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Chapter 1

Introduction to computing and
practicals

This short course is both theoretical and practical, that is, the aim is to convey a basic
understanding of the Bayesian framework for data analysis as well practical computing
skills in Bayesian methods. The two components of the course are supposed to support
each other.

The practicals during the week will take place in a class room, since the most convenient
way to do this part of the course will be to work on your own laptop computer. This will
ensure that useful scripts and tricks are readily available for your future exploitation.

The following is a brief overview of the software and other files you must download if you
want to use your own computer.

1.1 Software

1.1.1 Overview

In this course, we use the Markov Chain Monte Carlo (MCMC) machinery which is
implemented in various guises of BUGS. The original purpose of the software BUGS was to
use it for Bayesian inference, but in many practical circumstances it is used with flat or
(almost) non-informative prior distributions, effectively taking a likelihood-based approach
to estimation and inference.

The latter type of application is the main content of this course. The use of the software
does, however, require a basic knowledge of the Bayesian approach to statistical inference,
which is based on full probability modelling.

The data manipulation and report generation is done with R in this course, as this is the
state of the art in practical statistics. The practical workhorse for the MCMC simulations
will be the JAGS implementation http://mcmc-jags.sourceforge.net/.

In order to interact with JAGS programs, this course will use the rjags interface, which
basically throws R data structures at JAGS and sucks the results back into R, as suitable
objects for further processing. This enables you to maintain a completely reproducible
record of your initial data-manipulation (in R), estimation (in JAGS) and reporting of
results (in R).

The scripting language in JAGS is (almost) the same as for the other implementations of
BUGS.

1

http://mcmc-jags.sourceforge.net/
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In order to be able to write scripts (programs) in R and keep them for future use (and
modification for other purposes) a good editor with interface to R is convenient. Rstudio is
the answer. If you are already a user of ESS in Emacs, just forget about Rstudio.

We have decided to try using INLA (http://www.r-inla.org/) on an experimental
basis. INLA uses a fast approximation to get posterior distributions, but it only produces
marginal posteriors.

So you need R, JAGS, INLA and (possibly) Rstudio.

1.1.2 What to get

• Rstudio is available from http://rstudio.org/.

• R, version 2.15.1, get it from http://mirrors.dotsrc.org/cran/. The relevant
packages for this course are easiest installed by firing up R, and then type:

> install.packages("rjags","coda","Epi","lme4","pixmap","sp")

You will be asked to select a mirror (i.e. a server) from which to download the stuff).
coda is a package for post-processing and monitoring of MCMC-output, and Epi is a
package for epidemiology from which we will use a few handy functions.

• JAGS from http://mcmc-jags.sourceforge.net/. Download and install the
relevant version for your operating system.

• INLA from http://www.r-inla.org/download, where you will find the followinng
instructions:

Type the following command line in R:

> source("http://www.math.ntnu.no/inla/givemeINLA.R")

later on, you can upgrade using:

> inla.upgrade()

1.2 Course material

Datasets and programs for the course will all be collected in the zip file BDA2012.zip which
soon will be available at the course homepage,
http://BendixCarstensen.com/Bayes/Cph-2012/.

Download this file and unpack it in a separate folder. The resulting folder tree has the
following sub-folders:

• data — datasets for use in the practicals.

• R — example R-programs providing solutions to some of the practicals.

At the root level you should find a version of the practicals including solutions to the
exercises.

In the next two chapters with Exercises and Solutions, the section numbers (2nd
enumeration level) corresponds to each other.

http://www.r-inla.org/
http://rstudio.org/
http://mirrors.dotsrc.org/cran/
http://mcmc-jags.sourceforge.net/
http://www.r-inla.org/download
http://BendixCarstensen.com/Bayes/Cph-2012/
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1.3 Simulating data in R

One of the major uses of computers in this course is simulation, so a brief section on how
to do this in R is included here.

Start by opening R. In the following, “>” is the R-prompt, and “+” the continuation
prompt, and these should not be typed. The lines starting with “[1]”, “[8]” etc. are
output from R, that you can use to check that you got the right output. Since this is about
simulation, you will of course not get exactly the same output as shown here.

To simulate binomial variates Y ∼ Bin(N, p), the function to use is rbinom. To simulate
n = 1 observation from one experiment of size N = 10 and a probability of success p = 0.2,
try the following:

> rbinom(n=1,size=10,prob=0.4)

[1] 4

In many cases we want to make such simulations several times. To conduct the experiment,
say, 15 times we can do:

> rbinom(n=15,size=10,prob=0.2)

[1] 3 2 3 0 2 0 3 4 1 3 2 3 3 3 1

Sampling from a Bernoulli distribution (which is just a Bin(1, p)–distribution) is therefore
achieved by

> rbinom(n=15,size=1,prob=.2)

[1] 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

or simply

> rbinom(15,1,.2)

[1] 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

For more information on rbinom type ?rbinom. Similarly, random normal and Poisson
variates are generated using rnorm and rpois. For information on these, type ?rnorm or
?rpois.

If you want to take a random sample from the elements of a vector you need the function
sample. First look at the vector from 1 to 10:

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> sample( 1:10, 8, replace=T )

[1] 7 2 7 2 5 5 8 10
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Here we took a sample of 8 from the vector (1, 2, . . . , 10), with replacement. If you want a
sample without replacement, just do:

> sample( 1:10, 8 )

[1] 6 4 1 10 8 9 7 2

If you omit the second argument, you just get a permutation of the input vector:

> sample( 1:10 )

[1] 6 4 2 7 5 1 10 8 9 3

> sample( letters[1:8] )

[1] "g" "c" "d" "f" "e" "a" "b" "h"

1.4 Distributions in R

All the standard distributions are available in R; for example the probability density
function for the normal distribution is called by dnorm, the cumulative distribution is called
pnorm, the inverse of this qnorm, and a random sample from it generated by rnorm.

In general any distribution has the four functions ddist, pdist, qdist and rdist, associated
with it.

There is a function in the MASS library (which is by default included in any R-installation)
to generate random samples from a multivariate normal distribution, mvrnorm.

1.5 Using the interface to JAGS

This brief “Practice 0” is to get you familiar with the practicalities around running JAGS

from within R and making sure that the installation on your computer works. It is not a
proper exercise but meant for use as a check of your computing installation.

First you must load the rjags package, which should automatically find your JAGS
installation:

> library(rjags)

Now we choose a model that is so simple that we will know the exact form of the posterior
distribution for the parameter of interest. This way we can check that the MCMC
machinery gives numerical results that are consistent with the known theoretical posterior
distribution for that parameter.

We are going to analyze the annual number of airline fatalities using a simple Poisson
model and use this model to predict the future number of fatalities. This corresponds to
the first part of exercise 6.

First get the data and take a look at it:

> airline <- read.csv( "../data/airline.csv" )
> airline
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year1975 year fatal miles rate
1 1 1976 24 3.863 6.213
2 2 1977 25 4.300 5.814
3 3 1978 31 5.027 6.167
4 4 1979 31 5.481 5.656
5 5 1980 22 5.814 3.784
6 6 1981 21 6.033 3.481
7 7 1982 26 5.877 4.424
8 8 1983 20 6.223 3.214
9 9 1984 16 7.433 2.152
10 10 1985 22 7.107 3.096
11 11 1986 22 9.100 2.418
12 12 1987 25 10.000 2.500
13 13 1988 29 10.600 2.736
14 14 1989 29 10.988 2.639
15 15 1990 27 10.880 2.482
16 16 1991 29 10.633 2.727
17 17 1992 28 11.956 2.342
18 18 1993 33 12.343 2.674
19 19 1994 27 13.011 2.075
20 20 1995 25 14.220 1.758
21 21 1996 24 16.371 1.466
22 22 1997 26 15.483 1.679
23 23 1998 20 18.080 1.106
24 24 1999 21 16.633 1.263
25 25 2000 18 18.875 0.954
26 26 2001 13 19.233 0.676

We shall only be interested in the column fatal which contains the annual number of
fatalities. We use the following simple model to describe the number of fatalities in year i,
yi:

yi|µ ∼ Poisson(µ), µ ∼ Γ(0, 0)

The Γ(0.01, 0.01) is almost a uniform distribution on (0,+∞), (so a largely uninformative
prior that acts as an approximation to the Γ(0, 0) prior in the model specification above);
the posterior for µ will be Γ(0 +

∑
yi, 0 + n) where n is the number of observations, in this

case 26, and
∑
yi = 634:

> nrow( airline )

[1] 26

> sum( airline$fatal )

[1] 634

Since we know the posterior distribution, we can compute the mean and median of this by
simulating a sample of, say, 1000 from it:

> ( mn <- mean( xx <- rgamma( 10000, 634.01, 26.01 ) ) )

[1] 24.35343

> ( md <- median( xx ) )

[1] 24.34909

We can also draw the posterior distribution for µ, with indication of the mean and median:

> curve( dgamma( x, 634.01, 26.01 ), from=20, to=30, lwd=2 )
> abline( v=mn, col="red", lwd=3 )
> abline( v=md, col="blue" )
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1.5.1 Using JAGS via rjags

In order to run BUGS we must (i) supply the data; (ii) formulate the model as a BUGS

program; and (iii) specify how the sampling from the chains should be done.

Data The first thing to provide to JAGS is the data. This is provided in the form of a
named list, one element per data-structure (usually vector or matrix). In this case we
provide the vector of fatal airline accidents expanded with a NA for prediction of the
number in 2002, as well as the total number of observations:

> a.dat <- list( fatal = c(airline$fatal,NA), I=27 )

Program specification of model The program specifying the model (BUGS code) must
be put in a separate file which is then read by JAGS. When working in R this is most
conveniently done using the R-function cat() which behaves pretty much like
paste() with the exception that the result is not a character object but directly
written to a file you specify. If you specify file="" the output is sent to the screen.

Here is the BUGS code specifying the above model, using cat to put it in the file
m1.jag:

20 22 24 26 28 30

0.
0

0.
1

0.
2

0.
3

0.
4

x

dg
am

m
a(

x,
 6

34
.0

1,
 2

6.
01

)

Figure 1.1: The posterior distribution for mu. Mean is the red line, median the blue.
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> cat( "model
+ {
+ for( i in 1:I )
+ {
+ fatal[i] ~ dpois(mu)
+ }
+ mu ~ dgamma(0.1,0.1)
+ }",
+ file="m1.jag" )

The code refers to data points in the variable fatal which is I long. The BUGS

language is declarative, i.e. it is not executed as the program runs. Instead it is a
specification of the model structure, and after the model is set up BUGS will decide
how best to go about the MCMC-simulation. So it would not matter if the
specification of a prior of mu was put before the for statement. Also the loop is just a
compact way of writing fatal[1] dpois(mu), fatal[2] dpois(mu), fatal[3]
dpois(mu) etc.

We could have replaced I with the number 27 in the code if we wanted. In that case
the I in the data would have been superfluous. It is, however, good practice to
express model quantities as variables rather than fixed values since this makes
implementing data updates much easier.

Starting values To start the MCMC simulation we will normally supply some starting
values (in most cases JAGS will however be able to generate them). In order to be
able to monitor convergence we will normally run several chains, so we must supply
starting values for each chain. The starting values for one chain is a named list,
names are the parameters used in the model. Here we use three chains, hence the
initial values is a list of three lists. Each of these list has as elements one named value
for each parameter — in this case there is only one parameter µ, called mu in the
BUGS program:

> a.ini <- list( list( mu=20 ),
+ list( mu=23 ),
+ list( mu=26 ) )

Note that we specify a list with three elements as we intend to run 3 parallel chains.

Compiling and adapting Once these structures have been set up we ask JAGS to
compile the model and run the chains for a number of cycles (“burn-in”) so that the
model is (hopefully) in a stable state, that is, converged to sampling from a
stationary process that represents the target distribution, namely the joint posterior
distribution for the unobserved quantities (stochastic nodes) in the model. In this
case we ask for 3 chains and 2000 cycles of burn-in:

> m <- jags.model( file = "m1.jag",
+ data = a.dat,
+ n.chains = 3,
+ inits = a.ini,
+ n.adapt = 2000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 30

Initializing model
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Parameters and simulation parameters Once the model is set up and “burnt in”, we
can run the chain using coda.samples, which not surprisingly produces an object of
class mcmc.list that can be manipulated by the functions in the coda package.

We must specify:

the variables (nodes) that we want to monitor in the subsequent cycles of the chain.
This is done using the argument variable.names (which can be abbreviated to
var if you wish).

how many cycles (iterations) to run the chain (n.iter)

how often we sample the parameters specified and retain the results in memory
(thin)

In this case we run 10,000 cycles of the three chains, and sample every 10th value of
µ, so we get 1000 samples from each chain, a total of 3000 samples from the posterior
of the parameter(s):

> res <- coda.samples( m,
+ var = "mu",
+ n.iter = 10000,
+ thin = 10 )

The resulting object is of class mcmc.list; in this case a list with 3 elements (one per
chain). Each element of the list is a 1000× 1 matrix.

1.5.2 Results

First we inspect what type of R-structure was returned by coda.samples:

> class( res )

[1] "mcmc.list"

> str( res )

List of 3
$ : mcmc [1:1000, 1] 22.9 24.9 25.5 25.8 23.9 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mu"
..- attr(*, "mcpar")= num [1:3] 10 10000 10
$ : mcmc [1:1000, 1] 24.6 25.5 23.4 24.3 25.1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mu"
..- attr(*, "mcpar")= num [1:3] 10 10000 10
$ : mcmc [1:1000, 1] 23 24.8 25.7 24.8 24.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mu"
..- attr(*, "mcpar")= num [1:3] 10 10000 10
- attr(*, "class")= chr "mcmc.list"
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The mcpar attribute of each of the list members are the first, last and step in the sampling
of the chains.

As always in R, the most useful overview comes from the summary function:

> summary( res )

Iterations = 10:10000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
24.28784 0.94664 0.01728 0.01721

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
22.47 23.63 24.29 24.90 26.16

If we decide that the set of samples from the 3 chains provides a reasonable representation
of the posterior distribution, we can get an overview of the three chains by using the
function plot.mcmc.list:

> par( mfrow=c(1,2) )
> plot( res )

Since the model is so simple that we know the theoretical from of the posterior, we can add
this curve to the plot in red, say:

> curve( dgamma( x, 634.01, 26.01 ), from=20, to=30, lwd=2, col="red", add=TRUE )

If we want a simpler structure to work with, we can collect all the posterior samples from
the different chains in one matrix:

> rmat <- as.matrix( res )
> head( rmat )

mu
[1,] 22.93417
[2,] 24.93321
[3,] 25.52607
[4,] 25.79572
[5,] 23.93313
[6,] 23.44019
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Figure 1.2: Trace of the chains (left) and density of the posterior overlaid with the theoretical
posterior.



Chapter 2

Exercises

2.1 Bayesian inference in the binomial distribution

This exercise illustrates the prior to posterior calculations in the simple example of to
inference about an unknown binomial probability, θ.

1. First, suppose that only a finite number of possible values for the true proportion θ
are possible, e.g. (θ1, θ2, . . . , θJ), with prior probabilities p(θj), where

∑
j p(θj) = 1.

For a single Bernoulli trial y ∈ (0, 1), the likelihood for each value for θ is given by

p(y|θj) = θj
y(1− θj)1−y,

For an outcome y, Bayes’ theorem combines the discrete prior distribution with the
likelihood to generate posterior probabilities for the θj:

p(θj|y) ∝ θj
y(1− θj)1−y × p(θj),

To get the proper posterior distribution, you have to normalize the r.h.s., that is
divide by the sum.

If have a binomial observation, i.e. x events out of n trials, then the posterior will be:

p(θj|x) ∝ θxj (1− θj)n−x × p(θj).

(a) Suppose a drug has an unknown true response rate θ, and for simplicity assume
that θ can only take one of the values θ1 = 0.2, θ2 = 0.4, θ3 = 0.6 or θ4 = 0.8,
and that we adopt the “neutral” position of assuming each value θj is equally
likely, i.e. p(θj) = 0.25 for each j = 1, 2, 3, 4.

If we observe onle one person with a positive response (y = 1). How should our
belief in the possible values be revised? Use this table to update from the prior
to the posterior:

Prior Likelihood Likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

1 0.2 0.25
2 0.4 0.25
3 0.6 0.25
4 0.8 0.25∑

j 1.0 1.0

11
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(b) If we instead of one patient had observations on n = 20 persons out which
x = 15 had a positive response, how would the posterior look? Use that same
table to complete the computations:

Prior Likelihood Likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

1 0.2 0.25
2 0.4 0.25
3 0.6 0.25
4 0.8 0.25∑

j 1.0 1.0

(c) Suppose we had given non-zero prior probability to the extreme values of
θ = 0, 1 (that is, the drug either never or always workes). The prior distribution
is then on the six values θ1 = 0, θ2 = 0.2, θ3 = 0.4, θ4 = 0.6, θ5 = 0.8 or θ6 = 1.0,
with p(θj) = 1/6.

Describe qualitatively how the results in the table in part (a) would change if we
used this discrete prior distribution on 6 values for θ for the same data, that is,
15 successes out of 20 trials. Uste this table for the calculations:

Prior Likelihood likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

0 0.0 1/6
1 0.2 1/6
2 0.4 1/6
3 0.6 1/6
4 0.8 1/6
5 1.0 1/6∑

j 1.0 1.0

(d) How would the results change if we used the data in the example in the module
notes, that is, we had just one success from one trial?

You can use this table for the calculations:

Prior Likelihood likelihood × prior Posterior
j θj p(θj) p(y|θj) p(y|θj)p(θj) p(θj|y)

0 0.0 1/6
1 0.2 1/6
2 0.4 1/6
3 0.6 1/6
4 0.8 1/6
5 1.0 1/6∑

j 1.0 1.0

(Hint : It is not necessary to actually calculate the posterior probabilities
explicitly. Try considering the value of the likelihood for each value of θ and the
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impact that the two new values of the likelihood for θ = 0 and θ = 1 will have
on the calculations.

2. In the analysis above, for simplicity, we assumed that θ can could only take one of
the values (0), 0.2, 0.4, 0.6, 0.8, (1).

Now suppose that previous experience with similar compounds has suggested that
response rates between 0.2 and 0.6 could be feasible, with an expectation around 0.4.
If we want a continuous prior distribution on the interval (0, 1), we should choose one
with mean 0.4 and say 95% of the probability mass in the interval (0.2,0.6), or more
ad hoc, with a standard deviation of 0.1.

(a) We choose a Beta(a, b) as prior. From the properties of the beta distribution we
know that mean m and standard deviation s are:

m =
a

a+ b
(2.1)

s =

√
m(1−m)

a+ b+ 1
(2.2)

The expression in equation (2.2) can be rearranged to give
a+ b =

(
m(1−m)/s2

)
− 1. Now use the target values m = 0.4 and s = 0.1 to

obtain a value for a+ b, and the formula for m to get separate values for a and b.

(b) Make a graph of the prior distribution for p, the success probability. The
Beta-density is available in R as the function dbeta. You would need to type
?dbeta to get the help function up.

(Hint: You can generate a vector of say 200 equidistantly spaced points between
0 and 1 by seq(from=0,to=1,length=200).

(c) Suppose we observe x = 15 successes out of n = 20 trials. Make a graph of the
likelihood for this observation. The binomial density is available in R as dbinom.

(d) From the prior distribution for the parameter and the likelihood we can form the
posterior by taking the product. We know from lectures that the parameters of
the beta distribution are updated to [a?, b?] where a? = a+ x and
b? = b+ (n− x).

Now make a third graph of the posterior for the success probability.

(e) Plot the three curves in one graph, using par(mfrow=c(3,1)) before running
the three plot statements.

(f) (Complicated, but illustrative) Pack the generation of the three graphs into an
R-function that takes m, s (mean and standard deviation of the prior), x and n
(the observed data) as arguments, and observe how the posterior changes when
changing the prior and the data.

3. The French mathematician Pierre-Simon Laplace (1749–1827) was the first person to
show definitively that the proportion of female births in the French population was
less then 0.5, in the late 18th century, using a Bayesian analysis based on a uniform
prior distribution (see Gelman et al ,̇ p.34). Suppose you were doing a similar analysis
but you had more definite prior beliefs about the ratio of male to female births. In
particular, if θ represents the proportion of female births in a given population, you
are willing to place a Beta(100,100) prior distribution on θ.
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(a) Show that this means you are more than 95% sure that θ is between 0.4 and 0.6,
although you are ambivalent as to whether it is greater or less than 0.5.

(b) Now you observe that out of a random sample of 1,000 births, 511 are boys.
What is your posterior probability that θ > 0.5?
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2.2 Simple linear regression with JAGS

The pupose of this exercise is to introduce the use of JAGS as a machinery for estimation in
standard statistical models. This is done using a simple linear regression example. The
model we will use is the simple linear regression model:

yi = α + βxi + ei, ei ∼ N (0, σ2)

assuming that the eis are independent.

1. To make thinge easier for a start, use a set of bogus data for the analysis:

> x <- c(1,2,3,4,5,6)
> y <- c(1,3,3,3,5,7)

Plot them and make s standard linear regression using lm() from R: What are the
estimates of intercept, slope and residual standard deviation in this model?

Provide confidence intervals for α and β.

2. The next step is to use JAGS to estimate in the model. So referring to the section
introducing JAGS, you should set up the following structures in R before invoking
JAGS:

• Data — a list.

• Initial values — a list of lists.

• Parameters to monitor — a character vector.

• A file with the JAGS program.

In the program you must specify the model in terms of the three parameters of the
model and the 6 observations of y and x. You should also specify the prior
distributions of the parameters α, β of σ. Use uninformative priors for all three; that
is normal priors with large variance for α and β, whereas a unform prior on some
suitably large interval ([0,100], say) for σ is recommendable.

Compile and initialize using 10000 cycles as burn-in.

Run the program for 10000 iterations with 3 chains, sampling say every 10th value.

Hint: For your convenience we have put up a file with a skeleton for what you need
to do when running an analysis with JAGS as
http://bendixcarstensen.com/Bayes/Cph-2012/pracs/jags.skeleton.rnw

3. Inspect the posterior using summary. Remember to load the coda package first.
Compare the posterior medians and central 95% posterior intervals with the
estimates and confidence intervals derived.

How well do they agree? Why / why not?

4. Now try to do the same on a real dataset. In the Epi package is a datset, births
which has data on 500 births in London, notably the birthweigst (bweight) and
gestational age (gestwks). We will set up a rather naive regression model with a
linear relationship between x, number of gestational weeks and y birthweight.

Load the data and get the subset where the explanatory variable is non-missing:

http://bendixcarstensen.com/Bayes/Cph-2012/pracs/jags.skeleton.rnw
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> library( Epi )
> data( births )
> births <- subset( births, !is.na(gestwks) )

You can re-use the set-up from the previous question to get classical regression
estimates and estimates from the Bayesian machinery and compare them.

5. How do the classically derived confidence intervals agree with the posterior central
intervals?
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2.3 Examples of the Gibbs sampler and Metropolis

Hastings algorithm

1. Consider a single observation (y1, y2) from a bivariate normally distributed

population with mean θ = (θ1, θ2) and known covariance matrix

(
1 ρ
ρ 1

)
. With a

uniform prior distribution on θ, the posterior distribution is(
θ1
θ2

)
|y ∼ N

((
y1
y2

)
,

(
1 ρ
ρ 1

))
.

Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2),
we set up the Gibbs sampler explicitly here for the purpose of illustration. To apply
the Gibbs sampler to (θ1, θ2), we need the conditional posterior distributions.

(a) Use the properties of the multivariate normal distribution (either (A.1) or (A.2)
on page 579 of BDA) to show that the relevant conditional distributions are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2),
θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2).

(b) The Gibbs sampler proceeds by alternately sampling from these two normal
distributions. In general we would say that the natural way to start the
iterations would be with random draws from a normal approximation to the
posterior distribution; of course, such draws would eliminate the need for
iterative simulation in this trivial example!

Use the conditional distributions for θ1 and θ2 with (y1, y2) = (0, 0) and ρ = 0.8
to set up a simple Gibbs sampler in R. Use two vectors, one for θ1 called theta1

and one for θ2 called theta2, and start by setting the all the elements of each of
theta1 and theta2 to 0:

> numsims <- 1000
> rho <- 0.8
> theta1 <- numeric(numsims)
> theta2 <- numeric(numsims)

Now amend the first value of theta1 to −3 and sample a single value from the
conditional distribution of θ2 given θ1 and set this as the first element of theta2:

> theta2[1] <- rnorm( 1, mean=rho*theta1[1], sd=sqrt(1 - (rho^2)) )

Now use a loop to iterate the process of sampling from the conditional
distribution of θ2 given θ1 and vice versa:

> for(i in 2:numsims)
+ {
+ theta1[i] <- rnorm( 1, mean=rho*theta2[i-1], sd=sqrt(1-(rho^2)) )
+ theta2[i] <- rnorm( 1, mean=rho*theta1[i] , sd=sqrt(1-(rho^2)) )
+ }

Generate 1000 values for each of θ1 and θ2 using the Gibbs sampling routine
from part (b) of the question. Calculate the sample mean and standard
deviation of the final 500 realised values for each of θ1 and θ2. Show that these
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empirical values for the mean and standard deviation are close to the theoretical
values for the posterior marginal distributions of θ1 and θ2 based on the joint
posterior distribution displayed above:

> mean(theta1[501:1000])
> mean(theta2[501:1000])
> sqrt(var(theta1[501:1000]))
> sqrt(var(theta2[501:1000]))

Also check that the correlation between the two sequences is close to the true
value of 0.8:

> cor( theta1[501:1000], theta2[501:1000] )

2. We can also use the Metropolis-Hasting algorithm to sample from the posterior
distribution. For the proposal distribution h() we use the uncorrelated bivariate
normal distribution. Implement this in R by working through the following.

Set the correlation to ρ = 0.7, the number of simulation nsim to 1000, initialise a
matrix ans with 1000 rows and 2 columns that will hold the results of the simulation
and set up the 2× 2 correlation matrix Sigma and its inverse SigmaInv:

> rho <- 0.7
> nsim <- 1000
> ans <- matrix(NA, nr=nsim, nc=2)
> Sigma <- matrix(c(1,rho,rho,1), nr=2)
> SigmaInv <- solve(Sigma)

We start the simulation at x1 = x2 = 30 and set up a vector xcurr that holds the
current values of x1 and x2:

> x1 <- x2 <- 30
> xcurr <- c(x1,x2)

Initialise an “acceptance vector” called accept to 0 and the standard deviation sigma

of the proposal distribution to 2. Run nsim iterations and at each iteration, generate
a proposal called xprop by adding a normal random variate with mean 0 and
standard deviation 2 to the current value. Calculate the log-likelihood for both the
current and proposed values and accept this with the appropriate probability. If the
proposal is accepted, the correspondign component of the accept vector is set to 1
(in fact “TRUE”), otherwise 0 (“FALSE”):

> accept <- numeric(nsim)
> sigma <- 2
> for (ii in 1:nsim){
+ xprop <- xcurr + rnorm(2, mean = 0, sd = sigma)
+
+ logkxprop <- - t(xprop) %*% SigmaInv %*% xprop /2
+ logkxcurr <- - t(xcurr) %*% SigmaInv %*% xcurr /2
+
+ alpha <- min(1, exp(logkxprop-logkxcurr))
+ u <- rnorm(1)
+
+ if ( accept[ii] <- (u<alpha) ){
+ xaccept <- xprop
+ } else {
+ xaccept <- xcurr
+ }
+
+ ans[ii,] <- xaccept
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+ xcurr <- xaccept
+ }
> cat("Accepted proposals: ", sum(accept)/nsim, "\n")

Now plot all samples:

> pairs(ans)

Plot the two series of values (x1 and x2) to determine the number of iterations that
we need to use as the burn-in:

> matplot(ans, type=’l’)

It looks like it is sufficient to discard the first 100 samples as the burn in:

> pairs(ans[-(1:100),])

We can check dependencies among each of the series for x1 and x2 using the
autocorrelation functions pacf (for partial autocorrelation) and acf:

> par( mfrow=c(2,2) )
> pacf(ans[,1])
> pacf(ans[,2])
> acf(ans[,1])
> acf(ans[,2])

You should investigate the effect of changing

(a) The value of the correlation parameters ρ.

(b) The mean of the proposal distribution.

(c) The standard deviation of the proposal distribution.

3. It’s instructive to compare the bivariate sampler above to a single component
Metropolis–Hastings sampler where the proposal for h(x2|xt1, xt2) is x2 = xt2 + ε where
ε ∼ N(0, σ2) for some choice of σ2 and likewise for x1. The set up is the same:

> rho <- 0.7
> nsim <- 1000
> ans <- matrix(NA, nr=nsim, nc=2)
> x1 <- x2 <- 30
> xcurr <- c(x1,x2)

We now need two counters, one for each component of the vector containing the
values of x1 and x2. We need to calculate the log-likelihood of the conditional
distribution of x1 given x2 for both the current and proposed value of x1 and
proposal (the quantities logpx1prop and logpx1, along with the unconditional
log-likelihoods hx1prop and hx1, all of which are used in generating the ratio
governing the acceptance probability. We run through the same routine for x2.

> accept1 <- accept2 <- numeric(nsim)
> sigma <- 5
> for (ii in 1:nsim){
+
+ # Update x1:
+ x1prop <- rnorm(1, mean=x1, sd=sigma)
+
+ logpx1prop <- -(x1prop-rho*x2)^2/(1-rho^2)
+ logpx1 <- -(x1-rho*x2)^2/(1-rho^2)



20 Exercises PDAwBuR: Computer Exercises

+
+ hx1prop <- dnorm(x1prop, mean=x1, sd=sigma)
+ hx1 <- dnorm(x1, mean=x1prop, sd=sigma)
+
+ alpha <- min(1, exp(logpx1prop-logpx1)*(hx1/hx1prop))
+ u <- rnorm(1)
+
+ if ( accept1[ii] <- (u<alpha) ){
+ x1 <- x1prop
+ }
+
+ # Update x2:
+ x2prop <- rnorm(1, mean=x2, sd=sigma)
+
+ logpx2prop <- -(x2prop-rho*x1)^2/(1-rho^2)
+ logpx2 <- -(x2-rho*x1)^2/(1-rho^2)
+
+ hx2prop <- dnorm(x2prop, mean=x2, sd=sigma)
+ hx2 <- dnorm(x2, mean=x2prop, sd=sigma)
+
+ alpha <- min(1, exp(logpx2prop-logpx2)*(hx2/hx2prop))
+ u <- rnorm(1)
+
+ if ( accept2[ii] <- (u<alpha) ){
+ x2 <- x2prop
+ }
+ ans[ii,] <- c(x1,x2)
+ }
> cat("Accepted proposals, x1: ", sum(accept1)/nsim, "x2:", sum(accept2)/nsim, "\n")

Once again we can plot all the samples:

> pairs(ans)

Check the number of iterations that we need to discard as a burn-in:

> matplot(ans, type=’l’)

Let’s discard the first 100 samples:

> pairs(ans[-(1:100),])

Have a look at the cumulative acceptance probabilities for x1 and x2:

> plot( 1:nsim,cumsum(accept1)/1:nsim, ylim = c(0,1), pch = "",
+ xlab = "Iteration Number", ylab = "Probability")
> lines(1:nsim,cumsum(accept1)/1:nsim, ylim = c(0,1), lwd = 3)
> title(main = "Cumulative acceptance probability", cex = 0.5)

> plot( 1:nsim,cumsum(accept2)/1:nsim, ylim = c(0,1), pch = "",
+ xlab = "Iteration Number", ylab = "Probability")
> lines(1:nsim,cumsum(accept2)/1:nsim, ylim = c(0,1), lwd = 3)
> title(main = "Cumulative acceptance probability", cex = 0.5)

Also let’s plot the two series x1 and x2 against each other (change the value of the
standard deviation in the simulations above to see the jumps get bigger or smaller):

> plot(ans[,1],ans[,2],ylim = c(-50,50),xlim = c(-50,50), xlab = "x1", ylab = "x2")
> lines(ans[,1],ans[,2],lwd = 1)
> title(main = "Metropolis-Hastings sampler s.d. = 2")

Finally check the dependencies within each of the x1 and x2 series:
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> par( mfrow=c(2,2) )
> pacf(ans[,1])
> pacf(ans[,2])
> acf(ans[,1])
> acf(ans[,2])

Consider the following questions:

(a) What the is cumulative acceptance probability after 1000 simulations? How
many simulations are before the acceptance ratio stabilises?

(b) Explore how changing the standard deviation of the proposal distributions alters

i. the cumulative acceptance ratio,

ii. the number of iterations required to achieve convergence and a stable
acceptance ratio,

iii. the visual appearance of the sample path of the bivariate plot.
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2.4 Estimating the speed of light

Simon Newcomb set up an experiment in 1882 to measure the speed of light. Newcomb
measured the amount of time required for light to travel 7442 metres. The measurements
are here (copy-paste from the document):

> newcomb <-
+ c(28, 26, 33, 24, 34, -44, 27, 16, 40, -2, 29, 22, 24, 21, 25,
+ 30, 23, 29, 31, 19, 24, 20, 36, 32, 36, 28, 25, 21, 28, 29, 37,
+ 25, 28, 26, 30, 32, 36, 26, 30, 22, 36, 23, 27, 27, 28, 27, 31,
+ 27, 26, 33, 26, 32, 32, 24, 39, 28, 24, 25, 32, 25, 29, 27, 28,
+ 29, 16, 23)

The numbers are lifted from Stigler SM. (1977): Do robust estimators work with real data?
(with discussion). Annals of Statistics 5, 1055-1098. The data are times for light to travel a
fixed distance, recorded as deviations from 24,800 nanoseconds.

1. Make a histogram of the data — use the argument breaks=50, in order to get a
detailed impression. What do you see?

2. We want to apply the normal model, assuming that all 66 measurements are
independent draws from a normal distribution with mean µ and variance σ2. The
main goal is posterior inference for µ as an estimate of the speed of light (suitably
transformed).

First compute the sample mean and standard deviation.

3. If we assume a non-informative prior distribution for p(µ, σ2) ∝ (σ2)
−1

(which is
equivalent to a joint uniform prior distribution on (µ, log σ)), the posterior
distribution of µ has the form

µ− y
s/
√
n

∣∣∣∣ ∼ tn−1. (2.3)

Note that only µ is unknown in the expression above since we are conditioning on the
observed values of the sample mean y, the sample standard deviation s and the
sample size n. Use this distributional result to calculate a 95% central posterior
interval for µ.

4. The posterior interval can also be obtained by simulation. Following the factorisation
of the posterior distribution given in lectures as

p(µ|σ2, y) ∼ N(y, σ2/n)

p(σ2|y) ∝ (σ2)
−(n+1)/2

exp

(
−(n− 1)s2

2σ2

)
,

which is a scaled inverse-χ2 density:

p(σ2|y) ∼ χ−2(n− 1, s2),

First draw a random value of σ2 ∼ χ−2(65, s2) as 65s2 divided by a random draw
from the χ2

65 distribution. Then given this value of σ2, we draw µ from its conditional
posterior distribution, N (26.2, σ2/66).

Use R to carry out these simulation steps (for 1,000 iterations) and generate a vector
of sampled values for the mean µ and the standard deviation σ. What are the 5 and
95% quantiles of these?
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5. Check the results in the previous questions by setting up a model in JAGS. Set up
data nodes y, and choose vague priors for µ and σ. So you set up the whole macinery,
for example by suitable modifying the file jags.skeleton.txt.

What are the posterior predictive interval for µ?

6. Based on the currently accepted value of the speed of light, the “true value” for µ in
Newcomb’s experiment would be 33.0. How does this conform with the posterior
sample?

7. One way to check the suitability of the model is to amend the JAGS code from
question 3 so that it generates a vector y.pred of 66 observations from the normal
distribution with the current sampled values of µ and σ. We can then ask JAGS to
retain the smallest value from the vector y.pred, generating a distribution of
minimum measurements for a sample of size N = 66.

Extend your JAGS code with a node smallest, say, which holds the smallest of the
predicted values — you will have to look up the function in the JAGS manual the
function that retuns the mininum (have guess!).

8. Amend the model further to sample the two smallest predicted values and compare
them with the ones actually present in the data. Is the predictive distribution for the
smallest and second smallest observation under the model reasonable in relation to
the data?

See chapter 6 in Gelman et al. for an extensive discussion of such “posterior
predictive checking”, in particular a more detailed treatment of the problem discussed
here in section 6.3 pages 160–161.
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2.5 Modelling the rate of airline fatalities 1976 to

2001

This exercise is based on exercises 2.13 and 3.12 from Gelman et al.. The original exercise
has been extended to include additional data from 1986 to 2001. It is useful to read the
partial solution to the original exercise 2.13 that appears in the most recent solutions file
on Andrew Gelman’s website, which is available as a PDF.

The data is available in the text file airline.txt with column names in the first line,
aimed a reading into R. It is easier to work with distances in units of 1011 miles, which is
how the passenger miles and accident rate data are presented in both source files (.odc and
.txt).

The file sol6a.R contains an R-program that read data, produces all the relevant plots
suggested in the following exercise. The R-file also contains specifications of the models
used in BUGS and calls to WinBUGS using the package R2WinBUGS.

1. The simplest model: All years look the same.

(a) Assume that the numbers of fatal accidents in each year are independent with a
Poisson(θ) distribution. Set a (noninformative) gamma prior distribution for θ
and determine theoretically using the results in lectures the posterior
distribution based on the data from 1976 through 2001.

(b) In this case it is also possible to determine theoretically the predictive
distribution for the number of fatal accidents in 2002 - what is it? (See Section
2.7 page 53 of Gelman et al.).

(c) How can we use the posterior distribution for θ and the assumption about the
distribution of the number of fatal accidents to construct a two-stage process to
draw samples from the predictive distribution for the number of fatal accidents
in 2002?

(d) If we set up a node in BUGS for year 2002 (i.e. adding an extra component to the
data array for years 1976 to 2001 as has been done in the computing code
provided) with the number of fatal accidents declared as “NA” (missing) will
cause BUGS to draw from the predictive distribution for this node. What is the
95% predictive interval for the number of fatal accidents in 2002?

2. A model with constant rate of fatal airline crashes.

(a) Now assume that the numbers of fatal accidents in each year follow independent
Poisson distributions with a mean proportional to the number of passenger miles
flown. Using the same noninformative prior distribution for θ determine the
posterior distribution of the rate, i.e. accidents per passenger miles.

(b) Modify your BUGS code from the previous question to accomodate this model,
and use it to generate a 95% predictive interval for the number of fatal accidents
in 2002 under the assumption that 2× 1012 passenger miles were flown that year.

(Hint: Note that you cannot stick an expression in as an argument to a
distribution in BUGS; an expression as fatal[i] dpois(lambda*miles[i]) will
cause an error, so you will have to construct nodes for the mean, e.g. mu[i] <-

lambda * miles[i]; fatal[i] dpois( mu[i] ).)
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Table 2.1: Worldwide airline fatalities, 1976–2001. “Passenger miles” are in units of 1011

and the “Accident rate” is the number of fatal accidents per 1011 passenger miles. Source:
International Civil Aviation Organization, Montreal, Canada (www.icao.int)

Year Fatal Passenger Accident
accidents miles rate

1976 24 3.863 6.213
1977 25 4.300 5.814
1978 31 5.027 6.167
1979 31 5.481 5.656
1980 22 5.814 3.784
1981 21 6.033 3.481
1982 26 5.877 4.424
1983 20 6.223 3.214
1984 16 7.433 2.152
1985 22 7.107 3.096
1986 22 9.100 2.418
1987 25 10.000 2.500
1988 29 10.600 2.736
1989 29 10.988 2.639
1990 27 10.880 2.482
1991 29 10.633 2.727
1992 28 11.956 2.342
1993 33 12.343 2.674
1994 27 13.011 2.075
1995 25 14.220 1.758
1996 24 16.371 1.466
1997 26 15.483 1.679
1998 20 18.080 1.106
1999 21 16.633 1.263
2000 18 18.875 0.954
2001 13 19.233 0.676

3. We now expand the model by assuming that the number of fatal accidents in year t
follows a Poisson distribution with mean α + βt, i.e. independent of passengar miles
but merely linearly decreasing by time.

(a) Plot the number of fatal accidents each year over time to see that this was a
dubious assumption even with the original data and is certainly not reasonable
in light of the new data - why?

(b) Moreover, a linear function of time t has the potential to generate negative
values unless the parameters α and β are constrained - why is this a problem?

4. It would be more satisfactory to assume that the number of fatal accidents y(t) in
year t where m(t) passenger miles were flown follows a Poisson distribution with
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mean
(
exp(α + βt)

)
m(t). This is a generalised linear model with canonical (log) link:

E
(
y(t)|t,m(t)

)
=

(
exp(α + βt)

)
m(t) (2.4)

log
(

E
(
y(t)|t,m(t)

))
= α + βt+ log(m(t)) (2.5)

(a) Calculate crude estimates and uncertainties for (α, β) using linear regression
based on the relationship described above in equation (2.5), i.e. using the
log-rates as reponse variable.

(b) Fit the generalized linear model using glm in R.

(c) Use the estimates from the maximum likelihood estimation as initial values to
run the model in BUGS and to generate samples from the posterior distribution
of α and β.

(d) Use the xyplot.mcmc.list function to check the mixing of the chains for α and
β.

(e) Use the densityplot.mcmc function to display smoothed marginal posterior
densities for α and β based on the sampled values of α and β. Also, make a
scatter-plot showing the joint posterior distribution of α and β.

(f) Plot the posterior density for the expected number of fatal accidents in 2002,(
exp(α + 2002β)

)
×m(2002) where we again assume the number of miles flown

in 2002 is 2× 1012.

(g) Obtain the 95% predictive distribution interval for the number of fatal accidents
in 2002.

(h) How would you define and derive the posterior predictive distribution of the
number of fatalities in 2002, from the maximum likelihood approach?
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2.6 Simple mixed model for fetal growth

The dataset fetal.csv contains measurements of head circumference and gestational age,
as well as a transformation of gestational age:

> fetal <- read.csv("http://BendixCarstensen.com/Bayes/Cph-2012/data/fetal.csv",header=TRUE)
> str( fetal )
> head( fetal, 10 )

1. This is a so-called repeated measures dataset, we see that there are typically 4 or 5
measurements on each fetus, a few only have one measurement and some have as
much as 7 measurements:

> with( fetal, addmargins( table( table(id) ) ) )

2. We would like a description of the fetal growth as a linear function of time, but this is
not a good description; a non-linear transformation of gestational age to make the
relationship linear has been estimated: tga = ga− 0.0116638× ga2; the transformed
gestational age is for convenience put in the variable tga:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> with( fetal, plot( tga, ga-0.0116638*(ga^2), pch=16, cex=0.5 ) )
> abline(0,1,col="red")
> with( fetal, plot( ga, tga, pch=16, cex=0.5,
+ xlab="Gestational age (GA)", ylab="Transformed GA" ) )
> abline(0,1,col="red")

3. The so called spaghetti-plot of a random sample of 100 of the 706 fetuses shows the
linearizing effect of the transformation, but also that the square-root transformation
of the head circumference makes the relationship more linear and more homogeneous
with respect to the variance:
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Figure 2.1: Transformation used for gestational age. The red line is the identity line.
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> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> id.sub <- sample( unique(fetal$id), 50 )
> with( fetal, plot( ga, hc, type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(ga,hc) )
> with( fetal, plot( tga, hc, type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(tga,hc) )
> with( fetal, plot( tga, sqrt(hc), type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(tga,sqrt(hc)) )

Also it appears that the overall variance is stabilized. The particular shape of the
transformation is illustrated in figure 3.19

4. As a first attempt at the modelling we set up a simple random effects model for the
measurement yft on fetus f at time t:

yft = β0 + β1t+ u0f + eft

u0f ∼ N (0, τ), eft ∼ N (0, σ)

This model can be fitted by REML, using the lmer function from the lme4 pa ckage:

> library( lme4 )
> m0 <- lmer( sqrt(hc) ~ tga + (1|id), data=fetal )
> summary(m0)

You can extract the estimates and the variances from this using:

> fixef( m0 )
> VarCorr( m0 )

Note that in order to get the sds out you need (it is a little tricky to see where the
attributes belong. . . ):

> attr( VarCorr(m0)$id, "stddev" )
> attr( VarCorr(m0), "sc" )
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Figure 2.2: Linearizing transformation of gestational age (quadratic transformation) and
head circumference (square root).
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5. How large is the residual variation relative to the between-persons variation?

6. What is the grovt rate of fetuses’ head circumference?

7. This model can be specified in JAGS as follows:

> cat("
+ # Fixing data to be used in model definition
+ model
+ {
+ # The model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- beta[1] + beta[2] * ( tga[j]-18 ) + u[id[j]]
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+
+ # Random effects for each person
+ for( i in 1:I )
+ {
+ u[i] ~ dnorm(0,tau.u)
+ }
+
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
+
+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Between-person variation
+ tau.u <- pow(sigma.u,-2)
+ sigma.u ~ dunif(0,100)
+ }",
+ file="fetal0.jag" )

Set the model up with suitable initial values (derive them from the lmer output. Pay
particular attention to the required data supplied to JAGS; note from the code that
two constants are needed, both the number of units in the dataframe (N), but also the
number of individuals I. The latter can be found using for example:

> length( unique(fetal$id) )

First we need the data. Note the expression as.integer( factor(fetal$id) ),
which ensures that id takes on the values 1, 2, 3, . . ., and not just different integer
values.

> fetal.dat <- list( id = as.integer( factor(fetal$id) ),
+ hc = fetal$hc,
+ tga = fetal$tga,
+ N = nrow(fetal),
+ I = length( unique(fetal$id) ) )

If you inspect the lmer object, you can find the estiamtes of the variance componets
as follows:

> ( sigma.e <- attr(VarCorr(m0),"sc") )
> ( sigma.u <- attr(VarCorr(m0)$id,"stddev") )
> ( beta <- fixef( m0 ) )
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> fetal.ini <- list( list( sigma.e = sigma.e/3,
+ sigma.u = sigma.u/3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ sigma.u = sigma.u*3,
+ beta = beta *3 ),
+ list( sigma.e = sigma.e/3,
+ sigma.u = sigma.u*3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ sigma.u = sigma.u/3,
+ beta = beta *3 ) )

Once we have set up the model-specification, the data and the starting values, we can
initialize the model; that is compile the code, and use the inits and the data to run
the sampler for a number of iterations

> library( rjags )
> system.time(
+ fetal.mod <- jags.model( file = "fetal0.jag",
+ data = fetal.dat,
+ n.chains = 4,
+ inits = fetal.ini,
+ n.adapt = 100 )
+ )

With the model in place we now can generate samples from the model using
coda.samples. In this call we specify which nodes we want to sample. In this case
we want to see the posterior distribution of the βs and the variance components:

> system.time(
+ fetal.res <- coda.samples( fetal.mod,
+ var = c("beta","sigma.e","sigma.u"),
+ n.iter = 500,
+ thin = 20 ) )
> str( fetal.res )
> summary( fetal.res )
> dim( as.matrix(fetal.res) )
> colnames( as.matrix(fetal.res) )

8. Show the posterior distribution of the between-fetus and the residual standard
deviations.

9. How do the estimates for random and fixed effects fit with the lmer estimates?

10. Now try to fit the same model with INLA, and inspect the object that comes out of it,
and compare results with the results from lmer and JAGS:

> fetal <- transform(fetal, tgac=tga)
> library(INLA)
> im0 <- inla( hc ~ tga + f(id), data=fetal )
> summary( imo )
> names( im0 )
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2.7 Linear mixed models for fetal growth

This is an extension of the fetal growth example from the previous example, based on the
same dataset.

1. We are interested in describing how head circumference varies by the transformed
gestational age, but also in describing how growth of the head circumference varies
between fetuses. The model of choice is therefore a linear mixed model with a random
intercept and a random slope term for the measurement yft on fetus f at time t:

yft = (β0 + u0f ) + (β1 + u1f )t+ eft

(u0f , u1f ) ∼ N (0,Σ), eft ∼ N (0, σ)

Now set up and estimate in this model using e.g. lmer form the lme4 package.

> library( lme4 )
> m0 <- lmer( hc ~ tga + (tga|id), data=fetal )
> summary(m0)

2. Extract the variance-covariance matrix of the random effects, using VarCorr. What
do you see? Why are they so correlated?

3. Now try to center the gestational age around, say tga 18, and refir the model. How is
the correlation now?

4. Make a QQ-plot of the residuals from the model o check wheter they are normally
distributed. Use residuals() to extract them form the model, and qqplot and
qqlines to make a QQ-plot.

One missing feature of the output from these models is that there is no handle on the
uncertainty of the estimated variance components. This of particular interest when
making predictions from the model.

2.7.1 Reporting the model

5. There are two main tings of interest to report from this model:

(a) The estimated mean of head circumference as a function of gestational age, with
a confidence interval; that is:

ŷft = β0 + β1(t− 18)

The confidence interval would be based on the variance-covariance of the βs only.

(b) A prediction interval, that is an interval where you for a given value of
gestational age would find, say, 95% of the population. The mean would of
course be the same, but the interval would be based not only on the
variance-covariance of the βs, but also on the estimate of σ and Σ; the variation
between individual in the current study population.
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When we report prediction intervals we are essentially making calculations as if the
estimated variance components from the model, sigma and Σ were known without
error and only the βs had an estimation error. In this sense we will presumably be
underestimating the width of the prediction interval.

We can make these predictions from the output from lmer ; the mean of the head
circumference for a given gestational age (for which the transformed value is g0, say is:

β̂0 + β̂1g0

and the variance of this is:
(1g0)Σβ(1g0)

′

where Σβ is the estimated variance-covariance of the βs. The latter formula will even
work if (1g0) is a two-column matrix with a sequence of prediction points. It is
automatically computed in the fuction ci.lin from the Epi package:

> library( Epi )
> tga.pt <- 14:22
> ci.lin( m0, ctr.mat=cbind(1,tga.pt) )

Since we are interested in predictions as a function of gestational age, define the
function that transforms gestational age to the tga. Use this in conjunction with
ci.lin (from the Epi package) to produce predicted values of head circumference as
a function of gestational age.

6. However we are also interested in making a population prediction, that is an interval
that for each value of gestational age captures the middle 95% of the fetuses’ head
circumference.

To this end we must use not only the estimation variance of the βs, but also the
population variance and the residual variance. So if the estimated variance of (u0, u1)
is Σu, and the residual variance is σ2

e , then the total variance for transformed
gestational age g0 is:

(1g0)Σβ(1g0)
′ + (1g0)Σu(1g0)

′ + σ2
e = (1g0)(Σβ + Σu)(1g0)

′ + σ2
e

Now extract the two matrices from the model object and use them to construct the
relevant standard deviations.

The quantities are in the lmer object, but a bit hidden; you can try to look at
VarCorr(m0) and vcoc(m0), and fin you that you need:

> Sig.u <- as.matrix( VarCorr( m0 )$id )
> Sig.b <- as.matrix( vcov( m0 ) )
> sig.e <- attr( VarCorr(m0), "sc" )

Plot the predicted values of head circumference with prediciton limits.

7. The prediction limist you have just constructed, essentially assumes that the variances
are known without error, so we should expect the to be a bit on the small side.

By using MCMC for estimation we will get a posterior of the joint distribution of β,
σ and Σ, meaning that we in the calculation of the prediction interval can use the
posterior predictive distribution, which will include the estimation error of the
variance components too.
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2.7.2 Model using JAGS

8. So now set up a model in JAGS to accomplish this. You might want to use the
jags.skeletion.txt to make sure that you get everything set up.

2.7.2.1 Model specification

Specify the model that was outlined above, using 18 as the centering point for tga.
You can use the following as a template for the JAGS code — make sure that you
understand what each component of it means.

In particular we need to specify a varince-covariance for the random effects, which is
done by specifying a Wishart prior, which takes a 2× 2-matrix as input, which we
specify in a data section of the JAGS program:

> cat("
+ # Fixing data to be used in model definition
+ data
+ {
+ zero[1] <- 0
+ zero[2] <- 0
+ R[1,1] <- 0.1
+ R[1,2] <- 0
+ R[2,1] <- 0
+ R[2,2] <- 0.5
+ }
+ # Then define model
+ model
+ {
+ # Intercept and slope for each person, including random effects
+ for( i in 1:I )
+ {
+ u[i,1:2] ~ dmnorm(zero,Omega.u)
+ }
+
+ # Define model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- ( beta[1] + u[id[j],1] ) +
+ ( beta[2] + u[id[j],2] ) * ( tga[j]-18 )
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+
+ #------------------------------------------------------------
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
+
+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Define prior for the variance-covariance matrix of the random effects
+ Sigma.u <- inverse(Omega.u)
+ Omega.u ~ dwish( R, 2 )
+ }",
+ file="fetal.jag" )
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Now start the model with jags.model and sample the relevant quantities from
subsequent iterations of the sample using coda.samples

Look at the joint distribution of the βs:

> plot( fetal.res )

For better control of the plotting of the posterior samples you can convert the
resulting mcmc.list object to a data frame. You would need to doctor the names in
order to be able to refer to them without too much fuss.

2.7.3 Predictive distributions

9. One of the features of JAGS is the ability to generate predictive distributions for
unobserved quantities by specifying these quantities as nodes in the graphical model
used by JAGS to generate the simulations.

Compare the unconditional predictive distribution of head circumference at 38 weeks
gestational age with the corresponding conditional distribution given the value of the
head circumference at 18 weeks gestational age.

Take a look at the five observations made on fetus id = 5 are:

> subset( fetal, id==5 )

We can get the conditional distribution of head circumference at the final gestational
age (38.43 weeks) given the observed measurement at gestational age of 18.43 weeks
by creating a new id with identical data for the first gestational age but no observed
head circumferences measurements at the final gestational age. Also

10. Finally we want to make population predictions for gestational weeks as defined in
the vector ga.pt. This can be done in two ways, one by assuming that we look at the
same fetus at all times; the other by making separate predictions for each time. Set
up extra rows of the data matrix corresponding to these two scenarios, and also revise
the JAGS program to catch these predictions. Moreover define nodes that wil monitor
not only the mean of th predictive distribution, but also predicitons, including the
residual error term.

Initialze and run the model.

Here are some hints as to how to do it:

> x.same <- data.frame( id = max(fetal$id)+3,
+ hc = NA,
+ ga = ga.pt,
+ tga = tr(ga.pt) )
> x.diff <- data.frame( id = max(fetal$id)+3+1:length(ga.pt),
+ hc = NA,
+ ga = ga.pt,
+ tga = tr(ga.pt) )

In order to get the predicted values we simply monitor the relevant nodes after using
JAGS on the dataset expanded with these extra records:
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> fetal.x <- rbind( fetal, xf, x.same, x.diff )
> fetal.x[nrow(fetal)+0:10,]
> tail( fetal.x )
> nrow( fetal.x )

However, there is one more snag to this as we are interested in seeing prediction
intervals, that is predictions for individual measurements, including the measurement
errors, in the JAGS code those with precision tau.e. And this error term is not
included in the nodes mu, so we must define a set of new prediction nodes, pr, say, to
give predictions where the residual error term is included. This is done in this piece of
code where we only define the pr nodes only for the added units where we want the
predictions. In turn that requires an extra constant in data, n, the index of the first.

> cat("
+ # Fixing data to be used in model definition
+ data
+ {
+ zero[1] <- 0
+ zero[2] <- 0
+ R[1,1] <- 0.1
+ R[1,2] <- 0
+ R[2,1] <- 0
+ R[2,2] <- 0.5
+ }
+ # Then define model
+ model
+ {
+ # Intercept and slope for each person, including random effects
+ for( f in 1:F )
+ {
+ u[f,1:2] ~ dmnorm(zero,Omega.u)
+ }
+
+ # Define model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- ( beta[1] + u[id[j],1] ) +
+ ( beta[2] + u[id[j],2] ) * ( tga[j]-18 )
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+ for( j in n:N )
+ {
+ pr[j] ~ dnorm( mu[j], tau.e )
+ }
+
+ #------------------------------------------------------------
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
+
+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Define prior for the variance-covariance matrix of the random effects
+ Sigma.u <- inverse(Omega.u)
+ Omega.u ~ dwish( R, 2 )
+ }",
+ file="fetalp.jag" )

Thus we see that the nodes we are interested in monitoring are (refer to the model
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definition) mu[*] with * from 3098 and upwards, so we modify the code and supply
the relevant parameters to monitor:

> fetal.xdat <- list( id = as.integer( factor(fetal.x$id) ),
+ hc = fetal.x$hc,
+ tga = fetal.x$tga,
+ n = nrow(fetal)+1,
+ N = nrow(fetal.x),
+ F = length( unique(fetal.x$id) ) )
> system.time(
+ fetal.xmod <- jags.model( file = "fetalp.jag",
+ data = fetal.xdat,
+ n.chains = 4,
+ inits = fetal.ini,
+ n.adapt = 5000 )
+ )

Once the code has been modified, we need to specify the nodes we shall monitor:

> rng <- (nrow(fetal)+1):nrow(fetal.x)
> ( mus <- paste("pr[",paste(range(rng),collapse=":"),"]",sep="") )
> system.time(
+ fetal.xres <- coda.samples( fetal.xmod,
+ var = c("beta","sigma.e","Sigma.u",mus),
+ n.iter = 5000,
+ thin = 10 ) )
> fetal.qnt <- summary( fetal.xres )$quantiles
> pr.rows <- rownames(fetal.qnt)[grep( "pr", rownames(fetal.qnt) )]
> wh <- as.numeric( gsub( "\\]","", gsub("pr\\[","", pr.rows ) ) )
> cbind( fetal.x[wh,c("ga","tga")], fetal.qnt[pr.rows,c(1,3,5)] )

11. . . . and plot the predictions as a function of gestaional age, both from the lmer object
and from the JAGS object. Show both the prediction including the residual error and
those not, and compare them.

12. Finally, compare the conditional and marginal predictions at gestational age 38 (that
is, conditional on the observed value as subject 5 has at tga=18). Plot the two
posterior densities. Why are they so different?

2.7.3.1 Saving it all

13. For further investigation of the posteriors save the results in a file:

> save( fetal.res, fetal.xres, file="../data/fetal.res" )
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2.9 Generalized linear mixed model in JAGS

1. Pelvic inflammatory disease (PID) and genital warts are conditions that occur
commonly among adult women. These conditions are typically diagnosed after
referral to and consultation with a sexual health physician or other specialist medical
practitioner. A question of relevance to health service providers is the extent to
which there is clinically relevant variation between physicians in the frequency with
which PID and genital warts are diagnosed. We explore this question using data
contributed by 23 sexual health physicians diagnosing patient at the Melbourne
Sexual Health Centre. Data on the total number of patient consultations for each
physician, and how many of these consultations resulted in the diagnosis of either
genital warts or PID are contained in the text file wartpid.csv.

2. For each physician, calculate the proportion of patients diagnosed with genital warts
and PID, and display these proportions together on the same plot (physician
identifier against proportion of patients diagnosed).

3. Use JAGS to fit a fixed-effect logit model to the data for genital warts allowing a
separate frequency of diagnosis for each physician.

4. Alter the JAGS code to allow the physician-specific parameters to be drawn from a
population of normally distributed random effects. What is the posterior mean and
95% credible interval for the standard deviation of the random effects variance?
What is the interpretation of this standard deviation?

5. Plot the (posterior means of the) fixed effects and random effects side-by-side on the
same graph - is there substantial shrinkage of the random effects from the fixed
effects towards the population mean? Does the assumption of a normal distribution
for the random effects look reasonable?

6. Repeat the above question for PID...
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2.10 Classical twin model in JAGS

2.10.1 Risk factors for mammographic density using twin data

Women with extensive dense breast tissue determined by mammography are known to be
at higher risk of breast cancer than women of the same age with lower breast density. We
will use data from a study of female monozygous (MZ) and dizygous (DZ) twin-pairs in
Australia and North America to analyse the within-pair correlation of breast density,
adjusted for age and weight.

The following table describes the variables in the data available as
http://bendixcarstensen.com/Bayes/Cph-2012/data/mgram.csv:

Table 2.2: Names of variables in the BUGS data from the mammographic density example.

pdens1 Percent mammographic density twin 1
pdens2 Percent mammographic density twin 2
weight1 Weight (kg) twin 1
weight2 Weight (kg) twin 2
mz Indicator of MZ pair (1 = MZ, 0 = DZ)
dz Indicator of DZ pair (1 = DZ, 0 = MZ)
agemgram1 Age in years of twin 1 at mammogram
agemgram2 Age in years of twin 2 at mammogram
study Location indicator (1 = Australia, 0 = North America)

1. Recall the basic hierarchical model for paired data described in lectures:

yi1 = ai + εi1

yi2 = ai + εi2

where

εij ∼ N(0, σ2
e) cov(εi1, εi2) = 0

ai ∼ N(µ, σ2
a)

Set up this model in JAGS, using the following code (or a variant of it) and also set
up the necessary data, inits and nodes to moinitor:

> cat( "model
+ {
+ for (i in 1:951)
+ {
+ pdens1[i] ~ dnorm(a[i],tau.e)
+ pdens2[i] ~ dnorm(a[i],tau.e)
+ a[i] ~ dnorm(mu,tau.a)
+ }
+
+ tau.a <- pow(sigma.a,-2)
+ sigma.a ~ dunif(0,1000)
+
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,1000)

http://bendixcarstensen.com/Bayes/Cph-2012/data/mgram.csv
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+ mu ~ dnorm(0,1.0E-6)
+ sigma2.a <- pow(sigma.a,2)
+ sigma2.e <- pow(sigma.e,2)
+ }",
+ file="mgram1.jag" )

Note that 1
2
(var(yi1) + var(yi2)) = σ2

a + σ2
e and that 1

2
(var(yi1 − yi2)) = σ2

e .

Calculate the empirical values of var(yi1), var(yi2) and var(yi1 − yi2), and use these in
a “methods of moments” calculation to produce estimates of σ2

a and σ2
e and hence

generate starting values for σa and σe (since we are placing noninformative prior
distributions on the standard deviation rather than the variance). You can use the
sample mean of either yi1 or yi2 as the starting value for µ.

2. Compile the JAGS code and generate 1,000 iterations for summary after a burn-in of
1,000 iterations. What are the posterior means and standard deviations of µ, σ2

a and
σ2
e?

3. Use the posterior means of σ2
a and σ2

e to estimate the within-pair correlation of yi1
and yi2.

4. So far we assumed a constant within-pair correlation for yi1 and yi2, in particular that
this correlation is the same for MZ and DZ pairs. If the outcome is influenced by
genetic factors then this is unlikely to be a satisfactory assumption.

Now modify the code to use an additional parameter rho (ρDZ:MZ from lectures) to
represent the ratio of cov(yi1, yi2) in DZ and MZ pairs. Assign rho a starting value of
0.5, and use the starting values from question 1 for the remaining parameters. You
may use something like this:

> cat(
+ "model
+ {
+ for (i in 1:951)
+ {
+ pdens1[i] ~ dnorm(mean.pdens1[i],tau.e)
+ pdens2[i] ~ dnorm(mean.pdens2[i],tau.e)
+ mean.pdens1[i] <- b.int + sqrt(rho)*a1[i] + sqrt(1-rho)*a2[i]
+ mean.pdens2[i] <- b.int + sqrt(rho)*a1[i] + mz[i]*sqrt(1-rho)*a2[i] + dz[i]*sqrt(1-rho)*a3[i]
+ a1[i] ~ dnorm(0,tau.a)
+ a2[i] ~ dnorm(0,tau.a)
+ a3[i] ~ dnorm(0,tau.a)
+ }
+
+ rho ~ dunif(0,1)
+
+ b.int ~ dnorm(0,0.0001)
+
+ tau.a <- pow(sigma.a,-2)
+ sigma.a ~ dunif(0,1000)
+
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,1000)
+
+ sigma2.a <- pow(sigma.a,2)
+ sigma2.e <- pow(sigma.e,2)
+ }",
+ file="mgram2.jag" )
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5. Generate a table of posterior summary statistics for the four parameters µ, σ2
a, σ

2
e

and ρDZ:MZ .

6. How have the posterior means of σ2
a and σ2

e changed now that DZ and MZ pairs can
have distinct within-pair correlations? How should this change be interpreted?

7. Does the posterior mean value for ρDZ:MZ suggest that there are genetic factors
determining the value of mammographic density? Is the posterior estimate of ρDZ:MZ

consistent with an additive genetic model?

8. Previous research has established that age-adjusted mammographic density is a risk
factor for breast cancer. Include this adjustment in the model by using an extra
parameter (node), b.age, say, in the model, and including the terms
b.age*agemgram1 and b.age*agemgram2 in the mean model for mammographic
density pdens1 and pdens2 in twins 1 and 2 respectively.

9. Generate a starting value for b.age by regressing percent mammographic density on
age at mammogram in R using data from either twin 1 or twin 2 (or both if you’re
motivated to concatenate the data vectors).

10. Use the starting value in part (a) to compile and run the JAGS model with
adjustment for age, and produce a summary table of the posterior distributions for
the parameters µ, σ2

a, σ
2
e , ρDZ:MZ and βage = b.age. Is there evidence for a linear

relationship between mammographic density and age at mammogram?

11. Has the adjustment for age changed the posterior mean of ρDZ:MZ? Is the current
posterior mean for ρDZ:MZ consistent with an additive genetic model for
mammographic density?

12. The final adjustment is to further include weight in the model. Include this variable
same way as we did in the previous question for the agemgram variable: Use an extra
parameter (node) b.wgt in the model, and include the terms b.wgt*weight1 and
b.wgt*weight2 in the mean model for mammographic density pdens1 and pdens2 in
twins 1 and 2 respectively.

13. Generate a starting value for b.wgt by regressing percent mammographic density on
weight and age at mammogram in R using data from either twin 1 or twin 2 (or both
if you’re motivated to concatenate the data vectors).

14. Use the starting value in part (a) to compile and run the BUGS model with
adjustment for weight, and produce a summary table of the posterior distributions
for the parameters µ, σ2

a, σ
2
e , ρDZ:MZ and βage = b.age and βweight = b.wgt. Is there

evidence for a linear relationship between mammographic density and weight
adjusted for age at mammogram?

15. Has the adjustment for age changed the posterior mean of ρDZ:MZ? Is the current
posterior mean for ρDZ:MZ consistent with an additive genetic model for
mammographic density?
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2.11 Using the DIC in model comparison

In this exercise we work through an example that demonstrates the importance of defining
the focus (i.e. set of parameters) of a model comparison. This example is courtesy of Bob
O’Hara and appears on his website
deepthoughtsandsilliness.blogspot.com/2007/12/focus-on-dic.html

Suppose there are m = 10 groups of data (indexed by i = 1, . . . ,m) each with n = 50
observations (indexed by j = 1, . . . , n) that have been generated from the two-level
normal-normal hierarchical model:

Yij|θi ∼ N(θi, σ
2)

θi|µi, τ ∼ N(µi, τ
2)

We consider two models for the group-specific mean parameter µi:

Model 1: µi = µ+ β(i− 5.5)

Model 2: µi = µ

The first model has a covariate (equal to the identity number of the group) but the second
has none.

1. Use R to simulate data Yij according to the two models above, and plot the data in
each group along with the observed group specific mean:

> m <- 10
> n <- 50
> N <- m*n
> tau <- 5
> sig <- 2
> i <- 1:m
> mu <- rep(7,m)
> th <- rnorm(m,mean=mu,sd=tau)
> Y <- rnorm(m*n,rep(th,n),sd=sig)
> mux <- mu + 2*(i-5.5)
> thx <- rnorm(m,mean=mux,sd=tau)
> Yx <- rnorm(m*n,rep(thx,n),sd=sig)

You should see from the plot that the effect of the covariate is clear, so the DIC should
be able to pick it up.

2. Fit each of the models to each of the two simulated data sets, using JAGS. Extract
the DIC from each model and compare them. Is the DIC lower for the model that
includes the covariate when fitted to the data simulated using the group-specific
covariate, compared to fitting the model without the covariate?

You should have found that in both cases the DIC is the same (for most simulations the
difference is no higher than the third decimal place). But for the data simulated with a
group-specific covariate (Data 1), Model 1 should be better, as suggested by the earlier
plots. So what’s going on? We can get a clue from plotting the posteriors of µi for each of
the groups, from the two models.

deepthoughtsandsilliness.blogspot.com/2007/12/focus-on-dic.html
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3. Use R to plot the group-specific means for both datasets, with errors bars (i.e. ± 1
posterior standard deviation), along with the 1:1 identity line.

Obviously the models are predicting the same means for the groups, and hence we will
get the same deviance (recall that we are talking about the plug-in deviance here which
depends only on the posterior means of the parameters on which we are focussing). We can
see why this is happening from the between-group or group-level standard deviations.

4. Use the output JAGS run to calculate the posterior mean and standard deviation of
the between-group or group-level standard deviation parameter τ for both Model 1
and Model 2 applied to Data 1 and Data 2.

You should have found that for the data where there is a trend (Data 1), but none is
fitted, the posterior mean of τ is much larger. The lack of the linear trend is compensated
by the increase in variance. The difference is not in the model for θ at all, but occurs
higher in the hierarchy at the level of the hyperparameter µ where the effect of the
group-specific covariate is incorporated into the model.

This is obvious from looking at the models. In order for it to be reflected in a
comparison of the DIC between models, we need to change the focus, from θ to µ and β.
This then means calculating the marginal deviance, marginalising over θ, that is, looking at
p(Y|µ, τ) after integrating p(Y|θ) over p(θ|µ, τ). This can be done analytically, after which
we find that the deviance can be calculated because we know the distribution of the
group-specific sample mean Y i. =

∑n
j=1Yij/n, which is

Y i. ∼ N(µi, σ
2/n+ τ 2). (2.6)

5. Recalculate the DIC for each dataset using R.

The results should now make more sense. For the data with a covariate effect for the
mean model, the DIC massively favours the correct model. Without the effect in the data,
the DIC is pretty similar for the two models. In both cases, also note that pD is larger by 1
for the model with 1 extra parameter, as expected.

What lessons can we draw from this? Firstly, that DIC is not an automatic panacea - it
must be focussed on the right part of the model. If the focus is not at the level immediately
above the data (i.e. θ here), then you can’t use the DIC given by BUGS. In this example it
is more difficult to get at the correctly focussed DIC (in fact you have to calculate it
manually yourself, or at least use Bob O’Hara’s R function to do so). For more complex
models this might be awkward, since if there are no analytical results, then the parameters
to be integrated out have to be simulated, for example by Markov chain Monte Carlo.

Some comments from Martyn Plummer:
This example encourages you to think about what DIC is trying to do. It’s not about

finding the “true” model - both models are true in fact - it’s about accurately predicting
dropped observations.

In the simulated data, there are 50 observations in each group. If you drop one
observation and then tried to predict it, you already have plenty information from the
other 49 observations in the same group that share the same mean, and you have 489
degrees of freedom to estimate the variance. The group-level covariate really doesn’t add
much to your ability to make that prediction.
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Changing the focus to the group level, you are dropping a whole group and then trying to
predict the 50 observations in it. In this case, the group-level covariate is very useful. Here
DIC parts company with the penalized plug-in likelihood since we have around 3 effective
parameters and only 10 independent observations! You’d most likely be better off using the
“corrected” DIC proposed in the Discussion of Plummer (2008). Although the calculations
haven’t been done explicitly, the substantive conclusions must surely be the same.
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2.12 Measurement comparison in oximetry.

A common problem in medical statistics is assessing the extent to which a new technique
for measuring a biological quantity gives results that agree with a more established method
of measurement. An important example arises in oximetry which is the measurement of the
saturation or concentration of oxygen in the blood. Patients who are critically ill are
unable to send enough oxygen into the bloodstream and the level of oxygen saturation is
monitored as an indicator of the severity of the patient’s condition. The traditional method
of measurement uses a sample of blood on which a chemical analysis is performed to
determine the level of various gases in the blood (“co-oximetry”). A much more convenient,
newer, method uses a device called a pulse oximetry, which relies on a small sensor placed
on a finger or toe to measure oxygen saturation by measuring the reflectance of light
through the blood vessels.

A study was done at the Royal Children’s Hospital in Melbourne to examine the
agreement between pulse oximetry and co-oximetry in small babies, many of whom were
especially sick and therefore had oxygen saturation levels lower than those usually available
to test the accuracy of pulse oximetry. The data file contains 5 variables on a total of 61
babies, and is available as the dataset ox in the MethComp package.

Each baby contributed 3 samples to the study (so that there are 61× 3 = 183
observations in total from 61 individuals.

The aim of the analyses here will be to use Bayesian methods to draw inferences about
the mean and variance of the difference between measurements of oxygen saturation made
using the pulse oximetry and co-oximetry techniques, as well as producing prediction from
measurements by one method to measurements by another method.

1. Load the MethComp package, and load the dataset ox, and look at the help page for
that

> library(MethComp)
> data(ox)
> ?ox

2. Plot the two types of measurement against each otter, by first making the data set
into a Meth object:

> ox <- Meth(ox)
> BA.plot( ox )
> BA.plot( ox, repl.conn=TRUE )
> BA.plot( ox, repl.conn=TRUE, pl.type="conv" )

3. Now try to fit a variance components model that assumes constant difference between
methods:

> BA.est( ox )

4. Fit a proper regression model with all variance components. You should probably use
a bit more than 200 iterations:

> system.time(
+ Jox <- MCmcmc( ox, program="JAGS", n.iter=200 ) )
> Jox
> MethComp( Jox )



Exercises 2.12 Measurement comparison in oximetry. 45

5. Fit a model to the transformed data, after looking at them:

> BA.plot( ox, Transform="pctlogit", repl.conn=TRUE, axlim=c(0,100), xaxs="i" )
> tJox <- MCmcmc( ox, program="JAGS", n.iter=200, Transform="pctlogit" )
> tJox
> MethComp( tJox )
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Solutions

3.1 Bayesian inference in the binomial distribution

1. In the discrete case we just set up a vector if the same length as the prior — we know
that the likelihood and posterior only are defined in the points where the prior is
positive.

(a) In Rwe just do the computations according to the rules, and the print the vector
side by side corresponding to the table in the exercise:

> theta <- c(2,4,6,8)/10
> prior <- c(1,1,1,1)/4
> x <- 1
> n <- 1
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.2 0.25 0.2 0.05 0.1
[2,] 0.4 0.25 0.4 0.10 0.2
[3,] 0.6 0.25 0.6 0.15 0.3
[4,] 0.8 0.25 0.8 0.20 0.4

Not surprising, the posterior is proportional to the likelihood when we use a
uniform prior as in this case. And since the likelihood is maximal for theta = 1,
we get the maximal posterior probability for θ = 0.8, the largest possible value.

(b) If we had 20 trials and 15 successes we just change the value of x and n in the
code:

> theta <- c(2,4,6,8)/10
> prior <- c(1,1,1,1)/4
> x <- 15
> n <- 20
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.2 0.25 0.000 0.000 0.000
[2,] 0.4 0.25 0.001 0.000 0.005
[3,] 0.6 0.25 0.075 0.019 0.298
[4,] 0.8 0.25 0.175 0.044 0.697

46
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We see the same patterns as before. The 0 posterior for θ = 0.2 is not an exact
0; it is just a consequence of rounding:
> round( cbind( theta, prior, like, like.pr, post ), 17 )

theta prior like like.pr post
[1,] 0.2 0.25 1.664729e-07 4.161823e-08 6.645594e-07
[2,] 0.4 0.25 1.294494e-03 3.236234e-04 5.167614e-03
[3,] 0.6 0.25 7.464702e-02 1.866175e-02 2.979907e-01
[4,] 0.8 0.25 1.745595e-01 4.363988e-02 6.968411e-01

(c) If we expand the set of support points for the prior (and hence also for the
posterior, should get an expansion of the support for the posterior too. But if
x 6= 0, then the likelihood at θ = 0 is 0, since this value of θ corresponds to a
situation where an event never occurs. Likewise if x 6= n the likelihood at θ = 1
is 0, since this corresponds to a situation where an event always occurs.

If we have x = 15 and n = 20, the the likelihood at the two outer points will be
the same and the posterior will also be the same (because the prior at the
“remaining points” is the same as before, bar a constant:
> theta <- c(0,2,4,6,8,10)/10
> prior <- c(1,1,1,1,1,1)/6
> x <- 15
> n <- 20
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.0 0.167 0.000 0.000 0.000
[2,] 0.2 0.167 0.000 0.000 0.000
[3,] 0.4 0.167 0.001 0.000 0.005
[4,] 0.6 0.167 0.075 0.012 0.298
[5,] 0.8 0.167 0.175 0.029 0.697
[6,] 1.0 0.167 0.000 0.000 0.000

(d) If we only have a singe positive trial, we will however have a positive likelihood
at θ = 1:
> theta <- c(0,2,4,6,8,10)/10
> prior <- c(1,1,1,1,1,1)/6
> x <- 1
> n <- 1
> like <- dbinom( x, n, theta )
> like.pr <- prior * like
> post <- like.pr / sum( like.pr )
> round( cbind( theta, prior, like, like.pr, post ), 3 )

theta prior like like.pr post
[1,] 0.0 0.167 0.0 0.000 0.000
[2,] 0.2 0.167 0.2 0.033 0.067
[3,] 0.4 0.167 0.4 0.067 0.133
[4,] 0.6 0.167 0.6 0.100 0.200
[5,] 0.8 0.167 0.8 0.133 0.267
[6,] 1.0 0.167 1.0 0.167 0.333

2. In the continuous case we use the Beta-distribution, which is also available in R, so it
is straightforward to do the same calculations as above. However we cannot just print
the values of the prior, the likelihood and the posterior at the supported values,
because the support is now the entire interval [0, 1]. Hence we compare by making
graphs with an x-axis form 0 to 1.
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(a) The formulae given in the exercise immediately lend themselves to
implementation in R:

m =
a

a+ b
⇔ a = m(a+ b)

s =

√
m(1−m)

a+ b+ 1
⇔ a+ b =

(
m(1−m)/s2

)
− 1

The only thing we need to supply are the desired values of m and s:

> m <- 0.4
> s <- 0.1
> a.plus.b <- m*(1-m)/s^2 - 1
> a <- m * a.plus.b
> b <- a.plus.b - a
> c(m,s,a,b)

[1] 0.4 0.1 9.2 13.8

(b) For these values of a and b we can just use the Beta-density implemented in the
dbeta function in R to plot the desired prior distribution function:

> # Points where we plot:
> p <- seq(from=0,to=1,length=100)
> # Graph of the prior
> plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l" )

(c) For an observation of x = 15 out of n = 20 we use the dbinom function with the
probability p as the argument to plot the likelihood:

> x <- 15
> n <- 20
> plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l" )

(d) We know that the posterior is a Beta-distribution with parameters a+ x and
b+ n− x, so this is just as easily implemented in R:

> plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l" )

(e) In order to see how the three relate we collect the three plots in one frame:

> par( mfcol=c(3,1) )
> plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l" )
> plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l" )
> plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l" )

which is slightly primitive; a more beefed-up version would be:

> par( mfcol=c(3,1), mar=c(3,3,0,0) )
> plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l" )
> text( par("usr")[1], par("usr")[4], "\n Prior", adj=c(0,1) )
> plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l" )
> text( par("usr")[1], par("usr")[4], "\n Likelihood", adj=c(0,1) )
> plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l" )
> text( par("usr")[1], par("usr")[4], "\n Posterior", adj=c(0,1) )

The results of these two approaches are shown side-by-side in figure ??.

(f) In order to illustrate the effect of variations in the prior and the data we wrap
the calculations, and the graphing of the three functions in an R-function. The
text-function draws text on the plot so it is possible to trace the parameters in
the various plots.
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> Bayes.ill <-
+ function( m, s, x, n, ... )
+ {
+ p <- seq(0,1,,1000)
+ a.plus.b <- m*(1-m)/s^2 - 1
+ a <- m * a.plus.b
+ b <- a.plus.b - a
+ plot( p, dbeta( p, a, b ), lwd=4, bty="n", type="l", ... )
+ text( par("usr")[1], par("usr")[4],
+ paste("\n Prior\n m=", m, ",s=", s,
+ "\n a=", a,", b=", b), adj=c(0,1) )
+ plot( p, dbinom( x, n, p ), lwd=4, bty="n", type="l", ... )
+ text( par("usr")[1], par("usr")[4],
+ paste("\n Likelihood\n n=", n,", x=",x), adj=c(0,1) )
+ plot( p, dbeta( p, a+x, b+n-x ), lwd=4, bty="n", type="l", ... )
+ text( par("usr")[1], par("usr")[4],
+ paste("\n Posterior\n Beta(", a+x, ",", b+n-x, ")"), adj=c(0,1) )
+ }

Note the argument “...” which allows us to pass extra parameters on the the
plot statements. This function produces three plots, so when using it it will be
convenient to set up a layout of plots using for example par(mfcol=c(3,2),
which gives a 3 by 2 matrix of graphs, filled column-wise. The mar= argument
governs the whitespace around the single plot frames, and we use
col=gray(0.5) to plot the curves in gray so that any text on top of them will
be visible:

> par( mfcol=c(3,2), mar=c(2,4,0,0) )
> Bayes.ill( 0.4, 0.2, 15, 20, col=gray(0.5) )
> Bayes.ill( 0.4, 0.1, 15, 20, col=gray(0.5) )

> par( mfcol=c(3,2), mar=c(2,4,0,0) )
> Bayes.ill( 0.4, 0.2, 55, 100, col=gray(0.5) )
> Bayes.ill( 0.4, 0.1, 75, 100, col=gray(0.5) )

The results of these statements are shown in figure ??.
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Figure 3.1: Prior, likelihood and posterior for the binomial model. The right hand side is
just the beefed-up version of the plot.
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3. The fraction of female births in most societies is around 48.7%. A reasonable prior
would be one that is centered around 50% with a spead that is effectively so large
that is will encompass even extreme deviations form the expected mean.

(a) If we use a Beta(100,100) We can either make a numeric calculation for the
probability that a Beta(100,100) variate is between 0.4 and 0.6:

> pbeta( 0.6, 100, 100 ) - pbeta( 0.4, 100, 100 )

[1] 0.9956798

or do a more brutal computation using a random sample:

> zz <- rbeta( 10000, 100, 100 )
> mean( zz<0.6 & zz>0.4 )

[1] 0.9958

So we are indeed more than 95% certain that the true fraction of girls is between
40 and 60%!

(b) If we see 511 boys out of 1000 births, we can use the previous function to
illustrate how the the prior, likelihood and posterior look in this problem. Note
that we use the “...” argument to pass on a limitation of the x-axis:

> a <- b <- 100
> m <- a/(a+b)
> s <- sqrt(m*(1-m)/(a+b+1))
> par( mfcol=c(3,1), mar=c(4,2,0,0) )
> Bayes.ill( m, s, 511, 1000, xlim=c(0.4,0.6), xlab="% male births" )
> abline(v=0.5)

(c) The posterior probability that the fraction of female births i larger than 0.5 is
the same the probability that the fraction of male births is < 0.5, is just a
cumulative probability in the posterior distribution which is Beta(611,589):

> pbeta(0.5,611,589)

[1] 0.2626087

i.e. the prior and the data translates into a posterior probability of 26%. We see
that the prior has a limited influence; a flat prior (Beta(1,1)) would have resulted
in a posterior with parameters (511,489), and a smaller posterior probability:

> pbeta(0.5,512,490)

[1] 0.2434263
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Figure 3.2: Prior, likelihood and posterior for the binomial model for different combinations
of prior information and data. Large amounts of data makes the likelihood the dominant
factor; and a narrow prior (strong beliefs!) makes the prior the dominant factor.



52 Solutions PDAwBuR: Solutions to Exercises

0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
10

% male births

  Prior
  m= 0.5 ,s= 0.0352672807929299 
  a= 100 , b= 100

0.40 0.45 0.50 0.55 0.60

0.
00

0
0.

01
0

0.
02

0

% male births

  Likelihood
  n= 1000 , x= 511

0.40 0.45 0.50 0.55 0.60

0
5

10
15

20
25

% male births

  Posterior
  Beta( 611 , 589 )

Figure 3.3: Prior, likelihood and posterior for the binomial model for 511 births out of 100,
using a Beta(100,100) prior. It is immediately apparent that the prior has very little influence
on the posterior — all the information is in the likelihood, i.e. the data.
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3.2 Simple linear regression with BUGS

First we load all the required packages for this practical:

> library( rjags )
> library( Epi )

1. Define and plot the bogus data and inspect the output from the linear regression
analysis:

Call:
lm(formula = y ~ x)

Residuals:
1 2 3 4 5 6

-0.09524 0.87619 -0.15238 -1.18095 -0.20952 0.76190

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.06667 0.78153 0.085 0.93612
x 1.02857 0.20068 5.125 0.00686

Residual standard error: 0.8395 on 4 degrees of freedom
Multiple R-squared: 0.8679, Adjusted R-squared: 0.8348
F-statistic: 26.27 on 1 and 4 DF, p-value: 0.00686

The estimates of α and β are 0.067 and 1.029, and the estimate of σ is 0.840.

2. In order to use JAGS we set up the data, initial values (for three chains) and the list
of parameters to monitor:

> reg.dat <- list( x=x, y=y, I=6 )
> reg.ini <- list( list( alpha=0.05, beta=1.0, sigma=0.9 ),
+ list( alpha=0.04, beta=1.1, sigma=1.0 ),
+ list( alpha=0.06, beta=0.9, sigma=1.1 ) )
> reg.par <- c("alpha","beta","sigma" )

Finally we need to specify the model in BUGS code, using the names we specified for
the data in reg.dat.

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*x[i]
+ }
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,100)
+ tau <- 1/pow(sigma,2)
+ }",
+ file="reg.jag" )

With these specifications we can now use JAGS to first compile and initialize the
model and then run the model for some 10000 iterations (and hopefully get to a
steady state of the chain):

> reg.mod <- jags.model( file = "reg.jag",
+ data = reg.dat,
+ n.chains = 3,
+ inits = reg.ini,
+ n.adapt = 10000 )
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Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 35

Initializing model

SAfter that we run the chain further while monotoring the parameters of interest:

> reg.res <- coda.samples( reg.mod,
+ var = reg.par,
+ n.iter = 10000,
+ thin = 10 )

3. The summary of the posterior distributions of the parameters can now be obtained
by the summary function and compared to the parameter estimates from the standard
regression model:

> summary( reg.res )

Iterations = 10010:20000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 0.09658 1.6408 0.029957 0.038482
beta 1.02186 0.4126 0.007533 0.008915
sigma 1.36959 1.1588 0.021156 0.055039

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha -2.7649 -0.6261 0.08741 0.7623 3.100
beta 0.2471 0.8479 1.02317 1.2081 1.761
sigma 0.5481 0.8183 1.07674 1.5263 3.706

> ci.lin( m0 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 0.06666667 0.7815329 0.08530245 9.320209e-01 -1.4651096 1.598443
x 1.02857143 0.2006791 5.12545318 2.968229e-07 0.6352476 1.421895

> summary( m0 )$sigma

[1] 0.839501

It is seen that the ML estimates and the posterior means / medians are in fairly good
agreement whereas the estimate of σ is pretty far away from the posterior mean /
median. This is partly due to the fact that the dataset have 6 observations and hence
virtually no information about the residual standard deviation.
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4. If we try to do the parallel analysis of a real dataset with some 500 obeservations we
must make sure that there are no missing values in the x-variable.

From the births dataset we will use y =bweight and x = gestwks− 35. We can use
almost the same code as for the small bogus dataset:

> data( births )
> births <- subset( births, !is.na(gestwks) )
> dim( births )

[1] 490 8

> mb <- lm( bweight ~ I(gestwks-35), data=births )
> summary( mb )

Call:
lm(formula = bweight ~ I(gestwks - 35), data = births)

Residuals:
Min 1Q Median 3Q Max

-1698.40 -280.14 -3.64 287.61 1382.24

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2404.902 38.504 62.46 <2e-16
I(gestwks - 35) 196.973 8.788 22.41 <2e-16

Residual standard error: 449.7 on 488 degrees of freedom
Multiple R-squared: 0.5073, Adjusted R-squared: 0.5062
F-statistic: 502.4 on 1 and 488 DF, p-value: < 2.2e-16

> bth.dat <- list( x=births$gestwks-35,
+ y=births$bweight,
+ I=nrow(births) )
> bth.ini <- list( list( alpha=2400, beta=200, sigma=400 ),
+ list( alpha=2300, beta=150, sigma=450 ),
+ list( alpha=2500, beta=250, sigma=500 ) )
> bth.par <- c("alpha","beta","sigma" )
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*x[i]
+ }
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,10000)
+ tau <- 1/pow(sigma,2)
+ }",
+ file="bth.jag" )
> bth.mod <- jags.model( file = "bth.jag",
+ data = bth.dat,
+ n.chains = 3,
+ inits = bth.ini,
+ n.adapt = 2000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1661

Initializing model
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> bth.res <- coda.samples( bth.mod,
+ var = bth.par,
+ n.iter = 10000,
+ thin = 10 )
> summary( mb )$sigma

[1] 449.7237

We now get a much better accordance between the regression estimates and the
posterior means / medians and also for the confidence intervals. The latter is of
course because the residual standard deviation is now much more precisely
determined. The moral is of course that with more data you get more precision.

5. The classically derived confidence intervals are now much better in agreement with
the posterior central intervals:

> summary( bth.res )$quan[,c(3,1,5)]

50% 2.5% 97.5%
alpha 2401.4021 2323.0067 2477.9097
beta 197.7579 180.2511 214.9954
sigma 450.4190 423.9036 480.4147

> ci.lin( mb )[,c(1,5,6)]

Estimate 2.5% 97.5%
(Intercept) 2404.9021 2329.4351 2480.3692
I(gestwks - 35) 196.9726 179.7482 214.1971

For comparison of the posterior for the standard deviation, we can use the χ2/f
approximation to the estimate of the residual variance, which yields confidence limits
for the standard deviation as the estimate muliplied by

√
f/χ2

0.975(f) and√
f/χ2

0.025(f) (derive that!):

> cim <- sqrt( c( 1,
+ mb$df/qchisq(0.975,mb$df),
+ mb$df/qchisq(0.025,mb$df) ) )
> summary(mb)$sigma * cim

[1] 449.7237 423.1938 479.8294

> summary( bth.res )$quan["sigma",c(3,1,5)]

50% 2.5% 97.5%
450.4190 423.9036 480.4147

> summary(mb)$sigma * cim /
+ summary( bth.res )$quan["sigma",c(3,1,5)]

50% 2.5% 97.5%
0.9984564 0.9983257 0.9987816

The agreement with the posterior is impressive. . .
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3.3 Examples of the Gibbs sampler and Metropolis

Hastings algorithm

1. (a) Let θ = (θ1, θ2) be the mean vector, which we know has a multivariate normal

posterior distribution with mean y = (y1, y2) and covariance matrix

(
1 ρ
ρ 1

)
.

If we let U = θ1 and V = θ2 then we can use result (A.1) on page 579 of BDA,
which states that p(U |V ) is univariate normal with

E(U |V ) = E(U) + cov(V, U)var(V )−1(V − E(V ))

var(U |V ) = var(U)− cov(V, U)var(V )−1cov(U, V ))

Substituting in the expectations, variances and covariances conditional on y into
the right hand sides of these expressions gives the following results:

E(θ1|θ2, y) = E(θ1|y) + cov(θ2, θ1|y)var(θ2|y)−1(θ2 − E(θ2|y))

= y1 + ρ× 1× (θ2 − y2)
= y1 + ρ(θ2 − y2)

var(θ1|θ2, y) = var(θ1|y)− ρ× var(θ2|y)−1 × ρ
= 1− ρ× 1× ρ
= 1− ρ2.

The result for θ2 follows by symmetry.

(b) Gibbs Sampler.

2. For the Metropolis-Hastings bivariate proposal distribution example, here’s some
summary plots of the sample paths.
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Figure 3.4: Metropolis-Hastings sample paths

A plot of the dependencies using the pacf and acf functions:

The acceptance probability increases slightly as the correlation parameter decreases
since the proposal distribution is getting closer to the target distribution.

3. For the single component Metropolis–Hastings sampler, here’s some summary plots of
the sample paths.
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Figure 3.5: Metropolis-Hastings — autocorrelations
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Figure 3.6: Single component Metropolis-Hastings — sample paths

And a plot of the acceptance probabilities:

Plotting the two series x1 and x2 against each other in a scatter plot is a good way to
see how the length of the jumps depends on the standard deviation of the proposal
distribution. The jumps get longer when the standard deviation of the proposal
distribution increases.

Finally we check the dependencies within each of the x1 and x2 series by using the
pacf and acf functions.
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Figure 3.7: Metropolis-Hastings acceptance probabilities
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Figure 3.9: Single component Metropolis-Hastings — autocorrelations
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3.4 Estimating the speed of light

Simon Newcomb set up an experiment in 1882 to measure the speed of light. Newcomb
measured the amount of time required for light to travel 7442 metres. The measurements
are given in the practicals text:

> newcomb <-
+ c(28, 26, 33, 24, 34, -44, 27, 16, 40, -2, 29, 22, 24, 21, 25,
+ 30, 23, 29, 31, 19, 24, 20, 36, 32, 36, 28, 25, 21, 28, 29, 37,
+ 25, 28, 26, 30, 32, 36, 26, 30, 22, 36, 23, 27, 27, 28, 27, 31,
+ 27, 26, 33, 26, 32, 32, 24, 39, 28, 24, 25, 32, 25, 29, 27, 28,
+ 29, 16, 23)

1. We first make a histogram of data:

> hist( newcomb, breaks=50, col="gray" )

A histogram of Newcomb’s 66 measured is shown in figure ??.

There are two unusually low measurements and then a cluster of measurements that
seems to be approximately symmetrically distributed.
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Figure 3.10: Histogram of Simon Newcomb’s measurements for estimating the speed of light,
from Stigler SM. (1977). Do robust estimators work with real data? (with discussion).
Annals of Statistics 5, 1055-1098. The data are times for light to travel a fixed distance,
recorded as deviations from 24,800 nanoseconds.



62 Solutions PDAwBuR: Solutions to Exercises

2. We then (inappropriately!) apply the normal model, assuming that all 66
measurements are independent draws from a normal distribution with mean µ and
variance σ2. The main goal is posterior inference for µ as an estimate of the speed of
light (suitablu transformed).

The sample mean of the N = 66 measurements is y = 26.2, and the sample standard
deviation is s = 10.7:

> mean( newcomb )

[1] 26.21212

> sd( newcomb )

[1] 10.74532

3. Assuming the non-informative prior distribution p(µ, σ2) ∝ (σ2)
−1

(which is
equivalent to a joint uniform prior distribution on (µ, log σ)), the posterior
distribution of µ has the form

µ− y
s/
√
n

∣∣∣∣ ∼ tn−1. (3.1)

Note that only µ is unknown in the expression above since we are conditioning on the
observed values of the sample mean y, the sample standard deviation s and the
sample size n.

The 95% posterior credible interval is therefore obtained from the t-distribution:

> dev <- qt(0.975,65) * sd(newcomb)/sqrt(length(newcomb))
> mean(newcomb) + c(0,-dev,dev)

[1] 26.21212 23.57059 28.85365

4. The posterior interval can also be obtained by simulation. Following the factorisation
of the posterior distribution is a scaled inverse-χ2:

p(σ2|y) ∼ χ−2(n− 1, s2),

In order to simulat eform this we first draw a random value of σ2 ∼ χ−2(65, s2) as
65s2 divided by a random draw from the χ2

65 distribution, and then draw µ from its
conditional posterior distribution:

> ybar <- mean(newcomb)
> s <- sd(newcomb)
> n <- length(newcomb)
> numsims <- 1000
> sigma <- sqrt( ((n-1)*(s^2))/( rchisq(numsims,n-1,ncp=0)) )
> mu <- rnorm( numsims, mean = ybar, sd = sigma/sqrt(n) )
> quantile( mu, probs=c(5,50,95)/100 )

5% 50% 95%
24.21086 26.25371 28.40835
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> quantile( sigma, probs=c(5,50,95)/100 )

5% 50% 95%
9.385029 10.771879 12.490222

5. We can now check the results in questions 1 and 2 by setting up a model in JAGS. We
also set up prediction nodes y.pred. (The following piece of code also contains a few
other things that we will use later.)

> cat( "model
+ {
+ for (i in 1:N)
+ {
+ y[i] ~ dnorm(mu,tau)
+ y.pred[i] ~ dnorm(mu,tau)
+ }
+ ord <- sort( y.pred[] )
+ small1 <- ord[1]
+ small2 <- ord[2]
+ # Priors
+ mu ~ dnorm(0,0.0001)
+ tau <- pow(sigma,-2)
+ sigma ~ dunif(0,1000)
+ }",
+ file = "light.jag" )
> light.dat <- list( y=newcomb, N=length(newcomb) )
> light.ini <- list( list( mu=0, sigma=1 ),
+ list( mu=0, sigma=2 ),
+ list( mu=0, sigma=3 ) )
> light.par <- c("mu","sigma","small1","small2")
> library( rjags )
> # Model compilation and burn-in
> light.mod <- jags.model( file = "light.jag",
+ data = light.dat,
+ n.chains = length( light.ini ),
+ inits = light.ini,
+ n.adapt = 5000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 145

Initializing model

> # Sampling from the posterior
> light.res <- coda.samples( light.mod,
+ var = light.par,
+ n.iter = 10000,
+ thin = 30 )
> summary( light.res )

Iterations = 5030:15020
Thinning interval = 30
Number of chains = 3
Sample size per chain = 334

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
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mu 26.189 1.3680 0.04322 0.04186
sigma 10.957 0.9185 0.02902 0.03087
small1 0.493 5.4949 0.17359 0.17623
small2 4.553 4.2228 0.13340 0.13691

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu 23.530 25.228 26.1753 27.112 28.839
sigma 9.347 10.344 10.8786 11.500 12.877
small1 -12.282 -2.840 0.9742 4.357 9.582
small2 -4.466 2.004 4.8112 7.565 12.210

6. From the posterior sample we see that the median is 26.2 and the 95% predictive
interval is (23.6;29.0) quite some distance from the actual value (!) of the speed of
light.

7. One way to check the suitability of the model is to amend the JAGS code from
question 3 so that it not only a vector y.pred of 66 observations from the normal
distribution with the current sampled values of µ and σ, but also retains the two
smallest value from the vector y.pred, generating a distribution of minimum
measurements for a sample of size N = 66.

This was already done in the code, and from the summary we see that the lower
bound for the smallest observation is way above the observed smallest value, wheres
the second smallest has a quantile not too far from the second smallest observation.

The conclusion seems to be that the smallest value seen by Newcomb is not
consonant with the model chosen. Whether the observation or the model is the
culprit is however an open question.
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3.5 Modelling the rate of airline fatalities 1976 to

2001

1. (a) The model for the data is:
yi|θ ∼ Poisson(θ)

where θ is the expected number of fatal accidents in a year.

If the prior distribution for θ is (Γ(α, β) then the posterior distribution is
Γ(α + ny, β + n), where in this case n = 26 and ny =

∑26
i=1 yi = 634:

> airline <- read.csv( "../data/airline.csv" )
> str( airline )

’data.frame’: 26 obs. of 5 variables:
$ year1975: int 1 2 3 4 5 6 7 8 9 10 ...
$ year : int 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 ...
$ fatal : int 24 25 31 31 22 21 26 20 16 22 ...
$ miles : num 3.86 4.3 5.03 5.48 5.81 ...
$ rate : num 6.21 5.81 6.17 5.66 3.78 ...

> sum( airline$fatal )

[1] 634

> dim( airline )

[1] 26 5

A noninformative gamma prior distribution has (α, β) = (0, 0). This is not a
proper distribution — the Γ-density is:

f(θ) =
βα

Γ(α)
θα−1e−βx

so setting (α, β) = (0, 0) specifies a density proportional to 1/θ, which is really
not possible since

∫ +∞
0

1/θ dθ = +∞. A density proportional to 1/θ corresponds
to a flat prior on 1/θ.

However, provided the product of the prior and the likelihood results in a proper
posterior distribution for θ, (which it does in this case) we can use it.

The posterior distribution is:

θ|y ∼ Γ(634, 26)

and thus the posterior mean for θ is (α + ny)/(β + n) = 634/26 = 24.385.

(b) Let ỹ be the number of fatal accidents in 2002. Given θ, the predictive
distribution for ỹ is Poisson(θ). The derivation on pages 52 and 53 of Bayesian
Data Analysis show that the prior predictive distribution for y is:

p(y) =
p(y|θ)p(θ)
p(θ|y)

=
Poisson(y|θ)gamma(θ|α, β)

gamma(θ|α + y, β + 1)

=
Γ(α + y)βα

Γ(α)y!(1 + β)α+y

=

(
α + y + 1

y

)(
β

β + 1

)α(
1

β + 1

)y
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which is the negative binomial density:

y ∼ Neg-bin(α, β)

For the uninformative prior (i.e. with (α, β) = 0, 0), this is actually not a
distribution, but what we actually want is the posterior predictive distribution
for the number of fatal accidents in 2002, that is, the predictive distribution
conditioning on the available data from 1976 to 2001. This has the same form as
p(y) presented above but we must replace α and β with the posterior quantities
α? = α + ny = 0 + 634 = 634 and β? = β + n = 0 + 26 = 26.

(c) The posterior distribution for θ is θ|y ∼ Gamma(634, 26), and the conditional
distribution of ỹ (the number of fatal accidents in 2002) is Poisson(θ). So to
simulate values of ỹ all we need to do is first generate a realized value from the
posterior distribution of θ and secondly sample a value from the Poisson
distribution using the realized value of θ as the mean. Iterating this process will
generate values of ỹ from the posterior predictive distribution. What we are
doing here is integrating numerically, using simulation, over the posterior
distribution of θ.

This can actually be accomplished in R:

> theta <- rgamma(1000, 634, 26 )
> y.2002 <- rpois(1000,theta)
> hist( y.2002 )

The default histogram is not impressive; it’s actually better to explicitly plot the
table of the realized values for y2002:

> plot( table(y.2002), type="h", lwd=5, lend=2, col=gray(0.5), bty="n", ylab="" )

(d) The model can also be specified in BUGS, and run using the bugs() function
from R2WinBUGS. Besides the model we need starting values and a specification
of data:

> library(rjags)
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ fatal[i] ~ dpois(mu)
+ }
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Figure 3.11: Posterior predictive distribution of y2002 — the number of fatal airline crashes
in 2002. Left panel the default hist() and right panel the result of plot( ..., type="h").
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+ mu ~ dgamma(0.01,0.01)
+ }",
+ file="a1.jag" )
> a1.par <- c("mu","fatal[27]")
> a1.ini <- list( list( mu=22 ),
+ list( mu=23 ),
+ list( mu=24 ) )
> a1.dat <- list( fatal = c(airline$fatal,NA), I=27 )
> # Model compilation and burn-in
> a1.mod <- jags.model( file = "a1.jag",
+ data = a1.dat,
+ inits = a1.ini,
+ n.chains = 3,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 30

Initializing model

> # Sampling from the posterior
> a1.res <- coda.samples( a1.mod,
+ var = a1.par,
+ n.iter = 10000,
+ thin = 10 )
> summary( a1.res )

Iterations = 10:10000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
fatal[27] 24.28 4.9636 0.09062 0.08122
mu 24.39 0.9655 0.01763 0.01897

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
fatal[27] 15.00 21.00 24.00 27.00 34.03
mu 22.56 23.73 24.38 25.02 26.32

The summary of the resulting object shows that the posterior mean and median
of the µ is about 24.37. This is also the posterior expectation of the predictive
distribution for the number of fatal accidents in 2002, represented by the node
fatal[27].

The posterior predictive distribution for the number of fatal accidents in 2002
has median 24 and 95% posterior interval [15,35]. Recall that the posterior
predictive distribution is a discrete distribution. We can compare this with the
one we simulated directly before:
> theta <- rgamma(6000, 634, 26 )
> y.2002 <- rpois(6000,theta)
> plot( table(y.2002), type="h", lwd=5, lend=2, col=gray(0.2), bty="n",
+ ylab="", xlim=c(5,50) )
> tpr <- table( as.matrix( a1.res[,"fatal[27]"] ) )
> points( as.numeric(names(tpr))+0.4, tpr, type="h", col="red", lwd=4 )

2. (a) Let mi = number of passenger miles flown in year i and λ = accident rate per
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passenger mile. The model for the data is yi|mi, λ ∼ Poisson(miλ). We use the
noninformative Γ(0, 0) prior distribution for λ as we did for µ previously.

The posterior distribution for λ is λ|y,m ∼ Γ(nȳ, nm̄) = Γ(634, 275.56) where
nm̄ =

∑26
i=1mi:

> sum( airline$miles )

[1] 275.564

Note that the model is invariant under scaling of m in the sense that if the ms
are divided by a factor K then λ is multiplied by K. In this exercise we have
used the ms in the units of 1011miles as they are given in the file airline.csv.

(b) Given λ, the predictive distribution for ˜y2002 is Poisson(λm2002) =
Poisson(2× 1012λ). The posterior predictive distribution for ỹ will be (related to
the) negative binomial but the algebra is more complex due to the presence of
the 2× 1012 scale factor based on the number of miles flown. SO we let BUGS do
the hard work — you can see that the change to the BUGS code is rather minimal.

Note that we as before add an extra NA value to the vector of fatalities, and in
order to get a predictive distribution for this an anticipated value for the
number of miles flown, in this case 20 (×1011).

Also note that you cannot stick an expression in as an argument to a
distribution; an expression as fatal[i] dpois(lambda*miles[i]) will cause an
error.

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] <- lambda * miles[i]
+ fatal[i] ~ dpois( mu[i] )
+ }
+ lambda ~ dgamma(0.01,0.01)
+ }",
+ file="a2.jag" )
> a2.ini <- list( list( lambda=10 ),
+ list( lambda=20 ),
+ list( lambda=30 ) )
> a2.dat <- list( fatal=c(airline$fatal,NA),
+ miles=c(airline$miles,20), I=27 )
> a2.par <- c("mu","fatal[27]")
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Figure 3.12: Posterior predictive distribution of y2002 — the number of fatal airline crashes
in 2002. Gray bars are directly simulated, red bars are the posterior from BUGS output.
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> # Model compilation and burn-in
> a2.mod <- jags.model( file = "a2.jag",
+ data = a2.dat,
+ inits = a2.ini,
+ n.chains = 3,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 84

Initializing model

> # Sampling from the posterior
> a2.res <- coda.samples( a2.mod,
+ var = a2.par,
+ n.iter = 10000,
+ thin = 10 )
> summary( a2.res )

Iterations = 10:10000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
fatal[27] 46.067 7.1790 0.131069 0.126857
mu[1] 8.894 0.3506 0.006402 0.006060
mu[2] 9.900 0.3903 0.007126 0.006746
mu[3] 11.574 0.4563 0.008331 0.007887
mu[4] 12.619 0.4975 0.009083 0.008599
mu[5] 13.386 0.5277 0.009635 0.009121
mu[6] 13.890 0.5476 0.009998 0.009465
mu[7] 13.531 0.5335 0.009740 0.009220
mu[8] 14.327 0.5649 0.010313 0.009763
mu[9] 17.113 0.6747 0.012318 0.011661
mu[10] 16.362 0.6451 0.011778 0.011150
mu[11] 20.951 0.8260 0.015081 0.014277
mu[12] 23.023 0.9077 0.016572 0.015689
mu[13] 24.404 0.9622 0.017567 0.016630
mu[14] 25.298 0.9974 0.018210 0.017239
mu[15] 25.049 0.9876 0.018031 0.017069
mu[16] 24.480 0.9652 0.017621 0.016682
mu[17] 27.526 1.0852 0.019814 0.018757
mu[18] 28.417 1.1204 0.020455 0.019364
mu[19] 29.955 1.1810 0.021562 0.020412
mu[20] 32.739 1.2908 0.023566 0.022309
mu[21] 37.691 1.4860 0.027131 0.025684
mu[22] 35.646 1.4054 0.025659 0.024291
mu[23] 41.625 1.6411 0.029963 0.028365
mu[24] 38.294 1.5098 0.027565 0.026095
mu[25] 43.456 1.7133 0.031280 0.029612
mu[26] 44.280 1.7458 0.031873 0.030174
mu[27] 46.046 1.8154 0.033145 0.031377

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
fatal[27] 32.000 41.000 46.000 51.000 60.000
mu[1] 8.222 8.644 8.887 9.134 9.604
mu[2] 9.152 9.622 9.892 10.167 10.691
mu[3] 10.700 11.248 11.565 11.886 12.498
mu[4] 11.666 12.264 12.609 12.960 13.627
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mu[5] 12.375 13.009 13.375 13.747 14.455
mu[6] 12.841 13.500 13.879 14.265 14.999
mu[7] 12.509 13.150 13.520 13.896 14.611
mu[8] 13.246 13.925 14.316 14.714 15.472
mu[9] 15.821 16.632 17.100 17.575 18.480
mu[10] 15.127 15.903 16.350 16.804 17.669
mu[11] 19.369 20.362 20.935 21.517 22.624
mu[12] 21.285 22.376 23.005 23.645 24.862
mu[13] 22.562 23.719 24.385 25.063 26.354
mu[14] 23.388 24.587 25.278 25.981 27.318
mu[15] 23.158 24.345 25.029 25.725 27.050
mu[16] 22.632 23.793 24.461 25.141 26.436
mu[17] 25.448 26.753 27.505 28.269 29.725
mu[18] 26.272 27.619 28.395 29.185 30.687
mu[19] 27.694 29.114 29.932 30.764 32.348
mu[20] 30.267 31.819 32.713 33.623 35.354
mu[21] 34.845 36.632 37.661 38.709 40.701
mu[22] 32.955 34.645 35.619 36.609 38.494
mu[23] 38.483 40.456 41.593 42.749 44.950
mu[24] 35.403 37.218 38.264 39.328 41.353
mu[25] 40.175 42.235 43.422 44.629 46.927
mu[26] 40.937 43.036 44.245 45.476 47.817
mu[27] 42.570 44.752 46.010 47.289 49.724

The posterior expectation of the predictive distribution for the number of fatal
accidents in 2002 is 46 and the 95% posterior interval is [33,60].

3. (a) A closer inspection of the number of fatal airline crashes can be dome by:

> par(mfrow=c(1,2))
> with(airline, plot( year, fatal, pch=16, type="b", ylim=c(0,32), bty="n" ) )
> with(airline, plot( year, rate, pch=16, type="b", ylim=c(0,7), bty="n" ) )

There is a decrease on average over the ten year period 1976 to 1985. The fatal
accident rate per mile flown over the 26 year period shows a more consistently
decreasing trend that looks amenable to modelling using a (possibly
exponentially transformed) simple first order function of time.

(b) The mean of a Poisson random variable must be positive, so modelling the mean
as a linear function of time, that is, E(y|µ) = µ = α + β(t− 1990) has the
potential to generate negative values for µ and thus a mean for our sampling
distribution that is outside the parameter space.

In this case it seems to work, however, because the chains never get to generate
a negative value of any of the mu[i]s:

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] <- (alpha + beta*(i-10)) * miles[i]
+ fatal[i] ~ dpois( mu[i] )
+ }
+ alpha ~ dnorm(0,0.000001)
+ beta ~ dnorm(0,0.000001)
+ }",
+ file="a3.jag" )
> a3.ini <- list( list( alpha=10, beta=-0.5 ),
+ list( alpha=20, beta=-0.6 ),
+ list( alpha=30, beta=-0.4 ) )
> a3.dat <- list( fatal=c(airline$fatal,NA),
+ miles=c(airline$miles,20), I=27 )
> a3.par <- c("alpha","beta","fatal[27]")
> # Model compilation and burn-in
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> a3.mod <- jags.model( file = "a3.jag",
+ data = a3.dat,
+ inits = a3.ini,
+ n.chains = 3,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 194

Initializing model

> # Sampling from the posterior
> a3.res <- coda.samples( a3.mod,
+ var = a3.par,
+ n.iter = 10000,
+ thin = 10 )
> summary( a3.res )

Iterations = 1010:11000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 3.4252 0.15878 0.0028989 0.0030423
beta -0.1656 0.01368 0.0002497 0.0002866
fatal[27] 12.1977 4.29838 0.0784774 0.0851265

2. Quantiles for each variable:
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Figure 3.13: The numbers (left) and rates (right) of fatal airline accidents.
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2.5% 25% 50% 75% 97.5%
alpha 3.1217 3.3188 3.4209 3.5299 3.7559
beta -0.1929 -0.1746 -0.1658 -0.1564 -0.1385
fatal[27] 5.0000 9.0000 12.0000 15.0000 21.0000

Finally we can take a look at traces of the three chains used in this analysis (see
figure ??):
> print( xyplot( a3.res[,1:2] ) )

4. A more natural model is the multiplicative one

log
(

E
(
y(t)|t,m(t)

))
= α + βt+ log(m(t)) (3.2)

(a) The simple linear regression approach to the model is to regress the log-rate on
the year:
> summary( lm( log( fatal/miles ) ~ I(year-1985), data=airline ) )

Call:
lm(formula = log(fatal/miles) ~ I(year - 1985), data = airline)

Residuals:
Min 1Q Median 3Q Max

-0.46628 -0.14912 0.04327 0.14137 0.37938

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.163059 0.044640 26.05 < 2e-16
I(year - 1985) -0.069878 0.005394 -12.96 2.52e-12

Residual standard error: 0.2063 on 24 degrees of freedom
Multiple R-squared: 0.8749, Adjusted R-squared: 0.8697
F-statistic: 167.8 on 1 and 24 DF, p-value: 2.518e-12

which shows that rates decrease about 7% per year (exp(β̂)− 1).

This model puts equal weight on all observations regardless of the number of
fatalities seen, so a proper Poisson-model would presumably be more
appropriate.

(b) The relevant Poisson model is one where the log of the mean is linear, as
indicated in the formula (3.2) above. The log of the miles is a regression
variable, but with no coefficient, i.e. with a regression coefficient fixed at 1. This
is a so-called offset-variable:
> summary( glm4 <- glm( fatal ~ I(year-1985) + offset(log(miles)),
+ family=poisson, data=airline ) )

Call:
glm(formula = fatal ~ I(year - 1985) + offset(log(miles)), family = poisson,

data = airline)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0782 -0.7953 0.1626 0.7190 1.9369

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.176111 0.043200 27.23 <2e-16
I(year - 1985) -0.068742 0.005394 -12.74 <2e-16

(Dispersion parameter for poisson family taken to be 1)
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Null deviance: 182.628 on 25 degrees of freedom
Residual deviance: 22.545 on 24 degrees of freedom
AIC: 157.02

Number of Fisher Scoring iterations: 4

This is pretty much the same results as those from the linear regression of the
log-rates.

(c) We can now fit the same model using JAGS, by a suitable modification of the
code from before:

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] <- exp( alpha + beta*(i-10) ) * miles[i]
+ fatal[i] ~ dpois( mu[i] )
+ }
+ alpha ~ dnorm(0,0.000001)
+ beta ~ dnorm(0,0.000001)
+ }",
+ file="a4.jag" )
> a4.ini <- list( list( alpha=1.0, beta=-0.05 ),
+ list( alpha=1.5, beta=-0.06 ),
+ list( alpha=0.5, beta=-0.04 ) )
> a4.dat <- list( fatal=c(airline$fatal,NA),
+ miles=c(airline$miles,20), I=27 )
> a4.par <- c("alpha","beta","fatal[27]")
> # Model compilation and burn-in
> a4.mod <- jags.model( file = "a4.jag",
+ data = a4.dat,
+ inits = a4.ini,
+ n.chains = 3,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 221

Initializing model

> # Sampling from the posterior
> a4.res <- coda.samples( a4.mod,
+ var = a4.par,
+ n.iter = 10000,
+ thin = 10 )
> summary( a4.res )

Iterations = 1010:11000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 1.17519 0.043270 7.900e-04 7.619e-04
beta -0.06883 0.005381 9.824e-05 8.955e-05
fatal[27] 20.07233 4.777451 8.722e-02 8.337e-02

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 1.08755 1.14706 1.17593 1.20350 1.25793
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beta -0.07961 -0.07244 -0.06881 -0.06519 -0.05833
fatal[27] 11.00000 17.00000 20.00000 23.00000 30.00000

If we compare the results with those from the generalized linear model:
> library( Epi )
> ci.lin( glm4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 1.17611148 0.043199710 27.22499 0 1.09144161 1.26078136
I(year - 1985) -0.06874189 0.005393721 -12.74480 0 -0.07931339 -0.05817039

we see that the asymptotic 95% c.i.s from this model are virtually identical to
the 95% posterior interval from the BUGS simulation.

(d) The mixing of the chains for α and β is checked using xyplot on the resulting
mcmc.list object. This is placed alongside the corresponding plot for the model
with linear trend in the rates:
> print( xyplot( a4.res[,1:2] ) )

(e) The mixing of the chains for α and β can also be checked by checking whether
the densities based on each of the chains look similar:
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Figure 3.14: Traceplots of chains from the linear model (left) and the log-linear model (right).
For two of the chains in the linear model there is clearly some kind of boundary problems,
as two of the chains stay in the same state for longer periods of time.
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> print( densityplot( a4.res[,1:2], aspect="fill" ) )

Likewise, we may simply plot the simulated values for α and beta against each
other with different colors:

> mat4 <- as.matrix( a4.res, chains=TRUE )
> # permute the rows to get the colors better mixed in the plot
> mat4 <- mat4[sample(1:nrow(mat4)),]
> plot( mat4[,"alpha"], mat4[,"beta"],
+ pch=16, cex=0.3, col=rainbow(3)[mat4[,"CHAIN"]] )

(f) If we want the posterior of the expected number of airline fatalities in 2002
(assuming the the amount of flown miles is 20× 1012), we are asking for the
posterior of exp(α + β × (2002− 1985))× 20:

> a4.m <- as.matrix(a4.res)
> enum.2002 <- exp(a4.m[,"alpha"] + a4.m[,"beta"]*17)*20
> summary( enum.2002 )

Min. 1st Qu. Median Mean 3rd Qu. Max.
14.24 18.97 20.09 20.17 21.30 27.45

> ( e2002.qnt <- quantile( enum.2002, probs=c(50,2.5,97.5)/100 ) )

50% 2.5% 97.5%
20.08800 16.94916 23.76928

A plot of the posterior density of this can be obtained using the density

function:

> plot( density(enum.2002), type="l", lwd=3 )
> abline( v=e2002.qnt )

(g) The node fatal[27] contains the predictive distribution for the number of fatal
accidents in 2002. Its posterior mean is 20.04 (similar to that for the expected
number of fatal accidents in 2002) with a standard deviation of 4.864 and 95%
interval [11,30]. We can plot the distribution of this by:
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Figure 3.15: Marginal densities (left) and joint distribution (right) for α and β from the
multiplicative model. Results from different chains have different colours.
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> plot( table(a4.m[,"fatal[27]"]),
+ type="h", lwd=5, lend=2, col=gray(0.5), bty="n", ylab="" )

As an aside, the actual figures for 2002, 2003 and 2004 are shown in table 3.1.
Note that the guess that 20× 1011 miles would be flown in 2002 was almost spot
on! Secondly, the actual number of fatal accidents was 14, less than the 20
predicted from our final model in question 3, but well within the prediction
interval of (11,30). Finally, the rate in 2002 (0.708) was similar to that in 2001
(0.676, which was the lowest rate for the series up to that time), but the rates in
the final two year 2003 and 2004 (0.3004 and 0.4433 respectively) are about half
as great as those in the previous two years. Since 1976, the rate of fatal
accidents per air mile flown has decreased by an order of magnitude, that is, it is
ten times lower.

(h) To produce the posterior predictive distribution of the number of fatalities in
2002, based on the maximum likelihood estimates from the generalized liner
model above, we would simulate the log-rate based on an assumption of
multivariate normality of the estimates, or rather based on normality of the
parameter function α + β(2002− 1985). Then we simulate a random number
from this, take the exponential and multiply by 20 to get a random sample from
the posterior mean. Finally we would simulate a Poisson variate with this mean:

> # ci.lin gives the estimate and its sd. for a linear combination of parameters
> mn.sd <- ci.lin( glm4, ctr.mat=rbind(c(1,2002-1985)) )[1:2]
> N <- 1000
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Figure 3.16: Posterior density of the expected number of airline fatalities in 2002 (left) and
the posterior predicted number of fatalities in 2002.
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Table 3.1: Worldwide airline fatalities, 2002–2004. “Passenger miles” are in units of 1011

and the “Accident rate” is the number of fatal accidents per 1011 passenger miles. Source:
International Civil Aviation Organization, Montreal, Canada (www.icao.int)

Fatal Passenger Accident
Year accidents miles rate

2002 14 19.775 0.7080
2003 7 23.300 0.3004
2004 9 20.300 0.4433

> log.rate <- rnorm( N, mean=mn.sd[1], sd=mn.sd[2] )
> e.num <- exp( log.rate ) * 20
> p.num <- rpois( N, e.num )
> summary( p.num )

Min. 1st Qu. Median Mean 3rd Qu. Max.
8.00 17.00 20.00 20.17 23.00 36.00

> quantile( p.num, probs=c(50,2.5,97.5)/100 )

50% 2.5% 97.5%
20 11 30

> # For comparison we make the same summary for the posterior sample
> quantile( a4.m[,"fatal[27]"], probs=c(50,2.5,97.5)/100 )

50% 2.5% 97.5%
20 11 30
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3.6 Simple mixed model for fetal growth

The dataset fetal.csv contains measurements of head circumference and gestational age,
as well as a transformation of gestational age:

> fetal <- read.csv("http://BendixCarstensen.com/Bayes/Cph-2012/data/fetal.csv",header=TRUE)
> str( fetal )

’data.frame’: 3097 obs. of 4 variables:
$ id : int 1 1 1 1 2 2 2 2 2 2 ...
$ hc : int 211 274 314 330 141 199 266 297 313 321 ...
$ ga : num 23 28.4 33.4 38.4 17.7 ...
$ tga: num 16.8 19 20.4 21.2 14.1 ...

> head( fetal, 10 )

id hc ga tga
1 1 211 23.00 16.83
2 1 274 28.43 19.00
3 1 314 33.43 20.39
4 1 330 38.43 21.20
5 2 141 17.71 14.05
6 2 199 22.86 16.76
7 2 266 27.86 18.81
8 2 297 31.29 19.87
9 2 313 34.57 20.63
10 2 321 36.57 20.97

1. This is a so-called repeated measures dataset, we see that there are typically 4 or 5
measurements on each fetus, a few only have one measurement and some have as
much as 7 measurements:

> with( fetal, addmargins( table( table(id) ) ) )

1 2 3 4 5 6 7 Sum
11 21 82 206 350 28 8 706

2. We would like a description of the fetal growth as a linear function of time, but this is
not a good description; a non-linear transformation of gestational age to make the
relationship linear has been estimated: tga = ga− 0.0116638× ga2; the transformed
gestational age is for convenience put in the variable tga:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> with( fetal, plot( tga, ga-0.0116638*(ga^2), pch=16, cex=0.5 ) )
> abline(0,1,col="red")
> with( fetal, plot( ga, tga, pch=16, cex=0.5,
+ xlab="Gestational age (GA)", ylab="Transformed GA" ) )
> abline(0,1,col="red")

3. The so called spaghetti-plot of a random sample of 100 of the 706 fetuses shows the
linearizing effect of the transformation, but also that the square-root transformation
of the head circumference makes the relationship more linear and more homogeneous
with respect to the variance:
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> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> id.sub <- sample( unique(fetal$id), 50 )
> with( fetal, plot( ga, hc, type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(ga,hc) )
> with( fetal, plot( tga, hc, type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(tga,hc) )
> with( fetal, plot( tga, sqrt(hc), type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(tga,sqrt(hc)) )

Also it appears that the overall variance is stabilized. The particular shape of the
transformation is illustrated in figure 3.19

4. As a first attempt at the modelling we set up a simple random effects model for the
measurement yft on fetus f at time t:

yft = β0 + β1t+ u0f + eft

u0f ∼ N (0, τ), eft ∼ N (0, σ)

This model can be fitted by REML, using the lmer function from the lme4 pa ckage:

> library( lme4 )
> m0 <- lmer( sqrt(hc) ~ tga + (1|id), data=fetal )
> summary(m0)

Linear mixed model fit by REML
Formula: sqrt(hc) ~ tga + (1 | id)

Data: fetal
AIC BIC logLik deviance REMLdev
1381 1405 -686.6 1355 1373
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.059715 0.24437
Residual 0.062665 0.25033
Number of obs: 3097, groups: id, 706
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Figure 3.17: Transformation used for gestational age. The red line is the identity line.
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Fixed effects:
Estimate Std. Error t value

(Intercept) -0.080663 0.036084 -2.2
tga 0.868333 0.001889 459.7

Correlation of Fixed Effects:
(Intr)

tga -0.958

You can extract the estimates and the variances from this using:

> fixef( m0 )

(Intercept) tga
-0.08066286 0.86833250

> VarCorr( m0 )

$id
(Intercept)

(Intercept) 0.05971482
attr(,"stddev")
(Intercept)
0.2443662

attr(,"correlation")
(Intercept)

(Intercept) 1

attr(,"sc")
[1] 0.2503288

Note that in order to get the sds out you need (it is a little tricky to see where the
attributes belong. . . ):
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Figure 3.18: Linearizing transformation of gestational age (quadratic transformation) and
head circumference (square root).



Solutions 3.6 Simple mixed model for fetal growth 81

> attr( VarCorr(m0)$id, "stddev" )

(Intercept)
0.2443662

> attr( VarCorr(m0), "sc" )

[1] 0.2503288

5. How large is the residual variation relative to the between-persons variation?

6. What is the grovt rate of fetuses’ head circumference?

7. This model can be specified in JAGS as follows:

> cat("
+ # Fixing data to be used in model definition
+ model
+ {
+ # The model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- beta[1] + beta[2] * ( tga[j]-18 ) + u[id[j]]
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+
+ # Random effects for each person
+ for( i in 1:I )
+ {
+ u[i] ~ dnorm(0,tau.u)
+ }
+
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
+
+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Between-person variation
+ tau.u <- pow(sigma.u,-2)
+ sigma.u ~ dunif(0,100)
+ }",
+ file="fetal0.jag" )

Set the model up with suitable initial values (derive them from the lmer output. Pay
particular attention to the required data supplied to JAGS; note from the code that
two constants are needed, both the number of units in the dataframe (N), but also the
number of individuals I. The latter can be found using for example:

> length( unique(fetal$id) )

[1] 706

First we need the data. Note the expression as.integer(factor(fetal$id)), which
ensures that id takes on the values 1, 2, 3, . . ., an not just different integer values.
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> fetal.dat <- list( id = as.integer( factor(fetal$id) ),
+ hc = fetal$hc,
+ tga = fetal$tga,
+ N = nrow(fetal),
+ I = length( unique(fetal$id) ) )

If you inspect the lmer object, you can find the estiamtes of the variance componets
as follows:

> ( sigma.e <- attr(VarCorr(m0),"sc") )

[1] 0.2503288

> ( sigma.u <- attr(VarCorr(m0)$id,"stddev") )

(Intercept)
0.2443662

> ( beta <- fixef( m0 ) )

(Intercept) tga
-0.08066286 0.86833250

> fetal.ini <- list( list( sigma.e = sigma.e/3,
+ sigma.u = sigma.u/3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ sigma.u = sigma.u*3,
+ beta = beta *3 ),
+ list( sigma.e = sigma.e/3,
+ sigma.u = sigma.u*3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ sigma.u = sigma.u/3,
+ beta = beta *3 ) )

Once we have set up the model-specification, the data and the starting values, we can
initialize the model; that is compile the code, and use the inits and the data to run
the sampler for a number of iterations

> library( rjags )
> system.time(
+ fetal.mod <- jags.model( file = "fetal0.jag",
+ data = fetal.dat,
+ n.chains = 4,
+ inits = fetal.ini,
+ n.adapt = 100 )
+ )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 13440

Initializing model

user system elapsed
3.4 0.0 3.6
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With the model in place we now can generate samples from the model using
coda.samples. In this call we specify which nodes we want to sample. In this case
we want to see the posterior distribution of the βs and the variance components:

> system.time(
+ fetal.res <- coda.samples( fetal.mod,
+ var = c("beta","sigma.e","sigma.u"),
+ n.iter = 500,
+ thin = 20 ) )

user system elapsed
13.96 0.00 14.06

> str( fetal.res )

List of 4
$ : mcmc [1:25, 1:4] 159 165 172 178 184 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "beta[1]" "beta[2]" "sigma.e" "sigma.u"
..- attr(*, "mcpar")= num [1:3] 120 600 20
$ : mcmc [1:25, 1:4] 247 247 247 247 246 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "beta[1]" "beta[2]" "sigma.e" "sigma.u"
..- attr(*, "mcpar")= num [1:3] 120 600 20
$ : mcmc [1:25, 1:4] 246 246 246 246 247 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "beta[1]" "beta[2]" "sigma.e" "sigma.u"
..- attr(*, "mcpar")= num [1:3] 120 600 20
$ : mcmc [1:25, 1:4] 247 247 246 246 247 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] "beta[1]" "beta[2]" "sigma.e" "sigma.u"
..- attr(*, "mcpar")= num [1:3] 120 600 20
- attr(*, "class")= chr "mcmc.list"

> summary( fetal.res )

Iterations = 120:600
Thinning interval = 20
Number of chains = 4
Sample size per chain = 25

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
beta[1] 240.737 18.71321 1.871321 3.170393
beta[2] 26.516 0.07682 0.007682 0.007997
sigma.e 9.081 0.11900 0.011900 0.009563
sigma.u 12.878 17.03625 1.703625 3.009822

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta[1] 174.643 246.352 246.564 246.882 247.268
beta[2] 26.371 26.466 26.511 26.573 26.680
sigma.e 8.838 9.018 9.085 9.164 9.311
sigma.u 7.104 7.429 7.635 7.859 72.347
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> dim( as.matrix(fetal.res) )

[1] 100 4

> colnames( as.matrix(fetal.res) )

[1] "beta[1]" "beta[2]" "sigma.e" "sigma.u"

8. Show the posterior distribution of the between-fetus and the residual standard
deviations.

9. How do the estimates for random and fixed effects fit with the lmer estimates?
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3.7 Linear mixed models for fetal growth

The dataset fetal.csv contains measurements of head circumference and gestational age,
as well as a transformation of gestational age:

> fetal <- read.csv("http://BendixCarstensen.com/Bayes/Cph-2012/data/fetal.csv",header=TRUE)
> str( fetal )

’data.frame’: 3097 obs. of 4 variables:
$ id : int 1 1 1 1 2 2 2 2 2 2 ...
$ hc : int 211 274 314 330 141 199 266 297 313 321 ...
$ ga : num 23 28.4 33.4 38.4 17.7 ...
$ tga: num 16.8 19 20.4 21.2 14.1 ...

> head( fetal, 10 )

id hc ga tga
1 1 211 23.00 16.83
2 1 274 28.43 19.00
3 1 314 33.43 20.39
4 1 330 38.43 21.20
5 2 141 17.71 14.05
6 2 199 22.86 16.76
7 2 266 27.86 18.81
8 2 297 31.29 19.87
9 2 313 34.57 20.63
10 2 321 36.57 20.97

1. This is a so-called repeated measures dataset, we see that there are typically 4 or 5
measurements on each fetus, a few only have one measurement and some have as
much as 7 measurements:

> with( fetal, addmargins( table( table(id) ) ) )

1 2 3 4 5 6 7 Sum
11 21 82 206 350 28 8 706

2. We would like a description of the fetal growth as a linear function of time, but this is
not a good description; a non-linear transformation of gestational age to make the
relationship linear has been estimated: tga = ga− 0.0116638× ga2; the transformed
gestational age is for convenience put in the variable tga:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> with( fetal, plot( tga, ga-0.0116638*(ga^2), pch=16, cex=0.5 ) )
> abline(0,1,col="red")
> with( fetal, plot( ga, tga, pch=16, cex=0.5,
+ xlab="Gestational age (GA)", ylab="Transformed GA" ) )
> abline(0,1,col="red")

3. The so called spaghetti-plot of a random sample of 100 of the 706 fetuses shows the
linearizing effect of the transformation, but also that the square-root transformation
of the head circumference makes the relationship more linear and more homogeneous
with respect to the variance:
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> par( mfrow=c(1,3), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> id.sub <- sample( unique(fetal$id), 50 )
> with( fetal, plot( ga, hc, type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(ga,hc) )
> with( fetal, plot( tga, hc, type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(tga,hc) )
> with( fetal, plot( tga, sqrt(hc), type="n" ) )
> for( i in id.sub ) with( subset(fetal,id==i), lines(tga,sqrt(hc)) )

Also it appears that the overall variance is stabilized. The particular shape of the
transformation is illustrated in figure 3.19

4. As a first attempt at the modelling we set uo a simple random effects model for the
measurement yft on fetus f at time t:

yft = β0 + β1t+ u0f + eft

u0f ∼ N (0, τ), eft ∼ N (0, σ)

> library( lme4 )
> m0 <- lmer( sqrt(hc) ~ tga + (1|id), data=fetal )
> summary(m0)

Linear mixed model fit by REML
Formula: sqrt(hc) ~ tga + (1 | id)

Data: fetal
AIC BIC logLik deviance REMLdev
1381 1405 -686.6 1355 1373
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.059715 0.24437
Residual 0.062665 0.25033
Number of obs: 3097, groups: id, 706

Fixed effects:
Estimate Std. Error t value

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

14 16 18 20

14
16

18
20

tga

ga
 −

 0
.0

11
66

38
 *

 (
ga

^2
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

15 20 25 30 35 40

14
16

18
20

Gestational age (GA)

Tr
an

sf
or

m
ed

 G
A

Figure 3.19: Transformation used for gestational age. The red line is the identity line.
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(Intercept) -0.080663 0.036084 -2.2
tga 0.868333 0.001889 459.7

Correlation of Fixed Effects:
(Intr)

tga -0.958

5. We are interested in describing how head circumference varies by the transformed
gestational age, but also in describing how growth of the head circumference varies
between fetuses. The model of choice is therefore a linear mixed model with a random
intercept and a random slope term for the measurement yft on fetus f at time t:

yft = (β0 + u0f ) + (β1 + u1f )t+ eft

(u0f , u1f ) ∼ N (0,Σ), eft ∼ N (0, σ)

> library( lme4 )
> m0 <- lmer( sqrt(hc) ~ tga + (tga|id), data=fetal )
> summary(m0)

Linear mixed model fit by REML
Formula: sqrt(hc) ~ tga + (tga | id)

Data: fetal
AIC BIC logLik deviance REMLdev
1246 1282 -617.1 1217 1234
Random effects:
Groups Name Variance Std.Dev. Corr
id (Intercept) 0.6553008 0.809507

tga 0.0018567 0.043089 -0.951
Residual 0.0490636 0.221503
Number of obs: 3097, groups: id, 706

Fixed effects:
Estimate Std. Error t value
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Figure 3.20: Linearizing transformation of gestational age (quadratic transformation) and
head circumference (square root).



88 Solutions PDAwBuR: Solutions to Exercises

(Intercept) -0.084564 0.044378 -1.9
tga 0.868480 0.002386 364.0

Correlation of Fixed Effects:
(Intr)

tga -0.973

6. In the model, Σ is a 2× 2 variance-covariance matrix, which we can extract using the
VarCorr extractor:

> VarCorr( m0 )

$id
(Intercept) tga

(Intercept) 0.65530084 -0.03318727
tga -0.03318727 0.00185669
attr(,"stddev")
(Intercept) tga
0.80950654 0.04308932
attr(,"correlation")

(Intercept) tga
(Intercept) 1.0000000 -0.9514401
tga -0.9514401 1.0000000

attr(,"sc")
[1] 0.2215031

We see that the two random effects u0 and u1 are very strongly correlated. This is
because u0 refer to the random level at gestational age 0, which is hardly relevant.
Thus it is only the sd. of u1 which is of relevance; it describes how much the average
growth-rates vary between fetuses.

7. It would be more sensible to use for example the median of all measurements,
tga=18, corresponding to about the 28th week, ga=28. This is simply done by
centering the variable around this value, corresponding to the model formulation:

yft = (β0 + u0f ) + (β1 + u1f ) (t− 18) + eft

To check the adequacy of the square root transformation we fit the model with

> m0 <- lmer( hc ~ I(tga-18) + (I(tga-18)|id), data=fetal )
> summary(m0)

Linear mixed model fit by REML
Formula: hc ~ I(tga - 18) + (I(tga - 18) | id)

Data: fetal
AIC BIC logLik deviance REMLdev

23340 23376 -11664 23324 23328
Random effects:
Groups Name Variance Std.Dev. Corr
id (Intercept) 55.9067 7.4771

I(tga - 18) 1.2153 1.1024 0.641
Residual 73.7746 8.5892
Number of obs: 3097, groups: id, 706

Fixed effects:
Estimate Std. Error t value

(Intercept) 246.54773 0.32478 759.1
I(tga - 18) 26.48473 0.07786 340.2
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Correlation of Fixed Effects:
(Intr)

I(tga - 18) 0.255

> VarCorr( m0 )

$id
(Intercept) I(tga - 18)

(Intercept) 55.906703 5.284188
I(tga - 18) 5.284188 1.215259
attr(,"stddev")
(Intercept) I(tga - 18)

7.477078 1.102388
attr(,"correlation")

(Intercept) I(tga - 18)
(Intercept) 1.0000000 0.6410794
I(tga - 18) 0.6410794 1.0000000

attr(,"sc")
[1] 8.589213

8. The residuals from this model look substantially more normally distributed for the
non-transformed head circumference (figure ??), so it looks as if

> r0 <- residuals(m0)
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> qqnorm( r0, main="", pch=16,cex=0.6 )
> qqline( r0, col="blue" )
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Figure 3.21: QQ-plot of residuals from the model.
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One missing feature of the output from these models is that there is no handle on the
uncertainty of the estimated variance components. This of particular interest when
making predictions from the model.

3.7.1 Reporting the model

9. There are two main tings of interest to report from this model:

(a) The estimated mean of head circumference as a function of gestational age, with
a confidence interval; that is:

ŷft = β0 + β1(t− 18)

The confidence interval would be based on the variance-covariance of the βs only.

(b) A prediction interval, that is an interval where you for a given value of
gestational age would find, say, 95% of the population. The mean would of
course be the same, but the interval would be based not only on the
variance-covariance of the βs, but also on the estimate of σ and Σ; the variation
between individual in the current study population.

When we report prediction intervals we are essentially making calculations as if the
estimated variance components from the model, sigma and Σ were known without
error and only the βs had an estimation error. In this sense we will presumably be
underestimating the width of the prediction interval.

We can make these predictions from the output from lmer ; the mean of the head
circumference for a given gestational age (for which the transformed value is g0, say is:

β̂0 + β̂1g0

and the variance of this is:

(1g0)Σβ(1g0)
′

where Σβ is the estimated variance-covariance of the βs. The latter formula will even
work if (1g0) is a two-column matrix with a sequence of prediction points. It is
automatically computed in the fuction ci.lin from the Epi package:

> library( Epi )
> tga.pt <- 14:22
> ci.lin( m0, ctr.mat=cbind(1,tga.pt) )

Estimate StdErr z P 2.5% 97.5%
[1,] 617.3339 1.214076 508.4804 0 614.9544 619.7135
[2,] 643.8187 1.289445 499.2991 0 641.2914 646.3459
[3,] 670.3034 1.365094 491.0311 0 667.6278 672.9789
[4,] 696.7881 1.440978 483.5522 0 693.9638 699.6124
[5,] 723.2728 1.517063 476.7587 0 720.2994 726.2462
[6,] 749.7576 1.593319 470.5633 0 746.6347 752.8804
[7,] 776.2423 1.669724 464.8926 0 772.9697 779.5149
[8,] 802.7270 1.746257 459.6842 0 799.3044 806.1496
[9,] 829.2118 1.822903 454.8852 0 825.6389 832.7846
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Since we are interested in predictions as a function of gestational age, we just define
the function that transforms gestational age to the tga, so that we can plot the
predicted means as a function of gestational age:

> tr <- function( ga ) ga-0.0116638*(ga^2)
> ga.pt <- seq(25,41,0.5)
> mn.hc <- ci.lin( m0, ctr.mat=cbind(1,tr(ga.pt)-18) )[,c(1,5,6)]
> matplot( ga.pt, mn.hc, type="l", lty=1, col="black", lwd=c(2,1,1) )

10. However we are also interested in making a population prediction, that is an interval
that for each value of gestational age captures the middle 95% of the fetuses’ head
circumference.

To this end we must use not only the estimation variance of the βs, but also the
population variance and the residual variance. So if the estimated variance of (u0, u1)
is Σu, and the residual variance is σ2

e , then the total variance for transformed
gestational age g0 is:

(1g0)Σβ(1g0)
′ + (1g0)Σu(1g0)

′ + σ2
e = (1g0)(Σβ + Σu)(1g0)

′ + σ2
e

We can exstract the two matrices from the model object and use them to construct
the relevant standard deviations

> Sig.u <- as.matrix( VarCorr( m0 )$id )
> Sig.b <- as.matrix( vcov( m0 ) )
> sig.e <- attr( VarCorr(m0), "sc" )
> pr.var <- diag( cbind(1,tr(ga.pt)-18) %*%
+ (Sig.u+Sig.b) %*%
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Figure 3.22: Predicted mean head circumference as function of gestational age. The predic-
tion is a linear function of a quadratic transform of the gestational age.
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+ rbind(1,tr(ga.pt)-18) ) + sig.e
> pr.hc <- ci.lin( m0, ctr.mat=cbind(1,tr(ga.pt)-18) )[,c(1,5,6,1,1)]
> pr.hc[,4] <- pr.hc[,4] - 1.96*sqrt(pr.var)
> pr.hc[,5] <- pr.hc[,5] + 1.96*sqrt(pr.var)

Now we have a 5 column matrix where the first column is the predicted mean head
circumference, the two next the confidence interval for the mean and the two last
columns the 95% prediction interval.

> matplot( ga.pt, pr.hc, type="l", lty=1, col="black", lwd=c(2,1,1,2,2) )

Note however that the population terminology can be a bit misleading, because the
population that the prediction interval is referring to is the study population, so it is
only generally interpretable if the study population is representative of some
underlying population.

11. The prediction we have just constructed, essentially assumes that the variances are
known without error, so we should expect the to be a bit on the small side.

By using MCMC for estimation we will get a posterior of the joint distribution of β,
σ and Σ, meaning that we in the calculation of the prediction interval can use the
posterior predictive distribution, which will include the estimation error of the
variance components too.
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Figure 3.23: Predicted mean head circumference as function of gestational age. The predic-
tion is a linear function of a quadratic function of gestational age. The outer limits are 95%
prediction limits, based on the mixed model.
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3.7.2 Model using JAGS

3.7.2.1 Data

We already have the data needed, in the data frame fetal, but we also need the
number of rows and the number of items. Note the construction of id: We must use
id as a counter in the JAGS code, and hence we must make sure that it takes on the
values 1:I. Also note that we let R compute the number of rows and fetuses

12. > fetal.dat <- list( id = as.integer( factor(fetal$id) ),
+ hc = fetal$hc,
+ tga = fetal$tga,
+ N = nrow(fetal),
+ F = length( unique(fetal$id) ) )
> str( fetal.dat )

List of 5
$ id : int [1:3097] 1 1 1 1 2 2 2 2 2 2 ...
$ hc : int [1:3097] 211 274 314 330 141 199 266 297 313 321 ...
$ tga: num [1:3097] 16.8 19 20.4 21.2 14.1 ...
$ N : int 3097
$ F : int 706

3.7.2.2 Model specification

We specify the model that we outlined above, using 18 as the centering point for tga,

> cat("
+ # Fixing data to be used in model definition
+ data
+ {
+ zero[1] <- 0
+ zero[2] <- 0
+ R[1,1] <- 0.1
+ R[1,2] <- 0
+ R[2,1] <- 0
+ R[2,2] <- 0.5
+ }
+ # Then define model
+ model
+ {
+ # Intercept and slope for each person, including random effects
+ for( f in 1:F )
+ {
+ u[f,1:2] ~ dmnorm(zero,Omega.u)
+ }
+
+ # Define model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- ( beta[1] + u[id[j],1] ) +
+ ( beta[2] + u[id[j],2] ) * ( tga[j]-18 )
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+
+ #------------------------------------------------------------
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
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+
+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Define prior for the variance-covariance matrix of the random effects
+ Sigma.u <- inverse(Omega.u)
+ Omega.u ~ dwish( R, 2 )
+ }",
+ file="fetal.jag" )

3.7.2.3 Starting values

We can conveniently use as starting values the estimates from the lmer; we need
starting values for sigma.e, Omega.u (a 2× 2 matrix, the precision of the
2-dimensional joint distribution of the random effects), and beta (a 2-vector), as
these are the quantities (nodes) that are at the top of the graph (DAG), and
therefore those for which is relevant to define initial values. Heuristically, the
quantities that are on the l.h.s. of a “ ” in the model specification.

For most well-behaved models (of which this is one), initial values are not needed, as
JAGS can generate them on the fly. The purpose of explicitly supplying starting
values is to explicitly have the sampling starting at different places in the parameter
space, and thus check whether they all lead to the same sable distribution.

In order to find these values we first take a look at what we get when using VarCorr

to extract variance estimates from the model, the it is clear what we need:

> VarCorr( m0 )

$id
(Intercept) I(tga - 18)

(Intercept) 55.906703 5.284188
I(tga - 18) 5.284188 1.215259
attr(,"stddev")
(Intercept) I(tga - 18)

7.477078 1.102388
attr(,"correlation")

(Intercept) I(tga - 18)
(Intercept) 1.0000000 0.6410794
I(tga - 18) 0.6410794 1.0000000

attr(,"sc")
[1] 8.589213

We put these into three structures and then use slightly perturbed versions these to
define 4 different sets of initial values for 4 chains we run, and then make a list of 4
lists of starting values (since we intend to run 4 chains):

> ( sigma.e <- attr(VarCorr(m0),"sc") )

[1] 8.589213

> ( Omega.u <- solve( VarCorr(m0)$id ) )
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(Intercept) I(tga - 18)
(Intercept) 0.03036744 -0.1320436
I(tga - 18) -0.13204360 1.3970212

> ( beta <- fixef( m0 ) )

(Intercept) I(tga - 18)
246.54773 26.48473

> fetal.ini <- list( list( sigma.e = sigma.e/3,
+ Omega.u = Omega.u/3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ Omega.u = Omega.u*3,
+ beta = beta *3 ),
+ list( sigma.e = sigma.e/3,
+ Omega.u = Omega.u*3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ Omega.u = Omega.u/3,
+ beta = beta *3 ) )

3.7.2.4 Starting the model

Once we have set up the model-specification, the data and the starting values, we can
initialize the model; that is compile the code, and use the inits and the data to run
the sampler for a number of iterations

> library( rjags )
> system.time(
+ fetal.mod <- jags.model( file = "fetal.jag",
+ data = fetal.dat,
+ n.chains = 4,
+ inits = fetal.ini,
+ n.adapt = 10000 )
+ )

Compiling data graph
Resolving undeclared variables
Allocating nodes
Initializing
Reading data back into data table

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 19203

Initializing model

user system elapsed
353.61 0.02 361.90
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3.7.2.5 Sampling from the model

With the model in place we now can generate samples from the model using
coda.samples. In this call we specify which nodes we want to sample. In this case
we want to see the posterior distribution of the βs and the variance components:

> system.time(
+ fetal.res <- coda.samples( fetal.mod,
+ var = c("beta","sigma.e","Sigma.u"),
+ n.iter = 5000,
+ thin = 20 ) )

user system elapsed
139.26 0.00 139.63

> str( fetal.res )

List of 4
$ : mcmc [1:250, 1:7] 56.9 51.8 53.4 56.8 57.3 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 10020 15000 20
$ : mcmc [1:250, 1:7] 60.4 55.9 62.2 49.8 65.4 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 10020 15000 20
$ : mcmc [1:250, 1:7] 52.1 63.8 65.6 56 54.3 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 10020 15000 20
$ : mcmc [1:250, 1:7] 53.9 56.5 59.1 56.1 59.4 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 10020 15000 20
- attr(*, "class")= chr "mcmc.list"

> summary( fetal.res )

Iterations = 10020:15000
Thinning interval = 20
Number of chains = 4
Sample size per chain = 250

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
Sigma.u[1,1] 55.457 3.96865 0.125500 0.115709
Sigma.u[2,1] 5.429 0.69794 0.022071 0.026249
Sigma.u[1,2] 5.429 0.69794 0.022071 0.026249
Sigma.u[2,2] 1.082 0.23686 0.007490 0.014858
beta[1] 246.562 0.32137 0.010163 0.009616
beta[2] 26.481 0.07759 0.002454 0.002193
sigma.e 8.656 0.14678 0.004642 0.006075

2. Quantiles for each variable:
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2.5% 25% 50% 75% 97.5%
Sigma.u[1,1] 48.2173 52.6885 55.295 58.119 63.691
Sigma.u[2,1] 4.0314 4.9611 5.413 5.834 6.804
Sigma.u[1,2] 4.0314 4.9611 5.413 5.834 6.804
Sigma.u[2,2] 0.6562 0.9086 1.075 1.235 1.555
beta[1] 245.9151 246.3473 246.578 246.765 247.182
beta[2] 26.3308 26.4276 26.480 26.533 26.638
sigma.e 8.3835 8.5569 8.657 8.757 8.953

> dim( as.matrix(fetal.res) )

[1] 1000 7

> colnames( as.matrix(fetal.res) )

[1] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" "beta[1]"
[6] "beta[2]" "sigma.e"

Once we have the posterior samples we can look at the joint distribution of the βs:

> plot( fetal.res )

Fore better control of the plotting of the posterior samples we can convert the
resulting mcmc.list object to a data frame. We need to doctor the names in order to
be able to refer to them without too much fuss:

> fetal.post <- as.data.frame( as.matrix( fetal.res ) )
> names( fetal.post )

[1] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" "beta[1]"
[6] "beta[2]" "sigma.e"

> names( fetal.post ) <- gsub( "\\[", ".", names(fetal.post) )
> names( fetal.post ) <- gsub( ",", ".", names(fetal.post) )
> names( fetal.post ) <- gsub( "\\]", "", names(fetal.post) )
> str( fetal.post )

’data.frame’: 1000 obs. of 7 variables:
$ Sigma.u.1.1: num 56.9 51.8 53.4 56.8 57.3 ...
$ Sigma.u.2.1: num 5.72 4.92 5.88 5.7 5.75 ...
$ Sigma.u.1.2: num 5.72 4.92 5.88 5.7 5.75 ...
$ Sigma.u.2.2: num 1.026 1.021 1.345 0.961 0.965 ...
$ beta.1 : num 246 246 247 247 247 ...
$ beta.2 : num 26.4 26.4 26.5 26.4 26.4 ...
$ sigma.e : num 8.88 8.69 8.62 8.79 8.73 ...

> with( fetal.post, plot( beta.1, beta.2, pch=16,cex=0.9,
+ col=c("black","red","green","blue")[rep(1:4,each=250)] ) )
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3.7.3 Predictive distributions

13. One of the features of JAGS is the ability to generate predictive distributions for
unobserved quantities by specifying these quantities as nodes in the graphical model
used by JAGS to generate the simulations.

We compare the unconditional predictive distribution of head circumference at 38
weeks gestational age with the corresponding conditional distribution given the value
of the head circumference at 18 weeks gestational age.

The five observations made on fetus id = 5 are:

> subset( fetal, id==5 )

id hc ga tga
18 5 125 18.43 14.47
19 5 232 24.43 17.47
20 5 297 28.43 19.00
21 5 323 34.43 20.60
22 5 338 38.43 21.20
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Figure 3.24: Joint posterior distribution of β0 and β1.
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We can get the conditional distribution of head circumference at the final gestational
age (38.43 weeks) given the observed measurement at gestational age of 18.43 weeks
by creating a new id with identical data for the first gestational age but no observed
head circumferences measurements at the final gestational age:

> ( xf <- subset( fetal, id==5 )[c(1,5),] )

id hc ga tga
18 5 125 18.43 14.47
22 5 338 38.43 21.20

> xf[2,"hc"] <- NA
> xf[,"id"] <- max(fetal$id)+1
> xf

id hc ga tga
18 708 125 18.43 14.47
22 708 NA 38.43 21.20

We also add a new observation for a second new fetus to generate the unconditional
distribution of head circumference at 38.43 weeks gestational age. This is simply
replicating the last record but using a new id:

> xf <- xf[c(1,2,2),]
> xf[3,"id"] <- max(fetal$id)+2
> xf

id hc ga tga
18 708 125 18.43 14.47
22 708 NA 38.43 21.20
22.1 709 NA 38.43 21.20

14. Finally we want to make population predictions for gestational weeks as defined in
the vector ga.pt. This can be done in two ways, one by assuming that we look at the
same fetus at all times; the other by making separate predictions for each time:

> x.same <- data.frame( id = max(fetal$id)+3,
+ hc = NA,
+ ga = ga.pt,
+ tga = tr(ga.pt) )
> x.diff <- data.frame( id = max(fetal$id)+3+1:length(ga.pt),
+ hc = NA,
+ ga = ga.pt,
+ tga = tr(ga.pt) )

In order to get the predicted values we simply monitor the relevant nodes after using
JAGS on the dataset expanded with these extra records:

> fetal.x <- rbind( fetal, xf, x.same, x.diff )
> fetal.x[nrow(fetal)+0:10,]

id hc ga tga
3097 707 348 37.57 21.11000
18100 708 125 18.43 14.47000
22100 708 NA 38.43 21.20000
22.1 709 NA 38.43 21.20000
3101 710 NA 25.00 17.71012
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3102 710 NA 25.50 17.91561
3103 710 NA 26.00 18.11527
3104 710 NA 26.50 18.30910
3105 710 NA 27.00 18.49709
3106 710 NA 27.50 18.67925
3107 710 NA 28.00 18.85558

> tail( fetal.x )

id hc ga tga
3161 738 NA 38.5 21.21133
3162 739 NA 39.0 21.25936
3163 740 NA 39.5 21.30156
3164 741 NA 40.0 21.33792
3165 742 NA 40.5 21.36845
3166 743 NA 41.0 21.39315

> nrow( fetal.x )

[1] 3166

However, there is one more snag to this as we are interested in seeing prediction
intervals, that is predictions for individual measurements, including the measurement
errors, in the JAGS code those with precision tau.e. And this error term is not
included in the nodes mu, so we must define a set of new prediction nodes, pr, say, to
give predictions where the residual error term is included. This is done in this piece of
code where we only define the pr nodes only for the added units where we want the
predictions. In turn that requires an extra constant in data, n, the index of the first.

> cat("
+ # Fixing data to be used in model definition
+ data
+ {
+ zero[1] <- 0
+ zero[2] <- 0
+ R[1,1] <- 0.1
+ R[1,2] <- 0
+ R[2,1] <- 0
+ R[2,2] <- 0.5
+ }
+ # Then define model
+ model
+ {
+ # Intercept and slope for each person, including random effects
+ for( f in 1:F )
+ {
+ u[f,1:2] ~ dmnorm(zero,Omega.u)
+ }
+
+ # Define model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- ( beta[1] + u[id[j],1] ) +
+ ( beta[2] + u[id[j],2] ) * ( tga[j]-18 )
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+ for( j in n:N )
+ {
+ pr[j] ~ dnorm( mu[j], tau.e )
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+ }
+
+ #------------------------------------------------------------
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
+
+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Define prior for the variance-covariance matrix of the random effects
+ Sigma.u <- inverse(Omega.u)
+ Omega.u ~ dwish( R, 2 )
+ }",
+ file="fetalp.jag" )

Thus we see that the nodes we are interested in monitoring are (refer to the model
definition) mu[*] with * from 3098 and upwards, so we modify the code and supply
the relevant parameters to monitor:

> fetal.xdat <- list( id = as.integer( factor(fetal.x$id) ),
+ hc = fetal.x$hc,
+ tga = fetal.x$tga,
+ n = nrow(fetal)+1,
+ N = nrow(fetal.x),
+ F = length( unique(fetal.x$id) ) )
> system.time(
+ fetal.xmod <- jags.model( file = "fetalp.jag",
+ data = fetal.xdat,
+ n.chains = 4,
+ inits = fetal.ini,
+ n.adapt = 5000 )
+ )

Compiling data graph
Resolving undeclared variables
Allocating nodes
Initializing
Reading data back into data table

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 19831

Initializing model

user system elapsed
137.45 0.00 137.65

Once the code has been modified, we need to specify the nodes we shall monitor:

> rng <- (nrow(fetal)+1):nrow(fetal.x)
> ( mus <- paste("pr[",paste(range(rng),collapse=":"),"]",sep="") )

[1] "pr[3098:3166]"

> system.time(
+ fetal.xres <- coda.samples( fetal.xmod,
+ var = c("beta","sigma.e","Sigma.u",mus),
+ n.iter = 5000,
+ thin = 10 ) )
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user system elapsed
140.83 0.00 141.14

> fetal.qnt <- summary( fetal.xres )$quantiles
> pr.rows <- rownames(fetal.qnt)[grep( "pr", rownames(fetal.qnt) )]
> wh <- as.numeric( gsub( "\\]","", gsub("pr\\[","", pr.rows ) ) )
> cbind( fetal.x[wh,c("ga","tga")], fetal.qnt[pr.rows,c(1,3,5)] )

ga tga 2.5% 50% 97.5%
18100 18.43 14.47000 126.2352 144.6005 164.1989
22100 38.43 21.20000 294.2535 321.1074 344.6295
22.1 38.43 21.20000 305.6130 331.1849 359.5924
3101 25.00 17.71012 216.2927 239.3167 260.7162
3102 25.50 17.91561 222.3881 244.3683 266.1499
3103 26.00 18.11527 226.8225 249.8379 272.4841
3104 26.50 18.30910 232.3598 254.4789 277.2190
3105 27.00 18.49709 237.6747 259.9278 282.2659
3106 27.50 18.67925 241.6087 264.9047 287.6344
3107 28.00 18.85558 245.5764 269.8093 292.8567
3108 28.50 19.02608 250.2754 273.9732 296.3040
3109 29.00 19.19074 254.7185 278.1077 301.5751
3110 29.50 19.34958 257.8318 282.7986 306.3199
3111 30.00 19.50258 261.4806 286.2278 310.3895
3112 30.50 19.64975 267.0895 290.3483 313.9614
3113 31.00 19.79109 268.9825 293.5870 319.2532
3114 31.50 19.92659 273.7772 298.0401 322.0668
3115 32.00 20.05627 276.1805 300.8072 327.5909
3116 32.50 20.18011 279.4606 304.1132 329.4959
3117 33.00 20.29812 281.6693 307.1975 332.6382
3118 33.50 20.41030 285.7030 310.3834 334.6220
3119 34.00 20.51665 287.5722 313.3602 339.3332
3120 34.50 20.61716 289.7455 316.0468 340.4908
3121 35.00 20.71185 293.2163 318.7426 343.4868
3122 35.50 20.80070 294.3108 320.6014 345.9549
3123 36.00 20.88372 297.2899 323.3953 346.5127
3124 36.50 20.96090 299.1344 324.7973 350.1196
3125 37.00 21.03226 301.3014 326.6979 351.9439
3126 37.50 21.09778 301.5999 329.0102 354.2413
3127 38.00 21.15747 304.5223 331.0616 356.4948
3128 38.50 21.21133 304.9845 331.5407 356.7227
3129 39.00 21.25936 306.5222 332.8379 359.4839
3130 39.50 21.30156 307.4480 333.6652 360.5283
3131 40.00 21.33792 308.7203 334.4988 360.9192
3132 40.50 21.36845 308.7327 335.6478 361.1650
3133 41.00 21.39315 309.5761 336.7632 361.6987
3134 25.00 17.71012 217.2892 239.1251 259.9514
3135 25.50 17.91561 221.5644 244.8234 266.7026
3136 26.00 18.11527 227.4420 249.5053 272.4663
3137 26.50 18.30910 233.1976 255.1205 278.0360
3138 27.00 18.49709 236.3580 260.3838 283.5945
3139 27.50 18.67925 241.8327 264.1662 287.8413
3140 28.00 18.85558 246.2428 269.2748 292.4904
3141 28.50 19.02608 248.9783 273.5224 298.1352
3142 29.00 19.19074 255.4064 277.6928 302.2835
3143 29.50 19.34958 259.0372 282.0411 306.1916
3144 30.00 19.50258 261.3930 286.2541 310.6169
3145 30.50 19.64975 265.7932 290.1451 313.8741
3146 31.00 19.79109 270.7801 294.1356 318.1423
3147 31.50 19.92659 271.9663 297.2778 321.6288
3148 32.00 20.05627 276.5067 300.8024 326.2354
3149 32.50 20.18011 280.3592 304.3739 329.3103
3150 33.00 20.29812 282.9486 306.7266 332.0393
3151 33.50 20.41030 284.5635 311.3203 335.7465
3152 34.00 20.51665 288.3029 313.2635 339.3042
3153 34.50 20.61716 290.9514 315.5782 340.0704
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3154 35.00 20.71185 292.6941 318.7601 344.7290
3155 35.50 20.80070 295.2649 321.0198 345.6538
3156 36.00 20.88372 297.4315 322.7989 349.1005
3157 36.50 20.96090 298.9932 325.2187 350.5952
3158 37.00 21.03226 301.4454 327.3860 352.2909
3159 37.50 21.09778 301.6702 328.6336 352.9046
3160 38.00 21.15747 303.7928 329.8113 355.5103
3161 38.50 21.21133 305.9601 331.8551 357.6060
3162 39.00 21.25936 307.3541 333.0496 359.5756
3163 39.50 21.30156 308.5406 334.0408 360.2825
3164 40.00 21.33792 309.4474 335.0559 360.6351
3165 40.50 21.36845 309.3527 335.7833 361.7651
3166 41.00 21.39315 309.2070 336.4953 362.3413

15. Now we are in a position to compare the prediction obtained by JAGS and by the
naive approach by overplotting the two sets of predictions from the JAGS approach
on the plot of the simple ones based on the REML-estimates:

> matplot( ga.pt, pr.hc, type="l", lty=1, col="black", lwd=c(2,1,1,2,2) )
> matlines( fetal.x[3100+1:33,"ga"],
+ fetal.qnt[paste("pr[",3100+1:33,"]",sep=""),c(1,3,5)],
+ col="red", lty=1, lwd=2 )
> matlines( fetal.x[3100+33+1:33,"ga"],
+ fetal.qnt[paste("pr[",3100+33+1:33,"]",sep=""),c(1,3,5)],
+ col="blue", lty=1, lwd=2 )
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Figure 3.25: Predicted mean head circumference as function of gestational age. The predic-
tion is a linear function of a quadratic function of gestational age. The outer limits are 95%
prediction limits, based on the mixed model. The red curves are the predictions based on a
single fetus followed from week 25 through 42, the blue is cross-sectional predictions for the
population at each time point.
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16. In order to compare the posteriors of the conditional and marginal prediction, we
simply superpose the two densities if the posteriors:

> fetal.post <- as.data.frame( as.matrix( fetal.xres ) )
> names( fetal.post ) <- gsub( "\\[", ".", names(fetal.post) )
> names( fetal.post ) <- gsub( ",", ".", names(fetal.post) )
> names( fetal.post ) <- gsub( "\\]", "", names(fetal.post) )
> str( fetal.post )

’data.frame’: 2000 obs. of 76 variables:
$ Sigma.u.1.1: num 57.4 56.7 49.4 57.2 52.4 ...
$ Sigma.u.2.1: num 5.61 5.73 5.63 5.02 5.46 ...
$ Sigma.u.1.2: num 5.61 5.73 5.63 5.02 5.46 ...
$ Sigma.u.2.2: num 1.32 1.53 1.44 1.02 1.2 ...
$ beta.1 : num 247 246 247 246 246 ...
$ beta.2 : num 26.3 26.3 26.4 26.5 26.5 ...
$ pr.3098 : num 149 138 128 142 154 ...
$ pr.3099 : num 305 318 314 341 327 ...
$ pr.3100 : num 320 289 324 335 322 ...
$ pr.3101 : num 252 226 235 219 233 ...
$ pr.3102 : num 258 214 235 232 238 ...
$ pr.3103 : num 284 224 235 252 230 ...
$ pr.3104 : num 288 251 259 248 259 ...
$ pr.3105 : num 276 248 246 261 245 ...
$ pr.3106 : num 287 257 251 260 246 ...
$ pr.3107 : num 295 262 243 262 272 ...
$ pr.3108 : num 292 267 268 266 264 ...
$ pr.3109 : num 300 264 264 253 266 ...
$ pr.3110 : num 298 277 269 276 256 ...
$ pr.3111 : num 304 288 264 268 280 ...
$ pr.3112 : num 319 288 271 296 279 ...
$ pr.3113 : num 311 285 277 271 263 ...
$ pr.3114 : num 325 285 294 281 299 ...
$ pr.3115 : num 320 293 301 295 297 ...
$ pr.3116 : num 332 289 303 292 273 ...
$ pr.3117 : num 324 299 284 307 296 ...
$ pr.3118 : num 339 281 306 293 283 ...
$ pr.3119 : num 334 304 297 304 294 ...
$ pr.3120 : num 326 284 303 314 305 ...
$ pr.3121 : num 333 299 293 312 307 ...
$ pr.3122 : num 328 289 303 307 308 ...
$ pr.3123 : num 356 299 310 308 303 ...
$ pr.3124 : num 350 298 321 313 314 ...
$ pr.3125 : num 344 317 323 317 307 ...
$ pr.3126 : num 355 298 310 312 315 ...
$ pr.3127 : num 356 324 308 305 326 ...
$ pr.3128 : num 343 301 308 298 320 ...
$ pr.3129 : num 361 319 306 294 315 ...
$ pr.3130 : num 368 321 312 306 328 ...
$ pr.3131 : num 364 311 305 318 319 ...
$ pr.3132 : num 364 319 320 332 315 ...
$ pr.3133 : num 352 310 322 316 342 ...
$ pr.3134 : num 231 247 244 226 233 ...
$ pr.3135 : num 250 242 244 258 261 ...
$ pr.3136 : num 243 247 284 245 252 ...
$ pr.3137 : num 242 273 269 262 263 ...
$ pr.3138 : num 265 246 248 264 246 ...
$ pr.3139 : num 287 253 262 237 259 ...
$ pr.3140 : num 292 286 279 271 278 ...
$ pr.3141 : num 287 269 263 249 259 ...
$ pr.3142 : num 272 284 274 273 276 ...
$ pr.3143 : num 282 295 294 274 264 ...
$ pr.3144 : num 303 290 283 288 288 ...
$ pr.3145 : num 302 312 288 270 304 ...
$ pr.3146 : num 292 285 298 284 263 ...
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$ pr.3147 : num 297 303 299 296 287 ...
$ pr.3148 : num 319 300 292 309 280 ...
$ pr.3149 : num 319 283 296 304 286 ...
$ pr.3150 : num 316 311 288 320 290 ...
$ pr.3151 : num 309 324 305 307 319 ...
$ pr.3152 : num 319 307 297 316 323 ...
$ pr.3153 : num 318 325 291 322 320 ...
$ pr.3154 : num 300 327 308 308 301 ...
$ pr.3155 : num 331 311 311 348 330 ...
$ pr.3156 : num 327 323 323 351 312 ...
$ pr.3157 : num 321 326 317 322 340 ...
$ pr.3158 : num 332 335 352 316 342 ...
$ pr.3159 : num 320 330 348 323 342 ...
$ pr.3160 : num 360 341 342 334 346 ...
$ pr.3161 : num 343 322 350 330 343 ...
$ pr.3162 : num 315 332 322 325 337 ...
$ pr.3163 : num 335 335 337 320 346 ...
$ pr.3164 : num 320 344 342 345 327 ...
$ pr.3165 : num 331 316 344 338 315 ...
$ pr.3166 : num 353 315 344 354 329 ...
$ sigma.e : num 8.57 8.79 8.49 8.6 8.86 ...

> plot( density( fetal.post$pr.3099 ), lwd=3, col="blue", main="",
+ bty="n", xlab="Head circumference at 38 weeks", xlim=c(250,400) )
> lines( density( fetal.post$pr.3100 ), lwd=3, col="red" )
> rug( quantile( fetal.post$pr.3099, probs=1:3/4 ), lwd=2, col="blue" )
> rug( quantile( fetal.post$pr.3100, probs=1:3/4 ), lwd=2, col="red" )

3.7.3.1 Saving it all

For further investigation of the posteriors we save the results:

> save( fetal.res, fetal.xres, file="../data/fetal.res" )
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Figure 3.26: Posterior distribution of the conditional mean (conditional on week 18 measure-
ment being 125) in blue, and the marginal mean of an observation in red.
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3.8 Fetal growth - comparing lmer, JAGS and inla

We are interested in describing how fetal head circumference varies with (transformed)
gestational age, but also in describing how growth of the head circumference varies between
fetuses. First we read the data:

> # fetal <- read.csv("http://BendixCarstensen.com/Bayes/Cph-2012/data/fetal.csv",header=TRUE)
> fetal <- read.csv("../data/fetal.csv",header=TRUE)
> head( fetal, 11 )

id hc ga tga
1 1 211 23.00 16.83
2 1 274 28.43 19.00
3 1 314 33.43 20.39
4 1 330 38.43 21.20
5 2 141 17.71 14.05
6 2 199 22.86 16.76
7 2 266 27.86 18.81
8 2 297 31.29 19.87
9 2 313 34.57 20.63
10 2 321 36.57 20.97
11 3 205 23.43 17.03

ga is the gestational age and tga is a transformation of it which we term t and use as
covariate in the following model formulation. The response is head circumference of the
fetus, hc, which in the model description is termed y.

For ease of model fitting we will center the transformed gestational age at 19.5,
corresponding to a gestational age of 30 weeks:

> fetal$tga <- fetal$tga - 19.5

3.8.1 REML modelling

The relevant model is a linear mixed model with a random intercept and a random slope
term for the measurement yft on fetus f at time t:

yft = (β0 + u0f ) + (β1 + u1f )t+ eft

(u0f , u1f ) ∼ N (0,Σ), eft ∼ N (0, σ)

We now set up and estimate the parameter of this model using lmer from the lme4 package:

> library( lme4 )
> m0 <- lmer( hc ~ tga + (tga|id), data=fetal )
> summary(m0)

Linear mixed model fit by REML
Formula: hc ~ tga + (tga | id)

Data: fetal
AIC BIC logLik deviance REMLdev

23340 23376 -11664 23324 23328
Random effects:
Groups Name Variance Std.Dev. Corr
id (Intercept) 74.4922 8.6309

tga 1.2152 1.1024 0.747
Residual 73.7748 8.5892
Number of obs: 3097, groups: id, 706
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Fixed effects:
Estimate Std. Error t value

(Intercept) 286.27482 0.37207 769.4
tga 26.48473 0.07786 340.2

Correlation of Fixed Effects:
(Intr)

tga 0.536

Thus we see that the default is to produce a set of correlated random effects, which of
course is the only sensible thing to do.

3.8.2 JAGS

We can also set this model up in JAGS the usual way; first we specify data:

> fetal.dat <- list( id = as.integer( factor(fetal$id) ),
+ hc = fetal$hc,
+ tga = fetal$tga,
+ N = nrow(fetal),
+ I = length( unique(fetal$id) ) )

In particular we need to specify a variance-covariance matrix for the random effects, which
is done by specifying a Wishart prior distribution on the space of variance-covariance
matrices, which takes a fixed 2× 2-matrix as input for the matrix ”mean”, which we specify
in a data section of the JAGS program before defining the model:

> cat("
+ # Fixing data to be used in model definition
+ data
+ {
+ zero[1] <- 0
+ zero[2] <- 0
+ R[1,1] <- 0.1
+ R[1,2] <- 0
+ R[2,1] <- 0
+ R[2,2] <- 0.5
+ }
+ # Then define model
+ model
+ {
+ # Intercept and slope for each person, including random effects
+ for( i in 1:I )
+ {
+ u[i,1:2] ~ dmnorm(zero,Omega.u)
+ }
+
+ # Define model for each observational unit
+ for( j in 1:N )
+ {
+ mu[j] <- ( beta[1] + u[id[j],1] ) +
+ ( beta[2] + u[id[j],2] ) * ( tga[j] )
+ hc[j] ~ dnorm( mu[j], tau.e )
+ }
+
+ #------------------------------------------------------------
+ # Priors:
+
+ # Fixed intercept and slope
+ beta[1] ~ dnorm(0.0,1.0E-5)
+ beta[2] ~ dnorm(0.0,1.0E-5)
+
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+ # Residual variance
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,100)
+
+ # Define prior for the variance-covariance matrix of the random effects
+ Sigma.u <- inverse(Omega.u)
+ Omega.u ~ dwish( R, 2 )
+ }",
+ file="fetal.jag" )

Then we extract the relevant variances/SDs from the lmer object and use these as starting
values for the MCMC chains:

> ( sigma.e <- attr(VarCorr(m0),"sc") )

[1] 8.589226

> ( Omega.u <- solve( VarCorr(m0)$id ) )

(Intercept) tga
(Intercept) 0.03036677 -0.1775887
tga -0.17758872 1.8614539

> ( beta <- fixef( m0 ) )

(Intercept) tga
286.27482 26.48473

> fetal.ini <- list( list( sigma.e = sigma.e/3,
+ Omega.u = Omega.u/3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ Omega.u = Omega.u*3,
+ beta = beta *3 ),
+ list( sigma.e = sigma.e/3,
+ Omega.u = Omega.u*3,
+ beta = beta /3 ),
+ list( sigma.e = sigma.e*3,
+ Omega.u = Omega.u/3,
+ beta = beta *3 ) )

Finally, we can get the whole thing going:

> library( rjags )
> system.time(
+ fetal.mod <- jags.model( file = "fetal.jag",
+ data = fetal.dat,
+ n.chains = 4,
+ inits = fetal.ini,
+ n.adapt = 2500 )
+ )
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Compiling data graph
Resolving undeclared variables
Allocating nodes
Initializing
Reading data back into data table

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 19036

Initializing model

user system elapsed
105.63 0.02 114.59

> system.time(
+ fetal.res <- coda.samples( fetal.mod,
+ var = c("beta","sigma.e","Sigma.u"),
+ n.iter = 1000,
+ thin = 4 )
+ )

user system elapsed
45.07 0.00 45.57

> str( fetal.res )

List of 4
$ : mcmc [1:250, 1:7] 68.2 68.7 79.9 72.9 74 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 2504 3500 4
$ : mcmc [1:250, 1:7] 69.5 72.9 71.8 75.4 72.4 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 2504 3500 4
$ : mcmc [1:250, 1:7] 69.4 69.3 70.7 69.2 68.4 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 2504 3500 4
$ : mcmc [1:250, 1:7] 42056 38758 37423 36396 36117 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" ...
..- attr(*, "mcpar")= num [1:3] 2504 3500 4
- attr(*, "class")= chr "mcmc.list"

> summary( fetal.res )

Iterations = 2504:3500
Thinning interval = 4
Number of chains = 4
Sample size per chain = 250

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
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Mean SD Naive SE Time-series SE
Sigma.u[1,1] 6505.601 1.191e+04 3.767e+02 3.271e+02
Sigma.u[2,1] 781.192 1.418e+03 4.485e+01 3.578e+01
Sigma.u[1,2] 781.192 1.418e+03 4.485e+01 3.578e+01
Sigma.u[2,2] 94.415 1.692e+02 5.352e+00 3.876e+00
beta[1] 325.774 6.976e+01 2.206e+00 1.072e+00
beta[2] 31.263 8.380e+00 2.650e-01 1.044e-01
sigma.e 8.632 1.422e-01 4.497e-03 6.171e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
Sigma.u[1,1] 64.9968 71.590 76.231 2673.945 36466.557
Sigma.u[2,1] 5.3074 6.569 7.225 344.883 4264.276
Sigma.u[1,2] 5.3074 6.569 7.225 344.883 4264.276
Sigma.u[2,2] 0.6862 0.972 1.158 45.256 503.087
beta[1] 285.5846 286.145 286.458 313.234 477.941
beta[2] 26.3495 26.451 26.522 30.086 49.068
sigma.e 8.3662 8.531 8.632 8.733 8.914

In order to have convenient access to the posterior samples we collect them conveniently in
a matrix:

> fetal.mat <- as.matrix( fetal.res )
> colnames( fetal.mat )

[1] "Sigma.u[1,1]" "Sigma.u[2,1]" "Sigma.u[1,2]" "Sigma.u[2,2]" "beta[1]"
[6] "beta[2]" "sigma.e"

3.8.3 INLA

In order for INLA to work properly with factors these must (as for JAGS) assume
consecutive numbers from 1 and upwards. This is in R accomplished with the construction
as.integer(factor()):

> fetal <- transform(fetal, tgac=tga,
+ id=as.integer(factor(id)) )

The INLA version of the model with uncorrelated random intercept and slope (which is,
incidentally, a daft model) looks like this:

> library( INLA )
> system.time(
+ im1 <- inla( hc ~ tga + f(id) + f(tgac), data=fetal )
+ )

user system elapsed
0.85 0.39 14.63

> summary( im1 )
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Call:
"inla(formula = hc ~ tga + f(id) + f(tgac), data = fetal)"

Time used:
Pre-processing Running inla Post-processing Total

0.8744171 12.8195870 0.7182710 14.4122751

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) 286.86237 0.5502102 285.78513 286.86151 287.94467 0
tga 26.53119 0.1685165 26.19978 26.53141 26.86142 0

Random effects:
Name Model Max KLD
id IID model
tgac IID model

Model hyperparameters:
mean sd 0.025quant

Precision for the Gaussian observations 0.0167998 0.0003828 0.0159817
Precision for id 0.0156304 0.0009128 0.0140332
Precision for tgac 0.0525634 0.0094877 0.0368886

0.5quant 0.975quant
Precision for the Gaussian observations 0.0168312 0.0174707
Precision for id 0.0155545 0.0176060
Precision for tgac 0.0515342 0.0740095

Expected number of effective parameters(std dev): 677.14(5.774)
Number of equivalent replicates : 4.574

Marginal Likelihood: -11564.41
Warning: Interpret the marginal likelihood with care if the prior model is improper.

However, we want the model with correlated random effects, so we need the ”replication”
trick, where we assigning an additional vector of random effects for the Nb fetuses. It is
actually this trick that requires the ids to be consecutive integers from 1:

> Nb <- max(fetal$id)
> fetal$xid <- fetal$id + Nb
> system.time(
+ im2 <- inla( hc ~ 1 + tga +
+ f( id, model = "iid2d", n=2*Nb ) +
+ f( xid, tga, copy="id" ),
+ data = fetal )
+ )

user system elapsed
1.10 0.47 26.47

> summary( im2 )

Call:
c("inla(formula = hc ~ 1 + tga + f(id, model = \"iid2d\", n = 2 * ", " Nb) + f(xid, tga, copy = \"id\"), data = fetal)")

Time used:
Pre-processing Running inla Post-processing Total

0.624584 22.079045 2.966774 25.670403

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) 286.29050 0.37156200 285.56141 286.29062 287.01907 0



Solutions 3.8 Fetal growth - comparing lmer, JAGS and inla 113

tga 26.48216 0.07735731 26.33047 26.48215 26.63396 0

Random effects:
Name Model Max KLD
id IID2D model
xid Copy

Model hyperparameters:
mean sd 0.025quant

Precision for the Gaussian observations 0.0133703 0.0007231 0.0123121
Precision for id (component 1) 0.0147195 0.0009279 0.0128233
Precision for id (component 2) 0.9978198 0.2229477 0.6008056
Rho1:2 for id 0.7818731 0.0650576 0.6307188

0.5quant 0.975quant
Precision for the Gaussian observations 0.0132479 0.0150640
Precision for id (component 1) 0.0147608 0.0164454
Precision for id (component 2) 0.9872997 1.4681026
Rho1:2 for id 0.7904603 0.8841909

Expected number of effective parameters(std dev): 625.73(26.73)
Number of equivalent replicates : 4.949

Marginal Likelihood: -25030.47
Warning: Interpret the marginal likelihood with care if the prior model is improper.

> names( im2 )

[1] "names.fixed" "summary.fixed"
[3] "marginals.fixed" "summary.lincomb"
[5] "marginals.lincomb" "size.lincomb"
[7] "summary.lincomb.derived" "marginals.lincomb.derived"
[9] "size.lincomb.derived" "mlik"
[11] "cpo" "model.random"
[13] "summary.random" "marginals.random"
[15] "size.random" "summary.linear.predictor"
[17] "marginals.linear.predictor" "summary.fitted.values"
[19] "marginals.fitted.values" "size.linear.predictor"
[21] "summary.hyperpar" "marginals.hyperpar"
[23] "internal.summary.hyperpar" "internal.marginals.hyperpar"
[25] "si" "total.offset"
[27] "model.spde2.blc" "summary.spde2.blc"
[29] "marginals.spde2.blc" "size.spde2.blc"
[31] "misc" "dic"
[33] "mode" "neffp"
[35] "joint.hyper" "nhyper"
[37] "version" "Q"
[39] "graph" "cpu.used"
[41] "control.compute" "control.predictor"
[43] "control.lincomb" "control.data"
[45] "control.inla" "control.results"
[47] "control.fixed" "control.mode"
[49] "control.expert" "call"
[51] "family" "data"
[53] "formula" "inla.call"
[55] "silent" "model.matrix"
[57] ".control.defaults" ".internal"

The quantities with which to compare the output from INLA and JAGS are the precisions
from the REML fit from the lmer object above. However it is better to make comparisons
on a relevant scale, namely the standard deviation scale.
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3.8.4 Comparing lmer, JAGS and INLA

This means that we would like to see the posterior density of the inverse of the precision.
We can now summarize the results from the three analyses; first for the fixed effects:

> ### LMER ###
> fixef(m0)

(Intercept) tga
286.27482 26.48473

> ### JAGS ###
> summary(fetal.res)$quantiles[c("beta[1]","beta[2]"),]

2.5% 25% 50% 75% 97.5%
beta[1] 285.58464 286.14532 286.45850 313.23351 477.94141
beta[2] 26.34947 26.45093 26.52231 30.08648 49.06786

> ### INLA ###
> im2$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant kld
(Intercept) 286.29050 0.37156200 285.56141 286.29062 287.01907 0
tga 26.48216 0.07735731 26.33047 26.48215 26.63396 0

Then for the random effcts variances

> ### LMER ###
> diag(VarCorr(m0)$id)

(Intercept) tga
74.492153 1.215225

> ### JAGS ###
> summary(fetal.res)$quantiles[c("Sigma.u[1,1]","Sigma.u[2,2]"),"50%",drop=FALSE]

50%
Sigma.u[1,1] 76.231233
Sigma.u[2,2] 1.158171

> ### INLA ###
> 1/im2$summary.hyperpar[2:3,c("mean","0.5quant")]

mean 0.5quant
Precision for id (component 1) 67.937253 67.747191
Precision for id (component 2) 1.002185 1.012864

and finally for the residual standard deviations:

> ### LMER ###
> attr( VarCorr(m0), "sc" )
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[1] 8.589226

> ### JAGS ###
> summary(fetal.res)$quantiles["sigma.e","50%",drop=FALSE]

50%
sigma.e 8.631956

> ### INLA ###
> 1/sqrt(im2$summary.hyperpar[1,c("mean","0.5quant"),drop=FALSE])

mean 0.5quant
Precision for the Gaussian observations 8.648273 8.688147

and finally for the correlation between the slope and the intercept (for whatever that is
worth):
> ### LMER ###
> attr(VarCorr(m0)$id,"correlation")[1,2]

[1] 0.7469472

> ### JAGS ###
> summary(fetal.res)$quantiles["Sigma.u[1,2]",3]/
+ sqrt(summary(fetal.res)$quantiles["Sigma.u[1,1]",3]*
+ summary(fetal.res)$quantiles["Sigma.u[2,2]",3])

[1] 0.7688772

> ### INLA ###
> im2$summary.hyperpar[4,1,drop=FALSE]

mean
Rho1:2 for id 0.7818731

3.8.5 Posterior samples from INLA

Even though only the marginal densities are avilable as output form INLA, it is occasionally
useful to have access to a sample from the posterior distribution. This is achieved by the
inla.rmarginal function, which takes the numer of random draws and a marginal object
from an INLA fit as arguments.

So as an example we generate a sample of 10,000 from the posterior of the precison of
the random slopes and make a histogram of this, and also of the corresponding sd, as
shown in figure ??
> sd.mx <- max( fetal.mat[,"Sigma.u[2,2]"]^0.5 ) + 0.2
> par( mfrow=c(3,1), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> hist( prc.beta <- inla.rmarginal(10000,im2$marginals.hyperpar[[3]]),
+ col="gray", freq=F, breaks=100, main="",
+ xlab="Precison of random slope (INLA)" )
> lines(im2$marginals.hyperpar[[3]],lwd=2,col="red")
> hist( prc.beta^-2,
+ col="gray", freq=F, breaks=seq(0,sd.mx,0.2), main="",
+ xlab="SD of random slope (INLA)" )
> hist( fetal.mat[,"Sigma.u[2,2]"]^0.5,
+ col="gray", freq=F, breaks=seq(0,sd.mx,0.2), main="",
+ xlab="SD of random slope (JAGS)" )

.
From figure 3.27 it is seen that the posterior of the random slope is (to put it mildly) not

well-determined, and that the assumption about a posterior unimodal istribution (which is
underlying both models may not be correct).
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Figure 3.27: Marginal posterior distributions of the precision and sd of the random slope
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3.9 Generalized linear mixed model in JAGS

> library( rjags )
> ############################################################################
>
> ################## Question 5 ##############################################
>
> # JAGS code for GLMM warts and PID data exercise 10
>
> kitdata <- read.csv( "../data/wartpid.csv" , header = T)
> wartpid <- kitdata[,c("consults","warts")]
> # wartpid <- wartpid[wartpid$PID/wartpid$consults < 0.025,]
>
> ############# Model 1 ##################################################
>
> # warts
> # doctor-specific diagnosis frequency fixed effects
>
> # The JAGS-code for the model
>
> cat( "model
+ {
+ a[1] ~ dnorm(0,10000)
+ for(i in 2:23)
+ {
+ a[i] ~ dnorm(0,0.0001)
+ }
+ for(i in 1:23)
+ {
+ mean[i] <- mu + a[i]
+ logit(pr[i]) <- mean[i]
+ warts[i] ~ dbin(pr[i],consults[i])
+ }
+
+ mu ~ dnorm(0,0.001);
+
+ }",file="m5.jag" )
> # Data as a list
>
> e.dat <- as.list( wartpid )
> # Inits as a list
>
> e.ini <- list(mu = -3, a = c(0,rep(0,22)))
> # Names of the parameters to monitor
>
> e.par <-c("mean")
> # Model compilation and burn-in
>
> e.mod <- jags.model( file = "m5.jag",
+ data = e.dat,
+ n.chains = 3,
+ inits = e.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> e.res <- coda.samples( model = e.mod,
+ var = e.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(e.res)
> fixeffs <- cbind(as.vector(summary(e.res)$statistics[,1]),as.vector(summary(e.res)$quantiles[,1]),
+ as.vector(summary(e.res)$quantiles[,5]))
> expit <- function(x) {exp(x)/(1 + exp(x))}
> plot(x = expit(fixeffs[,1]),y = 5*(1:23)-2, xlim = c(0,0.125), pch = 16, ylab = "Doctor", xlab = "Proportion diagnosed with warts (with 95% CI)", yaxt = "n")
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> segments(x0 = expit(fixeffs[,2]), y0 = 5*(1:23)-2, x1 = expit(fixeffs[,3]), y1 = 5*(1:23)-2, lty = 1)
> ############# Model 2 ##################################################
>
> # warts
> # single common random effect (sigma2a) per doctor
>
> cat( "model
+ {
+ for(i in 1:23)
+ {
+ a[i] ~ dnorm(0,taua);
+ mean[i] <- mu + a[i];
+ logit(pr[i]) <- mean[i];
+ warts[i] ~ dbin(pr[i],consults[i]);
+ }
+
+ taua ~ dpar(1,0.01);
+
+ sigma2a <- 1/taua;
+ sigmaa <- sqrt(sigma2a);
+
+ mu ~ dnorm(0,0.001);
+
+ }",file="m6.jag" )
> # Data as a list
>
> f.dat <- as.list( wartpid )
> # Inits as a list
>
> f.ini <- list(mu = -3, taua = 1)
> # Names of the parameters to monitor
>
> f.par <-c("mean","mu","sigma2a","sigmaa","a")
> # Model compilation and burn-in
>
> f.mod <- jags.model( file = "m6.jag",
+ data = f.dat,
+ n.chains = 3,
+ inits = f.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> f.res <- coda.samples( model = f.mod,
+ var = f.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(f.res)
> raneffs <- cbind(as.vector(summary(f.res)$statistics[(1:23)+23,1]),as.vector(summary(f.res)$quantiles[(1:23)+23,1]),
+ as.vector(summary(f.res)$quantiles[(1:23)+23,5]))
> plot(x = expit(fixeffs[,1]),y = 5*(1:23)-2, xlim = c(0,0.125), pch = 16, ylab = "Doctor", xlab = "Proportion diagnosed with warts (with 95% CI)", yaxt = "n")
> segments(x0 = expit(fixeffs[,2]), y0 = 5*(1:23)-2, x1 = expit(fixeffs[,3]), y1 = 5*(1:23)-2, lty = 1)
> points(x = expit(raneffs[,1]),y = 5*(1:23)-4, pch = 15)
> segments(x0 = expit(raneffs[,2]), y0 = 5*(1:23)-4, x1 = expit(raneffs[,3]), y1 = 5*(1:23)-4, lty = 2)
> abline(v = expit(summary(f.res)$statistics["mu",1]), col = "red", lty = 2, lwd = 2)
> legend(x = 0.09, y = 100,legend = c("Fixed","Random","Mean"), lty = c(1,2,2), pch = c(16,15,NA), lwd = c(2,2,2), col = c("black","black","red"))
> ############# Model 3 ##################################################
>
> # PID = pelvic inflammatory disease
> # doctor-specific diagnosis rate fixed effects
>
> wartpid <- kitdata[,c("consults","PID")]
> # The JAGS-code for the model
>
> cat( "model
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+ {
+ a[1] ~ dnorm(0,10000)
+ for(i in 2:23)
+ {
+ a[i] ~ dnorm(0,0.0001)
+ }
+ for(i in 1:23)
+ {
+ mean[i] <- mu + a[i]
+ logit(pr[i]) <- mean[i]
+ PID[i] ~ dbin(pr[i],consults[i])
+ }
+
+ mu ~ dnorm(0,0.001);
+
+ }",file="m7.jag" )
> # Data as a list
>
> g.dat <- as.list( wartpid )
> # Inits as a list
>
> g.ini <- list(mu = -4, a = c(0,rep(0,22)))
> # Names of the parameters to monitor
>
> g.par <-c("mean")
> # Model compilation and burn-in
>
> g.mod <- jags.model( file = "m7.jag",
+ data = g.dat,
+ n.chains = 3,
+ inits = g.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> g.res <- coda.samples( model = g.mod,
+ var = g.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(g.res)
> fixeffs2 <- cbind(as.vector(summary(g.res)$statistics[,1]),as.vector(summary(g.res)$quantiles[,1]),
+ as.vector(summary(g.res)$quantiles[,5]))
> plot(x = expit(fixeffs2[,1]),y = 5*(1:23)-2, xlim = c(0,0.125), pch = 16, ylab = "Doctor", xlab = "Proportion diagnosed with PID (with 95% CI)", yaxt = "n")
> segments(x0 = expit(fixeffs2[,2]), y0 = 5*(1:23)-2, x1 = expit(fixeffs2[,3]), y1 = 5*(1:23)-2, lty = 1)
> ############# Model 4 ##################################################
>
> # PID
> # single common random effect (sigma2a) per doctor
>
> cat( "model
+ {
+ for(i in 1:23)
+ {
+ a[i] ~ dnorm(0,taua);
+ mean[i] <- mu + a[i];
+ logit(pr[i]) <- mean[i];
+ PID[i] ~ dbin(pr[i],consults[i]);
+ }
+
+ taua ~ dpar(1,0.01);
+
+ sigma2a <- 1/taua;
+ sigmaa <- sqrt(sigma2a);
+
+ mu ~ dnorm(0,0.001);
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+
+ }",file="m8.jag" )
> # Data as a list
>
> h.dat <- as.list( wartpid )
> # Inits as a list
>
> h.ini <- list(mu = -4, taua = 1)
> # Names of the parameters to monitor
>
> h.par <-c("mean","mu","sigma2a","sigmaa","a")
> # Model compilation and burn-in
>
> h.mod <- jags.model( file = "m8.jag",
+ data = h.dat,
+ n.chains = 3,
+ inits = h.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> h.res <- coda.samples( model = h.mod,
+ var = h.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(h.res)
> raneffs2 <- cbind(as.vector(summary(h.res)$statistics[(1:23)+23,1]),as.vector(summary(h.res)$quantiles[(1:23)+23,1]),
+ as.vector(summary(h.res)$quantiles[(1:23)+23,5]))
> plot(x = expit(fixeffs2[,1]),y = 5*(1:23)-2, xlim = c(0,0.125), pch = 16, ylab = "Doctor", xlab = "Proportion diagnosed with PID (with 95% CI)", yaxt = "n")
> segments(x0 = expit(fixeffs2[,2]), y0 = 5*(1:23)-2, x1 = expit(fixeffs2[,3]), y1 = 5*(1:23)-2, lty = 1)
> points(x = expit(raneffs2[,1]),y = 5*(1:23)-4, pch = 15)
> segments(x0 = expit(raneffs2[,2]), y0 = 5*(1:23)-4, x1 = expit(raneffs2[,3]), y1 = 5*(1:23)-4, lty = 2)
> abline(v = expit(summary(h.res)$statistics["mu",1]), col = "red", lty = 2, lwd = 2)
> legend(x = 0.09, y = 100,legend = c("Fixed","Random","Mean"), lty = c(1,2,2), pch = c(16,15,NA), lwd = c(2,2,2), col = c("black","black","red"))
> # Density plots
>
> plot(density(as.matrix(f.res)[,"sigmaa"]), col = "blue", lwd = 2, xlim = c(0,3), main = "Density plots for random effects s.d. for warts and PID")
> segments(x0 = quantile(as.matrix(f.res)[,"sigmaa"], prob = 0.50), y0 = 0,
+ x1 = quantile(as.matrix(f.res)[,"sigmaa"], prob = 0.50), y1 = 5, col = "blue", lty = 2, lwd = 2)
> segments(x0 = quantile(as.matrix(f.res)[,"sigmaa"], prob = c(0.05,0.95)), y0 = c(0,0),
+ x1 = quantile(as.matrix(f.res)[,"sigmaa"], prob = c(0.05,0.95)), y1 = c(1.0,0.8), col = "blue", lty = 3, lwd = 2)
> lines(density(as.matrix(h.res)[,"sigmaa"]), col = "red", lwd = 2, lty = 1)
> segments(x0 = quantile(as.matrix(h.res)[,"sigmaa"], prob = 0.50), y0 = 0,
+ x1 = quantile(as.matrix(h.res)[,"sigmaa"], prob = 0.50), y1 = 1.5, col = "red", lty = 2, lwd = 2)
> segments(x0 = quantile(as.matrix(h.res)[,"sigmaa"], prob = c(0.05,0.95)), y0 = c(0,0),
+ x1 = quantile(as.matrix(fh.res)[,"sigmaa"], prob = c(0.05,0.95)), y1 = c(0.65,0.2), col = "red", lty = 3, lwd = 2)
> legend(x = 2, y = 5, legend = c("warts","PID"), lty = c(1,1), lwd = c(2,2), col = c("blue","red"))
>
>
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3.10 Classical twin model in JAGS

This program in covariance for MD

> library( rjags )
> # JAGS code for paired and twin data exercise 10
> mgram <- read.csv("../data/mgram.csv", header = TRUE)
> ######################## Question 1 #################################
>
> # The JAGS-code for the model
>
> cat( "model
+ {
+ for (i in 1:951)
+ {
+ pdens1[i] ~ dnorm(a[i],tau.e)
+ pdens2[i] ~ dnorm(a[i],tau.e)
+ a[i] ~ dnorm(mu,tau.a)
+ }
+
+ tau.a <- pow(sigma.a,-2)
+ sigma.a ~ dunif(0,1000)
+
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,1000)
+
+ mu ~ dnorm(0,1.0E-6)
+
+ sigma2.a <- pow(sigma.a,2)
+ sigma2.e <- pow(sigma.e,2)
+
+ }",
+ file = "m1.jag" )
> # Inits as a list of parameter names
>
> a.ini <- list(mu = 37, sigma.a = 16, sigma.e = 13.5)
> # Data as a list
>
> a.dat <- as.list( mgram )
> # Names of the parameters to monitor
>
> a.par <- c("mu","sigma2.a","sigma2.e","sigma.a","sigma.e")
> # Model compilation and burn-in
> a.mod <- jags.model( file = "m1.jag",
+ data = a.dat,
+ n.chains = 3,
+ inits = a.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
> a.res <- coda.samples( model = a.mod,
+ var = a.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(a.res)
> ######################## Question 2 #################################
>
> # The JAGS-code for the model
>
> cat(" model
+ {
+ for (i in 1:951)
+ {
+ pdens1[i] ~ dnorm(mean.pdens1[i],tau.e)
+ pdens2[i] ~ dnorm(mean.pdens2[i],tau.e)
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+ mean.pdens1[i] <- b.int + sqrt(rho)*a1[i] + sqrt(1-rho)*a2[i]
+ mean.pdens2[i] <- b.int + sqrt(rho)*a1[i] + mz[i]*sqrt(1-rho)*a2[i] + dz[i]*sqrt(1-rho)*a3[i]
+ a1[i] ~ dnorm(0,tau.a)
+ a2[i] ~ dnorm(0,tau.a)
+ a3[i] ~ dnorm(0,tau.a)
+ }
+
+ rho ~ dunif(0,1)
+
+ b.int ~ dnorm(0,0.0001)
+
+ tau.a <- pow(sigma.a,-2)
+ sigma.a ~ dunif(0,1000)
+
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,1000)
+
+ sigma2.a <- pow(sigma.a,2)
+ sigma2.e <- pow(sigma.e,2)
+
+ }",
+ file = "m2.jag")
> # Inits as a list of parameter names
>
> b.ini <- list(rho = 0.5, b.int = 37, sigma.a = 16, sigma.e = 13.5)
> # Names of the parameters to monitor
>
> b.par <- c("b.int","rho","sigma2.a","sigma2.e","sigma.a","sigma.e")
> # Model compilation and burn-in
>
> a.mod <- jags.model( file = "m2.jag",
+ data = a.dat,
+ n.chains = 3,
+ inits = b.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> b.res <- coda.samples( model = a.mod,
+ var = b.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(b.res)
> ######################## Question 3 #################################
>
> # The JAGS-code for the model
>
> cat(" model
+ {
+ for (i in 1:951)
+ {
+ pdens1[i] ~ dnorm(mean.pdens1[i],tau.e)
+ pdens2[i] ~ dnorm(mean.pdens2[i],tau.e)
+ mean.pdens1[i] <- b.int + b.age*agemgram1[i] + sqrt(rho)*a1[i]
+ + sqrt(1-rho)*a2[i]
+ mean.pdens2[i] <- b.int + b.age*agemgram2[i] + sqrt(rho)*a1[i]
+ + mz[i]*sqrt(1-rho)*a2[i]
+ + dz[i]*sqrt(1-rho)*a3[i]
+ a1[i] ~ dnorm(0,tau.a)
+ a2[i] ~ dnorm(0,tau.a)
+ a3[i] ~ dnorm(0,tau.a)
+ }
+
+ rho ~ dunif(0,1)
+
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+ b.int ~ dnorm(0,0.0001)
+ b.age ~ dnorm(0,0.0001)
+ tau.a <- pow(sigma.a,-2)
+ sigma.a ~ dunif(0,1000)
+
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,1000)
+
+ sigma2.a <- pow(sigma.a,2)
+ sigma2.e <- pow(sigma.e,2)
+ }",
+ file = "m3.jag")
> # Inits as a list
>
> c.ini <- list(rho = 0.5, b.int = 37, b.age = -0.75, sigma.a = 16, sigma.e = 13.5)
> # Names of the parameters to monitor
>
> c.par <- c("b.age","b.int","rho","sigma2.a","sigma2.e","sigma.a","sigma.e")
> # Model compilation and burn-in
>
> c.mod <- jags.model( file = "m3.jag",
+ data = a.dat,
+ n.chains = 3,
+ inits = c.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> c.res <- coda.samples( model = c.mod,
+ var = c.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(c.res)
> ######################## Question 4 #################################
>
> # The JAGS-code for the model
>
> cat(" model
+ {
+ for (i in 1:951)
+ {
+ pdens1[i] ~ dnorm(mean.pdens1[i],tau.e)
+ pdens2[i] ~ dnorm(mean.pdens2[i],tau.e)
+ mean.pdens1[i] <- b.int + b.age*agemgram1[i] + b.wgt*weight1[i] + sqrt(rho)*a1[i] + sqrt(1-rho)*a2[i]
+ mean.pdens2[i] <- b.int + b.age*agemgram2[i] + b.wgt*weight2[i] + sqrt(rho)*a1[i] + mz[i]*sqrt(1-rho)*a2[i] + dz[i]*sqrt(1-rho)*a3[i]
+ a1[i] ~ dnorm(0,tau.a)
+ a2[i] ~ dnorm(0,tau.a)
+ a3[i] ~ dnorm(0,tau.a)
+ }
+
+ dumnode <- weight1[1] + weight2[1] + mz[1] + dz[1] + agemgram1[1] + agemgram2[1] + study[1]
+
+ rho ~ dunif(0,1)
+
+ b.int ~ dnorm(0,0.0001)
+ b.age ~ dnorm(0,0.0001)
+ b.wgt ~ dnorm(0,0.0001)
+ tau.a <- pow(sigma.a,-2)
+ sigma.a ~ dunif(0,1000)
+
+ tau.e <- pow(sigma.e,-2)
+ sigma.e ~ dunif(0,1000)
+
+ sigma2.a <- pow(sigma.a,2)
+ sigma2.e <- pow(sigma.e,2)
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+
+ }",
+ file = "m4.jag")
> # Inits as a list
>
> d.ini <- list(rho = 0.5, b.int = 76, b.age = -0.75, b.wgt = -0.64, sigma.a = 16, sigma.e = 13.5)
> # Names of the parameters to monitor
>
> d.par <- c("b.age","b.int","b.wgt","rho","sigma2.a","sigma2.e","sigma.a","sigma.e")
> # Model compilation and burn-in
>
> d.mod <- jags.model( file = "m4.jag",
+ data = a.dat,
+ n.chains = 3,
+ inits = d.ini,
+ n.adapt = 1500 )
> # Sampling from the posterior
>
> d.res <- coda.samples( model = d.mod,
+ var = d.par,
+ n.iter = 1500,
+ thin = 1 )
> # Take a look at the output from JAGS
>
> summary(d.res)
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3.11 DIC and other model diagnostics

This exercise aims at showing how the diagnostics DIC (deviance information criterion)
behave in a situation where we know the model fits and where we know the model does not
fit

The idea is snatched from Bob O’Hara’s website
deepthoughtsandsilliness.blogspot.com/2007/12/focus-on-dic.html with a few
minor modifications. The idea is to simulate two datasets using two models where one is a
sub-model of the other, and use JAGS to fit the two data-generation models to both
datasets.

First load the rjags library:

> library( rjags )

1. The idea is to generate data in 10 groups, each group having a mean drawn from a
normal distribution. The difference between the two data-generating models is
whether the distributions from which we draw the group means are identical or have
means that vary with the group number.

First we set up the number of groups and the group sizes ad generate the group
indicator for all units we will simulate for:

> ng <- 10
> gs <- 50
> sd.w <- 1
> sd.b <- 1
> gr.no <- 1:ng
> group <- rep(gr.no, each=gs)
> beta <- 1

Then we simulate the first dataset where we first draw group means from normal
distributions with means proportional to the group number.

> gr.mean1 <- rnorm( ng, beta*gr.no, sd.b)
> y1 <- rnorm(length(group), gr.mean1[group], sd.w)
> data1 <- list( N = length(y1),
+ G = ng,
+ group = group,
+ y = y1 )

Then we repeat the exercise drawing group means from identical distributions:

> gr.mean2 <- rnorm( ng, mean(beta*gr.no), sd.b)
> y2 <- rnorm(length(group), gr.mean2[group], sd.w)
> data2 <- list( N = length(y2),
+ G = ng,
+ group = group,
+ y = y2 )

2. In order to show how the data looks we plot the data in two panels showing the
differences in how we generated data:

> par(mfrow=c(1,2), mar=c(2.1,2.1,1.1,1.1),
+ oma=c(2,2,0,0), las=1, bty="n" )
> plot(jitter(group), y1, pch=3, col="grey40",ylim=range(c(y1,y2)), xaxt="n" )
> points(gr.no, gr.mean1, pch=3, cex=1.5, lwd=3, col="blue")
> axis( side=1, at=1:ng, labels=1:ng, col="transparent" )

deepthoughtsandsilliness.blogspot.com/2007/12/focus-on-dic.html


126 Solutions PDAwBuR: Solutions to Exercises

> abline(0, beta, col="blue" )
> plot(jitter(group), y2, pch=3, col="grey40", ylim=range(c(y1,y2)), xaxt="n" )
> points(gr.no, gr.mean2, pch=3, cex=1.5, lwd=3, col="blue")
> axis( side=1, at=1:ng, labels=1:ng, col="transparent" )
> abline( h=mean(beta*gr.no), col="blue")
> mtext("Group", 1, outer=T)
> mtext("y", 2, outer=T)

3. We then set up the two models we used for generating data, in JAGS, as well as the
parameters we want to monitor from the two models:

> # Model 1: Slope between groups
> cat("model{
+ for( i in 1:N )
+ {
+ y[i] ~ dnorm(muGrp[group[i]], tau.wti)
+ }
+ for( j in 1:G )
+ {
+ muGrp[j] ~ dnorm(muG[j], tau.btw)
+ muG[j] <- mu0 + betaGrp*(j-5.5)
+ }
+ mu0 ~ dnorm (0.0, 1.0E-6)
+ betaGrp ~ dnorm (0.0, 1.0E-6)
+ tau.wti <- pow(sigma.wti, -2)
+ sigma.wti ~ dunif (0, 1000)
+ tau.btw <- pow(sigma.btw, -2)
+ sigma.btw ~ dunif (0, 1000)
+ }",
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Figure 3.28: The two datasets generated for illustration of model fitting diagnostics.
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+ file="model1.jag" )
> m1.par <- c("mu0","muGrp","betaGrp","sigma.wti","sigma.btw")
> # Model 2: Group means from identical distributions
> cat("model{
+ for( i in 1:N )
+ {
+ y[i] ~ dnorm(muGrp[group[i]], tau.wti)
+ }
+ for( j in 1:G )
+ {
+ muGrp[j] ~ dnorm(mu0, tau.btw)
+ }
+ mu0 ~ dnorm (0.0, 1.0E-6)
+ tau.wti <- pow(sigma.wti, -2)
+ sigma.wti ~ dunif (0, 1000)
+ tau.btw <- pow(sigma.btw, -2)
+ sigma.btw ~ dunif (0, 1000)
+ }",
+ file="model2.jag")
> m2.par <- c("mu0","muGrp","sigma.wti","sigma.btw")

In order to run the models in JAGS we prudently set up initial values

> # Initial values
> inits1=list(list(mu0=0, betaGrp=1, sigma.btw=5, sigma.wti=1),
+ list(mu0=2, betaGrp=0, sigma.btw=5, sigma.wti=1) )
> inits2=list(list(mu0=0, sigma.btw=5, sigma.wti=1),
+ list(mu0=2, sigma.btw=5, sigma.wti=1) )

4. Once all this has been set up, we can fit the two models to the two datasets and
inspect the results:

> # Model1 for data1
> m1d1.mod <- jags.model( file = "model1.jag",
+ data = data1,
+ n.chains = 2,
+ inits = inits1,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1063

Initializing model

> m1d1.res <- coda.samples( m1d1.mod,
+ var = m1.par,
+ n.iter = 10000,
+ thin = 10 )
> # Model1 for data2
> m1d2.mod <- jags.model( file = "model1.jag",
+ data = data2,
+ n.chains = 2,
+ inits = inits1,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1063

Initializing model
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> m1d2.res <- coda.samples( m1d2.mod,
+ var = m1.par,
+ n.iter = 10000,
+ thin = 10 )
> # Model2 for data1
> m2d1.mod <- jags.model( file = "model2.jag",
+ data = data1,
+ n.chains = 2,
+ inits = inits2,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1022

Initializing model

> m2d1.res <- coda.samples( m2d1.mod,
+ var = m2.par,
+ n.iter = 10000,
+ thin = 10 )
> # Model2 for data2
> m2d2.mod <- jags.model( file = "model2.jag",
+ data = data2,
+ n.chains = 2,
+ inits = inits2,
+ n.adapt = 1000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1022

Initializing model

> m2d2.res <- coda.samples( m2d2.mod,
+ var = m2.par,
+ n.iter = 10000,
+ thin = 10 )
> summary( m1d1.res )$q

2.5% 25% 50% 75% 97.5%
betaGrp 0.7291544 0.8825424 0.9420689 1.0038989 1.146878
mu0 4.9616061 5.3927564 5.5750248 5.7551384 6.140843
muGrp[1] 1.0336575 1.2157459 1.3131269 1.4013919 1.577079
muGrp[2] 1.4411046 1.6011550 1.6986447 1.7928989 1.989970
muGrp[3] 2.8683389 3.0559593 3.1532644 3.2444498 3.415647
muGrp[4] 4.2294643 4.4120201 4.5047182 4.5987829 4.769644
muGrp[5] 5.7425186 5.9254667 6.0183691 6.1155522 6.303988
muGrp[6] 5.4162408 5.5951732 5.6835812 5.7761045 5.944644
muGrp[7] 7.0994518 7.2728650 7.3690948 7.4591183 7.650577
muGrp[8] 7.8248757 8.0012714 8.0927859 8.1850786 8.355299
muGrp[9] 7.1773096 7.3543971 7.4529952 7.5508691 7.718288
muGrp[10] 10.1617102 10.3295559 10.4266943 10.5191723 10.700563
sigma.btw 0.4963866 0.6741923 0.8004497 0.9797378 1.559873
sigma.wti 0.9396652 0.9777178 1.0001049 1.0228228 1.060608

> summary( m2d2.res )$q
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2.5% 25% 50% 75% 97.5%
mu0 4.5037009 4.7584810 4.8747735 4.9864860 5.2418517
muGrp[1] 4.8432304 5.0296512 5.1200653 5.2041167 5.3693166
muGrp[2] 4.6546448 4.8215746 4.9125821 5.0062570 5.1720393
muGrp[3] 4.9891466 5.1558449 5.2410242 5.3310003 5.4971653
muGrp[4] 4.7307851 4.9032815 4.9897211 5.0776309 5.2509070
muGrp[5] 5.1392445 5.3015489 5.3989199 5.4839998 5.6700611
muGrp[6] 3.9939789 4.1575997 4.2468308 4.3430589 4.5199623
muGrp[7] 4.7371859 4.8928386 4.9821561 5.0752727 5.2448484
muGrp[8] 4.4781883 4.6324549 4.7209118 4.8140982 4.9753242
muGrp[9] 3.6817211 3.8462492 3.9356203 4.0233085 4.2077565
muGrp[10] 4.9658082 5.1527503 5.2386908 5.3279502 5.5031844
sigma.btw 0.3242853 0.4378185 0.5274825 0.6394112 0.9962192
sigma.wti 0.9134098 0.9483695 0.9687341 0.9899994 1.0328566

We see that we in most cases get the parameters back that was used to generate the
data, when we use the model that was used to generate the data — hardly surprising.

But when we use model 2 (the simpler one) to fit the data generated by model 1
(those with a slope), we get more or less the generated means in each of the groups
back as posterior medians of muGrp:

> summary( m2d1.res )$q

2.5% 25% 50% 75% 97.5%
mu0 3.2679096 4.9258255 5.6015530 6.265118 7.894955
muGrp[1] 1.0449221 1.2200544 1.3174197 1.411092 1.602107
muGrp[2] 1.4109130 1.5885819 1.6852026 1.777890 1.951274
muGrp[3] 2.8649950 3.0479586 3.1458357 3.236773 3.422819
muGrp[4] 4.2317574 4.4109076 4.5098046 4.609598 4.782332
muGrp[5] 5.7744804 5.9498119 6.0457708 6.139968 6.298350
muGrp[6] 5.3983026 5.5796625 5.6787662 5.771591 5.950838
muGrp[7] 7.1179342 7.2816786 7.3814707 7.472044 7.657607
muGrp[8] 7.8373509 8.0027653 8.0994938 8.198310 8.378878
muGrp[9] 7.1233279 7.3035861 7.4031827 7.500409 7.680710
muGrp[10] 10.1465261 10.3351880 10.4325907 10.528867 10.719024
sigma.btw 2.0788726 2.7435160 3.2394344 3.889556 5.964470
sigma.wti 0.9394812 0.9784468 0.9989127 1.020748 1.063559

> gr.mean1

[1] 1.182657 1.797204 3.361135 4.668211 5.740934 5.818173 7.328617
[8] 8.124100 7.618937 10.047804

But we can also see that the price paid for nor modeling the mean in the groups
correctly is that the variation between groups (that is around the stipulated model for
the means) is that the between-group variation sigma.btw is grossly overestimated.

However, this is not the case when the more elaborate model is used; which should
neither be a surprise, the model used to generate data is a proper sub-model of the
one used to fit them, namely the model where β = 0.

> summary( m1d2.res )$q

2.5% 25% 50% 75% 97.5%
betaGrp -0.1994824 -0.1012177 -0.06136163 -0.02011444 0.07224254
mu0 4.4778879 4.7671907 4.87871650 4.98757742 5.24542659
muGrp[1] 4.8770241 5.0472218 5.13928995 5.22432422 5.39408978
muGrp[2] 4.6790185 4.8390653 4.93092531 5.01992583 5.19033750
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muGrp[3] 4.9960562 5.1662560 5.25454408 5.34205960 5.51233249
muGrp[4] 4.7305637 4.9064697 5.00487643 5.09195445 5.25235893
muGrp[5] 5.1276759 5.3091500 5.39734419 5.48782536 5.66413609
muGrp[6] 3.9829154 4.1583229 4.24666354 4.33924050 4.51641582
muGrp[7] 4.7105297 4.8879684 4.97786354 5.07140498 5.23441844
muGrp[8] 4.4654096 4.6266208 4.71355330 4.80368660 4.96337075
muGrp[9] 3.6456729 3.8271673 3.91959005 4.01445079 4.20133736
muGrp[10] 4.9546955 5.1242265 5.21534358 5.30739520 5.48558048
sigma.btw 0.3044523 0.4299169 0.52579913 0.64767505 1.02203519
sigma.wti 0.9093876 0.9486424 0.96973612 0.99060099 1.03292208

5. If we want to assess the model fit by DIC (pD) or popt (popt), we must run the chain
again in order to collect these statistics:

> pD11 <- dic.samples(m1d1.mod, n.iter=10000, thin = 10, type="pD" )
> pD12 <- dic.samples(m1d2.mod, n.iter=10000, thin = 10, type="pD" )
> pD21 <- dic.samples(m2d1.mod, n.iter=10000, thin = 10, type="pD" )
> pD22 <- dic.samples(m2d2.mod, n.iter=10000, thin = 10, type="pD" )
> pop11 <- dic.samples(m1d1.mod, n.iter=10000, thin = 10, type="popt" )
> pop12 <- dic.samples(m1d2.mod, n.iter=10000, thin = 10, type="popt" )
> pop21 <- dic.samples(m2d1.mod, n.iter=10000, thin = 10, type="popt" )
> pop22 <- dic.samples(m2d2.mod, n.iter=10000, thin = 10, type="popt" )
> pD11

Mean deviance: 1418
penalty 10.98
Penalized deviance: 1429

> pD12

Mean deviance: 1387
penalty 10.71
Penalized deviance: 1398

> pD21

Mean deviance: 1418
penalty 10.94
Penalized deviance: 1429

> pD22

Mean deviance: 1387
penalty 10.76
Penalized deviance: 1398

> pop11

Mean deviance: 1417
penalty 21.56
Penalized deviance: 1439

> pop12
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Mean deviance: 1387
penalty 21.67
Penalized deviance: 1409

> pop21

Mean deviance: 1418
penalty 22.44
Penalized deviance: 1440

> pop22

Mean deviance: 1387
penalty 22.27
Penalized deviance: 1410

What we see is that the measures of fit are not very different between models. This is
because the measure are measures of how well the model predicts and not measures of
whether the models can be improved by adding further covariates.

The latter is of course also quite a futile expectation; it would be difficult for any
criterion to guess what covariates were missing in data. Definition of covariates is
always a subject matter definition.
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3.12 Measurement comparison in oximetry

1. The model we consider is one where there is fixed difference between the two methods:

y(co),ir − y(pulse),ir = dir ∼ N (δ, σ2)

(a) This is just a standard normal model with mean and standard deviation as
parameters, and so easily fitted in R:

> library( Epi )
> oxw <- read.table( "../data/ox.dat", header=TRUE )
> str(oxw)

’data.frame’: 177 obs. of 4 variables:
$ item : int 1 1 1 2 2 2 3 3 3 4 ...
$ repl : int 1 2 3 1 2 3 1 2 3 1 ...
$ co : num 78 76.4 77.2 68.7 67.6 68.3 82.9 80.1 80.7 62.3 ...
$ pulse: int 71 72 73 68 67 68 82 77 77 43 ...

> m1 <- lm( I(pulse-co) ~ 1, data=oxw )
> summary( m1 )

Call:
lm(formula = I(pulse - co) ~ 1, data = oxw)

Residuals:
Min 1Q Median 3Q Max

-19.0226 -3.5226 -0.4226 3.1774 29.8774

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.4774 0.4642 -5.337 2.88e-07

Residual standard error: 6.176 on 176 degrees of freedom

A 95% confidence interval for the mean differnce can be found using ci.lin

from the Epi package:

> ci.lin( m1 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -2.477401 0.4641864 -5.337083 9.445382e-08 -3.38719 -1.567613

(b) The prior distribution p(σ2) ∝ (σ2)
−1

corresponds to ν0 = σ2
0 = 0 so we have

p(σ2|d) = Inv-χ2(n− 1, s2)

where n = 177 and s2 is the standard deviation from the model. To obtain an
observation Y from the scaled Inv-χ2(n− 1, s2) distribution, first draw X from
the χ2

n−1 distribution and then let Y = (n− 1)s2/X. The 2.5 and 97.5
percentiles of the χ2

n−1 distribution with n = 177 are found by:

> qchisq(c(0.025,0.975),177-1)

[1] 141.1571 214.6284

so a 95% posterior region for σ2 will be the inverse of these two values multiplied
by (n− 1)s2, so a confidence interval for σ is the square root of this:

> sqrt( (177-1) * summary(m1)$sigma^2 / qchisq(c(0.975,0.025),177-1) )

[1] 5.592317 6.895788
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(c) The posterior distribution of (δ − d̄)/(sd/
√
n) is a t-distribution with n− 1

degrees of freedom. So a 95% posterior interval for δ is:

d̄± t0.975(n− 1)× (sd/
√
n)

which is easily accomplished as:

> n <- nrow( oxw )
> coef(m1) + c(-1,1) * qt(0.975,n-1) * ( summary(m1)$sigma / sqrt(n) )

[1] -3.393489 -1.561313

(d) To run this in JAGS we must provide a model specification, data, initial values
and the parameters to monitor:

> library( rjags )
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ d[i] ~ dnorm( delta, tausq )
+ }
+ tausq <- pow( sigma, -2 )
+ sigma ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ }",
+ file="m1.jag" )
> m1.dat <- list( d=oxw$co-oxw$pulse, I=nrow(oxw) )
> m1.ini <- list( list( sigma=5, delta=0 ),
+ list( sigma=6, delta=1 ),
+ list( sigma=4, delta=-1 ) )
> m1.par <- c("sigma","delta")
> m1.mod <- jags.model( file = "m1.jag",
+ data = m1.dat,
+ n.chains = length(m1.ini),
+ inits = m1.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 186

Initializing model

> m1.res <- coda.samples( m1.mod,
+ var = m1.par,
+ n.iter = 20000,
+ thin = 10 )

We can the n inspect the resulting object and plot the joint posterior
distribution of delta and sigma.

> str( m1.res )

List of 3
$ : mcmc [1:2000, 1:2] 2.69 2.56 3.18 3.3 1.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:2] "delta" "sigma"
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
$ : mcmc [1:2000, 1:2] 2.33 2.63 2.53 1.22 2.15 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:2] "delta" "sigma"
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
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$ : mcmc [1:2000, 1:2] 2.52 2.63 2.39 2.56 1.88 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:2] "delta" "sigma"
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
- attr(*, "class")= chr "mcmc.list"

> m1.mat <- as.matrix(m1.res)
> par( mar=c(6,6,1,1)/2, mgp=c(3,1,0)/1.6 )
> plot( m1.mat[,"delta"], m1.mat[,"sigma"],
+ xlab="delta", ylab="sigma",
+ pch=16, cex=0.4, las=1, bty="n" )

(e) We can just use summary function to get a 95% posterior interval for the
parameters:
> summary( m1.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
delta 2.479 0.4681 0.006043 0.006021
sigma 6.218 0.3335 0.004305 0.004283

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
delta 1.569 2.164 2.484 2.795 3.404
sigma 5.602 5.990 6.199 6.431 6.899

We can also show the posterior marginal densities:
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1 )
> plot( density( m1.mat[,"delta"] ), lwd=3,
+ xlab="delta", ylab="", bty="n", main="" )
> abline( v=quantile(m1.mat[,"delta"],probs=c(2.5,25,50,75,97.5)/100),
+ col="gray" )
> plot( density( m1.mat[,"sigma"] ), lwd=3,
+ xlab="delta", ylab="", bty="n", main="" )
> abline( v=quantile(m1.mat[,"sigma"],probs=c(2.5,25,50,75,97.5)/100),
+ col="gray" )

(f) We introduce limits δ ± 2σ as nodes agree.lo and agree.hi in the BUGS code:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ d[i] ~ dnorm( delta, tausq )
+ }
+ tausq <- pow( sigma, -2 )
+ sigma ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ agree.lo <- delta - 2*sigma
+ agree.hi <- delta + 2*sigma
+ }",
+ file="m2.jag" )
> m2.dat <- list( d=oxw$co-oxw$pulse, I=nrow(oxw) )
> m2.ini <- list( list( sigma=5, delta=0 ),
+ list( sigma=6, delta=1 ),
+ list( sigma=4, delta=-1 ) )
> m2.par <- c("sigma","delta","agree.lo","agree.hi")
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> m2.mod <- jags.model( file = "m2.jag",
+ data = m2.dat,
+ n.chains = length(m2.ini),
+ inits = m2.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 189

Initializing model

> m2.res <- coda.samples( m2.mod,
+ var = m2.par,
+ n.iter = 20000,
+ thin = 10 )
> summary( m2.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

1 2 3 4

0.0

0.2

0.4

0.6

0.8

delta

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.0

0.2
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0.8

1.0

1.2

delta

Figure 3.29: Marginal posterior densities for the two parameters. The vertical lines are the
2.5, 25, 50, 75 and 97.5 percentiles.
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Mean SD Naive SE Time-series SE
agree.hi 14.929 0.8206 0.010594 0.011124
agree.lo -9.968 0.8202 0.010588 0.010720
delta 2.481 0.4692 0.006057 0.006464
sigma 6.224 0.3365 0.004344 0.004374

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
agree.hi 13.430 14.360 14.892 15.469 16.605
agree.lo -11.655 -10.503 -9.938 -9.412 -8.445
delta 1.579 2.165 2.477 2.800 3.396
sigma 5.600 5.995 6.209 6.440 6.911

One of the advantages of the BUGS machinery is that it is not necessary to re-run
the code if you want the posterior of a simple function of the parameters; we can
just use the posterior sample and calculate a posterior of these parameter
functions:

> M1 <- as.matrix( m1.res )
> a1.lo <- M1[,"delta"] - 2*M1[,"sigma"]
> a1.hi <- M1[,"delta"] + 2*M1[,"sigma"]
> M2 <- as.matrix( m2.res )
> layout( cbind(1:2), heights=1:2 )
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n" )
> plot( density( a1.hi ), type="l", xlim=c(-20,20), lwd=3, main="" )
> lines( density( a1.lo ), lwd=3 )
> lines( density( M2[,"agree.hi"] ), lwd=2, col="red" )
> lines( density( M2[,"agree.lo"] ), lwd=2, col="red" )
> plot( M2[,"agree.hi"], M2[,"agree.lo"],
+ xlab="Upper limit", ylab="Lower limit",
+ pch=16, cex=0.3 )

This point can be demonstrated using the posterior sample from model m2
directly:

> summary( M2[,"agree.lo"] - (M2[,"delta"]-2*M2[,"sigma"]) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

(g) If we instead use an informative prior corresponding to 95% in an interval 3% on
either side of 0, i.e. N (0, 1.52), we change the JAGS code accordingly. Recall
that JAGS parametrizes by the precision, i.e. the inverse variance so we use
1/1.52 = 0.44444:

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ d[i] ~ dnorm( delta, tausq )
+ }
+ tausq <- pow( sigma, -2 )
+ sigma ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.4444444 )
+ }",
+ file="m3.jag" )
> m3.dat <- list( d=oxw$co-oxw$pulse, I=nrow(oxw) )
> m3.ini <- list( list( sigma=5, delta=0 ),
+ list( sigma=6, delta=1 ),
+ list( sigma=4, delta=-1 ) )
> m3.par <- c("sigma","delta")
> m3.mod <- jags.model( file = "m3.jag",
+ data = m3.dat,
+ n.chains = length(m3.ini),
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+ inits = m3.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 186

Initializing model

> m3.res <- coda.samples( m3.mod,
+ var = m3.par,
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Figure 3.30: Comparison of posterior densities for the upper and lower LoA from calculation
inside JAGS (red) and from calculations on the posterior sample of δ and σ. The bottom plot
is the joint posterior of the two limits.
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+ n.iter = 20000,
+ thin = 10 )
> summary( m3.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
delta 2.262 0.4526 0.005843 0.005693
sigma 6.220 0.3325 0.004292 0.004424

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
delta 1.381 1.958 2.269 2.561 3.161
sigma 5.603 5.996 6.208 6.428 6.921

We compare the posterior in this case with the previously obtained, by plotting
the posterior densities on top of each other. Also we include the prior density.

> M3 <- as.matrix( m3.res )
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1 )
> plot( density( M3[,"delta"]), type="l", col=gray(0.2), lwd=3,
+ main="", bty="n", xlab="" )
> lines( density( M2[,"delta"] ), lwd=3, col="red" )
> xx <- seq(0,5,,200)
> lines( xx, dnorm(xx,mean=0,sd=1.5), lwd=3, col=gray(0.6) )

We see that the posterior is drawn toward 0 (the mean of the informative prior)
and slightly narrower (corresponding to the larger amount of information)

1 2 3 4

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Figure 3.31: Comparison of posterior densities using different priors for δ; informative is
gray, uninformative is red. (Part of) the informative prior used is shown in light gray.
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2. In order to account for the individual effect of child, we introduce a subject-specific
effect µi shared by all measurements on the ith infant:

yco,ir = µi + eco,ir

ypulse,ir = µi + δ + epulse,ir

where emij ∼ N(0, σ2
m), m = co, pulse. Note that the error terms for the two methods

are different as it would rather daft to assume that the measurement error were the
same for two different methods.

(a) The distribution of dir = yco,ir − ypulse,ir under this model is normal with mean δ

and standard deviation
√
σ2
co + σ2

pulse. So as far as the differences are concerned,

the model is the same as above, but with this extended model we can actually
identify the separate variances using the replicate measurements in the data.

(b) The expansion of the model to model the two types of measurement requires a
bit or rearrangement in the code. Note that the nodes mu.co[i] are defined as
stochastic nodes, whereas mu.pl[i] are deterministic as a sum of two stochastic
nodes.

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu.co[i] ~ dnorm( 0, 0.000001 )
+ mu.pl[i] <- mu.co[i] + delta
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ }",
+ file="m4.jag" )
> nr <- nrow(oxw)
> m4.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, I=nr )
> m4.ini <- list( list( sigma.co=5, sigma.pl=5, mu.co=rep(80,nr), delta=0 ),
+ list( sigma.co=6, sigma.pl=6, mu.co=rep(70,nr), delta=1 ),
+ list( sigma.co=4, sigma.pl=4, mu.co=rep(90,nr), delta=-1 ) )
> m4.par <- c("sigma.pl","sigma.co","delta")
> m4.mod <- jags.model( file = "m4.jag",
+ data = m4.dat,
+ n.chains = length(m4.ini),
+ inits = m4.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 719

Initializing model

> m4.res <- coda.samples( m4.mod,
+ var = m4.par,
+ n.iter = 20000,
+ thin = 10 )
> summary( m4.res )
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Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
delta -2.462 0.4659 0.006015 0.01035
sigma.co 4.372 1.6341 0.021097 0.11933
sigma.pl 3.729 1.8436 0.023801 0.13718

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
delta -3.4029 -2.769 -2.463 -2.150 -1.550
sigma.co 0.9628 3.126 4.726 5.768 6.570
sigma.pl 0.3665 2.229 4.036 5.337 6.383

(c) When we get to these slightly more complicated models it is prudent to make a
traceplot to ensure that the convergence i acceptable. In this case it does not
really seem to be the case; it appears that the two variance components are very
closely negatively correlated. Specifically the joint distribution is concentrated
on a circle with radius 6, i.e. the sum of the two variances is 36, and this is
pretty well determined, but the relative size of them is not.
> print( xyplot( m4.res[,c("delta","sigma.co","sigma.pl")],
+ aspect="fill", layout=c(3,1) ) )

> M4 <- as.matrix( m4.res, chains=TRUE )
> plot( M4[,"sigma.co"], M4[,"sigma.pl"], pch=16, cex=0.5, col=rainbow(3)[M4[,"CHAIN"]] )

The simplest overview of the data can be made by the densityplot method
which gives an overview of the monitored parameters:
> print( densityplot( m4.res[,c("delta","sigma.co","sigma.pl")],
+ aspect="fill", layout=c(3,1), lwd=3 ) )

3. In order to account for the linking of the replicates we incorporate a random effect air
with variance ω2, modelling the individual variation between timepoints of
measurement:

yco,ir = µi + air + eco,ir

ypulse,ir = µi + δ + air + epulse,ir

(a) We modify the JAGS code by including specification of this new variance
component. In order to do this we must supply the replicate number from the
data. Note the nested indexing needed in order to get the right random effect
added in the right place.
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- mu[i] + a[i,repl[i]]
+ mu.pl[i] <- mu[i] + a[i,repl[i]] + delta
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
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+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ delta ~ dnorm( 0, 0.000001 )
+ }",
+ file="m5.jag" )
> m5.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nr )
> m5.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4, mu=rep(80,nr), delta= 0 ),
+ list( sigma.co=6, sigma.pl=6, omega=4, mu=rep(70,nr), delta= 1 ),
+ list( sigma.co=4, sigma.pl=4, omega=4, mu=rep(90,nr), delta=-1 ) )
> m5.par <- c("sigma.pl","sigma.co","omega","delta")
> m5.mod <- jags.model( file = "m5.jag",
+ data = m5.dat,
+ n.chains = length(m5.ini),
+ inits = m5.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1607

Initializing model

> m5.res <- coda.samples( m5.mod,
+ var = m5.par,
+ n.iter = 20000,
+ thin = 10 )
> summary( m5.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
delta -2.503 0.4891 0.006314 0.01596
omega 2.191 1.6189 0.020900 0.12246
sigma.co 4.177 1.8490 0.023870 0.14215
sigma.pl 3.819 1.8763 0.024223 0.14160

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
delta -3.49265 -2.8273 -2.496 -2.168 -1.563
omega 0.08341 0.8338 1.872 3.271 5.865
sigma.co 0.32641 2.7818 4.679 5.754 6.576
sigma.pl 0.40115 2.1964 4.062 5.502 6.509

(b) We can then make a traceplot of the chains sampled to see if they have
converged. Based on the result shown in figure 3.34 it is a bit difficult to say,
particularly for the variance parameters σco, σpulse and ω2.

> print( xyplot( m5.res[,c("delta","omega","sigma.co","sigma.pl")],
+ aspect="fill", scales="same", layout=c(4,1) ) )
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(c) We can also explore the relationship between the varaince estimates by maing a
plot of the marginal 2-dimenstinal posterior distributions:
> M5 <- as.matrix( m5.res )
> pairs( M5[,-1], gap=0, pch=16, cex=0.3 )

It is seen in figure 3.35 that neither σco nor σpulse are particularly well
determined, but their sum is — or rather as seem from the shape — the sum of
theirs squares is. This is pretty much in line with common sense: The amount of
data needed to determine the LoA is considerably smaller than the amount of
data need to sort out the relative precision of the two methods.

(d) The model can also be fitted by conventional methods, in this case we resort to
lme. For this we first stack the data and then run the model.
> oxl <- data.frame( y = c(oxw$co,oxw$pulse),
+ repl = factor( rep(oxw$repl,2) ) ,
+ id = factor( rep(oxw$item,2) ),
+ meth = factor( rep(c("co","pulse"),each=177) ) )
> library( nlme )
> m1 <- lme( y ~ meth + id,
+ random = list( id = pdIdent( ~ repl-1 ) ),
+ weights = varIdent( form = ~1 | meth ),
+ data = oxl,
+ control = lmeControl(returnObject=TRUE) )
> m1

Linear mixed-effects model fit by REML
Data: oxl
Log-restricted-likelihood: -928.2544
Fixed: y ~ meth + id
(Intercept) methpulse id2 id3 id4 id5
76.55534468 -2.47740113 -7.89502948 4.65685241 -11.28966181 -1.47555983

id6 id7 id8 id9 id10 id11
2.13562002 9.39463233 3.73777992 -4.99939663 -18.78304003 12.66927107

id12 id13 id14 id15 id16 id17
-48.82331286 4.40123881 -3.66225215 6.23157059 0.48016527 13.40114334

id18 id19 id20 id21 id22 id23
1.48858186 -2.87219320 -1.26322060 5.64182935 -0.58513579 3.47155776

id24 id25 id26 id27 id28 id29
7.93409556 1.77884704 2.27263771 -9.33914552 -12.38561237 0.49639508

id30 id31 id32 id33 id34 id35
3.28705740 -29.97656035 5.86498335 5.75400972 8.86758775 1.12199462

id36 id37 id38 id39 id40 id41
3.49839611 3.56750833 6.61899307 1.73377785 -8.49118627 0.29487062

id42 id43 id44 id45 id46 id47
-5.97335257 -22.83052270 -17.79787217 1.82712400 4.46314117 2.91386369

id48 id49 id50 id51 id52 id53
-4.66545993 10.83433385 -25.14483090 -19.82772738 -0.35877402 -4.90744813

id54 id55 id56 id57 id58 id59
-0.05488344 11.70312835 9.29807839 12.48918523 13.11478478 14.47416217

id60 id61
7.63341276 -1.66927107

Random effects:
Formula: ~repl - 1 | id
Structure: Multiple of an Identity

repl1 repl2 repl3 Residual
StdDev: 2.92452 2.92452 2.92452 3.005045

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | meth
Parameter estimates:

co pulse
1.000000 1.795366
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Number of Observations: 354
Number of Groups: 61

The estimates from the REML-model are σ̂co = 3.005
σ̂pulse = 3.005× 1.795 = 5.40 and ω = 2.92, where the posterior medians are for
these are 4.25, 4.47 and 2.37.

4. The simplest way to allow for a difference that varies by the true measurement levels
is to introduce a linear relationship between the means:

yco,ir = µi + air + eco,ir

ypulse,ir = α + β(µi + air) + epulse,ir

(a) We extend the JAGS code by an extra mean value parameter, β, and rename the
other to α, as this no longer represents a general difference between methods:
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- mu[i] + a[i,repl[i]]
+ mu.pl[i] <- alpha + beta * ( mu[i] + a[i,repl[i]] )
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ alpha ~ dnorm( 0, 0.000001 )
+ beta ~ dunif( 0, 2 )
+ }",
+ file="m6.jag" )
> m6.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nr )
> m6.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4 ),
+ list( sigma.co=6, sigma.pl=6, omega=4 ),
+ list( sigma.co=4, sigma.pl=4, omega=4 ) )
> m6.par <- c("sigma.pl","sigma.co","omega","alpha","beta")
> m6.mod <- jags.model( file = "m6.jag",
+ data = m6.dat,
+ n.chains = length(m6.ini),
+ inits = m6.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1785

Initializing model

> m6.res <- coda.samples( m6.mod,
+ var = m6.par,
+ n.iter = 20000,
+ thin = 10 )
> summary( m6.res )
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Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 10.8703 2.70845 0.0349660 0.158250
beta 0.8242 0.03531 0.0004559 0.002079
omega 2.3479 1.68452 0.0217471 0.128204
sigma.co 2.8861 2.14045 0.0276331 0.160357
sigma.pl 4.7948 1.52543 0.0196933 NA

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 5.6742 9.1164 10.8433 12.6909 16.2287
beta 0.7540 0.8000 0.8253 0.8474 0.8922
omega 0.1322 0.8423 2.1089 3.5403 6.1775
sigma.co 0.1237 0.9756 2.4730 4.4464 7.1080
sigma.pl 0.4695 4.4891 5.3726 5.7609 6.2925

(b) We might as well have chosen pulse-oximetry as the reference method and
re-expressed the model as

yco,ir = α? + β?(µi + air) + eco,ir

ypulse,ir = µi + air + epulse,ir

Swapping the reference method is a pretty straightforward change to the JAGS
program:

> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- alpha + beta * ( mu[i] + a[i,repl[i]] )
+ mu.pl[i] <- mu[i] + a[i,repl[i]]
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ alpha ~ dnorm( 0, 0.000001 )
+ beta ~ dunif( 0, 2 )
+ }",
+ file="m7.jag" )
> m7.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nr )
> m7.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4 ),
+ list( sigma.co=6, sigma.pl=6, omega=4 ),
+ list( sigma.co=4, sigma.pl=4, omega=4 ) )
> m7.par <- c("sigma.pl","sigma.co","omega","alpha","beta")
> m7.mod <- jags.model( file = "m7.jag",
+ data = m7.dat,
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+ n.chains = length(m7.ini),
+ inits = m7.ini,
+ n.adapt = 20000 )

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 1785

Initializing model

> m7.res <- coda.samples( m7.mod,
+ var = m7.par,
+ n.iter = 20000,
+ thin = 10 )
> summary( m7.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 8.6678 2.88026 0.0371840 0.18685
beta 0.9159 0.03876 0.0005005 0.00252
omega 2.8777 1.78138 0.0229975 0.14397
sigma.co 3.9881 2.01352 0.0259945 0.15107
sigma.pl 4.1521 2.17432 0.0280704 0.16413

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 2.7470 6.757 8.7049 10.8068 13.8057
beta 0.8456 0.887 0.9156 0.9415 0.9967
omega 0.2720 1.562 2.4835 3.9035 6.9768
sigma.co 0.1055 2.227 4.6423 5.7426 6.5103
sigma.pl 0.2789 2.287 4.3254 6.1709 7.2585

(c) If α+ βµ = ξ then we have µ = −α/β + ξ/β, hence the relationship between the
parameters of the means in the two formulations are:

β? = 1/β and α? = α/β

(d) The summary function for mcmc.list objects allows you to extract all the
relevant quantities and check whether the relationship is fulfilled for the either
the mean or the median:
> # Mean
> ( ab6 <- summary( m6.res )$statistics[c("alpha","beta"),"Mean"] )

alpha beta
10.8702543 0.8242373

> ( ab7 <- summary( m7.res )$statistics[c("alpha","beta"),"Mean"] )

alpha beta
8.6677989 0.9158546

> abt <- c( -ab6[1]/ab6[2], 1/ab6[2] )
> round( cbind( ab6, ab7, abt ), 3 )

ab6 ab7 abt
alpha 10.870 8.668 -13.188
beta 0.824 0.916 1.213
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> # Median
> ( ab6 <- summary( m6.res )$quantiles[c("alpha","beta"),"50%"] )

alpha beta
10.8433312 0.8253322

> ( ab7 <- summary( m7.res )$quantiles[c("alpha","beta"),"50%"] )

alpha beta
8.7049174 0.9155644

> abt <- c( -ab6[1]/ab6[2], 1/ab6[2] )
> round( cbind( ab6, ab7, abt ), 3 )

ab6 ab7 abt
alpha 10.843 8.705 -13.138
beta 0.825 0.916 1.212

Apparently the two pieces of BUGS code do not refer to the same model. Despite
the fact that the model specifications look deceptively identical they do not give
the same relationship between the models. In fact the two models are (bar the
variance components) pretty close to the standard regressions of one method on
the other:

> round(ci.lin(lm(pulse~co,data=oxw))[,c(1,5,6)],3)

Estimate 2.5% 97.5%
(Intercept) 11.010 5.681 16.339
co 0.822 0.752 0.891

> round(summary(m6.res)$quantiles[4:5,c(3,1,5)],3)

50% 2.5% 97.5%
sigma.co 2.473 0.124 7.108
sigma.pl 5.373 0.470 6.292

> round(ci.lin(lm(co~pulse,data=oxw))[,c(1,5,6)],3)

Estimate 2.5% 97.5%
(Intercept) 8.503 2.75 14.256
pulse 0.918 0.84 0.995

> round(summary(m7.res)$quantiles[4:5,c(3,1,5)],3)

50% 2.5% 97.5%
sigma.co 4.642 0.106 6.510
sigma.pl 4.325 0.279 7.258

In conclusion, an a-symmetric formulation of the model in JAGS may lead to
wrong results. The specification of a model with certain symmetries should
reflect these.

5. In order to get the model right we reformulate it so that it is symmetric in the two
methods:

yco,ir = αco + βco(µi + air) + eco,ir

ypulse,ir = αpulse + βpulse(µi + air) + epulse,ir

(a) The relationship between the means of the two methods is found by setting all
the variance components to 0 and then isolating µi from the first equation and
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inserting in the second:

µi = (yco − αco)/βco

⇓
ypulse = αpulse + βpulse(yco − αco)/βco

=

(
αpulse − αco

βpulse
βco

)
+
βpulse
βco

yco

So the relevant parameters in terms of those in the model are

αpulse|co = αpulse − αco
βpulse
βco

βpulse|co =
βpulse
βco

(b)

(c) The modification is quite straightforward, however it should be noted that even
if the model is over-parametrized, you can still get JAGS to run the chains, but
there is no guarantee for convergence. You might for example see the µis wander
off to infinity and the βs going toward 0. So precisely in this case it is essential
to have a finite support for the prior of the µs as this ensures a finite support for
the posterior of the µs too.
> cat( "model
+ {
+ for( i in 1:I )
+ {
+ mu[i] ~ dunif( 0, 100 )
+ mu.co[i] <- alpha.co + beta.co * ( mu[i] + a[i,repl[i]] )
+ mu.pl[i] <- alpha.pl + beta.pl * ( mu[i] + a[i,repl[i]] )
+ y.co[i] ~ dnorm( mu.co[i], tausq.co )
+ y.pl[i] ~ dnorm( mu.pl[i], tausq.pl )
+ for( r in 1:3 )
+ {
+ a[i,r] ~ dnorm( 0, iomegasq )
+ }
+ }
+ tausq.co <- pow( sigma.co, -2 )
+ tausq.pl <- pow( sigma.pl, -2 )
+ iomegasq <- pow( omega, -2 )
+ sigma.co ~ dunif( 0, 1000 )
+ sigma.pl ~ dunif( 0, 1000 )
+ omega ~ dunif( 0, 1000 )
+ alpha.co ~ dnorm( 0, 0.000001 )
+ alpha.pl ~ dnorm( 0, 0.000001 )
+ beta.co ~ dunif( 0, 2 )
+ beta.pl ~ dunif( 0, 2 )
+ }",
+ file="m8.jag" )
> m8.dat <- list( y.co=oxw$co, y.pl=oxw$pulse, repl=oxw$repl, I=nrow(oxw) )
> m8.ini <- list( list( sigma.co=5, sigma.pl=5, omega=4 ),
+ list( sigma.co=6, sigma.pl=6, omega=4 ),
+ list( sigma.co=4, sigma.pl=4, omega=4 ) )
> m8.par <- c("sigma.pl","sigma.co","omega",
+ "alpha.pl","alpha.co",
+ "beta.pl", "beta.co")
> m8.mod <- jags.model( file = "m8.jag",
+ data = m8.dat,
+ n.chains = length(m8.ini),
+ inits = m8.ini,
+ n.adapt = 20000 )
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Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 2141

Initializing model

> m8.res <- coda.samples( m8.mod,
+ var = m8.par,
+ n.iter = 20000,
+ thin = 10 )
> summary( m8.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha.co 69.8536 2.54291 0.0328288 0.176750
alpha.pl 67.7044 2.38949 0.0308482 0.165661
beta.co 0.1181 0.04715 0.0006087 0.003374
beta.pl 0.1112 0.04380 0.0005654 0.003133
omega 113.9745 59.18509 0.7640763 4.261394
sigma.co 3.9677 1.93954 0.0250394 0.138669
sigma.pl 3.9227 1.65836 0.0214093 0.120637

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha.co 64.63038 68.07376 70.0058 71.8003 74.1636
alpha.pl 62.86919 65.95268 68.0185 69.4978 71.7307
beta.co 0.04542 0.07647 0.1166 0.1524 0.2105
beta.pl 0.04188 0.07389 0.1100 0.1415 0.2007
omega 49.06948 71.79005 94.7646 146.2587 258.9672
sigma.co 0.05500 2.39208 4.5474 5.6247 6.4437
sigma.pl 0.64964 2.59258 4.2322 5.4084 6.1727

(d) Once we have run the chains we can inspect the traces using xyplot; the
subsetting is to get the displays in the right order — panels are filled from
bottom left going left then up.
> print(xyplot( m8.res[,c(7,3,6,2,5,1,4)], layout=c(2,4), aspect="fill" ))

(e) The relevant parameters are the intercepts and the slopes in the linear relation
between the methods. Therefore we compute these 4. Currently this is a bit of a
hazzle; first convert the mcmc components to a dataframe, do the computations
and turn it back into a mcmc object:
> m8b.res <- m8.res
> m8.res <- m8b.res
> str( m8.res )

List of 3
$ : mcmc [1:2000, 1:7] 74.8 74 75 75.1 75.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "alpha.co" "alpha.pl" "beta.co" "beta.pl" ...
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
$ : mcmc [1:2000, 1:7] 64.7 64.8 65.1 65.9 66.4 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "alpha.co" "alpha.pl" "beta.co" "beta.pl" ...
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..- attr(*, "mcpar")= num [1:3] 20010 40000 10
$ : mcmc [1:2000, 1:7] 69.3 69.4 69.5 69.5 69 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:7] "alpha.co" "alpha.pl" "beta.co" "beta.pl" ...
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
- attr(*, "class")= chr "mcmc.list"

> for( i in 1:length(m8.res) )
+ {
+ att <- attributes( m8.res[[i]] )
+ dfr <- as.data.frame( m8.res[[i]] )
+ dfr$beta.co.pl <- dfr$beta.co / dfr$beta.pl
+ dfr$alpha.co.pl <- dfr$alpha.co - dfr$alpha.pl * dfr$beta.co.pl
+ dfr$beta.pl.co <- dfr$beta.pl / dfr$beta.co
+ dfr$alpha.pl.co <- dfr$alpha.pl - dfr$alpha.co * dfr$beta.pl.co
+ dfr <- as.matrix( dfr )
+ att$dim <- dim( dfr )
+ att$dimnames <- dimnames( dfr )
+ attributes( dfr ) <- att
+ m8.res[[i]] <- dfr
+ }
> str( m8.res )

List of 3
$ : mcmc [1:2000, 1:11] 74.8 74 75 75.1 75.7 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:11] "alpha.co" "alpha.pl" "beta.co" "beta.pl" ...
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
$ : mcmc [1:2000, 1:11] 64.7 64.8 65.1 65.9 66.4 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:11] "alpha.co" "alpha.pl" "beta.co" "beta.pl" ...
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
$ : mcmc [1:2000, 1:11] 69.3 69.4 69.5 69.5 69 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:11] "alpha.co" "alpha.pl" "beta.co" "beta.pl" ...
..- attr(*, "mcpar")= num [1:3] 20010 40000 10
- attr(*, "class")= chr "mcmc.list"

> summary( m8.res )

Iterations = 20010:40000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha.co 69.8536 2.54291 0.0328288 0.176750
alpha.pl 67.7044 2.38949 0.0308482 0.165661
beta.co 0.1181 0.04715 0.0006087 0.003374
beta.pl 0.1112 0.04380 0.0005654 0.003133
omega 113.9745 59.18509 0.7640763 4.261394
sigma.co 3.9677 1.93954 0.0250394 0.138669
sigma.pl 3.9227 1.65836 0.0214093 0.120637
beta.co.pl 1.0651 0.11494 0.0014838 0.007644
alpha.co.pl -2.2812 8.42431 0.1087574 0.558642
beta.pl.co 0.9499 0.10206 0.0013175 0.006786
alpha.pl.co 1.3135 7.73354 0.0998395 0.512659

2. Quantiles for each variable:
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2.5% 25% 50% 75% 97.5%
alpha.co 64.63038 68.07376 70.0058 71.8003 74.1636
alpha.pl 62.86919 65.95268 68.0185 69.4978 71.7307
beta.co 0.04542 0.07647 0.1166 0.1524 0.2105
beta.pl 0.04188 0.07389 0.1100 0.1415 0.2007
omega 49.06948 71.79005 94.7646 146.2587 258.9672
sigma.co 0.05500 2.39208 4.5474 5.6247 6.4437
sigma.pl 0.64964 2.59258 4.2322 5.4084 6.1727
beta.co.pl 0.88047 0.96665 1.0531 1.1626 1.2778
alpha.co.pl -17.74983 -9.40183 -1.4494 4.8883 11.3003
beta.pl.co 0.78261 0.86013 0.9496 1.0345 1.1358
alpha.pl.co -12.82860 -5.05094 1.3750 8.0717 13.8788

> round( ci.lin( lm( co ~ pulse, data=oxw ) ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 8.503 2.935 2.897 0.004 2.75 14.256
pulse 0.918 0.040 23.165 0.000 0.84 0.995

> round( ci.lin( lm( pulse ~ co, data=oxw ) ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 11.010 2.719 4.049 0 5.681 16.339
co 0.822 0.035 23.165 0 0.752 0.891

We see that the slope for converting from one method to another lies between
the two regression slopes we get from ordinary linear regressions.

(f) We can check whether we have reasonable mixing of the chains for the
parameters of interest by xyplot and density plot — we are not impressed!

> wh <- c( grep( "sigma", varnames( m8.res ) ),
+ grep( "omega", varnames( m8.res ) ),
+ grep( "pl.co", varnames( m8.res ) ),
+ grep( "co.pl", varnames( m8.res ) ) )
> print(xyplot( m8.res[,wh], layout=c(4,2), aspect="fill", lwd=2 ))

> print( densityplot(m8.res[,wh],layout=c(4,2),lwd=2,aspect="fill") )

(g) Based on the posterior medians we would say that the relations ship between
the methods were something like:

yco = −0.50 + 1.04ypulse

which is shown in figure ??

> with( oxw, plot( co ~ pulse, pch=16, xlim=c(20,100), ylim=c(20,100) ) )
> abline(0,1)
> abline( lm( co~pulse, data=oxw), col="red", lwd=2 )
> cf <- coef( lm( pulse ~ co, data=oxw) )
> abline( -cf[1]/cf[2], 1/cf[2], col="red", lwd=2 )
> qnt <- summary( m8.res )$quantiles
> qnt <- qnt[grep("co.pl",rownames(qnt)),"50%"]
> abline( qnt[2], qnt[1], col="blue", lwd=2 )
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Figure 3.32: Traces of the three chains for the three parameters of interest (top) and joint
posterior distribution of the two variance components (bottom).
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Figure 3.33: Posterior densities for the overall difference between methods and the two resid-
ual standard deviations. Densities from each of the 3 chains.
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Figure 3.34: Trace plot for the model with allowance for linked replicates.



154 Solutions PDAwBuR: Solutions to Exercises

omega

0 2 4 6

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●
●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●●
● ●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

● ●

●●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

● ●

●

●
● ●

●
●

●●
●● ●●

● ● ●

●

●● ●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●
●

●●

●
● ●

● ●

●

●
●●

●●

●

●

●

●●● ●●

●● ●
● ●

●

●
● ●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●

●●
●

●
●

●

●●

●

●

●●
●

●
●

● ● ●
●

●
●● ●

● ●● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●●

●
●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

● ● ●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●● ●●

●
●

●
●

●

● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●
●

●
●

●

●● ●●

●
●

●

●

● ●●●
●

●● ●● ●
●

●
●

●

●
●

●

●
● ●

●
● ●

●

●●

●

●●
●

●
●●

●●
●●

●
●

●
●

●● ●
●

●
●●

●

● ●

●

●

●●

●
●●

●● ●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●
●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

● ● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●●
●

● ●● ●●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

● ●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

● ●

●●

●● ● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●●●
●

●
● ● ●

●
●

● ●

●
●

●
●

● ●

●
●

●

●
●

●●
●

●
●

●
● ● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●

● ●
●●

●
●● ●

●●
●

●

●

●
● ●

●
●

● ●

● ●●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●●
●

●
●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●●
● ●●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

● ●
●

●

●

●

●●
●

●

●

●
●

●

●
● ●

●

●
●

●

● ●

●

●

● ●

● ●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●●
● ●

●

● ●

●

●●
●

●
●

●●

●

●

●
●●

●

● ●

●
●

●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●
●

●●●
●
●●●●●
●
●●●●
●●●
●●

●

●●●●
●●●●
●
●●
●●●
●●●

●

●●●●
●●●●●
●●●
●●●●
●●●●●●●●
●●

●●
●

●
● ●

●
●

●

●

●●

●

● ●
● ●●

●
●●

●
●●

●
●●

●

●

●

●

●
●

●●●
●

● ●
●

●●●
●

●
● ●

●
●●● ●

● ●
● ●

●
●
●●

●
●

●
●●

●
●

●

●
●

●
●

●●●● ●

●

●
●●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●
●

● ●●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●●
●

●●
●

●

●●●●●
●

●
●
●

●
●●

●●●
●●
●
●
●
●
●
●

●●

●●

●

●●●
●

●
●

●
●

●●

●●
●●●

●
●

●

●●
●●
●

●

●
●
●

●
●

●●

●●
●

●●

●

●●●
●
●

●

●●●●

●
●●●

●

●●
●

●

●●●●

●
●

●
●

●●

●

●
●

●

●

●
●

●●
●●●
●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●
●
● ●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●●

●

●
●
●

●●
●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

● ●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●
●

●

●
●

●

● ●●

●
● ● ●●

●

●
●

● ●
●●

●

●
●

●
● ●

● ●●
●● ●●

●
● ●

●
● ●

●
● ●

●

●
●

●
●

●
●

●
●

●●
●

● ● ●
●●●

●
●

●
● ●

●
●

● ●●● ●
●
●●● ● ●
● ●● ● ●●

●
● ●

●● ●
● ●●

●
●

●

●

●
● ●

●●

●

●

●

●
●

●

●●

●

●

●●

● ●●
●

●
●

●● ●
●

●
●

●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●●

●

● ●

●
●
●

●●

●

●●

●●●
●

●

●●

●●

●

●
●

●

●

●
●

●
●●

●●●●●

●
●

●

●● ●
●

●

●
●

●

●

●
●
●

● ●
●

●●●
●

●

●

●●

●

● ●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

● ●

●
●

●
●

●
●●● ●

●
●●

● ●
●

●
● ●

●

●

●

●

●
●

●

●
●●

●

●
● ●

●●●

●

●●
●●● ●●●

●
●

● ●
●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●
●

●●

●
●

●
●●

●●

●

●
●
●●
●

●●
●

●
●
●●

●
●
●
●
●

●
●

●

●
●

●

●

●
● ●●●●
●

● ●
●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●
●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

● ●● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

● ●
●

●●

● ●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●●
●

● ●
●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●● ●

●

●
●●

●

●
● ●●●

●

●
●

●
●

●
●

●
●

●

● ●
●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

● ●

●

●
●

●

●

●
●

●●
●

● ●
●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●
●●

●
●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●● ● ●

●

●
●

●
●

●

●

●●

●

●
●

●
●
●

●
●●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
● ● ●

● ●
●

●
●

●
●

●
●

●●
●

●● ●

●

●● ●

●●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
● ● ●

●
●●●

●
● ●

●

●●●

●
●

●
●

●
●

●

●●

● ●
●

●

●

●

● ●

●● ●●
●

●
●

●

●●
●●●

●
●●

●

●●
●

●●

●●●
●●
●●
●

●
●●●
●

●●
●
●●●● ●

●

● ●

●
● ●

●

● ●
●

● ●

● ●●
●

●
● ●

●
●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●

●

●●

●

●●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

● ●

●

●

●

●

●

●

●●
●
●

●

●
●
●
●

●

●
●●●

●

●●
●●

●
●

●
●

●
●
●

●

●

●

●

●

●
●●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●
●
●●

●
●

●
●

●
●●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●●●

●

●●

●

●
●

●

●
●

●

●
●

●●

●●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●
●

●
●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●●●

●
●●

●●●

●

●

●

● ●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
● ●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●●
● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●●
●● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●●

●

●
●

●
●

●●
●●

●

●

●

●

●
●

●

●●

●

●●
●●

●

●

●

●
●●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●● ●

● ●●

● ●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ●
●

●
●

● ●

●
●

● ●

● ●

●

●
●●

●
●

● ●
●
●

●●●
●●

●
●● ● ●●

●●● ●●● ●
●

●●● ●●● ●
●●

●●● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●
●● ●●●●● ●● ●● ● ●● ● ●●● ● ● ●● ●● ●●●●●●● ●●

●
●

●●
● ●●●● ●● ●●●● ● ● ●●● ●●● ●●● ● ●● ●●●● ●●●●● ● ● ●● ●●●● ● ●●●● ●● ● ●●● ●●● ●●● ●● ● ● ●● ● ● ● ●● ●● ● ●●● ●● ● ●●●● ●●● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●●● ● ●● ●● ●●●●●● ● ● ● ●●● ●● ●● ●●● ● ●● ●●●●● ● ●● ●●

● ● ●●
●

●

●● ●
●

●
● ●

●

●
●

●
●

●
●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

● ●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●

●
● ●

●
●

●

● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●
●
●

●●

●
●

●

●

●
●

●
●

●

● ● ●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

● ●●

●

●

●●

●

●

●
●

● ●
●●

● ●

●●
●

●

●
●
●●

●

●
●●

●

●

● ●
● ●

●
●

●
●

●●

●●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●●
●

● ●● ●
● ●

●

●

●

●

●

●●
●

● ●
●●

●
●●

● ●●

● ●
● ●●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●●
●

●
●

●
●

●

● ●
●

●

●
●

●

●
●

●

●

●●

●●

●●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●●

●●●●
●●

●

●
●

●

●
●●

●
●●●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●●●
●●

●

●

●

● ●
●
●●

●

●

●

● ●●

●●

●
●
●

●

●
●●●
●

●●
●

●
●
●●

●
●
●●

●

●

●
●

●●●
●
●●

●
●
●
●
●●

●

●

●●●

●
●
●

●
●●

●

●

●
●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●
● ●

● ● ●

●
●

●
● ●●

●● ●
●

●
●

●

●●
●

●
●

●
●●

●●
●

●●●
●

●●

● ●

●●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
● ●

●

●
●●●

●●● ● ●●
●●

●
●● ●

●● ●●● ● ● ●●
●
●●●

●●
●

● ● ●

●●●
●

● ●● ●● ●●
●

●●
● ●● ●

● ●●

● ●
●●

● ●●

●

●

●●

●
●
●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

● ●
●

●

●

●

●
●●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

● ●
●

●
●

●
●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●

● ●

●

●
●

● ●

●
●

●

●

●
●

● ●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●
●

●●●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

● ●

●
●

●● ●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●●

●

● ●

●

●●●
●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●
●●

●
●

●

●

●●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●
●

● ●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●
● ●

●

●
●

● ●

●
●
●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●●●

●
●

●

●●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ● ●
●

●
●●

●

●
● ●

●
●
●

●

●

●
●●

●

● ●●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

● ●●
●●

●●

●

●
●●

●
●●

●●

●

● ●

●
●

●
●●

●●
●●

●●
●● ●●

●
●

●●

● ●
●●

●●
●●

●
●

●●
●

●●●
● ●● ● ●●● ●●●

●●
●

●● ●●● ●● ●●●●
●●

● ●●
●●

●
●

● ●● ●●
●

●
●

●

●● ●
●● ● ●● ●● ●● ●● ●● ●● ●●●●●● ● ●●● ● ● ●●●●●●● ● ● ●●●●●● ● ●● ● ●● ●● ● ●●● ● ●

●
●● ●● ●

●

●●
●●

●
●

●●
●● ●

●● ●● ●●●● ● ● ● ●●●●● ●●●●●● ●
●●●●● ●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●● ●

● ●● ●
●

●
●●● ● ●

●●

●●●

● ●
●

● ●

●
● ●

● ●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

● ●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●●

●
●

●

●
●

● ●
● ●

●
●● ●●

● ●
●

●
● ●

●
● ●●

●

●
●

●
●

●
●

●

●
● ●●

●●
●

●

●
●

●

●

●●●
●
●

●
●

●
●● ●

●

●●
●

●

● ●

●
●● ● ●

●

●●

●

●

●
●

●
●

●●
●●●

●
● ●

●

●
●

● ●●
●

●
●●

●● ● ●
●●●● ●

●
●●

●

●
●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●
●

●
●●

● ●
●●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●
●

●●
●

●
● ●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●●

●
●

●

●

● ●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

● ●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●●

●

●
●

●
●

●

●

●●
●

●
●●

●

● ●●
●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

● ●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●●
●

●

● ●
●

●

●

●●

●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

● ●
●

●
●

●

●

●●

●●
● ●

●●

●

●●

●
●

●

●

●

●

●
●

●

●
●●

●
●●●

●
● ●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●
●

●
●●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

● ● ●

●
●

●
●

●
●

●
● ●

●●

●
●

● ●
●

● ●
●

●●
●

●

●

●

●
●

●
●● ●

●
●●

●
●

●

●● ●
●

●
● ● ● ●

●
●

●

●●
● ●

● ●

●
●

●
●●

●
●●

●

●

●●
●

●
●

●●●
●●●

● ●

●

● ●●●
●

●

●●

●●

● ●
●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●
●●

●

●●
●●

●●

●●

●

●● ●
●
●

●●

● ●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●
●

●

●

●
●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

● ●

●●

● ●

●●

●
●

●

●
● ●

●●●

●
●

●
●

● ●

● ●

●

●

●

●
●

●
●

● ●

●
●

●
●

●

●
●

● ●

●

● ●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●
●●

● ●●
●

●
●●

●

●
●

●●●

●●

●

●●

●

●
●

●
●

●●●
●

●●
●● ●

●
●
●

●●
● ●

●

●●
●

●●
● ●

●●

●● ●

●

●

●
●

●
●●

●
● ●

●
●

●●
●

●
●

●
●● ● ●

●

●

●
●

●●●
●

●

●
●

●
●

●
●●●●

●

●

●
●

● ●
●

●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●● ●

●●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●●
● ●

●

●●

●

●●
●
●

●

●
●

●● ●
●

●

●

●
● ●

●
●

●●● ●
●

● ●
●●●● ●

●
●

●
●●●

●

●
● ●

●●

●

●

●

●
●

●

●
●

●
●

●

● ●

●●

●

● ●
●●

●

●

●●●

●●
●

● ●
●

● ●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
● ●

●●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

● ● ●

●
● ●

● ●●●
●● ●

●

●
●

●

●
●●●

●●
●

●●

● ●●● ● ●●
● ●●●

●● ● ●● ●● ● ● ●● ●●● ●
●●

●
●

●● ●●●
●
●● ● ●●●

●●
●●

●●
●

●

●
● ●

●
● ●●● ●● ●

●
●

● ●●●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●
● ●

● ●● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●
● ●●

●●

●

●● ●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●●
●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

● ●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

● ●●

●
●

●
●●

●

●

●

●
●

●

●●
●● ●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

0
2

4
6

8

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●
●
●

●●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

● ●
●

●

●
●

●

●
●

●

●●
● ●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

● ●
●

●

●●

●● ●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●●

●

●
● ●

●
●

●●
●●● ●

●●●

●

●●●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●●

●
●●

●●

●

●
● ●

●●

●

●

●

●●●●●

●● ●
●●

●

●
●●

●
●

●

●
●●

●

●
●●

●

●

●
●

●

●

●●
●

●
●

●

●●

●

●

●●
●

●
●

●● ●
●

●
● ●●

● ●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ● ●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

● ●●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●

●●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ● ●● ●

●
●

●
●

●

● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●
●

●
●

●

●●●
●

●
●

●

●

●● ● ●
●

●● ●● ●
●

●
●

●

●
●

●

●
●●

●
●●

●

●●

●

●●
●

●
● ●

● ●
●●

●
●

●
●

●●●
●

●
● ●

●

●●

●

●

● ●

●
● ●

● ●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

● ●
●

● ●● ●●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

● ●
●

●

●

●

●
●
●

●
●

● ●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●●

● ●

●● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●

●

● ●●
●

●
●●●

●
●
●●

●
●

●
●

● ●

●
●

●

●
●

● ●
●

●
●

●
●● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

● ●
●

●●
●●

●
● ●●

● ●
●

●

●

●
●●

●
●

●●

● ●●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

● ●
●

●
●

●
●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●●●
●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

● ●
●

●

●

●

● ●
●

●

●

●
●

●

●
● ●

●

●
●

●

●●

●

●

●●

● ●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●
●●

●

●●

●

●●
●

●
●

●●

●

●

●
● ●

●

● ●

●
●

● ● ●●
●

●
●● ● ●●

●● ●●● ● ●●●● ●● ●● ●● ●●●●● ●
● ●●●● ● ●●●● ● ●

●
●

● ●●
●

●● ● ●●
●

●● ●●
●●●

● ●
●

● ● ●● ● ● ●●
●

●●
●●●● ●●

●

● ●● ●
●● ● ●●

● ●●●● ●●
●●● ●●●● ●

● ●

● ●
●

●
● ●

●
●

●

●

●●

●

●●
● ● ●

●
● ●

●
● ●

●
●●

●

●

●

●

●
●

●●●
●

● ●
●

● ● ●
●

●
● ●
●

● ●● ●
● ●

● ●
●

●
●●

●
●

●
● ●

●
●

●

●
●

●
●

●● ● ● ●

●

●
● ●

●

●

●
●

●

●

● ●

●

●
●

●●

●
●

●
●

●● ●●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

● ●
●

● ●
●

●

●●●● ●
●

●
●

●

●
●●

● ●●
●●

●
●

●
●

●
●

● ●

●●

●

●● ●
●

●
●

●
●

●●

●●
● ● ●

●
●

●

●●
●●

●

●

●
●

●

●
●

●●

●●
●

●●

●

● ● ●
●

●

●

● ●●●

●
●● ●

●

● ●
●

●

●●● ●

●
●

●
●

●●

●

●
●

●

●

●
●

● ●
● ● ●

● ●●

●
●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
● ●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●

● ●
●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●●

●●

●
●

●

●
●

●

● ●●

●
●● ● ●

●

●
●
●●
●●
●

●
●
●
●●

●●●
●●●
●
●
●●

●
●●
●
●●
●

●
●
●
●

●
●
●

●
●●
●

●●
●

●●
●
●

●
●
●●

●
●
●●●●●●

●●●●●
●●●●●●

●
●●

●●●
●●● ●

●
●

●

●
● ●

● ●

●

●

●

●
●

●

●●

●

●

● ●

●●●
●

●
●
● ●●

●
●

●

● ●
●

● ●

●
●

●

●

●
●

●

●
●

●

●

●
● ●

●●

●

●●

●
●

●

● ●

●

●●

● ●●
●

●

● ●

● ●

●

●
●

●

●

●
●

●
●●

● ●● ●●

●
●

●

●●●
●

●

●
●

●

●

●
●

●

●●
●

●● ●
●

●

●

●●

●

● ●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●●

●
●

●
●

●
●●● ●
●

●●
● ●

●

●
●●

●

●

●

●

●
●

●

●
● ●

●

●
● ●

●●●

●

● ●
● ● ● ●●●

●
●

●●
●

●

●

●
●

●● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●
●

●
●
● ●

●
●

●
● ●

●●

●

●
●

● ●
●

● ●
●

●
●

●●
●

●
●

●
●

●
●

●

●
●

●

●

●
● ●●●●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

● ●
●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ● ●●

●

●
● ●

●

●
●● ● ●

●

●
●

●
●

●
●

●
●

●

●●
●

●●
●

●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●

●
●

●

●

●
●

● ●
●

● ●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●●
●

●

●
●●

●
●

●
● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●

● ●●●

●

●
●

●
●

●

●

● ●

●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●●

●●
●

●
●

●
●

●
●

●●
●

● ●●

●

● ● ●

●● ●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●●●

●
● ●●

●
●●
●

● ● ●

●
●

●
●

●
●

●

●●

● ●
●

●

●

●

● ●

● ●●●
●
●

●

●

●●
● ●● ●

● ●

●

● ●
●
●●

● ●● ●● ●●
●

●
● ●●

●

●●
●

● ● ● ●●
●

● ●

●
●●

●

●●
●

●●

●● ●
●

●
● ●

●
●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●

●

●
●●

● ●

●

●

● ●

●

●●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●
●

●

●

●
● ●●

●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●● ●

●

● ●

●

●
●

●

●
●

●

●
●

●●

● ●

●

● ●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

● ●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●● ●

●
● ●

●●●

●

●

●

●●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●

●

●
● ●

●

● ●

●

●

●

●

●
●

● ●

●
●

●

●

●

●●

●

● ●
● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●
●

●

●●

● ●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●

● ●
●● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

● ●

●

●
●

●
●

● ●●●

●

●

●

●

●
●

●

●●

●

● ●
●●

●

●

●

●
● ●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●● ●

●● ●

●●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●

●
●

● ●

●
●

●●

● ●

●

●
● ●

●
●

● ●
●

●
●●●

● ●
●

●●● ● ●
● ● ●●● ●●

●
●●●● ●● ●

●●
●● ●● ●●●● ●● ● ●●●●● ● ● ●● ● ●

●● ●●● ● ●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●● ●● ● ●●
●
●

●●
●●● ● ●●● ●● ●●●● ●● ●● ●● ●● ● ●●● ● ●●● ●●● ● ●● ●● ●● ●●● ●● ●●●● ●●●● ●●● ●● ●● ●●●●●●●●●●● ● ● ●● ● ●●●●● ●● ●● ●●● ●● ● ● ●●●● ●●●●● ●● ●● ●●● ● ● ●● ●●●● ●● ●● ● ●●●●●●●● ● ●● ●● ●●● ●● ● ● ●●●●●● ●

● ●● ●
●
●

●●●
●
●

● ●

●

●
●

●
●

●
● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●
●●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

● ●
●
●

●

●
●

●

●
● ●

●
●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●

● ●

●
●

●

●

●
●

●
●

●

●● ●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●●●

●

●

●●

●

●

●
●

●●
● ●

●●

● ●
●

●

●
●

● ●
●

●
●●

●

●

● ●
●●

●
●

●
●

● ●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●●
●

●● ●●
●●

●

●

●

●

●

● ●
●

●●
●●

●
●●

● ●●

●●
●● ●

●
●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●
●

●
●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●●

●●

●●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●●

●●● ●
●●

●

●
●

●

●
●●

●
● ●●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

● ●●●
●●

●

●

●

●●
●

● ●

●

●

●

●● ●

● ●

●
●

●

●

●
●●●

●

●●
●

●
●

● ●
●

●
●●

●

●

●
●

●●●
●

● ● ●
●

●
●

●●

●

●

●● ●

●
●

●
●

● ●

●

●

●
●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●
●●

●●●

●
●

●
●● ●

● ●●
●

●
●

●

● ●
●

●
●

●
● ●

● ●
●

● ●●
●

●●

● ●

● ●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●●

●

●
● ●●

● ● ●●● ●
●●

●
● ●●

● ● ●●● ●● ● ●
●

● ●●
● ●

●
●●●

●●●●
●● ●●●● ●

●
●● ●●●●

● ● ●

●●
● ●

● ● ●

●

●

● ●

●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●●
●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●●

●
●

●
●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●●

●
●

●

●

●
●

●●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

● ●●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●●●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●●

●

●●●
●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●●

●
● ●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●
●

● ●

●

●

●

●●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●
●
●

●

●

●●
●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
● ● ●

●
●

●

● ●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●●
●

●
● ●

●
●

●

●

●

●
●●

●

● ●●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●●●
●●

●●

●

●
●●

●
● ●

●●

●

● ●

●
●

●
●●

●●
●●

●●
● ●●●

●
●

●●

●●
●●

●●
● ●

●
●
● ●

●
●●●

●● ●●● ●● ●●●
● ●

●
●●● ●●● ●●● ●●

● ●
●●●

● ●
●

●
●●●● ●

●
●

●
●

● ●●
● ●● ●●● ●●● ●●● ●● ●● ● ● ● ●●● ● ●● ●● ●● ● ●● ●● ● ●●● ● ●● ●●●●●●●● ●● ● ● ●● ●

●
●● ●●●

●

●●● ●
●

●
● ●

●●●
●● ●●● ● ● ● ●● ●● ●● ●●● ●● ●●●●

●● ●● ●● ●● ●● ● ●●● ●●●● ●● ●●●● ●●● ●●●
●●●● ●●

●● ●●
●

●
●● ●● ●

● ●

●●●

●●
●

● ●

●
● ●

● ●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

● ● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

● ●

●
●

●

●
●

●●
●●

●
●●● ●

●●
●

●
●●

●
●● ●

●

●
●

●
●

●
●

●

●
●●●

●●
●

●

●
●

●

●

●●●
●

●

●
●

●
● ●●

●

● ●
●

●

●●

●
● ● ● ●

●

●●

●

●

●
●

●
●

● ●
●●●

●
●●

●

●
●

● ● ●
●

●
● ●

● ● ●●
●● ● ●●

●
● ●

●

●
●

●
●

●

●
●

●

● ●
●

●
●

●

● ●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●
●

●
● ●

●●
● ●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

●
●

● ●
●

●
● ●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ● ●
●●
●

●
●

●
●

●

●

● ●
●

●
●●

●

● ● ●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●●

●

●

●

●●

●●
●

●

● ●
●
●

●

● ●

●

● ●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

● ●
●

●
●

●

●

●●

●●
●●

●●

●

●●

●
●

●

●

●

●

●
●

●

●
●●

●
● ● ●

●
● ●

●

●● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●
●●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●●

●
●

●
●

●
●

●
●●

●●

●
●

●●
●

●●
●

●●
●

●

●

●

●
●

●
●●●

●
●●

●
●

●

●●●
●

●
●●● ●

●
●

●

●●
●●

●●

●
●

●
●●

●
●●

●

●

●●
●

●
●

●●
●

●●●●●

●

●●●●
●

●

● ●

● ●

●●
●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●
●

●
● ●

●

● ●
● ●

●●

●●

●

●● ●
●

●

●●

● ●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●

● ●

●●

● ●

●
●

●

●
● ●

● ● ●

●
●

●
●

●●

●●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●
●

●●

●

● ●

●

● ●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●
●●

●●●
●

●
● ●

●

●
●

●●●

● ●

●

●●

●

●
●

●
●

● ●●
●

●●
●●●

●
●

●

●●
●●

●

● ●
●

●●
●●

●●

●● ●

●

●

●
●

●
●●

●
● ●

●
●

●●
●

●
●

●
●● ●●

●

●

●
●

● ●●
●

●

●
●

●
●

●
●● ●●

●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ● ●

● ●
●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

● ●
● ●

●

● ●

●

●●
●

●
●

●
●

● ●●
●

●

●

●
●●

●
●
●● ●●

●
● ●

●●● ●●
●

●
●

●● ●

●

●
●●

● ●

●

●

●

●
●

●

●
●

●
●

●

●●

● ●

●

● ●
● ●

●

●

● ●●

● ●
●

● ●
●

● ●
●

●

●
●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●●

● ●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

●● ●

●
●●

●●● ●
●●●

●

●
●

●

●
●● ●

●●
●

●●

●●● ●●● ●
● ● ●●

●●● ●● ● ●●●● ●●●● ●
●●

●
●

● ●● ●● ●
●● ● ●● ●

● ●
●● ●●

●

●

●
●●

●
● ● ●● ● ●●

●
●

●●● ●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●●
●

●

●
●●

●●●●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●● ●

● ●

●

● ● ●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●● ●

●
●

●
● ●

●

●

●

●
●

●

●●
●● ●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

0
2

4
6

●

●

●●

●

●
●

●

●
●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●● ●

●
●

● ●
●

●●

●
●

●
●

● ●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●
●

●●

●
●

● ●

●

●

●

●●

●

●
●

●

●
●

●
●

● ●

●

● ●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●● ●

●
●

●
● ●

●● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●●

●

● ●
●

●●

●●
●

●●

●
●

●● ●
●●

●●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

● ●
● ●●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●●●

●

●

●

● ●

●

●●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●●

●
●

●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●
● ●●●●● ●●

●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●

●● ●

●

●

●
●

●●
●●●

●

●

● ●

●

●
● ●

●

● ●

●

●

●

● ●●

●

●

●
●●

●

●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●

● ●
●

●●

●●
●

●●
●●● ●

● ●
●●●● ● ●●● ●●

●●●●●●●●●●●●●● ●●● ●●●●● ●● ● ●●●
●●●
●●● ●

●● ●●● ●● ●● ●●

●●
●●

●
●●

● ●●●●
●

● ●
●●● ●●●●● ●●● ●●●●●

●● ●●●●● ● ●● ●●● ●●●●●●
●

●
●●

● ●
●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●● ●●● ●

●

●

●

●

●
●

● ●
●

● ●●

●
●

●

●
●

●

●
●

●

● ●

●

●

●●
●

●

●

●

●●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

● ●

●●●●

●

●

●

●
●

●● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●
●

●

●
●●

●
●

●

●

●

●●
●

●

●
●

●

●

●
● ●●
●

●
●

●

●●●
●

● ●●● ●●
● ●●●● ●●●

●●●
●

● ●
●

● ●●

●

●

●●
●

●

●●●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●
●

●

●●

●

● ●

●

●●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

● ●

● ●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●
●
●●
●

●
●

●●

●
●●
●

●

●
●

●●
●

●
● ●

●●●●●● ●
●●●●●

●● ●●

●
●
●

●
●

●

●
●

●

●●
●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●●

●
●

●●

●

●

●●●
●

●
●● ●

●

●

●

●●
●

●●
●●●

● ●
●
●

●
●

●
● ●● ●●● ● ●

● ●●● ●●
●●● ●● ●●●

●
● ●

●
●

● ●●
●●

● ●

●

●

●
●

●
●

● ●●●●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●● ●● ●●●● ●●●● ●●●● ● ●●●● ●● ●●●● ●●
● ● ●●●●

● ●● ●
● ●●●● ●●● ● ●● ●●●●●● ●●

●●
●

● ●●● ●●
●

●● ●●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●●

●

●
● ●

●
●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

● ● ●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●●
●

●
●● ●

●●
●

●

●

●
●

●
●

●

●
● ●

●

● ●●● ● ●●●● ●●● ●●●
●●●●

●●
● ● ●●● ●

●
●

● ●
●

●

●●●
●●

●●●
●

●

●●

●
●● ●

●

●
●●

●

●

● ●
●

●●
●●

●
●●

●
●●

●
●

●
●● ●●

●
● ●●●●
●

●
● ● ● ●● ●●●

●●●
●●●

●
●

●
● ●

●
●●

● ●
●

●

●

●

●
●

●
●

●

●

●
●●

●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●
●

● ● ●

●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●●

●●
●●●● ●● ●●

●
●●

●●
●●

●●
●

●
●

●
●●

●● ●
●

●

●
●

●●●
●●●●

●●
●●

●
●●

●
●

●
●●

●

●
●●●●●

● ●●●●●●
●●●●●
● ●●●● ●● ●● ●●

●●●●●● ●●●● ●● ●●
●

●
●●

●●

●
●

●
●

●

●●
● ●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

●●
● ●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●
●
●●●

●
●
●●
●
●●
●●

●●

●

●

●
●
●

●
●

●
●●●

●

●
●
●●

●

●

● ●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

● ●

●
● ●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

● ● ●

●
●●

●●

●

●

●

●

●

●

●

●●

●
●

●
●● ●●

●●

●

●

●

●

● ●
●●

●

●

●

●●

●●

●
●

●

●● ●
●

●

●
●

●
●●

●
●●

●

●

●
●

●
●

●
●

●
● ●

●
●●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●
●

●

●●

●

●

●
●●

●

● ●

●
● ●

●

●
●

●

●

●●

● ●

●

●●●

●
●

●
●

●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
● ●●

●
●

●

●●

●

●

●
●

●

●
● ●

●●●

●●

●●

●●
●

●● ●
●

●

●

●

●

●●
●

●
●
●●● ●

● ●
●● ●
●

●

●●

●
●

●●

●
●

●●

●

●● ●

● ●

●
●●

●

●

●
●

●

●
●●

●●●

●
● ●

●
●

●●

● ●●● ●

●

●

●●

● ●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

sigma.co ●

●

● ●

●

●
●

●

●
●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

● ●
●

● ●

●
●

●
●

● ●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●
●

● ●

●
●

●●

●

●

●

● ●

●

●
●

●

●
●

●
●

●●

●

● ●

●

● ●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●●●

●
●

●
● ●

●●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

● ●

●

●●
●

● ●

● ●
●

●●

●
●

●● ●
●●

● ●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●●

● ●
● ●●

●

●
●

●

●

●
●

●

●

● ●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●
●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

● ● ●

●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●●

●

●

●●

●
●

●● ● ●●
●●

●●● ● ●●●● ●● ●● ●●
●●●●● ● ● ●●●● ● ●●●● ●

●●● ● ●● ●●
● ● ●● ●●● ●● ●●●● ●

●

● ● ●● ● ● ●●●
●● ●●

●● ●●● ● ●● ● ●● ● ●●● ●●●● ●● ●●● ●●●● ●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●
●

●

● ● ●

●

●

●
●

● ●
●● ●

●

●

● ●

●

●
●●

●

● ●

●

●

●

●●●

●

●

●
●●

●

●
● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●●●

●

●●
●

●●

● ●
●

● ●
●● ●●
● ●

●●●
●● ● ●●● ●

●● ●●●●● ●● ●●● ● ●●●●●● ●● ●● ●●●● ●
●● ● ●●●●

●● ●● ●●●● ●● ●

●●
●●

●
●●

●● ● ●●
●

●●
●●●● ●● ●● ● ●●●●●● ●● ●● ●●●●● ●●● ●●● ●● ● ●●

●
●

●●
● ●
●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●● ● ●●●

●

●

●

●

●
●

● ●
●

●● ●

●
●

●

●
●

●

●
●

●

●●

●

●

● ●
●
●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●●

●● ●●

●

●

●

●
●

● ●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

● ●

●
●●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●●●●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●
●●

●
●

●

●

●

● ●
●

●

●
●

●

●

●
●● ●

●

●
●

●

●● ●
●

●●●● ●●
● ●●● ●● ●●

●●●
●

●●
●

● ●●

●

●

● ●
●

●

●● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

● ●

● ●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●
●

●●
●

●
●

●●

●
●●

●
●

●
●

● ●
●

●
● ●

●● ●● ●●●
● ● ●● ●

●● ●●

●
●

●
●
●

●

●
●

●

● ●
●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●●

●
●

●●

●

●

●● ●
●

●
● ●●

●

●

●

●●
●

●●
● ●●

●●
●

●
●

●
●

●● ●●●●● ●
●●●● ●●

●●●● ● ●●●
●

●●
●

●
●● ●

●●

● ●

●

●

●
●

●
●
● ● ●● ●●● ●●●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●●● ● ● ●●● ●●● ●●● ●● ● ●●●●

● ●● ●● ● ●●● ●
● ● ● ●●●●●●● ●●●● ●● ●●●

●●
●

●●●● ●●●
●●● ●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●●

●

●
● ●

●
●

●

●
●

●

●

●
● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

● ● ●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

● ●
●

●
● ●●

●●●

●

●

●
●

●
●

●

●
●●

●

●●● ●● ●●●● ●● ●● ●●
● ●●●

● ●
●● ●●●●

●
●

●●
●

●

●●●
● ●

●● ●
●

●

● ●

●
●● ●

●

●
● ●

●

●

● ●
●

●●
● ●

●
● ●

●
●●

●
●

●
●● ● ●

●
● ●● ●●

●
●

●● ● ●●● ● ●
●● ●

● ●●
●

●
●

● ●
●

●●

● ●
●

●

●

●

●
●

●
●

●

●

●
●●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●
●

●
●

●

● ●●

●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●●

●●
●●●● ●●●●

●
● ●

● ●●●

●●
●
●

●
●

●●
●● ●

●
●

●
●

● ● ●
●●●●

●●
●●

●
● ●

●
●

●
● ●

●

●
● ●● ●●

●● ●●● ● ●
● ● ●●●

●● ● ●● ●●● ● ●●●
●● ● ● ●●● ●●● ●●●

●
●

● ●

●●

●
●

●
●

●

● ●
● ●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

● ●
●●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

● ● ●

●
●

●●
●

● ●
● ●

●●

●

●

●
●

●

●
●

●
●●●

●

●
●

● ●

●

●

● ●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●
●●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

● ●

●
●

●

● ●
●

●

●

●

●

●

●

●●●

●
● ●

● ●

●

●

●

●

●

●

●

● ●

●
●

●
● ●● ●

● ●

●

●

●

●

●●
●●

●

●

●

●●

● ●

●
●

●

●● ●
●

●

●
●

●
● ●

●
●●

●

●

●
●

●
●

●
●

●
● ●

●
●●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

● ●
●

●

●●

●

●

●
●●

●

●●

●
●●

●

●
●

●

●

● ●

●●

●

● ● ●

●
●

●
●

● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●
●

●

●

●●

●

●

●
●

●

●
● ●

● ●●

● ●

●●

●●
●

● ●●
●

●

●

●

●

● ●
●

●
●

● ●● ●
● ●

●● ●
●

●

●●

●
●

●●

●
●

●●

●

●● ●

●●

●
●●

●

●

●
●

●

●
●●

● ●●

●
●●

●
●

●●

●● ●●●

●

●

● ●

● ● ●
●

●
●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

0 2 4 6 8

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●●●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●●
●● ●

●
●

●

●

●

●
●

●●

●●
●
●

●
●

●
●● ●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●●
●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●●
●●

●

●
●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ●

●● ●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●● ●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●
● ●

●

● ●

●
●

●

●●
●● ●

●

●●●
●

●●●
●●

●

●●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●●

● ●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●● ●●●●●●●●●● ●●●●●●●●
●● ●
●●●●
●●
●●●●●●

●
●●

●
●

●●●●●
●●●

●
●●●●●●●● ●●●●●
●

●●
●●●●

●●●

●

●

●
●

●
●
●

●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●● ●

●

● ●●

●
●

●
●●●

●

●

●

● ●●

●

●
●

●

●

●
● ●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●
●

●

● ●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

● ●

●

●
●●●

●
● ●●

●
●

●

●

●● ●●

●
●

●
●

●
●

●
●
●●
●

●

● ●
●
●

●
●

●●

● ●●
●

●●

●

●
●

●●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●●
●
●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

● ●●

●

●

●

●●

●

● ●●
●● ●●● ●●● ●

●
●

●●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●
●

●

●

●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●● ●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●● ●

●

●●
●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●

● ●

●
●

●
●

●

●

●
●

●●

● ●●● ●●
●

● ●

●●

●

●

●

●
●

●

●

● ●
●

●
●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●● ●
●●●

●
●

●
●

●

●
●

●
●

●
●

●● ●

● ● ● ●
●●

●
●

●●●
●

●
●● ●

●

●

●
●

● ●

● ●

●

●

●

●
●

●● ●●
●

●●● ●
●●

●

●●●
●

●
●

●

●●
●

●

● ●

● ●
●

●
● ●

● ●

● ●

●
●●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●
●●

●

● ●
●

●

●●●
●
● ●

●●
●●●

● ●
●

●●
● ●● ●●●

●●
●●

●● ●● ●
● ●●

● ●
●

●

●

●

●
●●

●●●
●

●● ●
●

●●
●

●
● ●●

●

●
●

●●●

● ●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●● ●

●

●
●

●

●

●
●

● ●

●
●

●

● ●

●

●

●
●

●
●●
●●

●
●

●
●● ● ●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●●

●

●●●

●

●●●
●●

●

●

●

●
●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●●
●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

● ●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●
●

● ●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●
●

●
●●● ●
●

●●●●●
●● ●
●● ●●●

●●●●●●●● ●

●
●●●

●● ●
● ●

●

●
●

●

●

●
●

●

●

●

● ●●

●
●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●●

●
●

●

●

●

●

●●
●●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●
●
●

●
●●●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●● ●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

● ●
● ●●

●
●

●

●

●

●
●

● ●

●●
●

●
●

●

●
● ● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
● ●

●●
●

●

●

●

●

●●

●

●

●
● ●

●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

● ●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●●
●●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

● ●●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

● ●●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●●

●
●

●

● ●
●●●

●

●● ●
●

● ●●●●
●

●●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●●

● ●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ●●●

● ●●
●● ●●

●●
●●● ●● ●

●
●●

●
●

●●● ●●
● ● ●

●
● ● ●●●● ● ● ● ●● ● ●●

●●
● ●● ●

● ●●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●●

●

●

●

● ●

●
●

● ●●

●

●● ●

●
●

●
●●●

●

●

●

●●●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

● ●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

● ●
●

● ●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ● ●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●●

●

●
● ●●
●

● ●●

●
●

●

●

● ●●●

●
●

●
●

●
●

●
●

●●
●

●

● ●
●
●

●
●

●●

● ●●
●

● ●

●

●
●

● ●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●
●

●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

● ●●

●

●

●

●

● ●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●
●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●●●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●
●

● ●●

●

●

●

● ●

●

● ●●
●●● ●●● ●● ●

●
●
●●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
● ●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●
●

●
●

●

●

●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

● ● ●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●● ●

●

●●
●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●
●

●●

●
●

●
●

●

●

●
●

●●

● ●●● ●●
●

●●

●●

●

●

●

●
●

●

●

●●
●

●
●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●●
● ●●

●
●

●
●

●

●
●

●
●

●
●

●● ●

●●● ●
● ●

●
●

●● ●
●

●
●● ●

●

●

●
●

●●

● ●

●

●

●

●
●

● ● ●●
●

●●● ●
● ●

●

●●●
●

●
●

●

● ●
●

●

●●

● ●
●

●
●●

●●

● ●

●
●●●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●●
●●

●

● ●
●

●

●●●
●

● ●

● ●
● ●●

●●
●

● ●
●●●●●●

●●
● ●

●● ●●●
● ●●

● ●
●

●

●

●

●
●●

●●●
●

●● ●
●

● ●
●

●
●● ●

●

●
●

● ●●

● ●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●● ●

●

●
●

●

●

●
●

● ●

●
●

●

● ●

●

●

●
●

●
● ●

● ●

●
●

●
●● ●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●
●

●●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●●

●

● ●●

●

●●●
●●

●

●

●

●
●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

● ●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

● ●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●●
●

● ●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●
●
●

●● ●●
●

● ●● ● ●
●●●

●● ●●●
●●●●●● ● ● ●

●
●●●

●● ●
●●

●

●
●

●

●

●
●

●

●

●

● ●●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●●

●
●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●●●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

0 2 4 6

0
2

4
6

sigma.pl

Figure 3.35: Marginal 2-dimensional posteriors from the model with linked replicates.
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Figure 3.36: Traces of parameters in the over-parametrized model.
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Figure 3.37: Traces and densities of transformed parameters .
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Figure 3.38: Individual datapoints and traditional regression lines together with the line based
on the posterior medians.
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