Diabetes and Cancer

Bendix Carstensen Steno Diabetes Center Gentofte, Denmark http://BendixCarstensen.com

3rd Update: Diabetes and Cardiovascular Disease http://BendixCarstensen.com/3rdUpdate Roma, April 2012
Diabetes and Cancer

Two main questions:

▶ Do diabetes patients get cancer more often than non-diabetics? — cancer incidence studies
▶ Do cancer patients with diabetes die earlier than cancer patients without diabetes? — cancer survival studies
▶ Combination (ignoring the cancer diagnosis): Do diabetes patients die more frequently from cancer than non-diabetics? — cancer mortality studies
Diabetes and Cancer

Two main questions:

▶ Do diabetes patients get cancer more often than non-diabetics?
 — cancer incidence studies
Diabetes and Cancer

Two main questions:

▶ Do diabetes patients get cancer more often than non-diabetics?
 — cancer incidence studies

▶ Do cancer patients with diabetes die earlier than cancer patients without diabetes?
 — cancer survival studies
Diabetes and Cancer

Two main questions:

- Do diabetes patients get cancer more often than non-diabetics? — cancer incidence studies
- Do cancer patients with diabetes die earlier than cancer patients without diabetes? — cancer survival studies
- Combination (ignoring the cancer diagnosis): Do diabetes patients die more frequently from cancer than non-diabetics? — cancer mortality studies
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- You cannot randomize people to
 - Diabetes
 - OAD
 - Insulin
 - ...
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- You cannot randomize people to
 - Diabetes
 - OAD
 - Insulin
 - ...

- Cancer is a rare disease, so a trial with cancer as outcome must be
 - excessively large (or long)
 - confined to an extreme high-risk group
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- You cannot randomize people to
 - Diabetes
 - OAD
 - Insulin
 - ...

- Cancer is a rare disease, so a trial with cancer as outcome must be
 - excessively large (or long)
 - confined to an extreme high-risk group

So, no trials exist or will be done
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

▶ All studies are observational
▶ All studies are subject to confounding by indication
▶ There is no remedy for this
▶ What I show is therefore a description of cancer occurrence in (various groups of) diabetes patients.

▶ Causal interpretations are purely speculation.
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are observational

What I show is therefore a description of cancer occurrence in (various groups of) diabetes patients.

Causal interpretations are purely speculation.
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are **observational**
- All studies are subject to **confounding by indication**
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are **observational**
- All studies are subject to **con founding by indication**
- There is no remedy for this
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are observational
- All studies are subject to confounding by indication
- There is no remedy for this
- What I show is therefore a description of cancer occurrence in (various groups of) diabetes patients.
Diabetes and Cancer problems

How does incidence/survival/mortality depend on disease and treatment?

- All studies are **observational**
- All studies are subject to **confounding by indication**
- There is no remedy for this
- What I show is therefore a **description** of cancer occurrence in (various groups of) diabetes patients.
- Causal interpretations are purely speculation.
Cancer mortality & treatment

Bowker *et al.* [1] found for cancer mortality:

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Deaths</th>
<th>RR</th>
<th>95% c.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral antidiabetica:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td>6,969</td>
<td>245</td>
<td>1.0</td>
<td>(ref)</td>
</tr>
<tr>
<td>Sulfonylurea</td>
<td>3,340</td>
<td>162</td>
<td>1.3</td>
<td>(1.1–1.6)</td>
</tr>
<tr>
<td>Insulin use:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No insulin use</td>
<td>8,866</td>
<td>323</td>
<td>1.0</td>
<td>(ref)</td>
</tr>
<tr>
<td>Insulin use</td>
<td>1,443</td>
<td>84</td>
<td>1.9</td>
<td>(1.5–2.4)</td>
</tr>
</tbody>
</table>

This general pattern is repeatedly reported since then.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
- All based on 1–4 years of follow-up after drug initiation.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. [2, 3, 4, 5, 6].
- All based on 1–4 years of follow-up after drug initiation.
- All based on comparison of heavily selected subgroups of patients.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avensis. \([2, 3, 4, 5, 6]\).
- All based on 1–4 years of follow-up after drug initiation.
- All based on comparison of heavily selected subgroups of patients.
- Some were methodologically flawed.
The (not so) recent scare

- Diabetologia published 4 papers and an editorial in the summer 2009, pointing (weakly) to a possible promoting effect of Glargine, an insulin analog from Sanofi-Avenis. [2, 3, 4, 5, 6].
- All based on 1–4 years of follow-up after drug initiation.
- All based on comparison of heavily selected subgroups of patients.
- Some were methodologically flawed.

There is biological reason to suspect insulin/analogs for a role in cancer promotion. But evidence is weak and data are limited.
Graphical overview

Well

 DM
Graphical overview

Well ➔ Ca (W)

Well ➔ DM

DM ➔ Ca (DM)
Graphical overview

Well

DM

Ca (W) → Dead (Ca)

Ca (DM) → Dead (Ca)
Graphical overview

Well

DM

Ca (W) → Dead (Ca)

Dead (O)

Ca (DM) → Dead (Ca)

Dead (O)

DM

Ca (W) → Dead (Ca)

Dead (O)

Well

DM

Ca (DM) → Dead (Ca)

Dead (O)
Cancer survival

Well

DM

Ca (W) → Dead (Ca)

Dead (O)

Ca (DM) → Dead (Ca)

Dead (O)
Cancer mortality

Well

DM

Ca (W)
Dead (Ca)

Dead (O)

Ca (DM)
Dead (Ca)

Dead (O)
Cancer mortality

- **Well**: Dead (Ca)
 - **Ca (W)**: Dead (Ca)
 - **Dead (O)**: Dead (Ca)
- **DM**: Dead (Ca)
 - **Ca (DM)**: Dead (Ca)
 - **Dead (O)**: Dead (Ca)

Diagrams show transitions from Well to Dead (Ca) and from DM to Dead (Ca).
The Danish study

- Cancer incidence study in the total population.
The Danish study

- Cancer incidence study in the total population.
- Comparing diabetes patients with non-diabetes patients.
The Danish study

- Cancer incidence study in the total population.
- Comparing diabetes patients with non-diabetes patients.
- Outcome: Rate-ratio of cancer occurrence between DM-patients and non-DM persons in the entire population
The Danish study

- Cancer incidence study in the total population.
- Comparing diabetes patients with non-diabetes patients.
- Outcome: Rate-ratio of cancer occurrence between DM-patients and non-DM persons in the entire population
- Results broadly confirm previous findings [7, 8]
All malignant neoplasms
Oesophagus
Stomach
Colorectal cancer
Ascending colon
Transverse colon
Descending and sigmoid colon
Rectum
Liver
Pancreas
Lung, bronchus and pleura
Melanoma of skin
Breast
Cervix uteri
Corpus uteri
Ovary, fallopian tube etc.
Prostate
Testis
Kidney
Urinary bladder
Brain
Thyroid
Hodgkin's lymphoma
Non-Hodgkin lymphoma
Multiple myeloma
Leukaemia
The Danish study — overall

- All cancers: $RR = 1.2$
The Danish study — overall

- All cancers: $\text{RR} = 1.2$
- Digestive system: $\text{RR} \approx 1.2$, varying between sites
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
The Danish study — overall

- All cancers: RR = 1.2
- Digestive system: RR ≈ 1.2, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: RR = 2.8
- Lung: RR = 1.15
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{\text{Men}} = 4$, $RR_{\text{Women}} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
The Danish study — overall

- All cancers: \(RR = 1.2 \)
- Digestive system: \(RR \approx 1.2, \) varying between sites
- Liver: \(RR_{\text{Men}} = 4, \) \(RR_{\text{Women}} = 1.8 \)
- Pancreas: \(RR = 2.8 \)
- Lung: \(RR = 1.15 \)
- Endometrium: \(RR = 1.6 \)
- Kidney: \(RR = 1.7 \)
- Bladder: \(RR_{\text{Men}} = 1.2, \) \(RR_{\text{Women}} = 1.0 \)
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
- Bladder: $RR_{Men} = 1.2$, $RR_{Women} = 1.0$
- Prostate: $RR = 0.95$
The Danish study — overall

- All cancers: $RR = 1.2$
- Digestive system: $RR \approx 1.2$, varying between sites
- Liver: $RR_{Men} = 4$, $RR_{Women} = 1.8$
- Pancreas: $RR = 2.8$
- Lung: $RR = 1.15$
- Endometrium: $RR = 1.6$
- Kidney: $RR = 1.7$
- Bladder: $RR_{Men} = 1.2$, $RR_{Women} = 1.0$
- Prostate: $RR = 0.95$
- Brain, lymphomas: $RR = 1.2$
How the Danish study really was

- Well
 - DM
 - Ca (W)
 - Dead (O)
 - Ca (DM)
 - Dead (O)
 - Dead (O)
 - Dead (Ca)
How the Danish study really was

- **Well**
 - **Ca (W)** → **Dead (Ca)**
 - **Dead (O)**

- **DM**
 - **Ca (DM)** → **Dead (Ca)**
 - **Dead (O)**

- **DM+Ins**
 - **Ca (Ins)** → **Dead (Ca)**
 - **Dead (O)**
All malignant neoplasms
 Oesophagus
 Stomach
 Colorectal cancer
 Ascending colon
 Transverse colon
 Descending and sigmoid colon
 Rectum
 Liver
 Pancreas
 Lung, bronchus and pleura
 Melanoma of skin
 Breast
 Cervix uteri
 Corpus uteri
 Ovary, fallopian tube etc.
 Prostate
 Testis
 Kidney
 Urinary bladder
 Brain
 Thyroid
 Hodgkin's lymphoma
 Non–Hodgkin lymphoma
 Multiple myeloma
 Leukaemia

Light color: on insulin

M
F

15/32
Danish study

- Published in Diabetologia 2012 [9]: B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.
Danish study

- Published in Diabetologia 2012 [9]: B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:

 - Detection effects: DM and Ins
 - Non-ins user long term RR: 1.1
 - Insulin user long term RR: 1.3
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
Danish study

- Published in Diabetologia 2012 [9]: B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Duration of diabetes (time since diagnosis)
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
 - Detection effects: DM and Ins
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
 - Detection effects: DM and Ins
 - Non-ins user long term RR: 1.1
Danish study

- Published in Diabetologia 2012 [9]:
 B Carstensen, DR Witte & S Friis: Cancer occurrence in Danish diabetic patients: duration and insulin effects.

- Analyses based only on coarse data:
 - Duration of diabetes (time since diagnosis)
 - Time since insulin prescription

- Main result:
 - Detection effects: DM and Ins
 - Non-ins user long term RR: 1.1
 - Insulin user long term RR: 1.3
Questions on incidence

- Does cancer incidence vary with diabetes duration?
Questions on incidence

- Does cancer incidence vary with diabetes duration?
- Does cancer incidence vary with duration of insulin use?
Questions on incidence

- Does cancer incidence vary with diabetes duration?
- Does cancer incidence vary with duration of insulin use?
- What is the cumulative risk of cancer?
All malignant neoplasms

Rate ratio DM, DM+Ins vs No DM

Diabetes duration (years)
All malignant neoplasms

Rate ratio DM+Ins vs DM

Insulin duration (years)
Colorectal cancer

Rate ratio DM, DM+Ins vs No DM

Diabetes duration (years)
Prostate

Breast

Diabetes duration (years)

Rate ratio DM, DM+Ins vs No DM

Prostate Breast

21/32
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
- Take into account that patients die too
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
- Take into account that patients die too
- — from other causes (i.e. before they get cancer)
Cumulative risk of cancer

This is asking the question(s):

- What fraction of patients will have a cancer diagnosis within the next X years?
- Take into account that patients die too
- — from other causes (i.e. before they get cancer)
- NOTE: this also involves the mortality rates!
Cumulative risk of cancer

- Well
 - Ca (W)
 - Dead (O)
 - Dead (Ca)

- DM
 - Ca (DM)
 - Dead (O)
 - Dead (Ca)

- DM+Ins
 - Ca (Ins)
 - Dead (O)
 - Dead (Ca)
Cumulative risk of cancer

Well

DM

DM+Ins

Ca (W) → Dead (Ca)

Ca (W) → Dead (O)

Ca (DM) → Dead (Ca)

Ca (DM) → Dead (O)

Ca (Ins) → Dead (Ca)

Ca (Ins) → Dead (O)
Cumulative risk of cancer

10 year cumulative risks of cancer and death

Age at start: 60 years
Age at start: 65 years
Age at start: 70 years
Conclusion

1. Detection “bias”
Conclusion

1. Detection “bias”

2. \(\Rightarrow \) overall effects on incidence must be evaluated in the long term
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
5. Lung cancer elevated only for insulin treated.
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
5. Lung cancer elevated only for insulin treated.
6. No signal for breast cancer
Conclusion

1. Detection “bias”
2. ⇒ overall effects on incidence must evaluated in the long term
3. Colorectal, liver, pancreas, corpus uteri, kidney have elevated long-term rates.
4. Insulin treated generally higher than non-insulin treated.
5. Lung cancer elevated only for insulin treated.
6. No signal for breast cancer
7. Smaller incidence rates for prostate, more so by time.
Coarse survival study of Danish cancer patients:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
Coarse survival study of Danish cancer ppt:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
Coarse survival study of Danish cancer ptts:

► Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 ► No diabetes
 ► Diabetes, not treated with medication
Coarse survival study of Danish cancer patients:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
 - Diabetes, treated with medication other than insulin
Coarse survival study of Danish cancer ptt:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
 - Diabetes, treated with medication other than insulin
 - Diabetes, treated with insulin
Coarse survival study of Danish cancer patients:

- Subdivide all newly diagnosed cancer patients (1995–2009) by diabetes status at date of cancer diagnosis:
 - No diabetes
 - Diabetes, not treated with medication
 - Diabetes, treated with medication other than insulin
 - Diabetes, treated with insulin
- Mortality rate-ratio relative to the non-diabetic cancer patients
Mortality of (all) Danish cancer pt:

Colorectal
Liver
Pancreas
Lung
Melanoma
Breast
Cervix uteri
Endometrium
Ovary
Prostate
Kidney
Bladder

Mortality RR vs. non−DM

No med
OAD
Insulin

3633
262
1095
2877
781
3221
209
747
366
209
781
577
1661

2362
376
758
1891
373
1428
78
411
191
1428
108
577

973
237
602
1034
187
719
56
206
108
593
206
425

No med
OAD
Insulin
Interpretation

- Causality is unknown — all studies are necessarily observational
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary lifestyle, eating habits...
 - Actual effects of drugs:
 - Metformin: Inhibition of tumour growth
 - Insulin: Promotion of tumour growth
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary life style, eating habits . . .
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary lifestyle, eating habits . . .
 - Actual effects of drugs:
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary life style, eating habits . . .
 - Actual effects of drugs:
 - Metformin: Inhibition of tumour growth
Interpretation

- Causality is unknown — all studies are necessarily observational
- Possible contributing factors to excess risk:
 - Reverse causation: A latent cancer deteriorates the diabetic condition
 - Common risk factors: Obesity, sedentary lifestyle, eating habits . . .
- Actual effects of drugs:
 - Metformin: Inhibition of tumour growth
 - Insulin: Promotion of tumour growth
Conclusion

- Diabetes patients have overall 20% higher rates of cancer
- Varies dramatically by duration — highest in the beginning
- Long-term excess is 10% for ptt. not on insulin
- Long-term excess is 30% for ptt. on insulin
- Overall analyses suggest that patients on Metformin relative to SU have lower:
 - Cancer rates
 - Mortality rates
References

S.L Bowker, S.R. Majumdar, P. Veugelers, and J.A Johnson.
Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin.

Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study.

Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden.

H. M. Colhoun and the SDRN Epidemiology Group.
Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group.
C. J. Currie, C. D. Poole, and E. A. Gale.
The influence of glucose-lowering therapies on cancer risk in type 2 diabetes.

U. Smith and E. A. Gale.
Does diabetes therapy influence the risk of cancer?

Cancer risk in patients with diabetes mellitus.

Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark.

B. Carstensen, D. R. Witte, and S. Friis.
Cancer occurrence in Danish diabetic patients: duration and insulin effects.