490 -4 -7.5492
                                         0.1096
```

We see there still is a considerable inhomogeneity between countries for the male cancers, this is clearly attributable to the Swedish data:

```
> HR.m < -
+ rbind( ci.exp( m00.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
+ ci.exp( m00.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
> HR.f <-
+ rbind( ci.exp( f00.i, subset="T1", ctr.mat=cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)] ),
+
         ci.exp( f00.j, subset="T1", ctr.mat=rbind(c(-1,1)) ) )
> rownames( HR.m ) <-</pre>
+ rownames( HR.f ) <- c(levels(all.ana$Cnt), "Joint")
> rownames( HR.m ) <-</pre>
+ rownames( HR.f ) <- c("Denmark", "Finland", "Sweden", "Scotland", "Australia", "Joint")
> round( cbind( HR.m, HR.f ), 3 )
          exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
Denmark
               1.198 1.079 1.331
                                      1.162 1.046 1.291
                                       1.075 0.997 1.160
Finland
               1.298 1.213 1.390
Sweden
              1.058 1.006 1.114
                                       1.181 1.114 1.253
Scotland
              1.140 0.999 1.300
                                      1.254 1.065 1.475
Australia
              1.162 1.058 1.275
                                       1.259 1.136 1.396
               1.144 1.106 1.184
                                       1.163 1.120 1.208
Joint
```

We can plot the results for men and women together, showing this even more clearly:

8.4.3.1 Age-interaction

We repeat the interaction model for the non sex-specific cancers, using the same approach as for all cancers:

```
> ia.kn <- c(10,35,50,65)
> m00.a <- update( m00.j, . ~ . + I((T1=="T1DM")*1):Ns(A,knots=ia.kn) )
> f00.a <- update( f00.j, . ~ . + I((T1=="T1DM")*1):Ns(A,knots=ia.kn) )</pre>
> anova( m00.j, m00.a, test="Chisq" )
Analysis of Deviance Table
Model 1: d00 ~ MB.m + T1 - 1
Model 2: d00 ~ MB.m + T1 + I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn) -
    1
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
       47759
                     17739
2
       47756
                     17698 3
                                  41.366 5.468e-09
> anova( f00.j, f00.a, test="Chisq" )
Analysis of Deviance Table
Model 1: d00 ~ MB.f + T1 - 1
Model 2: d00 ~ MB.f + T1 + I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn) -
  Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
       47962
                    17490
2
       47959
                     17470 3
                                    20.35 0.0001436
```

We see there is a significant $T1 \times age$ interaction, and we can have a look at the estimated shape of the HR by age:

```
> a.pt <- 10:70
> CA <- cbind(-1,1,Ns(a.pt,knots=ia.kn))</pre>
> ci.exp( m00.a, subset="T1" )
                                                     exp(Est.)
                                                                       2.5%
                                                                                  97.5%
T1NoDM
                                                     0.9590926 0.7107818 1.2941503
T1T1DM
                                                     1.0000000 1.0000000 1.0000000
I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn)1 1.1086814 0.8992080 1.3669523
I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn)2 1.3149780 0.7075255 2.4439645
I((T1 == "T1DM") * 1):Ns(A, knots = ia.kn)3 0.8392869 0.7334365 0.9604139
> ci.exp( m00.j, subset="T1" )
        exp(Est.)
                          2.5%
                                     97.5%
T1NoDM 0.8738695 0.8445618 0.9041942
T1T1DM 1.0000000 1.0000000 1.0000000
> mrr.a <- ci.exp( m00.a, subset="T1", ctr.mat=CA )</pre>
> frr.a <- ci.exp( f00.a, subset="T1", ctr.mat=CA )
> mrr.c <- ci.exp( m00.j, subset="T1", ctr.mat=CA[,1:2] )
> frr.c <- ci.exp( f00.j, subset="T1", ctr.mat=CA[,1:2] )</pre>
> matplot( a.pt, cbind(mrr.a,frr.a,mrr.c,frr.c),
             type="l", lty=rep(c(1,3), each=6), lwd=c(4,1,1),
             col=rep(c("blue", "red"), each=3),
+
             ylim=c(0.5,2), log="y",
xlab="Age at follow-up",
+
+
             ylab="Non sex-specific cancer HR T1D vs NoDM" )
> abline( h=1 )
```

We see (not surprisingly) that the interaction has approximately the same form as for all cancers (see fig. 8.5), and in particular very different between man and women.

8.4.4 All sub-sites

In order to do the analyses for all sub-sites available we set up an array to hold the results

```
> Earr <- NArray( list( site = wh.ca,
                          sex = levels( all.ana$sex ),
+
+
                      country = c(levels( all.ana$Cnt ), "Joint"),
                           wh = c("HR","lo","up") ) )
> Tarr <- NArray( c( dimnames(Earr)[1:2],</pre>
                      list( wh = c("Chisq", "P", "conv S", "conv J") ) )
> str( Earr )
logi [1:25, 1:2, 1:6, 1:3] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
            : chr [1:25] "d0" "d00" "d6" "d7" ...
  ..$ site
  ..$ sex : chr [1:2] "M" "F"
  ..$ country: chr [1:6] "DK" "FI" "SE" "SC" ...
          : chr [1:3] "HR" "lo" "up"
  ..$ wh
> str( Tarr )
 logi [1:25, 1:2, 1:4] NA NA NA NA NA NA ...
 - attr(*, "dimnames")=List of 3
  ..$ site: chr [1:25] "d0" "d00" "d6" "d7" ...
  ..$ sex : chr [1:2] "M" "F"
  ..$ wh : chr [1:4] "Chisq" "P" "conv S" "conv J"
```

With these arrays in place we can fit models for each site separately, but we first fill in the values from the analyses of all cancers and non-sex-specific cancers:

```
> Tarr["d0","M",] <- c( as.numeric( anova( m0.j, m0.i, test="Chisq" )[2,4:5] ),</pre>
                       m0.i$converged, m0.j$converged )
>
 Tarr["d0", "F",] <- c( as.numeric( anova( f0.j, f0.i, test="Chisq" )[2,4:5] ),</pre>
                       f0.i$converged, f0.j$converged )
> Tarr["d00","M",] <- c( as.numeric( anova( m00.j, m00.i, test="Chisq" )[2,4:5] ),
                        m00.i$converged, m00.j$converged )
> Tarr["d00", "F",] <- c( as.numeric( anova( f00.j, f00.i, test="Chisq" )[2,4:5] ),
                        f00.i$converged, f00.j$converged )
> # HR estimates
> CI <- cbind(-diag(5),diag(5))[,c(1,6,2,7,3,8,4,9,5,10)]</pre>
> CM <- rbind(c(-1,1))
> Earr["d0", "M",,] <- rbind( ci.exp( m0.i, subset="T1", ctr.mat=CI ),</pre>
                            ci.exp( m0.j, subset="T1", ctr.mat=CM ) )
> Earr["d00", "M",,] <- rbind( ci.exp( m00.i, subset="T1", ctr.mat=CI ),</pre>
                             ci.exp( m00.j, subset="T1", ctr.mat=CM ) )
> Earr["d00", "F",,] <- rbind( ci.exp( f00.i, subset="T1", ctr.mat=CI ),
                             ci.exp( f00.j, subset="T1", ctr.mat=CM ) )
```

Then we do a loop over the rest of the cancer sites; note that we now use y instead of y0 in the offset expression:

```
> # id <- dimnames(Earr)[[1]][3]
> for( id in dimnames(Earr)[[1]][-(1:2)] )
+
     ł
     cat( id, "started:", format(Sys.time()) )
+
+ all.ana$D <- all.ana[,id]
+ m0.i <- glm( D ~ -1 + MB.m + T1:Cnt,
                 family = poisson,
+
                 offset = log(y),
+
                 data = subset(all.ana,sex=="M") )
+ m0.j <- update( m0.i, . ~ . - T1:Cnt + T1 )
+ f0.i <- update( m0.i, . ~ . - MB.m + MB.f,
                 data = subset(all.ana,sex=="F") )
+ f0.j <- update( f0.i, . ~ . - T1:Cnt + T1 )
+ # Test for homogeneity of the HR
+ Tarr[id,"M",] <- c( as.numeric( anova( m0.j, m0.i, test="Chisq" )[2,4:5] ),
+ m0.i$converged, m0.j$converged )
+ Tarr[id,"F",] <- c( as.numeric( anova( f0.j, f0.i, test="Chisq" )[2,4:5] ),
                          f0.i$converged, f0.j$converged )
+ # HR estimates - first allow for fewer countrie in the interaction
```

8.4.4.1 Plotting the results

We can now show the results from the single countries together with the joint results in a forest plot, which is somewhat busy:

```
> library( Epi )
> load( file="../data/Arr0.Rda" )
> dimnames( Tarr )[[1]] <-</pre>
+ dimnames( Earr )[[1]] <- conv[match(dimnames( Earr )[[1]],conv$NCnam),"Clab"]
> Earr["Breast" ,"M",,] <-
+ Earr["Cervix uteri","M",,] <-</pre>
+ Earr["Corpus uteri","M",,] <-
+ Earr["Ovary"
                          ,"M",,] <-
                           ,"F",,] <-
+ Earr["Prostate"
                          ,"F",,] <- NA
,"M",] <-
+ Earr["Testis"
> Tarr["Breast"
+ Tarr["Cervix uteri", "M",] <-
+ Tarr["Corpus uteri", "M",] <-
                         ,"M",] <-
+ Tarr["Ovary"
                        ,"F",] <-
,"F",] <- NA
                                ,] <-
+ Tarr["Prostate"
+ Tarr["Testis"
> wh <- grep("Corpus", dimnames(Earr)$site)</pre>
> dimnames(Earr)$site[wh] <-</pre>
+ dimnames(Tarr)$site[wh] <- "Endometrium"
> y <- (dim(Earr)[1]:1)-1
> rg <- 0.3
> par( mar=c(3,1,1,0.5), cex=1.2 )
> plotEst( Earr[, "M", "Joint",], y=y-rg, txtpos=y, ylim=c(0,max(y)+0.5),
              lwd=2, cex=1.0, xlog=TRUE, col="blue", xlim=c(0.2,6),
             xtic=c(2:15/10,2:5), grid=c(2:15/10,2:5), vref=1,
xlab="HR cancer, T1D vs population" )
> linesEst( Earr[,"M","Joint",], y=y-rg , lwd=2, cex=1.0, col="blue" )
> linesEst( Earr[,"F","Joint",], y=y+rg/6, lwd=2, cex=1.0, col="red" )
> for( i in 1:5 ) {
+ linesEst( Earr[,"M",i,], y=y-rg +i*rg/6, lwd=1, pch=3, cex=0.6, col="#7777FF" )
+ linesEst( Earr[,"F",i,], y=y+rg/6+i*rg/6, lwd=1, pch=3, cex=0.6, col="#FF7777" ) }
> rhs <- 10^par("usr")[2]
> text( rep(rhs,length(y)), y-rg*3/4,
          gsub("NA","",formatC(Tarr[,"M","P"],format="f",digits=3)),
col="blue", adj=1, cex=0.6 )
+
> text( rep(rhs,length(y)), y+rg*3/4,
          gsub("NA","",formatC(Tarr[,"F","P"],format="f",digits=3)),
+
          col="red", adj=1, cex=0.6 )
> text( rhs, max(y)+1, "Homogeneity of HR", cex=0.6, adj=1 )
```

```
> y <- ((dim(Earr)[1]):1)-1
> par(mar=c(3.5,1,1,0), mgp=c(3,1,0)/1.4, cex=1.2)
> plotEst(Earr[,"M","Joint",], y=y-0.15, txtpos=y,
+ lwd=2, cex=1.0, xlog=TRUE, col="blue", ylim=c(0,max(y)+1/2),
+ xtic=c(5:15/10,2,2.5,3), grid=c(5:15/10,2,2.5,3), vref=1,
+ xlab="HR of cancer, T1D vs population", xlim=c(0.5,4.2) )
> # linesEst(Earr[,"M","Joint",], y=y-0.15, lwd=2, cex=1.0, col="blue" )
> linesEst(Earr[,"F","Joint",], y=y+0.15, lwd=2, cex=1.0, col="red" )
> rrF <- paste(formatC(Earr[,"F","Joint",1],format="f",digits=2), " (",
+ formatC(Earr[,"F","Joint",3],format="f",digits=2), ",",
+ formatC(Earr[,"F","Joint",1],format="f",digits=2), " )", sep="")
> rrF[grep("NA",rrF)] <- ""
> rrM <- paste(formatC(Earr[,"M","Joint",1],format="f",digits=2), ",",
+ formatC(Earr[,"M","Joint",3],format="f",digits=2), " (",
+ formatC(Earr[,"M","Joint",3],format="f",digits=2), " )", sep="")
> rrM[grep("NA",rrM)] <- ""
> text( rep(3.1,dim(Earr)[1]), y+0.2, rrF, adj=0, col="red", cex=0.6 )
> text( 3.1, max(y)+1, "Hazard ratio", cex=0.6, adj=0 )
```

The numbers in the plot are here in print:

<pre>> round(ftable(</pre>	> round(ftable(Earr[,,1:3,], row.vars=1:2), 2)									
	country	DK			FI			SE		
	wh	RR	lo	up	RR	10	up	RR	lo	up
site	sex									
All sites	М	1.10	1.00	1.22	1.18	1.11	1.25	0.90	0.86	0.94
	F	1.00	0.93	1.08	1.00	0.95	1.06	1.13	1.08	1.18
Non-sex-specific	М	1.20	1.08	1.33	1.30	1.21	1.39	1.06	1.00	1.11
	F	1.16	1.05	1.29	1.08	1.00	1.16	1.18	1.11	1.25
Oesophagus	М	0.58	0.22	1.56	1.33	0.81	2.18	1.04	0.72	1.49
	F	0.42	0.06	3.01	1.20	0.50	2.90	2.01	1.19	3.41
Stomach	М	0.72	0.32	1.60	1.49	1.11	1.98	1.21	0.95	1.55
	F	2.65	1.55	4.51	1.84	1.39	2.43	1.47	1.07	2.02
Colon	М	1.30	0.88	1.92	1.23	0.95	1.60	1.26	1.08	1.46
	F	0.73	0.45	1.19	1.14	0.90	1.46	1.10	0.92	1.32
Rectum	М	0.90	0.52	1.55	1.31	0.98	1.75	0.83	0.67	1.02
	F	0.82	0.44	1.53	1.17	0.86	1.59	0.91	0.71	1.18
Colorectal	М	1.13	0.83	1.55	1.26	1.04	1.54	1.07	0.95	1.21
	F	0.76	0.52	1.12	1.15	0.95	1.40	1.03	0.89	1.20
Liver	M	2.12	1.10	4.11	2.64	1.88	3.71	1.45	1.07	1.95
	F	2.52	1.12	5.69	1.05	0.52	2.11	1.23	0.77	1.99
Pancreas	M	1.84	1.10	3.07	1.89	1.44	2.47	1.08	0.82	1.42
	F	1.37	0.71	2.65	1.58	1.16	2.16	0.84	0.59	1.20
Lung	M	1.27	0.92	1.74	1.22	1.02	1.46	0.79	0.67	0.94
0	F	1.00	0.73	1.38	1.15	0.89	1.49	1.01	0.85	1.20
Melanoma of skin	M	0.50	0.32	0.76	1.16	0.90	1.50	0.92	0.77	1.10
	F	0.69	0.53	0.89	0.86	0.66	1.11	0.80	0.66	0.97
Breast	M	NA	NA	NA	NA	NA	NA	NA	NA	NA
	F	0.74	0.64	0.86	0.88	0.81	0.96	0.95	0.89	1.03
Cervix uteri	M	NA	NA	NA	NA	NA	NA	NA	NA	NA
0011111 00011	F	0.85	0.64	1.13	0.99	0.72	1.38	1.13	0.91	1.40
Endometrium	M	NA	NA	NA	NA	NA	NA	NA	NA	NA
	F	2.25	1.65	3.09	1.28	1.05	1.57	1.37	1.16	1.60
Ovarv	M	NA	NA	NA	NA	NA	NA	NA	NA	NA
0,000	F	1.02	0.69	1.51	1.16	0.93	1.45	1.19	0.99	1.44
Prostate	M	0.53	0.30	0.93	0.79	0.67	0.92	0.51	0.46	0.56
11000000	F	νΔ	NA	NA	NΔ	ΝΔ	NA	ΝΔ	NA	Ν Δ
Testis	M	0 78	0 56	1 07	0 89	0 59	1 34	0 98	0 76	1 28
100010	F	NA	NA	NA NA	0.00 ΝΔ	NA	NA	NA	NA	NA
Kidney	M	1 65	1 09	2 50	1 75	1 37	2 22	0 96	0 75	1 23
mancy	F	2 27	1 36	3 80	1 68	1 26	2.22	1 17	0 85	1 61
Bladder	M	0 9/	0 58	1 51	1 3/	1 01	1 77	0.87	0 73	1 04
DIGUGET	F	0.04	0 47	2 00	1 3/	0.82	2 20	0.87	0.73	1.01
Brain CNS	M	1 15	0.21	1 64	0 60	0.02	0 96	0.86	0.02	1 08
Drain, OND	F	1 /0	1 10	2 02	0.09	0.00	0.50	1 00	0.09	1 32
		7	1.111	1.11/	11.10	11. 21	11.14	1.1.7		

Thyroid	М	1.14	0.51	2.56	1.28	0.80	2.03	1.01	0.61	1.69
	F	1.64	1.13	2.36	1.54	1.27	1.87	1.45	1.10	1.91
Non-Hodgkin lymphoma	М	1.32	0.89	1.94	1.08	0.83	1.41	1.29	1.07	1.55
	F	0.93	0.55	1.57	0.92	0.69	1.23	1.07	0.82	1.39
Hodgkin lymphoma	М	1.42	0.78	2.58	0.83	0.49	1.40	1.17	0.75	1.82
	F	0.59	0.22	1.57	0.63	0.33	1.22	0.82	0.43	1.58
Multiple myeloma	М	0.99	0.37	2.65	1.35	0.80	2.29	0.86	0.58	1.26
	F	1.50	0.62	3.63	0.79	0.39	1.58	0.72	0.42	1.25
Leukaemia	М	1.02	0.60	1.73	1.39	1.01	1.91	0.61	0.44	0.84
	F	1.43	0.87	2.35	1.30	0.92	1.83	0.76	0.53	1.10

> round(ftable(Earr[,,4:6,], row.vars=1:2), 2)

		country	SC			AU			Joint		
		wh	RR	lo	up	RR	lo	up	RR	10	up
site	sex				-			-			-
All sites	М		1.06	0.94	1.20	1.06	0.98	1.15	1.01	0.98	1.04
	F		1.05	0.94	1.19	1.13	1.05	1.21	1.07	1.04	1.10
Non-sex-specific	М		1.14	1.00	1.30	1.21	1.11	1.31	1.15	1.11	1.19
nom bom brooming	F		1.26	1.07	1.48	1.31	1.20	1.44	1.17	1.13	1.22
Nesophagus	M		1 07	0 56	2 06	1 30	0 68	2 50	1 08	0 85	1 37
besophagas	F		3 86	1 83	2.00 8 1/	1 96	0.00	6 00	1 70	1 25	2 56
Stomach	M		0.00	0.35	2 06	1 15	0.00	2 03	1 23	1 04	1 46
bromach	E .		1 51	0.55	2.00	2 28	1 32	2.00	1 78	1 /0	2.13
Colon	T.		1 10	0.00	1 00	Z.20 MA	1.5Z	0.95 MA	1 25	1 11	1 /1
001011	ri E		1.19	0.75	1.00	IN A M A	IN A	IN A M A	1.20	1.11	1.41
Deetum	Г		0.00	0.45	1.00	IN A	IN A	IN A	1.00	0.93	1.22
Rectum	M		1.19	0.71	1.97	INA	INA	IN A	0.96	0.82	1.12
	F		0.85	0.38	1.90	NA 1 OO	NA	NA A EO	0.97	0.81	1.1/
Colorectal	M		1.20	0.85	1.68	1.20	0.95	1.52	1.14	1.04	1.24
	F		0.86	0.52	1.44	1.54	1.21	1.95	1.09	0.99	1.21
Liver	М		3.49	1.97	6.17	2.35	1.52	3.66	2.00	1.67	2.40
	F		2.89	0.93	9.04	3.51	1.75	7.05	1.55	1.14	2.10
Pancreas	М		1.50	0.71	3.15	2.55	1.68	3.88	1.53	1.30	1.79
	F		1.95	0.81	4.71	1.96	1.05	3.66	1.25	1.02	1.53
Lung	М		1.42	1.02	1.96	1.45	1.10	1.92	1.06	0.96	1.17
	F		1.14	0.73	1.79	1.32	0.92	1.89	1.07	0.95	1.21
Melanoma of skin	М		0.94	0.57	1.54	1.03	0.86	1.25	0.94	0.84	1.05
	F		0.69	0.42	1.15	0.91	0.75	1.12	0.81	0.73	0.90
Breast	М		NA	NA	NA	NA	NA	NA	NA	NA	NA
	F		0.91	0.75	1.11	0.90	0.79	1.03	0.90	0.85	0.94
Cervix uteri	М		NA	NA	NA	NA	NA	NA	NA	NA	NA
	F		0.71	0.42	1.20	0.54	0.32	0.90	0.92	0.80	1.06
Endometrium	M		NA	NA	NA	NA	NA	NA	NA	NA	NA
	F		1.42	0.80	2.50	1.49	1.05	2.12	1.42	1.27	1.58
Ovary	M		ΝΔ	NA	Δ.00 ΝΔ	NΔ	NA NA	ΝA	ΝΔ	NΔ	NA
e tury	F		0 75	0 41	1 35	1 40	0 95	2 08	1 15	1 02	1 30
Prostate	M		0.53	0.29	0.96	0 48	0.36	0.65	0 56	0 51	0 61
Tiostate	F		NA	NA	NA	NA	NA	0.00 MA	NA	NA	NA
Toatia	T.		0 00		1 26			1 01	0 00	0 75	1 00
lesus	ri E		U.00	0.50 MA	1.30 MA	U.02	U.55	1.ZI MA	U.00	0.75 MA	I.UZ
Vide en	Г		1 40			1 1 7		1 7E	1 20	1 1 0	1 40
Kidney	PI E		1.49	0.00	2.01	1.17	0.79	1.75	1.30	1.12	1.49
D1 - 11	Г М		1.01	0.38	2.11	1.52	0.92	2.53	1.47	1.23	1.11
Bladder	M		0.84	0.46	1.51	1.37	0.78	2.42	0.97	0.85	1.11
	F		1.54	0.69	3.45	0.82	0.20	3.27	1.01	0.79	1.28
Brain, CNS	M		1.05	0.66	1.68	1.44	0.96	2.17	0.92	0.80	1.06
	F		1.60	1.10	2.32	2.23	1.48	3.36	0.97	0.85	1.11
Thyroid	М		1.53	0.57	4.11	1.52	0.93	2.48	1.25	0.97	1.61
	F		1.77	1.00	3.13	1.43	1.09	1.86	1.51	1.34	1.72
Non-Hodgkin lymphoma	М		1.48	0.96	2.27	1.21	0.88	1.66	1.24	1.09	1.40
	F		1.02	0.51	2.05	1.32	0.90	1.92	1.04	0.88	1.21
Hodgkin lymphoma	М		NA	NA	NA	1.24	0.69	2.25	1.11	0.85	1.44
	F		NA	NA	NA	0.27	0.07	1.08	0.61	0.41	0.91
Multiple myeloma	М		1.01	0.33	3.15	1.03	0.46	2.29	0.99	0.76	1.30
	F		0.00	0.00	Inf	0.56	0.14	2.26	0.77	0.53	1.12
Leukaemia	М		1.47	0.85	2.53	NA	NA	NA	0.92	0.76	1.12
	F		1.81	0.94	3.50	NA	NA	NA	1.10	0.89	1.36

We want to test whether HRs are the same between men and women, and to this end we construct a small R-function that computes the P-value from the confidence interval:

```
> ci2p <-
+ function( 11, u1, 12, u2, Exp=TRUE, alpha=0.05, df=Inf )
+ {
+ if( Exp )
+
    ł
+
    11 < - log(11)
   u1 <- log(u1)
+
    12 < - \log(12)
    u2 <- log(u2)
+
+
    7
+ se1 <- (u1-l1)/(qt(1-alpha/2,df)*2)
+ se2 <- (u2-l2)/(qt(1-alpha/2,df)*2)
+ chi <- ((11+u1)/2-(12+u2)/2)^2/(se1^2+se2^2)
+ cbind( l1=if(Exp) exp(l1) else l1,
         u1=if(Exp) exp(u1) else u1,
12=if(Exp) exp(12) else 12,
+
+
         u2=if(Exp) exp(u2) else u2,
+
          Chisq=chi, P=1-pchisq(chi,1))
+
+ }
```

And here are the tests for equality of the HR between men and women:

> round(
+ mfP <-ci2p(Earr[,	"M","Jo	oint",	"lo"],			
+ Earr[,	"M","Jo	oint",	"up"],			
+ Earr[,	"F","Jo	oint",	"lo"],			
+ Earr[,	"F","Jo	oint",	"up"] 🕽), 3)		
	11	u1	12	u2	Chisq	Р
All sites	0.976	1.037	1.044	1.102	9.530	0.002
Non-sex-specific	1.112	1.189	1.128	1.216	0.504	0.478
Oesophagus	0.848	1.371	1.247	2.562	5.234	0.022
Stomach	1.036	1.456	1.487	2.132	8.621	0.003
Colon	1.110	1.408	0.927	1.216	3.138	0.077
Rectum	0.823	1.125	0.812	1.170	0.010	0.919
Colorectal	1.042	1.241	0.989	1.206	0.363	0.547
Liver	1.670	2.398	1.144	2.103	1.989	0.158
Pancreas	1.300	1.794	1.024	1.534	2.250	0.134
Lung	0.957	1.171	0.951	1.207	0.023	0.878
Melanoma of skin	0.843	1.047	0.727	0.903	3.596	0.058
Breast	NA	NA	0.854	0.938	NA	NA
Cervix uteri	NA	NA	0.801	1.061	NA	NA
Endometrium	NA	NA	1.274	1.582	NA	NA
Ovary	NA	NA	1.019	1.304	NA	NA
Prostate	0.514	0.607	NA	NA	NA	NA
Testis	0.750	1.022	NA	NA	NA	NA
Kidney	1.123	1.494	1.228	1.765	1.181	0.277
Bladder	0.851	1.113	0.789	1.281	0.053	0.818
Brain, CNS	0.797	1.063	0.851	1.107	0.283	0.595
Thyroid	0.966	1.613	1.337	1.715	1.757	0.185
Non-Hodgkin lymphoma	1.095	1.403	0.882	1.215	3.031	0.082
Hodgkin lymphoma	0.850	1.439	0.408	0.909	5.948	0.015
Multiple myeloma	0.756	1.298	0.531	1.116	1.157	0.282
Leukaemia	0.759	1.117	0.887	1.357	1.435	0.231

From the plot in figure 8.8 we see that some of the Swedish HRs are among the lowest ones, but not consistently throughout, though.

We can also see that the tests for interaction (different HRs between countries) are significant for all sites, liver, pancreas, lung(M), cervix uteri, prostate, kidney(M), melanoma(M), brain and multiple myeloma(F). For all these sites it is predominantly the Swedish figures that stand out as having a lower HR associated with T1D, the second table here contains the same numbers as above, but differently arranged for comparison:

•	Ser	
site	М	F
All sites	0.000	0.003
Non-sex-specific	0.000	0.023
Oesophagus	0.581	0.097
Stomach	0.347	0.373
Colon	0.990	0.326
Rectum	0.083	0.590
Colorectal	0.681	0.013
Liver	0.026	0.073
Pancreas	0.006	0.038
Lung	0.000	0.698
Melanoma of skin	0.007	0.488
Breast	NA	0.048
Cervix uteri	NA	0.043
Endometrium	NA	0.075
Ovary	NA	0.433
Prostate	0.001	NA
Testis	0.844	NA
Kidney	0.010	0.206
Bladder	0.112	0.552
Brain, CNS	0.057	0.000
Thyroid	0.833	0.941
Non-Hodgkin lymphoma	0.754	0.675
Hodgkin lymphoma	0.543	0.471
Multiple myeloma	0.777	0.532
Leukaemia	0.001	0.046

> round(ftable(Earr, row.vars=c(1,3)), 2)

aita	country	sex wh	M RR	lo	up	F RR	lo	up
All sites	DK FI SE SC AU		1.10 1.18 0.90 1.06 1.06	1.00 1.11 0.86 0.94 0.98	1.22 1.25 0.94 1.20 1.15	1.00 1.00 1.13 1.05 1.13	0.93 0.95 1.08 0.94 1.05	1.08 1.06 1.18 1.19 1.21
Non-sex-specific	Joint DK FI SE SC AU		1.01 1.20 1.30 1.06 1.14	0.98 1.08 1.21 1.00 1.00	1.04 1.33 1.39 1.11 1.30 1 31	1.07 1.16 1.08 1.18 1.26 1.31	1.04 1.05 1.00 1.11 1.07	1.10 1.29 1.16 1.25 1.48 1.48
Oesophagus	Joint DK FI SE SC		1.15 0.58 1.33 1.04 1.07	1.11 0.22 0.81 0.72 0.56	1.19 1.56 2.18 1.49 2.06	1.17 0.42 1.20 2.01 3.86	1.13 0.06 0.50 1.19 1.83	1.22 3.01 2.90 3.41 8.14
Stomach	AU Joint DK FI SE SC		1.30 1.08 0.72 1.49 1.21 0.85	0.68 0.85 0.32 1.11 0.95 0.35	2.50 1.37 1.60 1.98 1.55 2.06	1.96 1.79 2.65 1.84 1.47 1.51	0.63 1.25 1.55 1.39 1.07 0.56	6.09 2.56 4.51 2.43 2.02 4 04
Colon	AU Joint DK FI SE		1.15 1.23 1.30 1.23 1.26	0.65 1.04 0.88 0.95 1.08	2.03 1.46 1.92 1.60 1.46	2.28 1.78 0.73 1.14 1.10	1.32 1.49 0.45 0.90 0.92	3.93 2.13 1.19 1.46 1.32
Rectum	SC AU Joint DK FI SE SC		1.19 NA 1.25 0.90 1.31 0.83 1.19	0.75 NA 1.11 0.52 0.98 0.67 0.71	1.88 NA 1.41 1.55 1.75 1.02 1.97	0.86 NA 1.06 0.82 1.17 0.91 0.85	0.45 NA 0.93 0.44 0.86 0.71 0.38	1.66 NA 1.22 1.53 1.59 1.18 1.90

	AU	NA	NA	NA	NA	NA	NA
	Joint	0.96	0.82	1.12	0.97	0.81	1.17
Colorectal	DK	1.13	0.83	1.55	0.76	0.52	1.12
	FI	1.26	1.04	1.54	1.15	0.95	1.40
	SE	1.07	0.95	1.21	1.03	0.89	1.20
	SC	1.20	0.85	1.68	0.86	0.52	1.44
	AU	1.20	0.95	1.52	1.54	1.21	1.95
	Joint	1.14	1.04	1.24	1.09	0.99	1.21
Liver	DK	2.12	1.10	4.11	2.52	1.12	5.69
	FI	2.64	1.88	3.71	1.05	0.52	2.11
	SE	1.45	1.07	1.95	1.23	0.77	1.99
	SC	3.49	1.97	6.17	2.89	0.93	9.04
	AU	2.35	1.52	3.66	3.51	1.75	7.05
	Joint	2.00	1.67	2.40	1.55	1.14	2.10
Pancreas	DK	1.84	1.10	3.07	1.37	0.71	2.65
	FI	1.89	1.44	2.47	1.58	1.16	2.16
	SE	1.08	0.82	1.42	0.84	0.59	1.20
	SC	1.50	0.71	3.15	1.95	0.81	4.71
	AU	2.55	1.68	3.88	1.96	1.05	3.66
	Joint	1.53	1.30	1.79	1.25	1.02	1.53
Lung	DK	1.27	0.92	1.74	1.00	0.73	1.38
0	FI	1.22	1.02	1.46	1.15	0.89	1.49
	SE	0.79	0.67	0.94	1.01	0.85	1.20
	SC	1.42	1.02	1.96	1.14	0.73	1.79
	AU	1.45	1.10	1.92	1.32	0.92	1.89
	Joint	1.06	0.96	1.17	1.07	0.95	1.21
Melanoma of skin	DK	0.50	0.32	0.76	0.69	0.53	0.89
	FI	1.16	0.90	1.50	0.86	0.66	1.11
	SE	0.92	0.77	1.10	0.80	0.66	0.97
	SC	0.94	0.57	1.54	0.69	0.42	1.15
	AU	1.03	0.86	1.25	0.91	0.75	1.12
	Joint	0.94	0.84	1.05	0.81	0.73	0.90
Breast	DK	NA	NA	NA	0.74	0.64	0.86
	FI	NA	NA	NA	0.88	0.81	0.96
	SE	NA	NA	NA	0.95	0.89	1.03
	SC	NA	NA	NA	0.91	0.75	1.11
	AU	NA	NA	NA	0.90	0.79	1.03
	Joint	NA	NA	NA	0.90	0.85	0.94
Cervix uteri	DK	NA	NA	NA	0.85	0.64	1.13
	FI	NA	NA	NA	0.99	0.72	1.38
	SE	NA	NA	NA	1.13	0.91	1.40
	SC	NA	NA	NA	0.71	0.42	1.20
	AU	NA	NA	NA	0.54	0.32	0.90
	Joint	NA	NA	NA	0.92	0.80	1.06
Endometrium	DK	NA	NA	NA	2.25	1.65	3.09
	FI	NA	NA	NA	1.28	1.05	1.57
	SE	NA	NA	NA	1.37	1.16	1.60
	SC	NA	NA	NA	1.42	0.80	2.50
	AU	NA	NA	NA	1.49	1.05	2.12
	Joint	NA	NA	NA	1.42	1.27	1.58
Ovary	DK	NA	NA	NA	1.02	0.69	1.51
-	FI	NA	NA	NA	1.16	0.93	1.45
	SE	NA	NA	NA	1.19	0.99	1.44
	SC	NA	NA	NA	0.75	0.41	1.35
	AU	NA	NA	NA	1.40	0.95	2.08
	Joint	NA	NA	NA	1.15	1.02	1.30
Prostate	DK	0.53	0.30	0.93	NA	NA	NA
	FI	0.79	0.67	0.92	NA	NA	NA
	SE	0.51	0.46	0.56	NA	NA	NA
	SC	0.53	0.29	0.96	NA	NA	NA
	AU	0.48	0.36	0.65	NA	NA	NA
	Joint	0.56	0.51	0.61	NA	NA	NA
Testis	DK	0.78	0.56	1.07	NA	NA	NA
IESCIS	FI	0.89	0.59	1.34	NA	NA	NA
	SE	0.98	0.76	1.28	NA	NA	NA
	SC	0.88	0.56	1.36	NA	NA	NA

Kidney	AU	0.82	0.55	1.21	NA	NA	NA
	Joint	0.88	0.75	1.02	NA	NA	NA
	DK	1.65	1.09	2.50	2.27	1.36	3.80
	FI	1.75	1.37	2.22	1.68	1.26	2.24
	SE	0.96	0.75	1.23	1.17	0.85	1.61
	SC	1.49	0.88	2.51	1.01	0.38	2.71
Bladder	AU	1.17	0.79	1.75	1.52	0.92	2.53
	Joint	1.30	1.12	1.49	1.47	1.23	1.77
	DK	0.94	0.58	1.51	0.99	0.47	2.09
	FI	1.34	1.01	1.77	1.34	0.82	2.20
	SE	0.87	0.73	1.04	0.87	0.62	1.21
	SC	0.84	0.46	1.51	1.54	0.69	3.45
Brain, CNS	AU	1.37	0.78	2.42	0.82	0.20	3.27
	Joint	0.97	0.85	1.11	1.01	0.79	1.28
	DK	1.15	0.81	1.64	1.49	1.10	2.02
	FI	0.69	0.50	0.96	0.38	0.27	0.54
	SE	0.86	0.69	1.08	1.09	0.90	1.33
	SC	1.05	0.66	1.68	1.60	1.10	2.32
Thyroid	AU	1.44	0.96	2.17	2.23	1.48	3.36
	Joint	0.92	0.80	1.06	0.97	0.85	1.11
	DK	1.14	0.51	2.56	1.64	1.13	2.36
	FI	1.28	0.80	2.03	1.54	1.27	1.87
	SE	1.01	0.61	1.69	1.45	1.10	1.91
Non-Hodgkin lymphoma	SC	1.53	0.57	4.11	1.77	1.00	3.13
	AU	1.52	0.93	2.48	1.43	1.09	1.86
	Joint	1.25	0.97	1.61	1.51	1.34	1.72
	DK	1.32	0.89	1.94	0.93	0.55	1.57
	FI	1.08	0.83	1.41	0.92	0.69	1.23
	SE	1.29	1.07	1.55	1.07	0.82	1.39
Hodgkin lymphoma	SC	1.48	0.96	2.27	1.02	0.51	2.05
	AU	1.21	0.88	1.66	1.32	0.90	1.92
	Joint	1.24	1.09	1.40	1.04	0.88	1.21
	DK	1.42	0.78	2.58	0.59	0.22	1.57
	FI	0.83	0.49	1.40	0.63	0.33	1.22
	SE	1.17	0.75	1.82	0.82	0.43	1.58
Multiple myeloma	SC	NA	NA	NA	NA	NA	NA
	AU	1.24	0.69	2.25	0.27	0.07	1.08
	Joint	1.11	0.85	1.44	0.61	0.41	0.91
	DK	0.99	0.37	2.65	1.50	0.62	3.63
	FI	1.35	0.80	2.29	0.79	0.39	1.58
	SE	0.86	0.58	1.26	0.72	0.42	1.25
Leukaemia	SC AU Joint DK FI SE	1.01 1.03 0.99 1.02 1.39 0.61	0.33 0.46 0.76 0.60 1.01	3.15 2.29 1.30 1.73 1.91 0.84	0.00 0.56 0.77 1.43 1.30 0.76	0.00 0.14 0.53 0.87 0.92 0.53	Inf 2.26 1.12 2.35 1.83 1 10
	SC AU Joint	1.47 NA 0.92	0.44 0.85 NA 0.76	2.53 NA 1.12	1.81 NA 1.10	0.94 NA 0.89	1.10 3.50 NA 1.36

8.5 Age-interactions

Since T1D is the dominant type of diabetes in younger ages, those at risk below age 30, 35 or 20 are less likely to be T2D cases, and it might therefore be expected that the cancer pattern is very different for persons in these age-classes. However the number of cases for specific types of cancer is tiny among the T1D population. Note the fishy behaviour of **xtabs** — the 0s for Scotland and Australia is because the Hodgkin lymphomas are missing for Scotland and Leukaemias are missing for Australia, and therefore must be resurrected separately and added in the appropriate place of the array:

> 10 > 11	pad(file = ls()	"/data/Al	LLana.Rda")	
	name	mode	class	size
1	aa	numeric	table matrix	10 5
2	aa0	numeric	table matrix	10 5
3	af	numeric	table array	85 6 2
4	Af	numeric	table array	85 6 2
5	a.kn	numeric	numeric	8
6	all.ana	list	data.frame	95859 35
7	a.pt	numeric	integer	61
8	AU.an	list	data.frame	10454 35
9	au.ana	list	data.frame	14759 34
10	au.ca	character	character	41
11	au.wh	numeric	integer	21
12	b0.i	list	glm lm	30
13	b0.j	list	glm lm	30
14	bHR	numeric	matrix	6 3
15	CA	numeric	matrix	61 5
16	ca.all	list	data.frame	7159 4
17	ca.ind	list	data.frame	9149 4
18	c.au	numeric	integer	1
19	cclr	character	character	5
20	c.dk	numeric	integer	1
21	c.fi	numeric	integer	1
22	CI	numeric	matrix	5 10
23	ci2p	function	function	1
24	CM	numeric	matrix	1 2
25	cn	character	character	1
26	conv	list	data.frame	42 3
27	C.SC	numeric	integer	1
28	c.se	numeric	integer	1
29	dd	numeric	matrix	7 1
30	df	numeric	table array	962
31	DK.an	list	data.frame	15816 35
32	dk.ana	list	data.frame	15877 33
33	dk.ca	character	character	41
34	dk.wh	numeric	integer	24
35	dn	character	character	25
36	dy	numeric	table array	10 5 3
37	Earr	numeric	array	25 2 6 3
38	f00.a	list	glm lm	30
39	f00.i	list	glm lm	30
40	f00.j	list	glm lm	30
41	f0.a	list	glm lm	30
42	f0.i	list	glm lm	30
43	f0.j	list	glm lm	30
44	FI.an	list	data.frame	30538 35
45	fi.ana	list	data.frame	30538 51
46	fi.ca	character	character	41
47	fi.wh	numeric	integer	40
48	frr.a	numeric	matrix	61 3
49	frr.c	numeric	matrix	61 3
50	HR.f	numeric	matrix	63
51	HR.m	numeric	matrix	63
52	i	numeric	integer	1
53	ia.kn	numeric	numeric	4
54	ic	numeric	integer	1
55	it	numeric	integer	1
56	j	numeric	integer	1
57	lcnt	character	character	5
58	m00.a	list	glm lm	30
59	m00.i	list	glm lm	30
60	m00.j	list	glm lm	30
61	m0.a	list	glm lm	30
62	mO.i	list	glm lm	30
63	mO.j	list	glm lm	30

64	M.au	numeric	matrix	10454 13
65	MB	numeric	matrix	95859 73
66	MB.f	numeric	matrix	48031 73
67	MB.m	numeric	matrix	47828 73
68	M.dk	numeric	matrix	15816 14
69	M fi	numeric	matrix	30538 18
70	mfD	numeric	matrix	00000 IO
70	III1 P	numeric .	matrix	20 0
/1	mm	numeric	matrix	95859 25
72	MM	numeric	matrix	13 5
73	mrr.a	numeric	matrix	61 3
74	mrr.c	numeric	matrix	61 3
75	M.sc	numeric	matrix	14706 12
76	Mise	numeric	matrix	24345 16
77	nont	numoric	vtaba tablo	5
70		numeric		0
70	p.au	numeric	numeric	2
79	p.ak	numeric	numeric	3
80	pf	numeric	table array	41 6 2
81	Pf	numeric	table array	41 6 2
82	p.fi	numeric	numeric	5
83	qq	numeric	array	2 6 18
84	D.SC	numeric	numeric	2
85	n se	numeric	numeric	4
86	p. 50	numoric	intogor	1
00	I.du	numeric	THLEBET	1
87	r.ak	numeric	integer	1
88	r.11	numeric	integer	1
89	rg	numeric	numeric	1
90	rhs	numeric	numeric	1
91	rnam	function	function	1
92	rrF	character	character	25
93	rrM	character	character	25
94	rsc	numeric	integer	1
05	1.5C	numeric	integer	1
90	1.50	fumeric	Threger	1
96	S.all	IUNCTION	TUNCTION	1
97	SC.an	list	data.frame	14706 35
98	sc.ana	list	data.frame	14910 50
99	sc.ca	character	character	41
100	sc.wh	numeric	integer	40
101	SE.an	list	data.frame	24345 35
102	se ana	list	data frame	25226 48
103	50. C2	character	character	Δ0220 IC
100	se.ca	numoric	integer	20
104	Se.wii	fumeric	Threger	1
105	S.ml	IUNCTION	TUNCTION	1
106	snam	character	character	23
107	swpct	function	function	1
108	Tarr	numeric	array	25 2 4
109	tclr	character	character	5
110	tt	numeric	arrav	23 5 2
111	ТТ	numeric	matrix	25 13
112	varg	character	character	33
112	var 5	character	character	25
110	V11			20
114	wa	numeric	numeric	5
115	wh	numeric	integer	1
116	what	character	character	2
117	wh.ca	character	character	25
118	which.ctrib	character	character	41
119	wi	numeric	numeric	7
120	xb0_i	list	σlm lm	30
101	vh0 i	ligt	alm lm	30
100		numoric	5-m -m motriv	63
102		numeric	mauria	7
123	XCT	numeric	numeric	
124		cnaracter	cnaracter	0
1')5	xclr			0
120	xclr xcnt	character	character	6
125	xclr xcnt xf0.i	character list	character glm lm	6 30
125 126 127	xclr xcnt xf0.i xf0.j	character list list	character glm lm glm lm	6 30 30
123 126 127 128	xclr xcnt xf0.i xf0.j xHR.f	character list list numeric	character glm lm glm lm matrix	6 30 30 6 3

```
130 xli
                numeric numeric
                                        2
                        glm lm
131 xm0.i
                list
                                        30
                         _
glm lm
132 xm0.j
                list
                                        30
133 xtn
                character character
                                        2
                                       25
134 у
                numeric numeric
135 yli
               numeric numeric
                                      2
136 ypi
137 YY
               numeric numeric
                                       1
               numeric matrix
                                      2 13
> tt <- xtabs( cbind(All=d0,
            "non-Hogkin"=d36,
+
                 Hodgkin=d37,
+
+
               Leukaemia=d40
            "PY (1000s) "=y0/1000) ~ I(floor(A/5)*5) + Cnt,
               data = subset( all.ana, A<30 & T1=="T1DM" ) )</pre>
> str( tt )
 xtabs [1:6, 1:5, 1:5] 0 2 2 7 14 45 4 6 10 17 ...
 - attr(*, "dimnames")=List of 3
  ..$ I(floor(A/5) * 5): chr [1:6] "0" "5" "10" "15"
                       : chr [1:5] "DK" "FI" "SE" "SC" .
  ..$ Cnt
                                                        . . .
                       : chr [1:5] "All" "non-Hogkin" "Hodgkin" "Leukaemia" ...
  ..$
 - attr(*, "class")= chr [1:2] "xtabs" "table"
 - attr(*, "call")= language xtabs(formula = cbind(All = d0, `non-Hogkin` = d36, Hodgkin = d37, Leuk
> sc <- xtabs( cbind(All=d0,</pre>
            "non-Hogkin"=d36,
+
               Leukaemia=d40,
            "PY (1000s)"=y0/1000) ~ I(floor(A/5)*5) + Cnt,
+
               data = subset( all.ana, A<30 & T1=="T1DM" ) )</pre>
+
> au <- xtabs( cbind(All=d0,</pre>
            "non-Hogkin"=d36,
+
+
                Hodgkin=d37,
+
            "PY (1000s)"=y0/1000) ~ I(floor(A/5)*5) + Cnt,
               data = subset( all.ana, A<30 & T1=="T1DM" ) )</pre>
> dimnames(tt)
$`I(floor(A/5) * 5)`
[1] "0" "5" "10" "15" "20" "25"
$Cnt
[1] "DK" "FI" "SE" "SC" "AU"
[[3]]
[1] "All"
                 "non-Hogkin" "Hodgkin" "Leukaemia" "PY (1000s)"
> dimnames(sc)
$`I(floor(A/5) * 5)`
[1] "0" "5" "10" "15" "20" "25"
$Cnt
[1] "DK" "FI" "SE" "SC" "AU"
[[3]]
[1] "All"
                 "non-Hogkin" "Leukaemia" "PY (1000s)"
> dimnames(tt[,,-3])
$`I(floor(A/5) * 5)`
[1] "0" "5" "10" "15" "20" "25"
$Cnt
[1] "DK" "FI" "SE" "SC" "AU"
[[3]]
[1] "All"
                 "non-Hogkin" "Leukaemia" "PY (1000s)"
> tt[,"SC",-3] <- sc[,"SC",]
> dimnames(au)[[3]]
[1] "All"
                 "non-Hogkin" "Hodgkin"
                                            "PY (1000s)"
> dimnames(tt[,,-4])[[3]]
[1] "All"
                 "non-Hogkin" "Hodgkin"
                                            "PY (1000s)"
```

```
> tt[,"AU",-4] <- au[,"AU",]
> sum.0.20 <- function(x) sum(x[1:4])</pre>
> tt <- addmargins( tt, 1:2, FUN=list(list(sum.0.20,sum),sum) )</pre>
Margins computed over dimensions
in the following order:
1: I(floor(A/5) * 5)
2: Cnt
> ftable( round( tt[,,-5]
                                ), row.vars=c(3,1) )
                                  Cnt DK
                                           FI
                                                 SE
                                                     SC
                                                          AU sum
            I(floor(A/5) * 5)
A11
            0
                                         0
                                             4
                                                  3
                                                       1
                                                           1
                                                                9
            5
                                         2
                                             6
                                                  5
                                                      1
                                                           4
                                                               18
            10
                                         2
                                            10
                                                 14
                                                       3
                                                          10
                                                               39
            15
                                        7
                                            17
                                                 14
                                                       7
                                                          10
                                                               55
                                                      7
            20
                                       14
                                            35
                                                 30
                                                          22 108
             25
                                       45
                                            47
                                                 68
                                                      18
                                                          42
                                                              220
            sum.0.20
                                       11
                                            37
                                                 36
                                                      12
                                                          25
                                                             121
                                       70
                                           119
                                                134
                                                     37
                                                          89
                                                             449
            sum
non-Hogkin 0
                                        0
                                             2
                                                  1
                                                      0
                                                           0
                                                                3
                                        0
                                             0
                                                      0
                                                           0
             5
                                                  1
                                                                1
             10
                                        0
                                             0
                                                  3
                                                      0
                                                           0
                                                                3
             15
                                         0
                                             0
                                                  1
                                                       2
                                                           1
                                                                4
            20
                                                  0
                                                                6
                                         1
                                             3
                                                       1
                                                           1
             25
                                                       2
                                        1
                                             3
                                                  2
                                                           2
                                                               10
            sum.0.20
                                         0
                                             2
                                                  6
                                                       2
                                                           1
                                                               11
                                        2
                                                      5
                                             8
                                                  8
                                                           4
                                                               27
            sum
Hodgkin
                                         0
                                                       0
                                                           0
             0
                                             0
                                                  0
                                                                0
            5
                                         0
                                             0
                                                  0
                                                      0
                                                           1
                                                                1
                                         2
             10
                                             0
                                                  0
                                                       0
                                                           2
                                                                4
                                         0
             15
                                             5
                                                  2
                                                       0
                                                           1
                                                                8
                                             3
                                                  2
                                                       0
             20
                                         1
                                                           0
                                                                6
             25
                                         4
                                             2
                                                  3
                                                       0
                                                           1
                                                               10
                                         2
                                             5
                                                  2
            sum.0.20
                                                       0
                                                           4
                                                               13
                                         7
                                                  7
                                                           5
                                                               29
                                            10
                                                      0
            sum
Leukaemia
                                         0
                                                  0
                                                                2
            0
                                             1
                                                       1
                                                           0
                                         0
             5
                                             4
                                                  2
                                                      0
                                                           0
                                                                6
                                         0
             10
                                             3
                                                  4
                                                       2
                                                           0
                                                                9
             15
                                         0
                                             4
                                                  3
                                                       1
                                                           0
                                                                8
                                                  2
                                                                7
            20
                                         1
                                             4
                                                       0
                                                           0
            25
                                             2
                                                  2
                                                       3
                                                                8
                                         1
                                                           0
                                         0
                                            12
                                                  9
                                                           0
            sum.0.20
                                                       4
                                                               25
                                         2
                                            18
                                                 13
                                                       7
                                                           0
                                                               40
            sum
>
           round( tt[,, 5], 1)
                   Cnt
I(floor(A/5) * 5)
                        DK
                               FI
                                      SE
                                             SC
                                                    AU
                                                           sum
                                     6.7
                                                   3.4
          0
                       1.9
                              9.1
                                            1.9
                                                          23.0
          5
                       7.7
                             35.2
                                    28.1
                                            9.1
                                                  15.1
                                                          95.2
          10
                      15.3
                             61.3
                                    54.3
                                           19.0
                                                  30.3
                                                         180.3
                      23.3
                             77.3
                                    73.9
          15
                                           25.2
                                                  39.8
                                                         239.5
          20
                      32.0
                            87.8
                                    84.2
                                           29.1
                                                  43.5
                                                         276.6
          25
                      49.5 112.5 101.3
                                           34.3
                                                  51.3
                                                         348.8
          sum.0.20
                     48.2 183.0 162.9
                                          55.2
                                                 88.7
                                                         538.0
                     129.6 383.3 348.4 118.6 183.5 1163.4
          SIIM
```

Thus we see that the total number of cancers among T1D patients under age 20 is a mere 121 and under 30, 449 cancers. If we focus on lymphomas and leukaemias we see that we have 11 Hodgkin, 13 non-Hodgkin and 25 Leukaemias in the total study. These numbers are very small and unlikely to provide any information on the interaction with age.

However the question raised by a reviewer about a special (different?) effect of T1D on cancer occurrence among persons under 20 is really a special case of an interaction with age (at follow-up). Thus, logically, what would be of interest is analysis of interactions between diabetes status and other variables; that is whether and in particular how the HR

between T1D and the general population varies with age (at follow-up) and duration of diabetes. The latter is already addressed in a separate analysis, whereas the former is assumed to be absent without further justification. As is the interaction between T1D status and other variables such as calendar time.

Figure 8.1: Distribution of cancer cases (top 5 rows) and person-years (in 1000s, bottom 5 rows) among T1D patients in the analysis. Note that only the x-axes of are identical across countries; the y-axis scales are different.

Figure 8.2: Lexis diagram with a dot for each cancer case in T1D patients by age and date at diagnosis of cancer.

Figure 8.3: Lexis diagrams for the single countries, showing the cancer occurrences by date and age at diagnosis of cancer.

Figure 8.4: HR of any cancer for men (blue) and women (red), separately for each country, and jointly. There is a strong inhomogeneity between countries for men, but not for women (P=

Figure 8.5: Age-interaction of the T1D associated HR relative to the population; blue lines are men, red women. The dotted lines indicate the estimated HRs from the model without interaction.

Figure 8.6: *HR* of the non-sex-specific cancers for men (blue) and women (red), separately for each country, and jointly. There is a strong inhomogeneity between countries for men, but not for women (P=

Figure 8.7: Age-interaction of the T1D associated HR for non-sex-specific cancers relative to the population; blue lines are men, red women. The dotted lines indicate the estimate HRs from the model without interaction.

Figure 8.8: *HR of different cancers from the joint analysis (thick, full color), and the interaction with country (thin, pale color, ordered bottom-up as: DK, FI, SE, SC, AU).*

Figure 8.9: HR of different cancers from the joint analysis.

8.6 Analysis by diabetes duration

The models used for this are quite similar to those used above, the difference is that the dataset used is a bit smaller and that the exposure is on several levels, namely the duration groups.

First we reload the analysis dataset and subset it to the patients with known duration of DM:

```
> library( Epi )
> library( splines )
  options( width=90 )
>
  clear()
>
  load( file = "../data/ALLana.Rda" )
>
> 11s()
  name
           mode
                      class
                                  size
1 all.ana list
                      data.frame 95859 35
2
  conv
           list
                      data.frame 42 3
3
  wh.ca
           character character
                                  25
   DM.sum <- function(x) sum(x[-1])</pre>
>
>
  Dur.sum <- function(x) sum(x[-c(1,length(x))])</pre>
 round(ftable(addmargins(xtabs(cbind(All.Ca=d0, PYears=y0/1000) ~ DMdur + sex, data=all.ana)
>
+
                                margin=1:2,
+
                                FUN=list(list(Dur.sum,DM.sum,sum),sum ) ),
                   col.vars=3:2 ) )
Margins computed over dimensions
in the following order:
1: DMdur
2: sex
              All.Ca
                                         PYears
                             F
                                                       F
         sex
                    Μ
                                    sum
                                               М
                                                              sum
DMdur
NoDM
             1754141 1586500 3340641
                                         383045
                                                  390712
                                                           773757
0
                   98
                           158
                                    256
                                             92
                                                      95
                                                              187
1
                   57
                           77
                                    134
                                             94
                                                       96
                                                              190
2
                           256
                  153
                                    409
                                             259
                                                      264
                                                              523
5
                  349
                           477
                                    826
                                             353
                                                      352
                                                              705
10
                  374
                           564
                                   938
                                             264
                                                      255
                                                              519
15
                 1340
                                  2991
                                                              919
                          1651
                                             465
                                                      454
                 1090
                                  2238
30
                         1148
                                             160
                                                      155
                                                              315
Unkn
                  579
                           778
                                  1357
                                             287
                                                     288
                                                              575
                 3461
                                           1688
                         4331
                                  7792
                                                    1670
                                                             3358
Dur.sum
                 4040
                                  9149
DM.sum
                         5109
                                            1975
                                                    1958
                                                             3933
             1758181 1591609 3349790
                                                  392670
                                                           777690
sum
                                         385020
> # Cases and person years per year of F.U.
>
 round(ftable(xx <- addmargins(xtabs(cbind(All.Ca=d0, PYears=y0/1000) ~ DMdur + Cnt, data=all
+
                                margin=1:2.
                                FUN=list(list(Dur.sum,DM.sum,sum),sum ) ),
                   col.vars=3:2 ) )
+
Margins computed over dimensions
in the following order:
1: DMdur
2: Cnt
              All.Ca
                                                                    PYears
         Cnt
                   DK
                           FI
                                    SE
                                             SC
                                                       AU
                                                              sum
                                                                        DK
                                                                                 FΙ
                                                                                          SE
                                                                                                   SC
                                                                                                            AU
DMdur
NoDM
              442530
                       707026
                                959456
                                         404707
                                                  826922 3340641
                                                                     95492
                                                                             198320
                                                                                      217267
                                                                                                85184
                                                                                                        177493
0
                   45
                           77
                                    86
                                             25
                                                       23
                                                              256
                                                                        35
                                                                                 73
                                                                                          54
                                                                                                    8
                                                                                                            17
                   26
                                                                                 70
                                              17
1
                           48
                                    34
                                                       9
                                                              134
                                                                        33
                                                                                          52
                                                                                                   16
                                                                                                            18
2
                                             32
                                                              409
                                                                                                            53
                   99
                           123
                                    118
                                                      37
                                                                        85
                                                                                191
                                                                                         149
                                                                                                   45
5
                                             63
                  165
                                                                                                            54
                           252
                                    287
                                                       59
                                                              826
                                                                        97
                                                                                255
                                                                                         229
                                                                                                   69
10
                  131
                           317
                                    357
                                             106
                                                       27
                                                              938
                                                                        47
                                                                                191
                                                                                         201
                                                                                                   68
                                                                                                            12
15
                   26
                          1100
                                   1498
                                             290
                                                      77
                                                             2991
                                                                         7
                                                                                330
                                                                                         448
                                                                                                  118
                                                                                                            16
30
                                                             2238
                                                                         0
                                                                                         235
                    0
                           491
                                  1682
                                               0
                                                      65
                                                                                 74
                                                                                                    0
                                                                                                             6
Unkn
                  550
                                      0
                                               0
                                                     807
                                                             1357
                                                                       240
                                                                                  0
                                                                                           0
                                                                                                    0
                                                                                                           335
                             0
```

Dur.sum DM.sum	1	492 042	2408 2408	406 406	52 52	533 533	297 1104	779 914)2 19	304 545	1185 1185	1369 1369	324 324	176 511
sum	443	572 7	709434	96351	405	240	828026	334979	90 96	5037	199505	218636	85508	178004
> print.	table(r	ound(xx[,,1]/xx[,	,2], 2	?),	na.prin	t=".")	1					
	Cnt													
DMdur	DK	FI	SE	SC	AU	su	m							
NoDM	4.63	3.57	4.42	4.75	4.66	4.3	2							
0	1.30	1.05	1.59	3.06	1.39	1.3	7							
1	0.78	0.68	0.65	1.08	0.50	0.7	1							
2	1.17	0.64	0.79	0.71	0.70	0.78	8							
5	1.69	0.99	1.25	0.91	1.10	1.1	7							
10	2.79	1.66	1.77	1.56	2.17	1.8	1							
15	3.59	3.34	3.34	2.46	4.77	3.2	5							
30		6.63	7.17		10.26	7.1	1							
Unkn	2.29				2.41	2.3	6							
Dur.su	m 1.62	2.03	2.97	1.64	1.69	2.3	2							
DM.sum	1.91	2.03	2.97	1.64	2.16	2.3	3							
sum	4.62	3.56	4.41	4.74	4.65	4.3	1							

We then restrict the dataset to those where DMdur is not Unkn

```
> all.ana <- transform( subset( all.ana, DMdur != "Unkn" ),</pre>
                          T1D = factor(T1D),
+
                        DMdur = factor( DMdur ) )
+
> # A lot of bells and whistles to get nicely formatted numbers in the table
 suppressWarnings( noquote( formatC(
>
  addmargins(xtabs(d0 ~ sex + T1D, data = all.ana),
+
+
               margin=1:2,
               FUN=list(sum,list(DM.sum,sum)), quiet=TRUE ),
+
            format="f", digits=0, big.mark=",", width=6 ) ) )
+
     T1D
sex
      NoDM
                 30
                         35
                                 40
                                         DM.sum sum
                  1,266
                            733 1,462
                                          3,461 1,757,602
      1,754,141
  М
                                 1,396
  F
      1,586,500
                  1,894 1,041
                                         4,331 1,590,831
  sum 3,340,641 3,160 1,774 2,858 7,792 3,348,433
> ftable( xtabs( d0 ~ DMdur + Cnt + T1D, data = all.ana ),
           col.vars=1 )
+
                              0
                                             2
          DMdur
                  NoDM
                                     1
                                                     5
                                                            10
                                                                    15
                                                                           30
Cnt T1D
                442530
DK
   NoDM
                              0
                                     0
                                             0
                                                     0
                                                            0
                                                                    0
                                                                            0
    30
                      0
                              9
                                     4
                                            24
                                                    39
                                                            29
                                                                            0
                                                                    8
    35
                      0
                                     7
                              9
                                            21
                                                    37
                                                            45
                                                                    5
                                                                            0
    40
                      0
                             27
                                    15
                                            54
                                                    89
                                                            57
                                                                    13
                                                                            0
FI
                707026
                             0
                                                                            0
    NoDM
                                     0
                                             0
                                                     0
                                                            0
                                                                    0
    30
                      0
                             25
                                    10
                                            30
                                                    62
                                                            64
                                                                  402
                                                                          272
    35
                      0
                             14
                                    16
                                                    59
                                                            92
                                                                  293
                                                                          103
                                            35
    40
                      0
                             38
                                    22
                                            58
                                                   131
                                                           161
                                                                  405
                                                                          116
SE
    NoDM
                959456
                             0
                                     0
                                             0
                                                     0
                                                             0
                                                                    0
                                                                            0
                             27
                                                    73
                                                                  490
                                                                         1154
    30
                                     9
                                            32
                                                            93
                      0
    35
                      0
                             19
                                     9
                                            27
                                                    67
                                                            95
                                                                  386
                                                                          239
    40
                      0
                             40
                                    16
                                            59
                                                   147
                                                           169
                                                                  622
                                                                          289
SC
                404707
                              0
    NoDM
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                            0
    30
                      0
                              7
                                     6
                                             8
                                                    16
                                                            37
                                                                  113
                                                                            0
    35
                      0
                             7
                                                            24
                                                                            0
                                     4
                                             4
                                                    13
                                                                   72
                                     7
    40
                      0
                                            20
                                                    34
                                                            45
                                                                   105
                                                                            0
                             11
AU
    NoDM
                826922
                             0
                                     0
                                             0
                                                     0
                                                             0
                                                                    0
                                                                            0
                            17
                                            19
    30
                      0
                                     3
                                                    19
                                                             3
                                                                   21
                                                                           35
    35
                      0
                              5
                                     1
                                             6
                                                    18
                                                             6
                                                                    22
                                                                           14
                                     5
                                            12
                                                                   34
                      0
                                                    22
    40
                              1
                                                            18
                                                                           16
```

With this reduced dataset we can now do the analyses of all cancers by duration of diabetes. We only do the analyses for the major sites, that is those with more than 240 cases among DM patients of either sex:

```
> wh <- names(all.ana)[which( substr(names(all.ana),1,1)=="d" )]</pre>
> ad <- all.ana[all.ana$T1D!="NoDM",c("sex","DMdur",wh)]</pre>
> ( nc <- xtabs( as.matrix(ad[,-(1:2)]) ~ ad$sex ) )</pre>
         d0
               d6
                     d7
                          d9 d10 d11
                                          d13 d16 d18
                                                            d19
                                                                  d20
                                                                        d22
                                                                             d24
                                                                                   d25
                                                                                         d27
                                                                                               d28
ad$sex
     M 3052
                47
                          239
                               133
                                                                        0
                                                                                         139
                                                                                              178
                                      81
                                          112
                                                 265
                                                       6
                                                             0
                                                                  0
                                                                             492
                                                                                   101
                    115
     F 3910
                19
                     95
                          191
                                      30
                                            74
                                                 198 1335
                                                            149
                                                                  266
                                                                        207
                                102
                                                                                0
                                                                                     0
                                                                                          96
                                                                                                56
ad$sex d29
              d32
                                d37
                                     d38
                                           d40
                                                 d52
                    d33
                          d36
                                                      d00
                     36
                          174
                                 43
                                            83
                                                 372 2458
     М
         191
               131
                                      42
     F
              158
                    173
                          109
                                 22
                                      24
                                            68
                                                293 1987
        197
> # Those with more than 135 in the sex with most PLUS liver and pancreas
> wh <- c( colnames(nc)[apply( nc, 2, max )>135], "d11","d13" )
> wh <- conv[match(wh,conv$NCnam),]</pre>
                                           ; dim(wh)
        3
[1] 18
> xcl <- match(c("Colon", "Rectum"), wh$Clab)</pre>
> xcl <- xcl[!is.na(xcl)]</pre>
> wh <- wh[-xcl,] ; dim(wh)</pre>
[1] 17
        3
> res.var <- wh[, "NCnam"]</pre>
> res.nam <- wh[,"Clab"]</pre>
> res.nam[grep("Cerv",res.nam)] <- "Cervix"
> res.nam[grep("Corp",res.nam)] <- "Endometrium"
> res.nam[grep("Mela",res.nam)] <- "Melanoma"</pre>
> nc <- nc[,res.var]</pre>
> data.frame( res.var, res.nam, t(nc), wh )
                                       М
                                              F DKnam NCnam
                                                                                 Clab
    res.var
                            res.nam
                          All sites 3052 3910
                                                    d0
d0
          d0
                                                           d0
                                                                           All sites
d16
         d16
                               Lung 265
                                           198
                                                   d33
                                                          d16
                                                                                 Lung
d18
         d18
                             Breast
                                         6 1335
                                                   d70
                                                          d18
                                                                               Breast
d19
                                            149
                                                                        Cervix uteri
         d19
                             Cervix
                                         0
                                                   d82
                                                          d19
                                                                        Corpus uteri
d20
         d20
                        Endometrium
                                         0
                                            266
                                                   d83
                                                          d20
d22
         d22
                              Ovary
                                         0
                                            207
                                                   d84
                                                          d22
                                                                                Ovary
d24
                                      492
                                                   d91
                                                                            Prostate
         d24
                           Prostate
                                             0
                                                          d24
d27
                                      139
                                                  d101
                                                                               Kidney
         d27
                             Kidney
                                             96
                                                          d27
         d28
                                      178
d28
                            Bladder
                                             56
                                                  d103
                                                          d28
                                                                             Bladder
d29
         d29
                           Melanoma
                                      191
                                            197
                                                   d51
                                                          d29
                                                                   Melanoma of skin
d32
         d32
                         Brain, CNS
                                      131
                                            158
                                                  d113
                                                          d32
                                                                          Brain, CNS
                                                          d33
d33
         d33
                            Thyroid
                                       36
                                            173
                                                  d121
                                                                             Thyroid
d36
         d36 Non-Hodgkin lymphoma
                                      174
                                            109
                                                  d132
                                                          d36 Non-Hodgkin lymphoma
d52
         d52
                         Colorectal
                                       372
                                            293
                                                  d251
                                                          d52
                                                                          Colorectal
                  Non-sex-specific 2458 1987
d00
         00b
                                                          d00
                                                                   Non-sex-specific
                                       81
                                              30
                                                   d26
d11
         d11
                              Liver
                                                          d11
                                                                                Liver
                                             74
                                                   d28
                                                          d13
d13
         d13
                           Pancreas
                                      112
                                                                            Pancreas
```

With this selection of sites we can inspect the availability of cancer cases by duration:

```
> dur.cases <- xtabs( as.matrix(ad[,res.var]) ~ DMdur + sex, data=ad )</pre>
> dimnames( dur.cases )[[3]] <- res.nam
> ftable( dur.cases, row.vars=3:2, zero.print="." )
                            DMdur NoDM
                                             0
                                                        2
                                                              5
                                                                   10
                                                                        15
                                                                              30
                                                  1
                        sex
                                                            349
All sites
                        М
                                       0
                                            98
                                                 57
                                                      153
                                                                 374 1340 1090
                        F
                                       0
                                          158
                                                 77
                                                      256
                                                            477
                                                                  564 1651 1148
                        М
                                       0
                                            1
                                                  0
                                                        5
                                                             30
                                                                   36
                                                                       159
                                                                              86
Lung
                        F
                                       0
                                             4
                                                  1
                                                        3
                                                             10
                                                                   10
                                                                       112
                                                                              83
Breast
                        М
                                       0
                                             0
                                                  0
                                                        0
                                                              0
                                                                   1
                                                                          3
                                                                               3
                        F
                                       0
                                            16
                                                 18
                                                       68
                                                            135
                                                                  193
                                                                       609
                                                                             430
Cervix
                        М
                                       0
                                             0
                                                  0
                                                        0
                                                              0
                                                                   0
                                                                               0
                                                                         0
                        F
                                       0
                                             9
                                                       19
                                                             37
                                                                   30
                                                                        52
                                                                              13
                                                  4
Endometrium
                        М
                                       0
                                             0
                                                  0
                                                        0
                                                              0
                                                                    0
                                                                          0
                                                                               0
                        F
                                       0
                                                  2
                                                             29
                                                                              92
                                            11
                                                       15
                                                                   37
                                                                        97
Ovary
                        М
                                       0
                                             0
                                                  0
                                                        0
                                                              0
                                                                   0
                                                                         0
                                                                               0
                        F
                                       0
                                             5
                                                  2
                                                       20
                                                             28
                                                                   34
                                                                        83
                                                                              53
                                                  0
Prostate
                        М
                                       0
                                                              5
                                                                       177
                                                                             319
                                             0
                                                        1
                                                                   15
                        F
                                       0
                                             0
                                                  0
                                                        0
                                                              0
                                                                    0
                                                                         1
                                                                               0
```

Kidney	М	0	4	3	4	21	28	71	29
u u u u u u u u u u u u u u u u u u u	F	0	2	2	8	9	18	47	17
Bladder	М	0	4	2	4	16	17	83	72
	F	0	3	0	2	9	4	20	26
Melanoma	М	0	6	4	10	31	32	86	60
	F	0	6	6	23	33	41	62	51
Brain, CNS	М	0	14	5	12	25	23	46	27
	F	0	17	13	14	33	22	61	32
Thyroid	М	0	4	1	5	11	7	12	5
-	F	0	16	9	20	42	37	57	20
Non-Hodgkin lymphoma	М	0	11	6	13	22	29	65	60
	F	0	3	0	10	10	22	49	27
Colorectal	М	0	9	3	13	35	33	162	165
	F	0	7	2	7	21	33	135	113
Non-sex-specific	М	0	96	47	131	322	334	1121	764
-	F	0	117	53	138	251	274	825	569
Liver	М	0	2	1	1	9	13	50	21
	F	0	0	0	4	3	7	13	9
Pancreas	М	0	13	3	7	14	5	60	29
	F	0	9	0	2	6	10	31	25

As before we set up the splines etc.

```
> a.kn <- seq(10,80,,8)
> # Period knots
> p.dk <- seq(1996,2011,,3)
> p.fi <- seq(1975,2007,,5)
> p.se <- seq(1988,2007,,4)
> p.sc <- seq(1996,2010,,2)
> p.au <- seq(1997,2007,,2)
> # Cohort knots
> c.dk <- seq(1920,1985,,5)
> c.fi <- seq(1900,1985,,7)
> c.se <- seq(1910,1985,,6)
> c.sc <- seq(1920,1985,,4)
> c.au <- seq(1920,1985,,5)</pre>
```

With these knots for the splines we can set up the design matrices for the baseline-effects for each county:

```
> rnam <- function(M,pre){colnames(M)<-paste(pre,colnames(M),sep="");M}</pre>
> # Denmark
> M.dk <- with( DK.an <- subset(all.ana,Cnt=="DK"),</pre>
           +
+
               rnam( Ns(P-A,knots=c.dk)
                                             "C.dk." )))
+
> # Finland
> M.fi <- with( FI.an <- subset(all.ana,Cnt=="FI"),
           +
                                            , "C.fi." )))
               rnam( Ns(P-A,knots=c.fi)
+
> # Sweden
> M.se <- with( SE.an <- subset(all.ana,Cnt=="SE"),</pre>
           +
                                  , "P.se." ),
+
                                            , "C.se." )))
               rnam( Ns(P-A,knots=c.se)
> # Scotland
> M.sc <- with( SC.an <- subset(all.ana,Cnt=="SC"),</pre>
           , "C.sc." )))
               rnam( Ns(P-A,knots=c.sc)
> # Australia
> M.au <- with( AU.an <- subset(all.ana,Cnt=="AU"),</pre>
           +
+
                                            , "C.au." )))
+
               rnam( Ns(P-A,knots=c.au)
```

```
> # Overview
> addmargins( rbind( DK=dim(M.dk),
+
                      FI=dim(M.fi),
                      SE=dim(M.se),
+
+
                      SC=dim(M.sc),
                      AU=dim(M.au) ), margin=1 )
+
     [,1] [,2]
DK
    10089
            14
FI
    30538
            18
SE
    24345
            16
   14706
SC
            12
AU
    8097
            13
Sum 87775
            73
```

With these model matrices in place we can now set up the total model matrix for the baseline rates, basically putting the 5 model matrices diagonally as sub-matrices surrounded by 0s:

```
> c.dk <- ncol(M.dk) ; r.dk <- nrow(M.dk)</pre>
> c.fi <- ncol(M.fi) ; r.fi <- nrow(M.fi)</pre>
> c.se <- ncol(M.se) ; r.se <- nrow(M.se)</pre>
> c.sc <- ncol(M.sc) ; r.sc <- nrow(M.sc)</pre>
> c.au <- ncol(M.au) ; r.au <- nrow(M.au)</pre>
                                         M.dk, matrix(0,r.dk,c.fi+c.se+c.sc+c.au) ),
> MB <- rbind( cbind(</pre>
                cbind( matrix(0,r.fi,c.dk), M.fi, matrix(0,r.fi,c.se+c.sc+c.au) ),
                cbind( matrix(0,r.se,c.dk+c.fi), M.se, matrix(0,r.se,c.sc+c.au) ),
+
                cbind( matrix(0,r.sc,c.dk+c.fi+c.se), M.sc, matrix(0,r.sc,c.au) ),
+
+
                cbind( matrix(0,r.au,c.dk+c.fi+c.se+c.sc), M.au
                                                                                       )
                                                                                         )
> dim( MB )
[1] 87775
              73
> colnames( MB ) <- c( colnames(M.dk),</pre>
                         colnames(M.fi),
+
                         colnames(M.se),
+
                         colnames(M.sc),
+
                         colnames(M.au) )
```

Since we have the base model matrix set up as one, but ultimately we will be doing analyses by sex, so we must also have it available subdivided by sex:

```
> MB.m <- MB[all.ana$sex=="M",]
> MB.f <- MB[all.ana$sex=="F",]</pre>
```

8.6.1 Statistical models

In order to do the analyses for all cancers and the 13 sub-sites chosen we set up an array to hold the results:

```
> Edrr <- NArray( list( site = res.var,</pre>
                          sex = levels( all.ana$sex ),
                      country = c(levels( all.ana$Cnt ), "Joint"),
+
                          dur = levels( all.ana$DMdur )[-1],
wh = c("HR","lo","up") ))
+
> Tdrr <- NArray( c( dimnames(Edrr)[1:2],</pre>
                      list(wh = c("Chisq", "P", "conv S", "conv J"))))
> str( Edrr )
logi [1:17, 1:2, 1:6, 1:7, 1:3] NA NA NA NA NA NA ...
  attr(*, "dimnames")=List of 5
            : chr [1:17] "d0" "d16" "d18" "d19" ...
  ..$ site
             : chr [1:2] "M" "F"
  ..$ sex
  ..$ country: chr [1:6] "DK" "FI" "SE" "SC" ...
  ..$ dur : chr [1:7] "0" "1" "2" "5" ...
             : chr [1:3] "HR" "lo" "up"
  ..$ wh
```

```
> str( Tdrr )
logi [1:17, 1:2, 1:4] NA NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 3
   ..$ site: chr [1:17] "d0" "d16" "d18" "d19" ...
   ..$ sex : chr [1:2] "M" "F"
   ..$ wh : chr [1:4] "Chisq" "P" "conv S" "conv J"
```

With these arrays in place we can fit models for each site separately in a loop over the rest of the cancer sites; note that we now use y instead of y0 in the offset expression:

```
> id <- dimnames(Edrr)[[1]][1]</pre>
> for( id in dimnames(Edrr)[[1]] )
+
+ cat( id, format( Sys.time(), format="%H:%M:%S" ), "\n" )
+ flush.console()
+ all.ana$D <- all.ana[,id]
+ m0.i <- glm( D ~ MB.m + Cnt + DMdur:Cnt,</pre>
                 family = poisson,
                 offset = log(if(id=="d0") y0 else y),
+
                   data = subset(all.ana,sex=="M") )
+ m0.j <- update( m0.i, . ~ . - DMdur:Cnt + DMdur )
+ f0.i <- glm( D ~ MB.f + Cnt + DMdur:Cnt,
                 family = poisson,
                 offset = log(if(id=="d0") y0 else y),
                   data = subset(all.ana,sex=="F") )
+ f0.j <- update( f0.i, . ~ . - DMdur:Cnt + DMdur )
+ # Test for homogeneity
+ Tdrr[id,"M",] <- c( as.numeric( anova( m0.j, m0.i, test="Chisq" )[2,4:5] ),
                         m0.i$converged, m0.j$converged )
+ Tdrr[id,"F",] <- c( as.numeric( anova( f0.j, f0.i, test="Chisq" )[2,4:5] ),
                         f0.i$converged, f0.j$converged )
+
+ # HR estimates
+ for( cnt in levels(all.ana$Cnt) )
+
+ Edrr[id, "M", cnt,,] <- ci.exp( m0.i, subint=c("DMdur", cnt) )
+ Edrr[id, "F", cnt,,] <- ci.exp( f0.i, subint=c("DMdur", cnt) )
+
     }
+ Edrr[id,"M","Joint",,] <- ci.exp( m0.j, subset="DMdur" )
+ Edrr[id,"F","Joint",,] <- ci.exp( f0.j, subset="DMdur" )</pre>
+ cat( id, format( Sys.time(), format="%H:%M:%S" ), "\n" )
+ flush.console()
      7
d0 19:12:10
d0 19:12:29
d16 19:12:29
d16 19:13:11
d18 19:13:11
d18 19:14:00
d19 19:14:00
d19 19:14:52
d20 19:14:52
d20 19:15:44
d22 19:15:44
d22 19:16:34
d24 19:16:34
d24 19:17:28
d27 19:17:28
d27 19:18:07
d28 19:18:07
d28 19:18:50
d29 19:18:50
d29 19:19:28
d32 19:19:28
d32 19:20:04
d33 19:20:04
d33 19:20:41
```

```
d36 19:20:41
d36 19:21:22
d52 19:21:22
d52 19:22:00
d00 19:22:00
d00 19:22:19
d11 19:22:19
d11 19:23:02
d13 19:23:02
d13 19:23:48
> Tdrr["d18","M",] <- NA
> Tdrr["d19","M",] <- NA
> Tdrr["d20","M",] <- NA</pre>
> Tdrr["d22","M",] <- NA
> Tdrr["d24", "F",] <- NA
> round( ftable( Tdrr[,,] ), 3 )
                       P conv S conv J
         wh Chisq
site sex
d0
    М
            56.225 0.001
                            1.000 1.000
     F
            65.053
                     0.000
                            1.000
                                    1.000
d16 M
                    0.427
            26.668
                            1.000
                                    1,000
            23.478
     F
                    0.606
                            1.000
                                    1.000
d18 M
                NA
                        NA
                               NA
                                       NA
                    0.751
            20.818
                            1.000
                                    1.000
     F
d19
     М
                NA
                        NA
                               NA
                                       NA
                                    1.000
            40.092
                    0.038
                            1.000
     F
d20
     М
                NA
                      NA
                              NA
                                       NA
     F
            31.904
                    0.196
                            1.000
                                    1.000
d22
    М
                NA
                       NA
                               NA
                                       NA
     F
            33.241
                     0.155
                            1.000
                                    1.000
d24
    М
            36.670
                    0.080
                            1.000
                                    1.000
     F
                               NA
                                       ΝA
                NA
                        NA
d27
    М
            34.435
                     0.124
                            1.000
                                    1.000
     F
            25.787
                     0.475
                            1.000
                                   1.000
                            1.000
d28
     М
            37.871
                     0.062
                                    1.000
     F
            24.075
                     0.572
                            1.000
                                    1.000
d29
    М
            21.951
                     0.691
                            1.000
                                    1.000
            28.617
                     0.329
                            1.000
     F
                                    1.000
d32
    М
            43.507
                     0.017
                            1.000
                                   1.000
     F
            81.518
                     0.000
                            1.000
                                    1.000
d33
     М
            29.809
                     0.276
                            1.000
                                    1.000
                     0.073
            37.111
     F
                            1.000
                                    1.000
            26.303
d36 M
                     0.447
                            1.000
                                    1.000
     F
            35.345
                    0.104
                            1.000
                                   1.000
d52
                            1.000
    М
            25.453
                     0.493
                                   1.000
            34.288
                     0.128
                            1.000
     F
                                    1.000
d00
            38.326
                            1.000
    Μ
                    0.056
                                    1.000
     F
            59.598
                    0.000 1.000
                                   1.000
d11 M
            25.328 0.500 1.000 1.000
                    0.874 1.000 1.000
     F
            18.051
                            1.000
d13
     М
            33.130
                     0.158
                                    1.000
     F
            25.717
                     0.479
                            1.000
                                    1.000
> save( Edrr, Tdrr, file="../data/ArrD.Rda" )
> load( file="../data/ArrD.Rda" )
> dimnames( Edrr )[[1]] <- res.nam</pre>
> str( Edrr )
num [1:17, 1:2, 1:6, 1:7, 1:3] 1.75 3.43 9.06e-08 2.17e+03 2.17e+03 ...
- attr(*, "dimnames")=List of 5
  ..$ site
            : chr [1:17] "All sites" "Lung" "Breast" "Cervix" ...
             : chr [1:2] "M" "F"
  ..$ sex
  ..$ country: chr [1:6] "DK" "FI" "SE" "SC" ...
  ..$ dur : chr [1:7] "0" "1" "2" "5" ...
             : chr [1:3] "HR" "lo" "up"
  ..$ wh
```

> str(Tdrr)										
num [1:17, 1:2, 1:	4] 56.2 26	.7 NA	NA NA							
- attr(*, "dimname	es")=List o	f 3								
\$ site: chr [1:17] "d0" "d16" "d18" "d19"										
\$ sex : chr [1:	2] "M" "F"	וו ווסוו	comer C							
φ WII : CIII [1:	4] CHISQ	P		100	IV J	7	< NT A			
<pre>> Earr[c("Breast"," > Edrr["Prostate" </pre>	"Cervix","E "F"] <-	naomet NA	rium",	"Uvary	<i>т")</i> , "М"	,,,]	$\langle -NA$			
<pre>> Edrr <- ifelse()</pre>	Edrr>10^2	 Edrr<	10^-4.	NA. H	Edrr)					
<pre>> round(ftable(Ed</pre>	drr[,,"Join	t",,],	row.v	ars=c	(1,3))	, 2)				
	sex	М			F					
	wh	HR	lo	up	HR	lo	up			
site	dur	0 00	4 07	0 70	0.04	~ ~ ~	0 74			
All sites	0	2.28	1.87	2.78	2.34	2.00	2.74			
	2	1.23	0.91	1.25	1.03	0.92	1.17			
	5	1.34	1.20	1.49	1.01	0.93	1.11			
	10	1.24	1.12	1.37	1.12	1.03	1.22			
	15	1.02	0.97	1.07	1.03	0.99	1.09			
Lung	30	0.81	0.76	0.86	1.07	1.01	1.14			
Lung	1	0.99 NA	0.14 NA	7.00 NA	4.59 0.94	0.13	6.68			
	2	0.98	0.41	2.36	0.69	0.22	2.14			
	5	2.02	1.41	2.90	0.81	0.43	1.50			
	10	1.43	1.03	1.99	0.53	0.28	0.98			
	15	1.20	1.02	1.40	1.26	1.04	1.51 1.22			
Breast	0	NA	NA NA	NA	0.89	0.54	1.45			
	1	NA	NA	NA	0.84	0.53	1.33			
	2	NA	NA	NA	0.83	0.66	1.06			
	5	NA	NA	NA	0.72	0.61	0.86			
	10				0.87	0.76	1.01			
	30	NA	NA	NA	1.08	0.98	1.19			
Cervix	0	NA	NA	NA	1.19	0.62	2.29			
	1	NA	NA	NA	0.50	0.19	1.32			
	2	NA NA	NA	NA	0.80	0.51	1.26			
	10	NA NA	NΑ	NΑ	1 16	0.78	1.50			
	15	NA	NA	NA	1.04	0.79	1.37			
	30	NA	NA	NA	0.67	0.39	1.15			
Endometrium	0	NA	NA	NA	13.67	7.54	24.78			
	1				2.11	0.53	8.45 6 71			
	5	NA	NA	NA	2.85	1.98	4.10			
	10	NA	NA	NA	2.20	1.59	3.04			
	15	NA	NA	NA	1.05	0.86	1.28			
0	30	NA	NA	NA	1.17	0.95	1.43			
Uvary	0				1.89	0.79	4.54			
	2	NA	NA	NA	1.98	1.28	3.07			
	5	NA	NA	NA	1.35	0.93	1.96			
	10	NA	NA	NA	1.39	0.99	1.94			
	15	NA	NA	NA	1.03	0.83	1.27			
Prostate	30	ΝA NA	ΝA NA	NA NA	1.05 NA	0.80 NA	1.38 NA			
TIOSUAUC	1	NA	NA	NA	NA	NA	NA			
	2	1.00	0.14	7.11	NA	NA	NA			
	5	0.76	0.32	1.82	NA	NA	NA			
	10	0.65	0.39	1.07	NA	NA	NA			
	15 30	0.52	0.45	0.66	NA NΔ	NA NΔ	NA NΔ			
Kidney	0	3.65	1.37	9.75	2.82	0.70	11.27			
·	1	2.42	0.78	7.51	2.60	0.65	10.39			
	2	0.91	0.34	2.43	3.11	1.55	6.24			
	5	2.07	1.35	3.18	1.67	0.87	3.22			

	10	2.09	1.44	3.03	2.68	1.68	4.25
	15	1.40	1.11	1.77	1.65	1.24	2.20
	30	0.71	0.49	1.03	0.72	0.45	1.16
Bladder	0	3.98	1.49	10.63	8.39	2.70	26.14
	1	1.72	0.43	6.87	NA	NA	NA
	2	0.96	0.36	2.57	1.38	0.35	5.54
	5	1.62	0.99	2.64	2.77	1.44	5.34
	10	1.16	0.72	1.87	0.89	0.33	2.37
	15	1.12	0.90	1.39	0.89	0.58	1.38
N 7	30	0.76	0.60	0.96	1.00	0.68	1.47
Melanoma	0	1.08	0.48	2.40	0.63	0.28	1.40
	1	0.05	0.24	1.73	0.58	0.20	1.29
	5	0.51	0.20	1 30	0.71	0.47	0.80
	10	1 04	0.03	1 47	0.03	0.40	1 31
	15	1 01	0.74	1 25	0.57	0.71	0.87
	30	0.93	0.02	1 20	0.00	0.00	1 28
Brain, CNS	0	2.63	1.55	4.44	2.84	1.77	4.57
brain, one	1	0.90	0.37	2.16	2.07	1.20	3.57
	2	0.74	0.42	1.31	0.75	0.45	1.27
	5	0.97	0.65	1.43	1.11	0.79	1.57
	10	0.93	0.62	1.41	0.78	0.52	1.19
	15	0.73	0.55	0.98	0.77	0.60	0.99
	30	0.77	0.53	1.12	0.77	0.54	1.09
Thyroid	0	3.56	1.33	9.48	3.29	2.01	5.38
	1	0.83	0.12	5.89	1.77	0.92	3.41
	2	1.35	0.56	3.26	1.30	0.84	2.02
	5	1.82	1.01	3.29	1.73	1.28	2.34
	10	1.31	0.63	2.76	1.85	1.34	2.56
	15	0.96	0.54	1.69	1.34	1.03	1.74
	30	0.77	0.32	1.85	1.29	0.83	2.00
Non-Hodgkin lymphoma	0	3.60	1.99	6.50	1.48	0.48	4.59
	1	1.81	0.81	4.03	NA	NA	NA
	2	1.26	0.73	2.17	1.45	0.78	2.70
	5	1.20	0.79	1.82	0.80	0.43	1.49
	10	1.49	1.04	2.15	1.65	1.09	2.51
	15	1.05	0.82	1.34	1.02	0.77	1.35
Colore et al	30	1.20	0.93	1.55	0.76	0.52	1.10
Colorectal	0	3.00	2.00	2 47	2.82	1.34	5.93 0 0E
	1	1.12	0.30	0.41	0.71	0.10	2.00
	2	1 60	1 15	2.04	0.70	0.33	1.47
	10	1 11	0 70	1 56	1 10	0.02	1.40
	15	1 14	0.75	1 33	1 15	0.04	1 36
	30	1 00	0.86	1 16	0 95	0.79	1 14
Non-sex-specific	0	2.81	2.30	3.43	3.01	2.51	3.61
non on opeenie	1	1.26	0.95	1.68	1.28	0.98	1.67
	2	1.11	0.93	1.31	1.07	0.90	1.26
	5	1.44	1.29	1.61	1.12	0.99	1.27
	10	1.30	1.16	1.44	1.22	1.09	1.38
	15	1.16	1.09	1.23	1.11	1.04	1.19
	30	0.85	0.79	0.91	0.94	0.87	1.02
Liver	0	6.39	1.59	25.60	NA	NA	NA
	1	2.92	0.41	20.78	NA	NA	NA
	2	0.87	0.12	6.16	4.91	1.83	13.14
	5	3.33	1.73	6.42	1.84	0.59	5.71
	10	3.23	1.87	5.57	3.48	1.65	7.32
	15	2.51	1.90	3.31	1.44	0.84	2.49
D	30	1.00	0.65	1.53	0.93	0.48	1.79
Pancreas	0	33.80	19.50	58.57	29.53	15.22	57.28
	1	6.43	2.07	19.99	NA 1 47	NA 0 27	NA F OO
	2	3.81	1.81	ð.U1	1.4/	0.31	5.88
	0 10	2.00	1.09	4.04	1 0/	1 04	3.03
	15	1 60	1 21	1.01 0.17	1 10	1.04	1 50
	30	U 83 T'00	1.31	∠.⊥/ 1 10	1.12	0.19	1 20
	00	0.00	0.00	1.19	0.07	0.03	1.23

T1D and cancer

> #	As 3	laid (fta	out in the	e ESM: [c(14	2 10	12 8)	"Ioint		row wars=c	(23))	2)				
~ 1	ouna	(Ita			2,10,	12, 0/,, T	501110	,,], <u>1</u>	Malamama	(2,0))	, 2) T	h		,	V
		site	Colorecta		1	Lung	7 -		Melanoma	7	1.	nyroid	1.		Kidne
		wn	1	HK	10 I	ир нк	LC LC	up up	HR	10	up	HR	10	up	h
sex	dur		0	05 0	~~ 7	44 0 00	0.44	F 00	4 . 0.0	0 10	0 40	0 50	4 00	0 40	
Μ	0		3.8	85 2.	00 7.4	41 0.99	0.14	. 7.00	1.08	0.48	2.40	3.56	1.33	9.48	3.6
	1		1.1	12 0.	36 3.4	47 NA	NA	. NA	0.65	0.24	1.73	0.83	0.12	5.89	2.4
	2		1.3	36 0.	79 2.3	34 0.98	0.41	2.36	0.51	0.28	0.95	1.35	0.56	3.26	0.9
	5		1.0	60 1.	15 2.1	23 2.02	1.41	2.90	0.93	0.65	1.32	1.82	1.01	3.29	2.0
	10		1.3	11 0.	79 1.	56 1.43	1.03	1.99	1.04	0.74	1.47	1.31	0.63	2.76	2.0
	15		1.3	14 0.	98 1.3	33 1.20	1.02	1.40	1.01	0.82	1.25	0.96	0.54	1.69	1.4
	30		1.0	00 0.	86 1.3	16 0.65	0.53	0.81	0.93	0.72	1.20	0.77	0.32	1.85	0.7
F	0		2.8	82 1.	34 5.9	93 4.59	1.72	12.24	0.63	0.28	1.40	3.29	2.01	5.38	2.8
	1		0.	71 0.	18 2.8	85 0.94	0.13	6.68	0.58	0.26	1.29	1.77	0.92	3.41	2.6
	2		0.	70 0.	33 1.4	47 0.69	0.22	2.14	0.71	0.47	1.07	1.30	0.84	2.02	3.1
	5		0.9	94 0.	62 1.4	45 0.81	0.43	1.50	0.63	0.45	0.89	1.73	1.28	2.34	1.6
	10		1.1	19 0	84 1.0	67 0.53	0.28	0.98	0.97	0.71	1.31	1.85	1.34	2.56	2.6
	15		1	15 0	97 1	36 1 26	1 04	. 1 51	0.68	0.53	0 87	1 34	1 03	1 74	1 6
	30		0.9	10 0. 95 0	70 1	1/ 0 98	0 70	1 22	0.00	0.00	1 28	1 20	0.83	2 00	0.7
	50		0	50 0.	13 1.	14 0.90	0.13	. 7	0.90	0.14	1.20	1.23	0.05	2.00	0.7
> r	ound	(fta	ble(Edrr	Lc(9,	11,13,	16,17),,	"Joint	:",,], 1	row.vars=c	(2,3))	,2)				
		site	Bladder]	Brain, C	NS		Non-Hodg	gkin ly	mphoma			Liver	
		wh	HR	10	up		HR	lo u	ιp		- HR	lo	up	HR	10
sex	dur				-				-				-		
М	0		3.98	1.49	10.63	2.	63 1.	55 4.4	4		3.60	1.99	6.50	6.39	1.59
	1		1.72	0.43	6.87	0.	90 0.	37 2.1	6		1.81	0.81	4.03	2.92	0.41
	2		0.96	0.36	2.57	0.	74 0	42 1.3	31		1.26	0.73	2.17	0.87	0.12
	5		1 62	0 99	2 64	0	97 0	65 1 4	13		1 20	0 79	1 82	3 33	1 79
	10		1 16	0.00	1 97	0.	03 N	60 1.4	1		1 /0	1 0/	2 15	3 23	1 97
	15		1 10	0.72	1 20	0.	33 U. 72 O		10		1.49	0.02	1 2/	0.20 0.51	1 00
	15		1.12	0.90	1.39	0.	73 0.		20		1.05	0.02	1.34	2.51	1.90
-	30		0.76	0.60	0.90	0.	11 0.	53 1.1	. Z		1.20	0.93	1.55	1.00	0.05
F	0		8.39	2.70	26.14	2.	84 1.	11 4.5			1.48	0.48	4.59	NA	IN F
	1		NA	NA	NA	2.	07 1.	20 3.5			NA	NA	NA	NA	NA
	2		1.38	0.35	5.54	0.	75 0.	45 1.2	27		1.45	0.78	2.70	4.91	1.83
	5		2.77	1.44	5.34	1.	11 0.	79 1.5	57		0.80	0.43	1.49	1.84	0.59
	10		0.89	0.33	2.37	0.	78 0.	52 1.1	.9		1.65	1.09	2.51	3.48	1.65
	15		0.89	0.58	1.38	0.	77 0.	60 0.9	9		1.02	0.77	1.35	1.44	0.84
	30		1.00	0.68	1.47	0.	77 0.	54 1.0)9		0.76	0.52	1.10	0.93	0.48
> r	ound	(fta	ble(Edrr	[c(7)]	3. 5.	4, 6),	".Joint	"	ow.vars=c	(2,3))	. 2)				
			Dreatete	20()	., .,	Proset	001110	,,,,, - T	'ndomotriu	(_, c, , , , , , , , , , , , , , , , , ,	, _ /	Comuin			0
		site	Prostate			Breast	7	E	naometriu			Cervix	1.		Uvar
		wn	HR	10	o up	HR	10	up	H.	K IO	up	HR	10	up	E
sex	dur														
М	0		NA	NA	NA NA	NA	NA	NA	N	A NA	NA	NA	NA	NA	N
	1		NA	NA	NA NA	NA	NA	NA	N.	A NA	NA	NA	NA	NA	N
	2		1.00	0.14	7.11	NA	NA	NA	N	A NA	NA	NA	NA	NA	N
	5		0.76	0.32	1.82	NA	NA	NA	N	A NA	NA	NA	NA	NA	N
	10		0.65	0.39	1.07	NA	NA	NA	N	A NA	NA	NA	NA	NA	N
	15		0.52	0.45	0.60	NA	NA	NA	N	A NA	NA	NA	NA	NA	N
	30		0.59	0.53	0.66	NA	NA	NA	N	A NA	NA	NA	NA	NA	N
F	0		NA	NA	NA	0.89	0.54	1.45	13.6	7 7.54	24.78	1.19	0.62	2.29	1.8
	1		NA	NA	NA	0.84	0.53	1.33	2.1	1 0.53	8.45	0.50	0.19	1.32	0.6
	2		NA	NA	NA	0.83	0.66	1.06	4.0	3 2.43	6.71	0.80	0.51	1.26	1.0
	5		NΔ	NΔ	NΔ	0 72	0.61	0.86	2 8	5 1 98	4 10	1 08	0 78	1 50	1 9
	10		M V	ΝΛ	NA	0 87	0 76	1 01	2.0	0 1 50	3 04	1 16	0 81	1 66	1 9
	15		N A	N M		0.07	0.70	1.01	1 0	5 <u>1.09</u> 5 <u>0</u> 86	1 20	1 04	0.01	1 27	1 0
	30 TO			A IV		1 00	0.01	1 10	1 1		1 19	1.04	0.19	1 1 5	1.0
	50		IN A	A VI		T.00	0.30	1.13	1.1	1 0.30	1.40	0.07	0.09	т.то	(

We then plot the results for men and women separately, showing the differences between countries;

```
> dmid <- c(0.5,1.5,3.5,7.5,12.5,22.5,35)
> clr <- c("red","blue","orange","limegreen","maroon","black")
> pclr <- rgb( t(col2rgb( clr )*2/3 + 255/3), max=255 )
> pclr[6] <- "black"
> pl.site <-
+ function( wh = 2:5,  # Which sites to plot</pre>
```

```
# How many rows
             nr = 4.
            cnt = TRUE, # Country-specific HRs
ann = TRUE, # Annotate with sex and site
+
+
+
             yl = c(0.1, 10))
+
     ſ
 par( mfrow=c(nr,2),
+
        mar=c(2,0,1,1), mgp=c(3,1,0)/1.6, oma=c(1,3,3,0),
+ las=1, bty="n" )
+ if( !cnt ) clr[1:5] <- pclr[1:5] <- "transparent"
+ for( tp in dimnames(Edrr)[[1]][wh] )
+ for( sx in c("M", "F") )
+ # If Cervix, Endometrium or Ovary, plot a blank for men
+ # If Breast, dont plot one for men, assuming that prostate is taken just
+ # before breast.
+ if( sx=="M" & tp %in% c("Cervix", "Endometrium", "Ovary") )
      plot(NA,xlab="",ylab="", xaxt="n",yaxt="n",
+
                                   xlim=0:1,ylim=0:1 )
  if( !(sx=="M" & tp=="Breast"
                                       ) &
+
       !(sx=="M" & tp=="Cervix"
                                        ) &
+
       !(sx=="M" & tp=="Endometrium") &
+
       !(sx=="M" & tp=="Ovary"
                                  ) &
       !(sx=="F" & tp=="Prostate"
                                        ))
+
+ plot( NA, xlim=c(0,35), ylim=yl*(1+(tp=="Endometrium")*1.5),
+ ylab="", xlab="", log="y", yaxs="i", yaxt="n")
+ abline( h=c(2:15/10,2:10), col=gray(0.9) )
+ abline( h=1 )
+ if(sx=="M" | tp %in% c("Endometrium","Cervix","Ovary")) axis( side=2 )
+ matlines( dmid, cbind( Edrr[tp,sx,"DK",,],
+ Edrr[tp,sx,"FI",,],
                            Edrr[tp,sx,"SE",,],
+
                            Edrr[tp,sx,"SC",,],
+
                            Edrr[tp,sx,"AU",,],
+
             Edrr[tp,sx,"Joint",,] ),
type=c("o","l","l"), lty=1,
lwd=c(rep(c(2,1,1),5),c(4,2,2)),
+
+
+
             pch=16, cex=0.7, log="y", col=rep(clr,each=3))
+
  if( ann ) text( 35, y1[2], tp, adj=c(1,1), font=2 )
+
        7
        7
+
+ mtext( "Time since diagnosis of diabetes (years)", side=1, outer=TRUE,
          line=0, cex=if(nr>2) 0.8 else 1.0 )
+ mtext( "HR of cancer; T1D vs population", side=2, outer=TRUE, line=2,
+
          las=0, cex=if(nr>2) 0.8 else 1.0 )
+ if( ann ){
+ mtext( "Men" , side=3, outer=TRUE, line=-0.5, at=0.25 )
+ mtext( "Women", side=3, outer=TRUE, line=-0.5, at=0.75 ) }
+ mtext( "Men"
+ if( cnt )
+ for( i in 1:6 ) mtext( dimnames(Edrr)[[3]][i], col=clr[i], at=i/7, font=2,
                              side=3, outer=TRUE, line=1.5, las=0 )
+ }
> pl.site(wh=c(14,2,10,12),nr=4,cnt=FALSE,yl=c(0.2,5))
> pl.site(wh=c(8,9,11,13),nr=4,cnt=FALSE,yl=c(0.2,5))
> pl.site(wh=c(7,3,4,5,6),nr=4,cnt=FALSE,yl=c(0.2,5))
> pl.site(wh=16:17,nr=2,cnt=FALSE,yl=c(0.2,10))
> pl.site(wh=1,nr=1,yl=c(0.5,4))
```


Figure 8.10: HR of major cancers by duration of DM.

> pl.site(wh=1,nr=1,cnt=FALSE,yl=c(0.8,3))

```
> pl.site(wh=1,nr=1,cnt=FALSE,ann=FALSE,yl=c(0.8,3))
> mtext( c("a)","b)"), at=c(5,55)/100, outer=TRUE, cex=1.5, font=2 )
> pl.site(wh=1,nr=1,cnt=FALSE,ann=FALSE,yl=c(0.8,3))
> mtext( c("a)","b)"), at=c(5,55)/100, outer=TRUE, cex=1.5, font=2 )
> axis( side=2 )
```

```
> pl.site(wh=15,nr=1,yl=c(0.5,4))
```


Figure 8.11: HR of major cancers by duration of DM.

> pl.site(wh=15,nr=1,cnt=FALSE,yl=c(0.8,3))

From the figures 8.15, 8.14 and 8.10–8.12 we see that there is a substantial duration effect which seems to be present in all countries; formally there is heterogeneity between the 5 countries, but substantially they look quite similar with respect to time since diagnosis of DM.

It is also seen that for most specific sites there is no significant excess risk after the first few years, but that there seem to be an elevated risk of any cancer of some 20% for men during the first 15 years after diagnosis, but none among women.

Figure 8.12: HR of major cancers by duration of DM.

Figure 8.13: HR of select cancers by duration of DM.

Figure 8.14: HR of all cancers by duration of DM.

Figure 8.15: *HR of all cancers by duration of DM, separately for each country (coloured), and jointly (black curves).*

Figure 8.16: *HR of non-sex-specific cancers (all cancers but breast, cervix, endometrium, ovary, prostate and testis) by duration of DM.*

Figure 8.17: *HR of non-sex-specific cancers (all cancers but breast, cervix, endometrium, ovary, prostate and testis) by duration of DM, separately for each country (coloured), and jointly (black curves).*