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What is Bayesian statistical inference?

Reference: Gelman et al., 1.1-1.5

An approach to statistical data analysis whereby
scientific conclusions are expressed in terms of
probabilities.

Bayesian data analysis refers to practical methods
for making inferences from data using probabilistic
models for quantities we observe and for quantities
about which we wish to learn.

Fit a model to the data and summarise the results
using a probability distribution on the parameters of
the model and unobserved quantities such as
predictions for new observations.
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Example

Sex ratio in births with placenta previa.

Study data: 980 births, 437 female.
Observed proportion female: 437

980 = 44.6%.

How do we do a Bayesian statistical analysis of
these data?

How does it compare with an analysis using a
“known” proportion of female births = 0.485? (test
of the null hypothesis, confidence interval)?

What are the relevant assumptions about where the
data came from?
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Bayesian analysis in outline

1. Set up a probability model – prob. dist’n for all

numerical quantities considered, both observed
and unobserved, based on substantive
knowledge. This encompasses the “prior
distribution” and the sampling distribution
(“likelihood function”).

2. Obtain the conditional probability distribution
of the unobserved quantities given the observed
(the “posterior dist’n”).

3. Evaluate the fit of the model and implications
of the results; possibly iterate steps 1 to 3.
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Implications for applied statistics

1. Direct quantification of uncertainty and
common-sense interpretation of statistical
conclusions; e.g. Bayesian “confidence
interval” can be interpreted as “probably
containing the true value”.

2. Essential work of Bayesian analysis is setting up
models and computing the answers (posterior
dist’ns), not deriving mathematical properties
of procedures.

3. Can set up and fit models using complex
multi-layered probability specification due to
the conceptually simple method for
multiparameter problems.
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General notation

Context: scientific study. Wish to infer about
unobservables based on a sample from the
population, eg a clinical trial of 2 drugs: how does
5-year survival on one drug compare with other?

θ: unobservable parameter
(eg probability of survival at 5 years)

y: observed data
(eg individual data on survival times in 2 groups)

ỹ: unknown but potentially observable quantity
(eg outcomes of other patients)
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Units & exchangeability

Often data collected on n “units” (e.g. people):
write data as y = (y1, . . . , yn); e.g. let yi = 1(0) if
patient i alive (dead) after 5 years.

Usually assume the n values are exchangeable, i.e.
model unaffected by changing the unit indexes
(labels)... motivates the usual “iid” models:

p(y|θ) =
∏

i

p(yi|θ)

Exchangeability is a basic concept of modelling and
is important when we come to building hierarchical

models.
Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 7/ 321



Mechanics of Bayesian analysis

Aim: Make probability statements about parameter
θ or unobserved ỹ conditional on observed data y.

Start with joint probability dist’n written as product
of prior dist’n p(θ) and sampling dist’n p(y|θ):

p(θ, y) = p(θ)p(y|θ).
Once data y known, we can condition using Bayes’

rule to generate the posterior distribution:

p(θ|y) = p(θ, y)

p(y)
=
p(θ)p(y|θ)
p(y)

, (1)

Here p(y) =
∑

θ p(θ)p(y|θ), and sum is over all
possible values of θ.
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Mechanics of Bayesian analysis

Equivalent form of (1) omits the factor p(y) which
doesn’t depend on θ to generate the unnormalized

posterior dist:

p(θ|y) ∝ p(θ)p(y|θ). (2)

This is Bayesian inference! We could stop here
except for the practical tasks of developing the
model p(θ, y) and performing computations to
summarise p(θ|y) in useful ways.

Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 9/ 321

Summarising posterior inference

The posterior distribution p(θ|y) contains all current
information about θ: often useful to display
graphically.

We can use the usual numerical summaries (may
need computational help!):

I mean, median, mode

I standard deviation, inter-quartile range,
quantiles, credible intervals

But we may also directly quote posterior
probabilities associated with θ.
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Genetic example

Reference: Gelman et al., 1.4

Background: human males have 1 X-chromosome
and 1 Y-chromosome; females have 2
X-chromosomes (one from each parent).

Haemophilia exhibits “X-linked recessive
inheritance”: a male with a “bad” gene on his
X-chromosome is affected, but a female with only
one “bad” gene on one of her 2 X-chromosomes is
not.
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Prior distribution

Consider a woman with an affected brother: her
mother must be carrier of the gene (one “good”
and one “bad” hemophilia gene). Her father is not

affected; thus the woman herself has a fifty-fifty
chance of having the gene.

Unknown “parameter” = whether the woman
carries the gene (θ = 1) or not (θ = 0).

Prior distribution: Pr(θ = 1) = Pr(θ = 0) = 1
2 .
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Model and likelihood

Data used to update this prior information =
affection status of the woman’s sons.
Suppose there are two sons, neither affected.
Let yi = 1 or 0 denote an affected or unaffected
son, respectively. Here y1 = y2 = 0 and so the
likelihood function is:

Pr(y1 = 0, y2 = 0 | θ = 1) = (0.5)(0.5) = 0.25

Pr(y1 = 0, y2 = 0 | θ = 0) = (1)(1) = 1.
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Posterior distribution

Bayes’ rule (using y to denote the joint data
(y1, y2)):

Pr(θ = 1|y)

=
p(y|θ = 1)Pr(θ = 1)

p(y|θ = 1)Pr(θ = 1) + p(y|θ = 0)Pr(θ = 0)

=
(0.25)(0.5)

(0.25)(0.5) + (1.0)(0.5)
=
0.125

0.625
= 0.20.
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Estimating a probability from binomial data

Reference: Gelman et al., 2.1-2.5

Problem: Estimate an unknown population
proportion θ from the results of a sequence of
“Bernoulli trials”; that is, data y1, . . . , yn, each =
either 0 or 1.

The binomial distribution provides natural model for
a sequence of n exchangeable trials each giving rise
to one of two possible outcomes.
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The Binomial Model

Summarise data by:
y = total number of successes in the n Bernoulli
trials.

Parametrise the model using:
θ = proportion of successes or prob. of success in a
single trial.

Binomial sampling model:

p(y|θ) = Bin(y|n, θ) =
(
n

y

)
θy(1− θ)n−y. (3)
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Example: Birth “ratio”

Consider estimating the sex ratio in a population of
human births: Is Pr{female birth} = 0.5?

We define the parameter θ = proportion of female
births
(We may work with transformation, e.g. the ratio of
male to female birth rates, φ = (1− θ)/θ).

Let y = number of girls in n births.

When would binomial model be appropriate?
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First analysis: discrete prior

Suppose only two values of θ are considered
possible. e.g. in example: θ = 0.5 (what we always
thought) or θ = 0.485 (someone told us but we’re
not sure whether to believe it).

Posterior distribution

p(θ|y) ∝ p(θ)p(y|θ) (4)

This is best obtained by a table with one line per
value of θ:
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Suppose we specify prior dist’n uniformly across the
2 values:

If n=100, y=48:

θ p(θ) p(y|θ) = θy(1− θ)n−y p(θ|y)
0.485 0.5 8.503 ×10-31 0.52
0.500 0.5 7.889 ×10-31 0.48

16.39 ×10-31

These data don’t shift our prior distribution much.
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Now suppose that n=1000, y=480:

θ p(θ) logp(y|θ) p(θ|y)
0.485 0.5 -692.397 0.68
0.500 0.5 -693.147 0.32

Data and prior now favour θ = .485 by 2:1 (but still
substantial probability on θ = 0.5).

Is discrete prior distribution reasonable?
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Second analysis: uniform continuous prior

Simplest example of a prior distribution is to assume
p(θ) ∝ 1 (in fact p(θ) = 1!) on the interval [0, 1].

Bayes’ rule gives

p(θ|y) ∝ θy(1− θ)n−y (5)

[Q: what happened to the factor
(
n
y

)
?]

This is a beta probability distribution:

θ|y ∼ Beta(y + 1, n− y + 1) (6)
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What is a beta distribution?

The beta distribution is a continuous dist’n on [0,1]
with a wide variety of shapes, determined by 2
parameters:

p(θ|α, β) ∝ θα−1(1− θ)β−1 (7)

where α > 0, β > 0. α = β = 1 is the uniform
dist’n.

It is unimodal with mode ∈ (0, 1) if α > 1, β > 1,
and approaches a normal curve for α, β →∞.

The mean of the beta distribution is
E(θ|α, β) = α

α+β .

Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 22/ 321



Results for the uniform prior distribution

Back to the sex ratio example: Under uniform prior
dist’n,

E(θ|y) =
y + 1

n+ 2

var(θ|y) =
(y + 1)(n− y + 1)

(n+ 2)2(n+ 3)
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Posterior distribution as compromise

In binomial model with uniform prior distribution:
Prior mean = 1

2 → posterior mean = y+1
n+2

A compromise between the prior mean 1
2 and the

sample proportion, y
n .

This is a general feature of Bayesian inference:
posterior distribution centered at a compromise
between the prior information and the data, with
“compromise” increasingly controlled by the data as
sample size increases (can be investigated more
formally using conditional expectation formulae).
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In 2 hypothetical cases:

n=100 n=1000
y=48 y=480

E(θ|y) 0.4804 0.4800
SD(θ|y) 0.049 0.016

What would our conclusions about the sex ratio in
each case?

Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 25/ 321



Third analysis: conjugate prior

Based on the form of the likelihood (3) suppose
prior density:

p(θ) ∝ θα−1(1− θ)β−1, (8)

that is, θ ∼ Beta(α, β).
(equivalent to the binomial likelihood with α− 1
prior successes and β − 1 prior failures)

Parameters of prior distribution called
hyperparameters.
Two hyperparameters of beta prior distribution can
be fixed by specifying two features of the
distribution, e.g. its mean and variance.
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Third analysis: conjugate prior

If α, β fixed at reasonable choices obtain

p(θ|y) ∝ p(y|θ)p(θ)
p(θ|y) ∝ θy(1− θ)n−yθα−1(1− θ)β−1

= θy+α−1(1− θ)n−y+β−1

= Beta(θ|α+ y, β + n− y).

The property that posterior distribution follows
same parametric form as prior distribution is called
conjugacy; the beta prior distribution is a conjugate

family for the binomial likelihood.
(Maths is convenient, but not necessarily a good
model!)

Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 27/ 321

Third analysis: conjugate prior

Under the conjugate beta prior, posterior mean of θ
(= posterior probability of success for a future draw
from the population):

E(θ|y) = α+ y

α+ β + n
. (9)

Posterior variance is

var(θ|y) =
(α+ y)(β + n− y)

(α+ β + n)2(α+ β + n+ 1)

=
E(θ|y)[1− E(θ|y)]
α+ β + n+ 1

.
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Estimating properties of the posterior

distributions

Beta distribution: exact summaries (mean, SD etc)
can be obtained but how do we determine quantiles
and hence posterior probability intervals? We
require either:

I Use numerical integration (incomplete beta
integral).

I Approximate the beta integral (normal
distribution?).

I Resort to simulation: obtain a random sample

from the dist’n and use numerical summaries.
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Using simulation to estimate posterior

distributions

Last strategy is the most general (and requires least
analytical effort: computers replace algebra!).

We can simulate from the beta distribution using
either R or BUGS.

Further advantage of simulation: distribution of
functions of θ can be obtained with little further
effort, e.g. sex ratio = (1− θ)/θ.
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Example: Female births and placenta

praevia

Sex ratio in placenta praevia (see lecture 1).

Uniform prior → p(θ|y) = Beta(438,544).
Mean = 0.446, sd = 0.016, median = 0.446,
central 95% posterior interval = (0.415,0.477).

The following figure is a histogram of 1000
simulated values. These give sample mean, median
and sd almost identical to exact values and interval
(0.415,0.476).
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Female births and placenta praevia

(a) Prob female [theta]

0.35 0.45 0.55

(b) logit(theta)

−0.5 −0.3 −0.1 0.1

(c) Ratio male/female [(1−theta)/theta]

1.0 1.2 1.4 1.6

Figure: Draws from the posterior distribution of (a) the

probability of female birth, θ; (b) the logit transform, logit(θ);

(c) the male-to-female sex ratio, φ = (1− θ)/θ.
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Female births and placenta praevia

Figure (c) shows histogram of simulated sex ratio.
95% posterior interval for this = (1.10,1.41);
median = 1.24.

Note: intervals are well removed from θ = 0.485
(ratio = 1.06), implying that probability of female
birth in placenta praevia is lower than in general
pop’n.

See Table 2.1 in Gelman et al. for sensitivity
analysis to varying prior distribution;
Figure 2.4 in Gelman et al. for non-conjugate
analysis.
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APPENDIX I
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Mathematical Background

Reference: Gelman et al. 1.7

In calculations relating to a joint density p(u, v)
often refer to

I conditional distribution or density function:
p(u|v)

I marginal density: p(u) =
∫
p(u, v)dv.

(Range of integration = entire range of variable
being integrated out.)

Often factor joint density as product of marginal
and conditional densities:
p(u, v, w) = p(u|v, w)p(v|w)p(w).
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Mean of a conditional distribution

In joint distribution of (u, v) mean of u can be
obtained by averaging the conditional mean over the
marginal distribution of v:

E(u) = E(E(u|v)), (10)

[where inner expectation averages over u,
conditional on v, and outer expectation averages
over v].

Derivation:

E(u) =

∫ ∫
up(u, v)dudv =

∫ ∫
up(u|v)dup(v)dv

=

∫
E(u|v)p(v)dv.
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Variance of a conditional distribution

Corresponding result for variance has 2 terms: mean
of conditional variance plus variance of conditional
mean:

var(u) = E(var(u|v)) + var(E(u|v)). (11)

E[var(u|v)] + var[E(u|v)]
= E[E(u2|v)− (E(u|v))2]

+E[(E(u|v))2]− (E[E(u|v)])2
= E(u2)− E[(E(u|v))2] + E[(E(u|v))2]− (E(u))2

= E(u2)− (E(u))2 = var(u).

Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 37/ 321



APPENDIX II
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Prior Prediction

Before any data is observed the distribution of
unknown but observable y is

p(y) =

∫
p(y, θ)dθ =

∫
p(θ)p(y|θ)dθ. (12)

This is the marginal or prior predictive distribution

of y.

Fundamentals & Bayesian Analysis of Single-Parameter Models (Part 1) 39/ 321

Posterior Prediction

After y is observed, we can derive the dist’n of
unknown but potentially observable ỹ using the
same process:

p(ỹ|y) =

∫
p(ỹ, θ|y)dθ

=

∫
p(ỹ|θ, y)p(θ|y)dθ

=

∫
p(ỹ|θ)p(θ|y)dθ.

This is the posterior predictive distribution of ỹ.
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Posterior Prediction

The natural application here is for ỹ to be the result
of one new trial, exchangeable with first n.

Pr(ỹ = 1|y) =

∫ 1

0

Pr(ỹ = 1|θ, y)p(θ|y)dθ

=

∫ 1

0

θp(θ|y)dθ = E(θ|y) = y + 1

n+ 2
.

This is Laplace’s notorious “Law of Succession”.
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Choice of prior distribution

Bayes is believed to have justified choosing the
uniform prior dist’n in the binomial model because
the prior predictive dist’n is

p(y) =

∫ 1

0

(
n

y

)
θy(1− θ)n−ydθ

=
1

n+ 1
for y = 0, . . . , n.

Thus all possible values of y are equally likely a

priori.

Not necessarily a compelling argument – “true”
Bayesian analysis must use a subjectively assessed
prior dist’n.
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The need for simulation

The posterior distribution p(θ|y) describes our
beliefs about the possible values of θ.

Calculations for inference using this distribution may
not be straightforward, especially when θ is a vector
representing multiple parameters.

Simulation is central to Bayesian analysis - it’s easy
to draw samples from “difficult” probability
distributions.
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Simulation in practice

Simulation uses the duality between the probability
density function (PDF) and a histogram of random
draws from that distribution, which provides
information about the distribution to any level of
accuracy.

eg To estimate the 95th percentile of the
distribution for θ, draw a random sample of size L
and use the 0.95Lth order statistic.

L = 1,000 is usually sufficient, with the 95th centile
represented by the 50th largest value.
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Example: Coin tossing (Spiegelhalter et al.

(2004))

Suppose we want to know the probability of getting
8 or more heads when we toss a fair coin 10 times.
An algebraic approach would use the formula for the
binomial distribution:

P (8+ heads) =

(
10
8

)(
1

2

)8(
1

2

)2

+

(
10
9

)(
1

2

)9(
1

2

)1

+

(
10
10

)(
1

2

)10(
1

2

)0

=
1

210
(45 + 10 + 1) = 0.0547
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Physical approach

An alternative, physical approach: Repeatedly throw
a set of 10 coins and count the proportion of throws
where there were 8 or more heads. After sufficient
throws, this proportion will tend to the correct
result of 0.0547.

We can imitate this by a simulation approach in
which a computer program generates the throws
according to a reliable random mechanism, say by
generating a random number U between 0 and 1,
and declaring “head” if U ≥ 0.5.
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Simulation results

In fig (a):
3, 2 and 0 instances
of 8, 9 and 10 heads.

p̂ is 5/102 = 0.0490
(true prob 0.0547).

In fig (b):
p̂ = 0.0510

In fig (c):
p = 0.0547
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Limitations of simple Monte Carlo

We’re most interested in simulating draws from the
posterior distribution of parameters θ and predictive
distribution of unknown observables ỹ.

Monte Carlo or direct simulation methods are useful
provided we know the distributional form explicitly.

In conjugate Bayesian analysis we can derive the
posterior distribution algebraically and hence use
Monte Carlo methods to find tail areas (or directly
using R)
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Markov chain Monte Carlo

For non-conjugate distributions or nuisance
parameters in more complex Bayesian analysis it will
not be possible to derive the posterior distribution in
an algebraic form.

Markov chain Monte Carlo (MCMC) provide a
means of sampling from the posterior distribution of
interest even when that posterior has no known
algebraic form.
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Essential components of MCMC

1. Determine a way to sample from the posterior
distribution using a Markov chain, in which the
distribution for the next simulated value θ(j+1)

depends only on the current θ(j).

2. Generate initials values for parameters and if
necessary unobserved data values.

3. Run the simulation and monitor convergence.

4. Summarise results of draws from desired
posterior distributions.
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BUGS

BUGS is a piece of software designed to make
MCMC analyses straightforward.

It carries out Bayesian inference on statistical
problems by selecting from a number of simulation
techniques.

The first version of the software used Gibbs

sampling exclusively, hence the name Bayesian
inference Using Gibbs Sampling.
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For which problems is BUGS best suited?

BUGS is intended for problems where
(i) There is no analytic solution.
(ii) Standard approximation techniques have
difficulties.

Especially suited for use with complex models with
many unknown quantities but substantial structural
relationships, which are expressed as conditional
independence assumptions.

BUGS works with a directed acyclic graph (or
“DAG”) representing the random quantities, where
missing edges between nodes of the graph represent
conditional independence.
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BUGS in brief

BUGS requires a Bayesian or full probability model,
generally defined by combining a sampling model
(for data) with prior distributions (for parameters).

It conditions on the observed data in order to obtain
a posterior distribution over the parameters and
unobserved data.

BUGS cycles around the quantities of interest,
simulating from the simpler conditional
distributions, which ultimately generates samples
from the unconditional or marginal distributions.
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The BUGS engine

We will use WinBUGS version 1.4 (which can be
accessed from R using the R2WinBUGS package) to
analyse statistical models expressed using the very
flexible BUGS language.

A compiler processes the model and available data
into an internal data structure suitable for efficient
computation.

A sampler operates on this structure to access the
relevant distributions and generate a stream of
simulated values for each quantity of interest
(automatically working out appropriate sampling
methods).
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Extra features

BUGS has a suite of functions provided for analysis
and plotting of the output files via built-in graphics
and convergence diagnostics, and a large range of
examples and web presence that covers many
different subject areas.

Much of the post-processing of output from BUGS

can be done directly in R
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COINS example in BUGS

Recall the simulated repeated tossing of 10
“balanced coins” discussed earlier. These
simulations can be carried out in WinBUGS using
the program:

model

{

y ~ dbin(0.5,10)

P8 <- step(y-7.5)

}
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Explaining the COINS model code

y is binomial with p = 1
2 and n = 10.

P8 is a step function which will take on the value 1
if y − 7.5 is non-negative, that is, if y is 8 or more,
0 if 7 or less.

‘∼’ indicates a distribution.

‘<−’ indicates a logical identity.
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COINS example output

node mean sd MC error

P8 0.05 0.2179 0.002859

node 2.5% median 97.5% start sample

P8 0.0 0.0 1.0 5001 5000

Introduction to Computation 58/ 321

LINES: A simple example in BUGS

We introduce a trivial problem for which exact
solutions are possible in order to illustrate the
nature of the Gibbs sampling approach in BUGS.

Consider a set of 5 observed (x,y) pairs (1,1), (2,3),
(3,3), (4,3), (5,5).

We shall fit a simple linear regression of y on x ,
using the notation

Yi ∼ Normal(µi, τ) (13)

µi = α+ β(xi − x) (14)
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Classical analysis

Classical unbiased estimates are

α̂ = y

= 3.00

β̂ =
∑

i

yi(xi − x)/
∑

i

(xi − x)2

= 0.80

σ̂2 =
∑

(yi − ŷi)
2/(n− 2)

= 0.533

v̂ar(α̂) = σ̂2/n = 0.107,

v̂ar(β̂) = σ̂2/
∑

i (xi − x)2 = 0.053.
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Inference for parameters

Both frequentist and Bayesian ‘noninformative’
priors lead to inference being based on the pivotal
quantities:

(α̂− α)/

√
v̂ar(α̂) and (β̂ − β)/

√
̂var(β̂), which

both having t3 distributions with mean 0 and
variance 3, and

σ̂2(n− 2)/σ2, which has a χ2
3 distribution, leading

to the following 95% confidence/credible intervals:
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Confidence intervals for α, β and τ

95% interval for α : α̂± 3.18
√
v̂ar(α̂) = (1.96, 4.04)

95% interval for β : β̂ ± 3.18

√
v̂ar(β̂) = (0.07, 1.53)

95% interval for τ : (0.22, 9.35)/(3σ̂2) = (0.14, 5.85)

Introduction to Computation 64/ 321

LINES code

The BUGS language allows a concise expression for
the model with the core relations 13 and 14
described as follows:

model

{

for(i in 1:5)

{

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta*(x[i] - x.bar)

}

}
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LINES output

node mean sd MC error

alpha 2.972 0.9433 0.01862

beta 0.806 0.6482 0.008952

sigma 1.461 1.613 0.05916

node 2.5% median 97.5%

alpha 1.444 2.988 4.622

beta -0.3617 0.8012 1.983

sigma 0.4619 1.019 4.953
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Bayesian Analysis of
Single-Parameter Models
(Part 2)
Tuesday 12th August 2008, morning

Lyle Gurrin

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen

The standard single-parameter models

Recall general problem that the posterior density,
p(θ|y), often has no closed-form expression, and it
can be especially difficult to evaluate the
normalising constant p(y).

Much formal Bayesian analysis concentrates on
situations where closed (conjugate) forms are
available as useful starting point for constructing
more realistic models.

We will look at another one parameter example of a
conjugate Bayesian analysis before turning to the
normal model, multiparameter and hierarchical
models.
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The exponential family (1)

The familiar “exponential family” distributions—
binomial, normal, Poisson, and exponential—have
natural derivations from simple probability models:

I Binomial distribution from counting
exchangeable outcomes.

I Normal dist’n applies to a random variable that
is sum of a large number of exchangeable or
independent terms.

I Normal dist’n also arise naturally when the
logarithm of all-positive data are modelled as
product of many independent multiplicative
factors.
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The exponential family (2)

The familiar “exponential family” distributions—
binomial, normal, Poisson, and exponential—have
natural derivations from simple probability models:

I Poisson and exponential distributions arise as
the number of counts and the waiting times,
respectively, for events modelled as occurring
exchangeably in all time intervals; i.e.
independently in time, with constant rate of
occurrence.
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Conjugate priors for standard models

Each of these standard models has an associated
family of conjugate prior distributions (see below for
Poisson).

Realistic models for more complicated outcomes
may be constructed using combinations of these
basic distributions.
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The Poisson distribution

The Poisson distribution rises naturally in study of
data taking the form of counts. In epidemiology, we
might postulate that the number of cases of disease
in a population follow a Poisson model.

If y ∼ Poi(θ) (a single observation y follows a
Poisson distribution with mean θ) then:

p(y|θ) = θye−θ

y!
, for y = 0, 1, 2, . . .
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Poisson likelihood for multiple observations

For a vector y = (y1, . . . , yn) of i.i.d. observations,
the likelihood based on the Poisson distribution is:

p(y|θ) =
n∏

i=1

1

yi!
θyie−θ

∝ θt(y)e−nθ,

where t(y) =
∑n

i=1 yi = ny is a sufficient statistic.
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Conjugate prior from the likelihood

A more conventional parametrisation of this
conjugate prior distribution is:

p(θ) ∝ e−βθθα−1

which is a gamma density, Gamma(α, β).
Comparing p(y|θ) and p(θ) reveals that the prior
density is equivalent to a total count of α− 1 in β
prior observations.

The corresponding posterior distribution is then:

θ|y ∼ Gamma(α+ ny, β + n).
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Poisson model parameterized in terms of

rate and exposure

It is often convenient to extend Poisson model for
data points y1, . . . , yn to

yi ∼ Poi(xiθ),

where xi are known positive values of an
explanatory variable, x.

In epidemiology, θ is the rate, and xi is exposure of
the ith unit. Note that this model is not

exchangeable in the yi’s but it is exchangeable in
the (xi, yi) pairs.
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Likelihood for the Poisson rate and

exposure model

The likelihood for θ is now:

p(y|θ) ∝ θ(
∑n

i=1
yi)e−(

∑n

i=1
xi)θ

ignoring factors that do not depend on θ. Again the
gamma distribution is conjugate. With prior
θ ∼ Gamma(α, β), the posterior distribution is

θ|y ∼ Gamma

(
α+

n∑

i=1

yi, β +
n∑

i=1

xi

)
. (15)
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Example: Estimating a rate from count

data

An idealized example: Suppose causes of death were
reviewed for a city for a single year and 3 people out
of population of 200,000, died of asthma.

Crude estimated asthma mortality rate = 1.5 cases
per 100,000 persons per year.

Model for y = number of deaths in city of 200,000
in one year, is Poi(2.0× θ), where θ = underlying
asthma mortality rate (cases per 100,000 persons
per yr).
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Setting up a prior distribution

Reviews of asthma mortality rates suggest that
rates greater than 1.5 per 100,000 people are rare
(in Western countries), with typical asthma
mortality rates around 0.6 per 100,000.

Trial-and-error exploration suggests
p(θ) = Gamma(3.0, 5.0) (mean = 0.6, mode = 0.4
and 97.5% of the mass of the density lies below
1.44) is a reasonable prior distribution.

In general, specifying a prior mean sets the ratio of
the two gamma parameters; then shape parameter
can be altered by trial and error to match prior
knowledge about the tail of the distribution.
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Posterior distribution

The posterior distribution for θ is Gamma(6.0, 7.0)

Mean = 0.86, posterior probability that θ > 1.0 per
100,000 per year = 0.30 (substantial shrinkage
towards prior distribution).

Additional data: Suppose ten years of data obtained
and mortality rate of 1.5 per 100,000 is maintained;
i.e. y = 30 deaths over 10 years. Under same
model, posterior distribution of θ now
Gamma(33.0, 25.0)

Mean = 1.32, posterior probability that
θ > 1.0 = 0.93.
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APPENDIX I
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Marginal distribution for the Poisson model

With conjugate families, we can use known form of
prior and posterior densities to find the marginal
distribution, p(y), of the count outcome y using:

p(y) =
p(y|θ)p(θ)
p(θ|y) .
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The Negative Binomial distribution

For single observation from the Poisson distribution
where the rate is governed by a gamma prior, the
prior predictive distribution p(y) is

p(y) =
Poi(y|θ)Gamma(θ|α, β)
Gamma(θ|α+ y, 1 + β)

=
Γ(α+ y)βα

Γ(α)y!(1 + β)α+y
,

which reduces to
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p(y) =

(
α+ y − 1

y

)(
β

β + 1

)α(
1

β + 1

)y

,

This is the probability mass function of the negative

binomial distribution:

y ∼ Neg-Bin(α, β).
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Neg-bin as a Gamma mixture of Poissons

The above derivation shows that the negative
binomial distribution is a mixture of Poisson
distributions with rates, θ, that follow the gamma
distribution:

Neg-Bin(y|α, β) =
∫

Poi(y|θ)Gamma(θ|α, β)dθ.

This provides a robust alternative to the Poisson
distribution as a sampling model that can be used
to capture overdispersion.
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Normal and multiparameter
models
Tuesday 12th August 2008, afternoon

Lyle Gurrin

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen

Analysis for the normal distribution:

(i) Unknown mean, known variance

Reading: Gelman et al., 2.6

Normal model underlies much statistical modelling
(why?)

We start with the simplest case, assuming the
variance is known:

1. Just one data point.

2. General case of a “sample” of data with many
data points.

Normal and multiparameter models 84/ 321

Likelihood of one data point

Consider a single observation y from normal
distribution with mean θ and variance σ2, with σ2

known. The sampling distribution is:

p(y|θ) = 1√
2πσ

e−
1

2σ2
(y−θ)2. (16)
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Conjugate prior and posterior distributions

This likelihood is the exponential of a quadratic
form in θ, so conjugate prior distribution must have
same form; parameterize this family of conjugate
densities as

p(θ) ∝ exp

(
− 1

2τ 2
0

(θ − µ0)
2

)
; (17)

i.e. θ ∼ N(µ0, τ
2
0 ), with hyperparameters µ0 and τ 2

0 .

For now we assume µ0 and τ0 to be known.
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Posterior distribution

From the conjugate form of prior distribution, the
posterior distribution for θ is also normal:

p(θ|y) ∝ exp

(
−1
2

[
(y − θ)2

σ2
+
(θ − µ0)

2

τ 2
0

])
.

(18)

Some algebra is required, however, to reveal its form
(recall that in the posterior distribution everything
except θ is regarded as constant).
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Parameters of the posterior distribution

Algebraic rearrangement gives

p(θ|y) ∝ exp

(
− 1

2τ 2
1

(θ − µ1)
2

)
, (19)

that is, the posterior distribution θ|y is N(µ1, τ
2
1 )

where

µ1 =

1
τ2

0

µ0 +
1
σ2y

1
τ2

0

+ 1
σ2

and
1

τ 2
1

=
1

τ 2
0

+
1

σ2
. (20)
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Precisions of the prior and posterior

distributions

In manipulating normal distributions, the inverse of
the variance or precision plays a prominent role. For
normal data and normal prior distribution, each with
known precision, we have

1

τ 2
1

=
1

τ 2
0

+
1

σ2
.

posterior precision = prior precision + data
precision.
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Interpreting the posterior mean, µ1

There are several ways of interpreting the form of
the posterior mean µ1. In equation (20):

µ1 =

1
τ2

0

µ0 +
1
σ2y

1
τ2

0

+ 1
σ2

.

posterior mean = weighted average of prior mean
and observed value, y, with weights proportional to
the precisions.
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Interpreting the posterior mean, µ1

Alternatively, µ1 = prior mean “adjusted” toward
observed y:

µ1 = µ0 + (y − µ0)
τ 2
0

σ2 + τ 2
0

, (21)

or µ1 = data “shrunk” toward the prior mean:

µ1 = y − (y − µ0)
σ2

σ2 + τ 2
0

. (22)

In both cases, the posterior mean µ1 is a
compromise between the prior mean and the
observed value.
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Interpretation of µ1 for extreme cases

In the extreme cases, the posterior mean µ1 equals
the prior mean or the observed value y.

µ1 = µ0 if y = µ0 or τ 2
0 = 0;

µ1 = y if y = µ0 or σ2 = 0.

What is the correct interpretation for each scenario?
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Posterior predictive distribution 1

The posterior predictive distribution of a future
observation, ỹ, can be calculated directly be
integration:

p(ỹ|y) =

∫
p(ỹ|θ)p(θ|y)dθ

∝
∫
exp

(
− 1

2σ2
(ỹ − θ)2

)
×

exp

(
− 1

2τ 2
1

(θ − µ1)
2

)
dθ.

Avoid algebra in simplifying this by using properties
of the bivariate normal distribution.
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Posterior predictive distribution 2

ỹ and θ have a joint normal posterior distribution
(why?), which implies that the marginal posterior
predictive distribution of ỹ is normal.

We can now determine the mean and variance using
the fact that E(ỹ|θ) = θ and var(ỹ|θ) = σ2, along
with the iterative expectation and variance identities
given in an earlier lecture:

E(ỹ|y) = E(E(ỹ|θ, y)|y) = E(θ|y) = µ1, (23)

and
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var(ỹ|y) = E(var(ỹ|θ, y)|y) + var(E(ỹ|θ, y)|y)
= E(σ2|y) + var(θ|y)
= σ2 + τ 2

1 .

This shows that the posterior predictive distribution
for unobserved ỹ has mean equal to posterior mean
of θ and two components of variance:

I predictive variance σ2 from the sampling model

I variance τ 2
1 due to posterior uncertainty in θ
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Normal model with multiple observations

The normal model with a single observation can
easily be extended to the more realistic situation
where we have a sample of independent and
identically distributed observations y = (y1, . . . , yn).
We can proceed formally, from

p(θ|y) ∝ p(θ)p(y|θ) = p(θ)
n∏

i=1

p(yi|θ)

where p(yi|θ) = N(yi|θ, σ2) with algebra similar to
that above. The posterior distribution depends on y
only through the sample mean, y = 1

n

∑
i yi, which

is a sufficient statistic in this model.
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Normal model via the sample mean

In fact, since y|θ, σ2 ∼ N(θ, σ2/n), we can apply
results for the single normal observation
p(θ|y1 . . . , yn) = p(θ|y) = N(θ|µn, τ

2
n), where

µn =

1
τ2

0

µ0 +
n
σ2y

1
τ2

0

+ n
σ2

and

1

τ 2
n

=
1

τ 2
0

+
n

σ2
.
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Limits for large n and large τ 2

The prior precision, 1
τ2

0

, and data precision, n
σ2 , play

equivalent roles; if n large, the posterior distribution
is largely determined by σ2 and the sample value y.

As τ0 →∞ with n fixed, or as n→∞ with τ 2
0

fixed, have:

p(θ|y) ≈ N(θ|y, σ2/n) (24)
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Limits for large n and large τ 2

A prior distribution with large τ 2 and thus low
precision captures prior beliefs are diffuse over the
range of θ where the likelihood is substantial.
Compare the well-known result of classical statistics:

y|θ, σ2 ∼ N(θ, σ2/n) (25)

leads to use of
y ± 1.96

σ√
n

(26)

as a 95% confidence interval for θ.

Bayesian approach gives the same result for
noninformative prior.
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Analysis for the normal distribution:

(ii) Known mean, unknown variance

This is not directly useful for applications but is an
important building block especially for the normal
distribution with unknown mean and variance.

It also introduces estimation of a scale parameter, a
role played by σ2 for the normal distribution.
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Normal likelihood

For y ∼ N(θ, σ2) with known θ and unknown σ2,
the likelihood for vector y of n i.i.d. observations:

p(y|σ2) ∝ σ−nexp

(
− 1

2σ2

n∑

i=1

(yi − θ)2

)

= (σ2)−n/2exp
(
− n

2σ2
v
)

where the sufficient statistic is

v =
1

n

n∑

i=1

(yi − θ)2. (27)
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Conjugate prior for σ2

Conjugate prior distribution is the inverse-gamma:

p(σ2) ∝ (σ2)−(α+1)e−β/σ2

, (28)

which has hyperparameters (α, β).

A convenient parametrisation is the scaled
inverse-χ2 distribution with scale σ2

0 and ν0 degrees
of freedom.

Then prior distribution of σ2 is the same as the
distribution of σ2

0ν0/X, where X ∼ χ2
ν0

. We use the
convenient (but nonstandard) notation,
σ2 ∼ Inv-χ2(ν0, σ

2
0).
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Posterior distribution for σ2

Resulting posterior distribution:

p(σ2|y) ∝ p(σ2)p(y|σ2)

∝
(
σ2

0

σ2

)ν0/2+1

exp

(
−ν0σ

2
0

2σ2

)
·

(σ2)−n/2exp
(
−n
2

v

σ2

)

∝ (σ2)−((n+ν0)/2+1)exp

(
− 1

2σ2
(ν0σ

2
0 + nv)

)
.

Thus...
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Posterior distribution for σ2

σ2|y ∼ Inv-χ2

(
ν0 + n,

ν0σ
2
0 + nv

ν0 + n

)
(29)

—scaled inverse-χ2 distribution:

Posterior scale = precision-weighted average of prior
and data scales.

posterior degrees of freedom = sum of prior and
data degrees of freedom.

Prior distribution ≈ information equivalent to ν0

observations with average squared deviation σ2
0.
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Multiparameter models: Introduction

The reality of applied statistics: there are always
several (maybe many) unknown parameters!

BUT the interest usually lies in only a few of these
(parameters of interest) while others are regarded as
nuisance parameters for which we have no interest
in making inferences but which are required in order
to construct a realistic model.

At this point the simple conceptual framework of
the Bayesian approach reveals its principal
advantage over other forms of inference.
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The Bayesian approach

The Bayesian approach is clear: Obtain the joint

posterior distribution of all unknowns, then integrate

over the nuisance parameters to leave the marginal

posterior distribution for the parameters of interest.

Alternatively using simulation, draw samples from
the entire joint posterior distribution (even this may
be computationally difficult), look at the parameters
of interest and ignore the rest.
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Averaging over nuisance parameters

To begin exploring the ideas of joint and marginal
distributions, suppose that θ has two parts, so
θ = (θ1, θ2). We are interested only in θ1, with θ2

considered a “nuisance” parameter.

For example:

y|µ, σ2 ∼ N(µ, σ2),

with both µ (=θ1) and σ2 (=θ2) unknown. Interest
usually focusses on µ.
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Averaging over nuisance parameters

AIM: To obtain the conditional distribution p(θ1|y)
of the parameters of interest θ1.

This can be derived from joint posterior density,

p(θ1, θ2|y) ∝ p(y|θ1, θ2)p(θ1, θ2),

by averaging or integrating over θ2:

p(θ1|y) =
∫
p(θ1, θ2|y)dθ2.
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Factoring the joint posterior

Alternatively, the joint posterior density can be
factored to yield:

p(θ1|y) =
∫
p(θ1|θ2, y)p(θ2|y)dθ2, (30)

showing posterior distribution, p(θ1|y), as a mixture

of the conditional posterior distributions given the
nuisance parameter, θ2, where p(θ2|y) is a weighting
function for the different possible values of θ2.
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Mixtures of conditionals

I The weights depend on the posterior density of
θ2—so on a combination of evidence from data
and prior model.

I What if θ2 known to have a particular value?

The averaging over nuisance parameters can be
interpreted very generally: θ2 can be categorical
(discrete) and may take only a few possible values
representing, for example, different sub-models.
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A strategy for computation

We rarely evaluate integral (30) explicitly, but it
suggests an important strategy for constructing and
computing with multiparameter models, using
simulation:

1. Draw θ2 from its marginal posterior
distribution.

2. Draw θ1 from conditional posterior distribution,
given the drawn value of θ2.
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Conditional simulation

In this way the integration in (30) is performed
indirectly.

In fact we can alter step 1 to draw θ2 from its
conditional posterior distribution given θ1. Iterating
the procedure will ultimately generate samples from
the marginal posterior distribution of both θ1 and θ2.

This is the much vaunted Gibbs sampler.
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Multiparameter models: Normal mean &

variance

Consider a vector y of n i.i.d. observations
(univariate) distributed as N(µ, σ2).

We begin by analysing the model under the
convenient assumption of a noninformative prior
distribution (which is easily extended to informative
priors).

We assume prior independence of location and scale
parameters and take p(µ, σ2) to be uniform on
(µ, logσ):

p(µ, σ2) ∝ (σ2)−1.
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The joint posterior distribution, p(µ, σ2|y)
Under the improper prior distribution the joint posterior
distribution is proportional to the likelihood × the factor 1/σ2:

p(µ, σ2|y) ∝ σ−n−2exp

(
− 1

2σ2

n∑

i=1

(yi − µ)2

)

= σ−n−2exp

(
− 1

2σ2

[
n∑

i=1

(yi − y)2 + n(y − µ)2

])

= σ−n−2exp

(
− 1

2σ2
[(n−1)s2 + n(y − µ)2]

)
, (31)

where s2 = 1/(n− 1)
∑n

i=1
(yi − y)2 is the sample variance of

yi’s.

The sufficient statistics are and ?
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The conditional posterior dist’n, p(µ|σ2, y)
We can factor the joint posterior density by
considering first the conditional distribution
p(µ|σ2, y), and then the marginal p(σ2|y).
We can use a previous result for the mean µ of a
normal distribution with known variance.

µ|σ2, y ∼ N(y, σ2/n). (32)
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The marginal posterior distribution, p(σ2|y)
This requires averaging the joint distribution (31)
over µ, that is, evaluating the simple normal integral

∫
exp

(
− 1

2σ2
n(y − µ)2

)
dµ =

√
2πσ2/n;

thus,

p(σ2|y) ∝ (σ2)−(n+1)/2exp

(
−(n− 1)s2

2σ2

)
, (33)

which is a scaled inverse-χ2 density:

σ2|y ∼ Inv-χ2(n− 1, s2). (34)
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Product of conditional and marginal

We have therefore factored (31) as the product of
conditional and marginal densities

p(µ, σ2|y) = p(µ|σ2, y)p(σ2|y).
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Parallel between Bayes & frequentist results

As with one-parameter normal results, there is a
remarkable parallel with sampling theory:

Bayes:
(n− 1)s2

σ2
|y ∼ χ2

n−1

Frequentist:

(n− 1)s2

σ2
|µ, σ2 ∼ χ2

n−1

Conditional on the values of µ and σ2 the sampling
distribution of the appropriately scaled sufficient
statistic (n− 1)s2/σ2 is chi-squared with n− 1 d.f.
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Analytic form of marginal posterior

distribution of µ

µ is typically the estimand of interest, so ultimate
objective of the Bayesian analysis is the marginal
posterior distribution of µ. This can be obtained by
integrating σ2 out of the joint posterior distribution.
Easily done by simulation: first draw σ2 from (34),
then draw µ from (32).

The posterior distribution of µ can be thought of as
a mixture of normal distributions mixed over the
scaled inverse chi-squared distribution for the
variance - a rare case where analytic results are
available.
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Performing the integration

We start by integrating the joint posterior density
over σ2

p(µ|y) =
∫ ∞

0

p(µ, σ2|y)dσ2

This can be evaluated using the substitution

z =
A

2σ2
, where A = (n− 1)s2 + n(µ− y)2.
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Marginal posterior distribution of µ

We recognise (!) that the result is an unnormalized
gamma integral:

p(µ|y) ∝ A−n/2

∫ ∞

0

z(n−2)/2exp(−z)dz

∝ [(n− 1)s2 + n(µ− y)2]−n/2

∝
[
1 +

n(µ− y)2

(n− 1)s2

]−n/2

.

This is tn−1(y, s
2/n) density.
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Marginal posterior distribution of µ

Equivalently, under the noninformative uniform prior
distribution on (µ, logσ), the posterior distribution
of µ is

µ− y

s/
√
n

∣∣∣∣ y ∼ tn−1,

where tn−1 is the standard Student-t density
(location 0, scale 1) with n− 1 degrees of freedom.
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Comparing the sampling theory

Again it is useful to compare the sampling theory:
Under the sampling distribution, p(y|µ, σ2),

y − µ

s/
√
n

∣∣∣∣µ, σ
2 ∼ tn−1.

The ratio (y − µ)/(s/
√
n) called a pivotal quantity:

Its sampling distribution does not depend on the
nuisance parameter σ2, and posterior distribution
does not depend on data (helps in sampling theory
inference by eliminating difficulties associated with
the nuisance parameter σ2).
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APPENDIX
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Noninformative prior distributions

Prior distributions may be hard to construct if there
is no population basis.

Statisticians have long sought prior distributions
guaranteed to play a minimal role in determining
the posterior distribution.

The rationale is that we should “let the data speak
for themselves”. Such as “objective” Bayesian
analysis would use a reference or noninformative

prior with a density described as vague, flat or
diffuse.
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Proper and improper prior distributions

Recall in estimating mean θ of a normal model with
known variance σ2, if prior precision, 1/τ 2

0 , is small
relative to the data precision, n/σ2, then posterior
distribution is approximately as if τ 2

0 =∞:

p(θ|y) ≈ N(θ|y, σ2/n).

That is, the posterior distribution is approximately
what would result from assuming that p(θ) ∝
constant for θ ∈ (−∞,∞).
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Proper and improper prior distributions

The integral of the “flat” distribution p(θ) = 1 for
θ ∈ (−∞,∞) is not finite. In this case the
distribution is referred to as improper.

A prior density p(θ) is proper if it does not depend
on data and integrates to 1 (provided the integral is
finite the density can always be normalised to
integrate to 1).

Despite impropriety of prior distribution in the
example with the normal sampling model, the
posterior distribution is proper, given at least one
data point.
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Special cases: Location & Scale

For binomial and other single-parameter models,
different principles give (slightly) different
noninformative prior distributions. But for two
cases—location parameters and scale
parameters—all principles seem to agree.

1. If θ is a location parameter (the density of y is
such that p(y − θ|θ) is free of θ and y) then
p(θ) ∝ constant over the range (−∞,∞)
can be shown to be only reasonable choice of
noninformative prior.
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Special cases: Location & Scale

2. If θ = scale parameter (the density of y is such
that p(y/θ|θ) is free of θ and y) then
p(θ) ∝ 1/θ (equivalently, p(logθ) ∝ 1 or
p(θ2) ∝ 1/θ2)
is the “natural” choice of noninformative prior.
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General principles?

But beware that even these principles can be

misleading in some problems, in the critical sense of
suggesting prior distributions that can lead to
improper and thus uninterpretable posterior
distributions.

The basic point is that all noninformative prior
specifications are arbitrary and if the results are
sensitive to the particular choice, then more effort in
specifying genuine prior information is required to
justify any particular inference.
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Multiparameter models
example: Bioassay experiment
Tuesday 12th August 2008, afternoon

Lyle Gurrin

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen

Multiparameter models

Reference: Gelman et al. 3.7

Few multiparameter sampling models allow explicit
calculation of the posterior distribution.

Data analysis for such models is usually achieved
with simulation (especially MCMC methods).

We will illustrate with a nonconjugate model for
data from a bioassay experiment using a
two-parameter generalised linear model.
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Scientific problem

In drug development, acute toxicity tests are
performed in animals.

Various dose levels of the compound are
administered to batches of animals.

Animals responses typically characterised by a
binary outcome: alive or dead, tumour or no
tumour, response or no response etc.
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Data Structure

Such an experiment gives rise to data of the form

(xi, ni, yi); i = 1, . . . , k (35)

where

xi is the ith dose level (i = 1, . . . , k).

ni animals given ith dose level.

yi animals with positive outcome (tumour,
death, response).
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Example Data

For the example data, twenty animals were tested,
five at each of four dose levels.

Dose,xi Number of Number of
(log g/ml) animals, ni deaths, yi

−0.863 5 0
−0.296 5 1
−0.053 5 3
0.727 5 5

Racine A, Grieve AP, Fluhler H, Smith AFM. (1986). Bayesian

methods in practice: experiences in the pharmaceutical

industry (with discussion). Applied Statistics 35, 93-150.
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Sampling model at each dose level

Within dosage level i:

The animals are assumed to be exchangeable (there
is no information to distinguish among them).

We model the outcomes as independent given same
probability of death θi, which leads to the familiar
binomial sampling model:

yi|θi ∼ Bin(ni, θi) (36)
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Setting up a model across dose levels

Modelling the response at several dosage levels
requires a relationship between the θi’s and xi’s.

We start by assuming that each θi is an
independent parameter. We relax this assumption
tomorrow when we develop hierarchical models.

There are many possibilities for relating the θi’s to
the xi’s, but a popular and reasonable choice is a
logistic regression model:

logit(θi) = log(θi/(1− θi)) = α+ βxi (37)
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Setting up a model across dose levels

We present an analysis based on a prior distribution
for (α, β) that is independent and locally uniform in
the two parameters, that is, p(α, β) ∝ 1, so an
improper “noninformative” distribution.

We need to check that the posterior distribution is
proper (details not shown).
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Describing the posterior distribution

The form of posterior distribution:

p(α, β|y) ∝ p(α, β)p(y|α, β)

∝
k∏

i=1

(
eα+βxi

1 + eα+βxi

)yi
(

1

1 + eα+βxi

)ni−yi

One approach would be to use a normal
approximation centered at posterior mode
(α̃ = 0.87, β̃ = 7.91)

This is similar to the classical approach of obtaining
maximum likelihood estimates (eg by running glm in
R) Asymptotic standard errors can be obtained via
ML theory.
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Bioassay graph 2
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Contour plot: Posterior density of the parameters
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Discrete approx. to the post. density (1)

We illustrate computing the joint posterior
distribution for (α, β) at a grid of points in
2-dimensions:

1. We begin with a rough estimate of the
parameters.

I Since logit(E(yi/ni)) = α+ βxi we obtain rough
estimates of α and β using a linear regression of
logit(yi/ni) on xi

I Set y1 = 0.5, y4 = 4.5 to enable calculation.
I α̂ = 0.1, β̂ = 2.9 (standard errors 0.3 and 0.5).
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Discrete approx. to the post. density (2)

2. Evaluate the posterior on a 200× 200 grid; use
range [−5, 10]× [−10, 40].

3. Use R to produce a contour plot (lines of equal
posterior density).

4. Renormalize on grid so
∑

α

∑
β p(α, β|y) = 1

(i.e., create discrete approx to posterior)

5. Sample from marginal dist’n of one parameter
p(α|y) =

∑
β p(α, β|y).
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Discrete approx. to the post. density (3)

6. Sample from conditional dist’n of second
parameter p(β|α, y)

7. We can improve sampling slightly by drawing
from linear interpolation between grid points.

Alternative: exact posterior using advanced
computation
(methods covered later)
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Posterior inference

Quantities of interest:

I parameters (α, β).

I LD50 = dose at which Pr(death) is 0.5
= −α/β

– This is meaningless if β ≤ 0 (substance not
harmful).

– We perform inference in two steps:

(i) Pr(β > 0|y)
(ii) posterior dist’n of LD50 conditional on β > 0
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Results

We take 1000 simulation draws of (α, β) from the
grid (different posterior sample than results in book)

Note that β > 0 for all 1000 draws.

Summary of posterior distribution
posterior quantiles

2.5% 25% 50% 75% 97.5%
α −0.6 0.6 1.3 2.0 4.1
β 3.5 7.5 11.0 15.2 26.0

LD50 −0.28 −0.16 −0.11 −0.06 0.12
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Lessons from simple examples

Reference: Gelman et al., 3.8.

The lack of multiparameter models with explicit
posterior distributions not necessarily a barrier to
analysis.

We can use simulation, maybe after replacing
sophisticated models with hierarchical or conditional
models (possibly invoking a normal approximation in
some cases).
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The four steps of Bayesian inference

1. Write the likelihood p(y|θ).
2. Generate the posterior as p(θ|y) = p(θ)p(y|θ)

by including well formulated information in
p(θ) or else use p(θ) = constant.

3. Get crude estimates for θ as a starting point or
for comparison.

4. Draw simulations θ1, θ2, . . . , θL (summaries for
inference) and predictions ỹ1, ỹ2, . . . .ỹK for
each θl.
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Inference from iterative simulation

Reference: Gelman et al., 11.6

Basic method of inference from iterative simulation:

Use the collection of all simulated draws from the
posterior distribution p(θ|y) to summarise the
posterior density and to compute quantiles,
moments etc.

Posterior predictive simulations of unobserved
outcomes ỹ can be obtained by simulation
conditional on the drawn values of θ.

Inference using iterative simulation draws does,
however, require care...
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Difficulties with iterative simulation

1. Too few iterations generate simulations that
are not representative of the target distribution.
Even at convergence the early iterations are
still influenced by the starting values.

2. Within-sequence correlation: Inference based
on simulations from correlated draws will be
less precise than those using the same number
of independent draws.

3. What initial values of the parameters should be
use to start the simulation?
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Within-sequence correlation

Serial correlation in the simulations is not
necessarily a problem since:

I At convergence the draws are all identically
distributed as p(θ|y).

I We ignore the order of simulation draws for
summary and inference.

But correlation causes inefficiencies, reducing the
effective number of simulation draws.
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Within-sequence correlation

Should we thin the sequences by keeping every kth

simulation draw and discarding the rest?

Useful to skip iterations in problems with a large
number of parameters (to save computer storage)
or built-in serial correlation due to restricted
jumping/proposal distributions.

Thinned sequences treated in the same way for
summary and inference.
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Challenges of iterative simulation

The Markov chain must be started somewhere, and
initial values must be selected for the unknown
parameters.

In theory the choice of initial values will have no
influence on the eventual samples from the Markov
chain.

In practice convergence will be improved and
numerical problems avoided if reasonable initial
values can be chosen.

Assessing Convergence 151/ 321

Diagnosing convergence

It is generally accepted that the only way to
diagnose convergence is to

1. Run multiple chains from a diverse set of initial
parameter values.

2. Use formal diagnostics to check whether the
chains, up to expected chance variability,come
from the same equilibrium distribution which is
assumed to be the posterior of interest.
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Diagnosing convergence

Checking whether the values sampled from a
Markov chain (possibly with many dimensions) has
converged to its equilibrium distribution is not
straightforward.

Lack of convergence might be diagnosed simply by
observing erratic behaviour of the sampled values...

...but a steady trajectory does not necessarily mean
that it is sampling from the correct posterior
distribution - is it stuck in a particular area of the
parameter space? Is this a result of the choice of
initial values?
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Handling iterative simulations

A strategy for inference from iterative simulations:

1. Simulate multiple sequences with starting
points dispersed throughout the sample space.

2. Monitor the convergence of all quantities of
interest by comparing variation between and
within simulated sequences until these are
almost equal.

3. If no convergence then alter the algorithm.

4. Discard a burn-in (and/or thin) the simulation
sequences prior to inference.
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Discarding early iterations as a burn-in

Discarding early iterations, known as burn-in, can
reduce the effect of the starting distribution.

Simulated values of θt, for large enough t, should be
close to the target distribution p(θ|y).
Depending on the context, different burn-in
fractions can be appropriate. For any reasonable
number of simulations discarding the first half is a
conservative choice.
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Formally assessing convergence

For overdispersed starting points, the
within-sequence variation will be much less than the
between sequence variation.

Once the sequences have mixed, the two variance
components will be almost equal.
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Monitoring convergence using multiple

chains

I Run several sequences in parallel

I Calculate two estimates of standard deviation
(SD) of each component of (θ|y):

I An underestimate from SD within each sequence
I An overestimate from SD of mixture of sequences

I Calculate the potential scale reduction factor:

R̂ =
mixture-of-sequences estimate of SD(θ|y)

within-sequence estimate of SD(θ|y)
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Monitoring convergence (continued)

I Initially R̂ is large (use overdispersed starting
points)

I At convergence, R̂ = 1 (each sequence has
made a complete tour)

I Monitor R̂ for all parameters and quantities of
interest; stop simulations when they are all
near 1
(eg below 1.2)

I At approximate convergence, simulation noise
(“MCMC error”) is minor compared to
posterior uncertainty about θ
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Monitoring scalar estimands

Monitor each scalar estimand and other scalar
quantities of interest separately.

We may also monitor the log of the posterior
density (which is computed as part of the
Metropolis algorithm).

Since assessing convergence is based on means and
variances it is sensible to transform scalar estimands
to be approximately normally distributed.
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Monitoring convergence of each scalar

estimand

Suppose we’ve simulated m parallel sequences or
chains, each of length n (after discarding the
burn-in).

For each scalar estimand ψ we label the simulation
draws as ψij(i = 1, 2, . . . , n; j = 1, 2, . . . ,m), and
we compute B and W , the between- and
within-sequence variances:
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Between- and within-sequence variation

Between-sequence variation:

B =
n

m− 1

m∑

j=1

(ψ.j − ψ..)
2
,

where ψ.j =
1

n

n∑

i=1

ψij and ψ.. =
1

m

m∑

j=1

ψ.j

Within-sequence variation:

W =
1

m

m∑

j=1

s2
j , where s2

j =
1

n− 1

n∑

i=1

(ψij − ψ.j)
2
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Estimating the marginal posterior variance

We can estimate var(ψ|y), the marginal posterior
variance of the estimand using a weighted average
of B and W :

v̂ar+(ψ|y) = n− 1

n
W +

1

n
B

This overestimates the posterior variance assuming
an overdispersed starting distribution, but is
unbiased under stationarity (start with the target
distribution) or in the limit as n→∞.
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Estimating the marginal posterior variance

For finite n, the within-sequence variance will be an
underestimate of var(ψ|y) because individual
sequences will not have ranged over the target
distribution and will be less variable.

In the limit the expected value of W approaches
var(ψ|y).
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The scale reduction factor

We monitor convergence of iterative simulation by
estimating the factor R̂ by which the scale of the
current distribution for ψ might be reduced in the
limit as the number of iterations n→∞:

R̂ =

√
v̂ar+(ψ|y)

W
,

which declines to 1 as n→∞.

If R̂ and hence the potential scale reduction is high,
further simulations may improve inference about the
target distribution of the estimand ψ.
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The scale reduction factor

It is straightforward to calculate R̂ for all scalar
estimands of interest (and comes automatically with
R2WinBUGS).

The condition of R̂ being “near” 1 depends on the
problems at hand; values below 1.1 are usually
acceptable.

Avoids the need to examine time-series graphs etc.

Simulations may still be far from convergence if
some areas of the target distribution was not well
captured by the starting values and are “hard to
reach”.
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The effective sample size

If n chains were truly independent then the
between-sequence variance B is an unbiased
estimate of var(ψ|y); we’d have mn simulations
from n chains.

If simulations of ψ within each sequence are
autocorrelated, B will be larger (in expectation)
than var(ψ|y).
Define the effective number of independent draws
as:

neff = mn
v̂ar+(ψ|y)

B
.
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11 – 15 August 2008, Copenhagen

Hierarchical models - introduction

Reference: Gelman et al., 5.1-5.3

Often we would like the parameters of a prior or
population distribution to be estimated from the
data.

Many problems have multiple parameters that are
related; we’d like a joint probability model that
reflects this dependence.

It is useful to think hierarchically: The distribution
of observed outcomes are conditional on parameters
which themselves have a probability specification.
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Bioassay example continued

Let’s generalize our simple bioassay example:

A single (α, β) may be inadequate to fit a combined
data set (several experiments).

Imagine repeated bioassays with same compound,
where (αj, βj) parameters from different bioassays.

Separate unrelated (αj, βj) are likely to “overfit”
data (only 4 points in each data set).

Information about the parameters of one bioassay
can be obtained from others’ data.
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The hierarchical approach

A natural prior distribution arises by assuming the
(αj, βj)’s are a sample from a common population
distribution.

We’d be better off estimating the parameters
governing the population distribution of (αj, βj)
rather than each (αj, βj) separately.

This introduces new parameters that govern this
population distribution, called hyperparameters.

Hierarchical models uses many parameters but
imposing a population distribution induces enough
structure to avoid overfitting.
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Hierarchical models and empirical Bayes

Hierarchical models retain the advantages of using
the data to estimate the population parameters, but
eliminate the disadvantages (of dealing with many
parameters) by putting a joint probability model on
the entire set of parameters and the data.

We can then do a Bayesian analysis of the joint
distribution of all model parameters.

Using data to estimate the prior (hyper)parameters
beforehand is called empirical Bayes and is an
approximation to the complete hierarchical Bayesian
analysis.
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Setting up hierarchical models:

exchangeability (review)

Consider a set of experiments j = 1, 2, . . . , J in
which experiment j has data (vector) yj, parameter
(vector) θj and likelihood p(yj|θj).

If no information (other than the yj’s) is available
to distinguish the θj’s from each other, and no
ordering or grouping of the parameters can be
made, then we can assume symmetry among the
parameters in the prior distribution.

This symmetry is represented probabilistically by
exchangeability:
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Defining exchangeability

A set of random variables (θ1, . . . , θk) is said to be
exchangeable if the joint distribution is invariant to
permutations of the indexes (1, . . . , k), that is,the
indexes contain no information about the data
values.

I The simplest form: i.i.d. given some unknown parameter.

I Seemingly non-exchangeable random variables may
become exchangeable if we condition on all available
information (e.g. covariates regression analysis)

I Hierarchical models often use exchangeable models for
prior distribution of model parameters.
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Basic exchangeable model

The basic form of an exchangeable model has the
parameter θj as an independent sample from a prior
distribution governed by some unknown parameter
φ.

θ = (θ1, . . . , θk) are independent conditional on
additional parameters φ (the hyperparameters):

p(θ|φ) =
k∏

j=1

p(θj|φ) (38)

In general φ is unknown so our distribution for θ
must average over uncertainty in φ:
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Basic exchangeable model

p(θ) =

∫ [ k∏

j=1

p(θj|φ)
]
p(φ)dφ (39)

This mixture of i.i.d.’s is usually all we need to
capture exchangeability in practice.

Bruno de Finetti proved a theorem that as J →∞
any suitably well-behaved exchangeable distribution
on θ1, θ2, . . . , θJ can be written as an i.i.d. mixture.
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Setting up hierarchical models: typical

structure

The model is specified in nested stages

I p(y|θ) = the sampling distribution of the data.

I p(θ|φ) = the prior (population) distribution for
θ given φ.

I p(φ) = the prior (hyperprior) distribution for φ

I More levels are possible!

I The hyperprior at highest level is often diffuse.
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A normal-normal hierarchical model

Inference based on posterior distribution of
unknowns:

p(θ, φ|y) ∝ p(θ, φ)p(y|θ, φ)
∝ p(θ, φ)p(y|θ) y ind. of φ given θ

∝ p(φ)p(θ|φ)p(y|θ),
Inference (and computation) is often carried out in
two steps:

1. Inference for θ as if we knew φ using the
posterior conditional distribution p(θ|y, φ).

2. Inference for φ based on posterior marginal
dist’n p(φ|y).
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Example 1: Meta-analysis of clinical trials

Reference: Gelman et al., 5.6 & 19.4 Spiegelhalter

et al., 3.17

Meta-analysis aims to summarise and integrate
findings from research studies in a particular area.

It involves combining information from several
parallel data sources, so is closely connected to
hierarchical modelling (but there are well known
frequentist methods as well).

We’ll re-inforce some of the concepts of hierarchical
modelling in a meta-analysis of clinical trials data.
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The aims of meta-analysis

Use a combined analysis of the studies to measure
the strength of evidence for (and magnitude of) any
beneficial effect of the treatment under study.

Any formal analysis must be preceded by the
application of inclusion rigorous criteria (see Gelman
et al. chapter 7).
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Two clinical trial examples

Both examples deal with reducing mortality after
myocardial infarction:

1. 22 clinical trials, each with two groups of heart
attack patients receiving (or not) beta-blockers
(rates 3% to 21%, samples sizes from < 100 to
almost 2000) (BUGS online, Gelman et al. 5.6)

2. 8 clinical trials, each with each with two groups
of heart attack patients receiving (or not) IV
magnesium sulfate (rates 1% to 17%, samples
sizes from < 50 to more than 2300)
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Parameters for each clinical trial

Meta-analysis often involves data in the form of
several 2× 2 tables.

In trial j there are n0j control subjects and n1j

treatment subjects, with y0j and y1j deaths
respectively.

Sampling model: y0j and y1j have independent
binomial sampling distributions with probabilities of
death p0j and p1j respectively.
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Trial Magnesium Control
group group

deaths patients deaths patients

Morton 1 40 2 36
Rasmussen 9 135 23 135
Smith 2 200 7 200
Abraham 1 48 1 46
Feldstedt 10 150 8 148
Schechter 1 59 9 56
Ceremuzynski 1 25 3 23
LIMIT-2 90 1159 118 1157
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Odds ratios as a measure of effectiveness

We’ll use the natural logarithm θj of the odds ratio

ρj = (p1j/(1− p1j))/(p0j/(1− p0j)) as a measure of
effect size comparing treatment to control groups:

I Interpretability in a range of study designs
(cohorts, case-control and clinical trials).

I Posterior distribution of θj = ln(ρj) close to
normality even for small sample sizes.

I Canonical (natural) parameter for logistic
regression.
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Normal approximation to the likelihood

Summarise the results of each trial with an
approximate normal likelihood for θj.

Let yj represent the empirical logit, a point
estimate of the effect θj in the jth study where
j = 1, . . . , J :

yj = log

(
y1j

n1j − y1j

)
− log

(
y0j

n0j − y0j

)
,

with approximate sampling variance:

σ2
j =

1

y1j
+

1

n1j − y1j
+

1

y0j
+

1

n0j − y0j
.
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Normal approximation to the likelihood

Here we use the results of one analytic approach to
produce a point estimate and standard error that
can be regarded as approximately a normal mean
and standard deviation.

We use the notation yj and σ2
j to be consistent with

the earlier lecture.

We do not use the continuity correction of adding a
fraction such as 1/2 to the four counts of the
contingency table to improve the asymptotic
normality of the sampling distributions.
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More data for the Magnesium example

Trial Magnesium Control Estimated Estimated
group group log(OR) yk SD sk

deaths patients deaths patients

Morton 1 40 2 36 −0.83 1.25
Rasmussen 9 135 23 135 −1.06 0.41
Smith 2 200 7 200 −1.28 0.81
Abraham 1 48 1 46 −0.04 1.43
Feldstedt 10 150 8 148 0.22 0.49
Schechter 1 59 9 56 −2.41 1.07
Ceremuzynski 1 25 3 23 −1.28 1.19
LIMIT-2 90 1159 118 1157 −0.30 0.15
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A hierarchical model: Stage 1

The first stage of the hierarchical model assumes
that:

yj|θj, σ
2
j ∼ N(θj, σ

2
j ), (40)

The simplification of known variances is reasonable
with large sample sizes (but see the online examples
that use the “true” binomial sampling distribution).
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Possible assumptions about the θ′js

1. Studies are identical replications, so θj = µ for
all j (no heterogeneity)...or

2. No comparability between studies so that each
study provides no information about the other
(complete heterogeneity)...or

3. Studies are exchangeable but not identical or
completely unrelated (compromise between 1
and 2).
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Classical model for a fixed treatment effect

If all of the θj are identical and equal to a common
treatment effect µ, and therefore equation (40)
becomes

yj|µ, σ2
j ∼ N(µ, σ2

j ). (41)

The classical pooled estimate µ̂ of µ weights each
trial estimate inversely by its variance:

µ̂ =

∑J
j=1 yj/σ

2
j∑J

j=1 1/σ
2
j

.

Assumptions imply µ̂ normal with variance

[
∑J

j=1 1/σ
2
j ]
−1

.
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Classical test of heterogeneity

A classical test for heterogeneity, that is, whether it
is reasonable to assume all the trials are measuring
the same quantity, is provided by

Q =
J∑

j=1

(yj − µ̂)2

σ2
j

(42)

which has a χ2
J−1 distribution under the null

hypothesis of homogeneity. It is well known that
this is not a very powerful test (Whitehead (2002)).
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A hierarchical model: Stage 2

The second stage of the hierarchical model assumes
that the trial means θj are exchangeable with a
normal distribution

θj ∼ N(µ, τ 2). (43)
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A hierarchical model: Stage 2

If µ and τ 2 are fixed and known, then the
conditional posterior distribution of the θj’s are
independent, and

θj|µ, τ, y ∼ N(θ̂j, Vj),

where

θ̂j =

1
σ2

j

yj +
1
τ2µ

1
σ2

j

+ 1
τ2

and Vj =
1

1
σ2

j

+ 1
τ2

.

Note that the posterior mean is a precision-weighted
average of the prior population mean and the
observed yj representing the treatment effect in the
jth group.
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Posterior distn’s for the θj’s given y, µ, τ

The expression for the posterior distribution of θj

can be rearranged as

θj|yj ∼ N(Bjµ+ (1−Bj)yj, (1−Bj)σ
2
j )(44)

where Bj = σ2
j/(σ

2
j + τ 2) is the weight given to the

prior mean.

Ignoring data from the other trials is equivalent to
setting τ 2 =∞, that is, Bj = 0.

The classical pooled result results from τ 2 → 0,
that is, Bj = 1.
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Conditional prior distribution for µ

A uniform conditional prior distribution p(µ|τ) = 1
for µ leads to the following posterior distribution:

µ|τ, y ∼ N(µ̂, Vµ)

where µ̂ is the precision weighted average of the yj

values, and V −1
µ is the total precision:

µ̂ =

∑J
j=1

1
σ2

j +τ2yj

∑J
j=1

1
σ2

j +τ2

and V −1
µ =

J∑

j=1

1

σ2
j + τ 2

.

τ 2 →∞ gives the classical result where Bj = 1.
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The exchangeable model and shrinkage

The exchangeable model therefore leads to narrower

posterior intervals for the θj’s than the
“independence” model, but they are shrunk towards
the prior mean response.

The degree of shrinkage depends on the variability
between studies, measured by τ 2, and the precision
of the estimate of the treatment effect from the
individual trial, measured by σ2

j .

Hierarchical models 199/ 321



The full hierarchical model

The hierarchical model is completed by specifying a
prior distribution for τ - we’ll use the noninformative
prior p(τ) = 1.

Nevertheless, p(τ |y) is a complicated function of τ :

p(τ |y) ∝
∏J

j=1 N(yj|µ̂, σ2
j + τ 2)

N(µ̂|µ̂, Vµ)

∝ Vµ
1/2

J∏

j=1

(σ2
j + τ 2)

−1/2
exp

(
− (yj − µ̂)2

2(σ2
j + τ 2)

)
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The profile likelihood for τ

A tractable alternative to the marginal posterior
distribution is the profile likelihood for τ , derived by
replacing µ in the joint likelihood for µ and τ by its
conditional maximum likelihood estimate µ̂(τ) given

the value of τ .

This summarises the support for different values of
τ and is easily evaluated as

J∏

j=1

N(yj|µ̂(τ), σ2
j + τ 2).
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Estimates of τ

The maximum likelihood estimate is τ̂ = 0 although
values of τ with a profile log(likelihood) above
−1.962/2 ≈ −2 might be considered as being
reasonably supported by the data.

τ̂ = 0 would not appear to be a robust choice as an
estimate since non-zero values of τ , which are
well-supported by the data, can have a strong
influence on the conclusions. We shall assume, for
illustration, the method-of-moments estimator
τ̂ = 0.35.
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Results of the meta-analysis

Trial Magnesium Control Estimated Estimated Shrinkage
group group log(OR) yk SD sk Bk

deaths patients deaths patients

Morton 1 40 2 36 −0.83 1.25 0.90
Rasmussen 9 135 23 135 −1.06 0.41 0.50
Smith 2 200 7 200 −1.28 0.81 0.80
Abraham 1 48 1 46 −0.04 1.43 0.92
Feldstedt 10 150 8 148 0.22 0.49 0.59
Schechter 1 59 9 56 −2.41 1.07 0.87
Ceremuzynski 1 25 3 23 −1.28 1.19 0.89
LIMIT-2 90 1159 118 1157 −0.30 0.15 0.11
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Example 2: SAT coaching

Reference: Gelman et al., 5.5

The Study:

I Separate randomized experiments were
conducted in 8 high schools.

I The outcome measure is the improvement in
SAT-Verbal score.

I The intervention effect is estimated using
analysis of covariance to adjust for PSAT
(preliminary SAT) involving a separate
regression for each school.
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SAT coaching example: The model

I The quantities of interest are the θj: Average
“true” effects of coaching programs.

I Data yj: separate estimated treatment effects
for each school.

I The standard errors σj are assumed known
(large samples).

I This is a randomized experiment with large
samples, no outliers, so we appeal to the
central limit theorem:

yj|θj ∼ N(θj, σ
2
j )
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SAT coaching example: The data
Estimated Standard error True
treatment of effect treatment

School effect, yj estimate, σj effect, θj

A 28 15 ?
B 8 10 ?
C − 3 16 ?
D 7 11 ?
E − 1 9 ?
F 1 11 ?
G 18 10 ?
H 12 18 ?
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Nonhierarchical approach 1

Consider the 8 programs separately:

I Two programs appear to work (18-28 points)

I Four programs appear to have a small effect

I Two programs appear to have negative effects

I Large standard errors imply overlapping CIs
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Nonhierarchical approach 2

Use a pooled estimate of the coaching effect:

I “Classical” test of homogeneity fails to reject
that all θj’s are equal.

I Pooled estimate
µ̂ =

∑
j(yj/σ

2
j )/
∑

j(1/σ
2
j ) = 7.9 (pooled

standard error is s.e.(µ̂) = 4.2).

I Pooled estimate applies to each school.

Separate and pooled estimates are both
unreasonable! A hierarchical model provides a
compromise.
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Model specification

I Observed data are normally distributed with a
different mean in each group:
p(yj|θj) ∼ N(θj, σ

2
j ) j = 1, . . . , J .

yj = 1/nj

∑nj

i=1
yij.

σ2

j = σ2/nj (assumed known).

I Prior model for θj’s is based on a normal
population distribution (conjugate)

p(θ1, . . . , θJ |µ, τ) =
J∏

j=1

N(θj|µ, τ)
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Model specification

I Hyperprior distribution can be factored as
p(µ, τ) = p(τ)p(µ|τ)

I p(µ|τ) ∝ 1 (noninformative, this won’t matter
much because the data supply a great deal of
information about µ)

I p(τ) ∝ 1 (must be sure the posterior is proper)
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Computation

The joint posterior distribution:

p(θ, µ, τ |y)
∝ p(µ, τ)p(θ|µ, τ)p(y|θ)

∝
J∏

j=1

N(θj|µ, τ 2)
J∏

j=1

N(yj|θj, σ
2

j )

∝ τ−Jexp

[
−1
2

∑

j

1

τ 2
(θj − µ)2

]
exp

[
−1
2

∑

j

1

σ2

j

(yj − θj)
2

]

Factors depending only on y and {σj} treated as constant.
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Conditional posterior dist’n of θ given µ, τ, y

I Treat (µ, τ) as fixed in the previous expressions.

I Given (µ, τ), the J separate parameters θj are
independent in their posterior distribution since
they appear in different factors in the likelihood
(which factors into J components).

I θj|y, µ, τ ∼ N(θ̂j, Vj) with

θ̂j =

1
σ2

j

yj +
1
τ2 µ

1
σ2

j

+ 1
τ2

and Vj =
1

1
σ2

j

+ 1
τ2
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Marginal posterior dist’n of µ, τ given y

Derive this analytically by integrating p(θ, µ, τ |y)
over θ:

Data distribution:
p(y|µ, τ) =∏J

j=1N(yj|µ, σ2
j + τ 2)

p(µ, τ |y) ∝
J∏

j=1

N(yj|µ, σ2
j + τ 2)

∝
J∏

j=1

(σ2
j + τ 2)−1/2exp

(
− (yj − µ)2

2(σ2
j + τ 2)

)
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Posterior distribution of µ given τ, y

Factor the distribution: p(µ, τ |y) = p(τ |y)p(µ|τ, y).
p(µ|τ, y) is obtained by looking at p(µ, τ |y) and
thinking of τ as known. With a uniform prior for
µ|τ , the log posterior is quadratic in µ and therefore
normal:

p(µ|τ, y) ∝
J∏

j=1

N(yj|µ, σ2
j + τ 2)

This is a normal sampling distribution with a
noninformative prior density on µ.
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Posterior distribution of µ given τ, y

The mean and variance are obtained by considering
group means yj as J independent estimates of µ
with variance σ2

j + τ 2.

Result: µ|τ, y ∼ N(µ̂, Vµ) with

µ̂ =

∑J
j=1

1
σ2

j +τ2yj

∑J
j=1

1
σ2

j +τ2

and Vµ =
1

∑J
j=1

1
σ2

j +τ2
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Posterior distribution of τ given y

We could integrate p(µ, τ |y) over µ?

It is easier to use identity
p(τ |y) = p(µ, τ |y)/p(µ|τ, y) (which holds for all µ),
and evaluate at µ = µ̂:

p(τ |y) ∝
∏J

j=1N(yj|µ̂, σ2
j + τ 2)

N(µ̂|µ̂, Vµ)

∝ Vµ
1/2

J∏

j=1

(σ2
j + τ 2)

−1/2
exp

(
− (yj − µ̂)2

2(σ2
j + τ 2)

)

Hierarchical models 218/ 321

Posterior distribution of τ given y

Note that Vµ and µ̂ are both functions of τ , and
thus so is p(τ |y), so we compute p(τ |y) on a grid of
values of τ .

The numerator of the first expression for p(τ |y) is
the profile likelihood for τ given the maximum
likelihood estimate of µ given τ - more details later.
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Normal-normal model computation:

Summary

To simulate from joint posterior distribution
p(θ, µ, τ |y):

1. Draw τ from p(τ |y) (grid approximation)

2. Draw µ from p(µ|τ, y) (normal distribution)

3. Draw θ = (θ1, . . . , θJ) from p(θ|µ, τ, y)
(independent normal distribution for each θj)

Apply these ideas to SAT coaching data; repeat
1000 times to obtain 1000 simulations.
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SAT coaching example: post. quantiles
School 2.5% 25% 50% 75% 97.5% yj

A − 2 6 10 16 32 28
B − 5 4 8 12 20 8
C −12 3 7 11 22 − 3
D − 6 4 8 12 21 7
E −10 2 6 10 17 − 1
F − 9 2 6 10 19 1
G − 1 6 10 15 27 18
H − 7 4 8 13 23 12

µ − 2 5 8 11 18
τ 0.3 2.3 5.1 8.8 21.0
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SAT coaching example: Results

We can address more complicated questions:

Pr(school A’s effect is the max) = 0.25
Pr(school B’s effect is the max) = 0.10
Pr(school C’s effect is the max) = 0.10
Pr(school A’s effect is the min) = 0.07
Pr(school B’s effect is the min) = 0.09
Pr(school C’s effect is the min) = 0.17
Pr(school A’s effect > school C’s effect) = 0.67
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Hierarchical models: Summary

I They account for multiple levels of variability.

I There is a data-determined degree of pooling
across studies.

I Classical estimates (no pooling, complete
pooling) provide a starting point for analysis.

I We can draw inference about the population of
schools.
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APPENDIX I
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Computation with hierarchical models:

Overview

Conjugate case (p(θ|φ) conjugate prior for p(y|θ))

I write p(θ, φ|y) = p(φ|y)p(θ|φ, y)
I identify conditional posterior density p(θ|φ, y)

(easy for conjugate models)

I obtain marginal posterior distribution p(φ|y)
(more about this step on next slide)

I draw from p(φ|y) and then p(θ|φ, y)
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Approaches for obtaining p(φ|y)
Integration: p(φ|y) =

∫
p(θ, φ|y)dθ

Algebra: Use p(φ|y) = p(θ, φ|y)/p(θ|φ, y) for a
convenient value of θ.

Sampling from p(φ|y)
I easy if it is a common distribution
I grid if φ is low-dimensional
I more sophisticated methods (later)

“Empirical Bayes” methods replace p(φ|y) by
mode.
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Statistical measures of fetal
growth
Thursday 14th August 2008, morning

Lyle Gurrin

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen

The fetal origins hypothesis

Fetal adaptation to an adverse intrauterine
environment programs permanent change.

It is now acknowledged that their is an inverse
relationship between low birthweight and subsequent
elevated blood pressure (Huxley R. Lancet (2002)).

We’ll look at quantifying fetal growth using
statistical summary measures derived from serial
fetal biometric data.
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Western Australian Pregnancy Cohort

Study

Subjects received routine ultrasound examination at
18 weeks gestation.

Additional ultrasound examination at 24, 28, 34, 38
weeks gestation as part of a randomised trial of the
safety of repeated antenatal ultrasound.
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Criteria for growth data

These data exclude multiples, infants born less than
37 weeks gestation, or with maternal or fetal
disease.

Required agreement within 7 days between
gestational age based on last menstrual period and
ultrasound examination at 18 weeks.

3450 ultrasound measurements on 707 fetus of five
fetal dimensions (BPD, OFD, HC, AC, FL). We’ll
look at HC = head circumference.

Statistical measures of fetal growth 229/ 321

Statistical modelling

Yij is the measured head circumference for the ith

fetus at the jth timepoint tij = 18, 24, 28, 34, 38
weeks

The number of measurements on an individual fetus
varies from 1 to 7.

The aim is to model the relationship between head
circumference Yij and gestational age tij.
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Modelling strategy

We follow the methodology in Royston P. Stat.

Med. (1995):

Transform both sides of the regression equation to
establish approximately linear relationship between

transformed outcome Y
(λ)
ij and timescale g(tij)

The longitudinal design suggests the use of linear

mixed model.
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Transformation of Yij

Use the familiar Box-Cox transformation:

Y
(λ)
ij = (Y λ

ij − 1)/λ if λ 6= 0

= log(Yij) if λ = 0

We account for gestational age when choosing λ by
fitting a cubic polynomial in time tij.
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Transformed tij

We assume that Y
(λ)
ij is linear in a second degree

fractional polynomial in tij (Royston P, Altman DG
Appl. Stat. (1994)).

g(tij) = ξ0 + ξ1t
(p1)
ij + ξ2t

(p2)
ij

t
(p1)
ij = tp1

ij if p1 6= 0

= log(tij) if p1 = 0

If p1 = p2 then let t
(p2)
ij = t

(p1)
ij log(tij).
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Fractional polynomials in tij

So g(tij) = ξ0 + ξ1t
(p1)
ij + ξ2t

(p2)
ij .

Select p1, p2 from {−3,−2,−1,−1
2 , 0,

1
2 , 1, 2, 3}.

Use a grid search to find p1, p2 providing the best fit

to Y
(λ)
ij .

Estimate ξ1 and ξ2 using maximum likelihood, with
separate intercepts for each subject.

Let Xij = t
(p1)
ij + (ξ2/ξ1) t

(p2)
ij .
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Transformations for head circumference

For head circumference we find that
λ̂ = 0.56 ≈ 0.50, equivalent to the square root
transformation.

We use a quadratic transformation of gestational
age:

Xij = tij − 0.0116638t2ij.
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Simple linear model

The simplest linear model would be:

Yij = β0 + β1Xij + εij,

where
εij ∼ N(0, σ2

ε).
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Mixed linear model

We can extend this to a mixed linear model by
allowing subject-specific intercepts and gradients:

Yij = (β0 + u0i) + (β1 + u1i)Xij + εij,

where
εij ∼ N(0, σ2

ε).

and
(
u0i

u1i

)
= N2

[(
0
0

)
,

[
σ2

0 σ01

σ01 σ2
1

]]

with cov(εij, ui) = 0.
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References centiles

The models can be used to derive reference centiles:

var(Yij) = var(u0i) + 2cov(u0i, u1i)Xij

+var(u1i)X
2
ij + var(εij)

= σ2
0 + 2σ01Xij + σ2

1X
2
ij + σ2

ε

The variance of Yij (square root of head
circumference) is quadratic in gestational age.
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Measure of fetal growth

We call also use models to derive measures of
growth or change in size:

Y
(λ)
i1 and Y

(λ)
i2 are bivariate normal, so Y

(λ)
i2 given

Y
(λ)
i1 is univariate normal. The “conditional Z-score”

is

Z2|1 =
Y

(λ)
i2 − E(Y

(λ)
i2 |Y

(λ)
i1 )√

var(Y
(λ)
i2 |Y

(λ)
i1 )

We used measures at 38 weeks gestation conditional
on value at 18 weeks gestation and relating these to
birthweight and subsequent blood pressure in
childhood.
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Fitting the model in BUGS

Subject-specific index runs from i = 1 to 707

u[i,1:2] ˜ dmnorm((0,0),Omega.beta[,])

u[i,1] (= u0i) and u[i,2] (= u1i) are
multivariate normally distributed.

mu.beta[1] is the fixed effects intercept β0.
mu.beta[2] is the fixed effects gradient β1.

Omega.beta[,] is the inverse of the random effects
variance-covariance matrix.
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Fitting the model in BUGS

The observation-specific index runs from j = 1 to

3097

mu[j] <- (mu.beta[1] + u[id[j],1])

+ (mu.beta[2] + u[id[j],2])*X[j]

The observation-specific mean mu[j] uses id[j] as
the first index of the random effect array
u[1:707,1:2] to pick up the id number of the jth

observation and select the correct row of the
random effect array.

The final step adds the error term to the mean:

Y[j] ˜ dnorm(mu[j],tau.e)
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Prior distributions for model parameters

We use the “standard” noninformative prior
distributions for the fixed effects β0, β1 and σe.

We use a Wishart prior distribution for the precision
matrix Omega.beta, which requires

I A degrees of freedom parameter (we use the
smallest possible value, 2, the rank of the
precision matrix).

I A scale matrix representing our prior guess at
the order of magnitude of the covariance
matrix of the random effects (we assume
σ2

0 = 0.5, σ2
1 = 0.1 and σ01 = 0.)
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Analysis twin data and
GLMMs
Thursday 14th August 2008, afternoon

Lyle Gurrin

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen

This lecture

I A model for paired data.

I Extend this to a genetic model for twin data.

I Fitting these models in BUGS.

I An introduction to the example on
mammographic (breast) density.
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Paired data

Paired data provide an excellent example of
Bayesian methods in BUGS since these data are

I the simplest type of correlated data structure;

I naturally represented as a hierarchical model.

We begin with the basic model to capture
correlation in paired data, and then extend this to
accommodate different correlation in monozygous
(MZ) and dizygous (DZ) twin pairs.
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Notation for paired data

Suppose we have a continuously valued outcome y
measured in each individual of n twin pairs.

Let yij denote the measurement of the jth individual
in the ith twin pair, where j = 1, 2 and
i = 1, 2, . . . , n.

We do not consider additional measurements on
exposure variables at this stage.
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A model for a single pair

We assume that, for the ith pair, that yi1 and yi2

have common mean

E(yi1) = E(yi2) = ai,

where (for now) ai is assumed to be fixed.

It is also assumed that the two measurements have
common variance

var(yi1) = var(yi2) = σ2
e .

Conditional on the value of ai, yi1 and yi2 are
uncorrelated: cov(yi1, yi2) = 0.
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A model for a single pair

We can write this model as

yi1 = ai + εi1

yi2 = ai + εi2

where
var(εi1) = var(εi2) = σ2

e

and
cov(εi1, εi2) = 0,

with an implicit assumption that

εij ∼ N(0, σ2
e).
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A hierarchical model for paired data

We can extend this simple structure for paired data
to a hierarchical model by assuming a normal
population distribution for the pair-specific means ai

ai ∼ N(µ, σ2
a).
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A hierarchical model for paired data

This is an example of the hierarchical normal-normal
model studied in lectures earlier.

The sampling model is (for j = 1, 2)

yij|ai, σ
2
e ∼ N(ai, σ

2
e)

The pair-specific mean model is (for j = 1, 2)

ai|µ, σ2
a ∼ N(µ, σ2

a)
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Unconditional mean and variance of yij

We can use the iterative expectation and variance
formulae:

E(yij) = E(E(yij|ai))

= E(ai)

= µ.

var(yij) = var(E(yij|ai)) + E(var(yij|ai))

= var(ai) + E(σ2
e)

= σ2
a + σ2

e .

So yij ∼ N(µ, σ2
a + σ2

e).

Analysis of twin data and GLMMs 260/ 321



Bivariate distribution of (yi1, yi2)

In fact the joint distribution of yi1 and yi2 is
bivariate normal:

(
yi1

yi2

)
= N2

[(
µ
µ

)
,

[
σ2

a + σ2
e σ2

a

σ2
a σ2

a + σ2
e

]]

BUGS does allow vector nodes to have a multivariate
normal (MVN) distribution, but it requires careful
specification of the parameters defining the MVN
distribution.
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Introduction to twin data

Measurements on twins are a special case of paired
data and provides a natural matched design.

Outcomes (continuous or binary) are possibly

influenced by both genetic and environmental
factors.

There has been extensive development of statistical
methods to deal with quantitative traits,
concordance/discordance, affected sib-pairs etc.

Studying basic models for twins provide a good
introduction to analysing family data.
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Introduction to twin data

We will now extend the simple paired model to
accommodate monozygous (MZ) and dizygous
(DZ) pairs.

MZ twins are “identical” and share all of their
genes.

DZ twins are siblings and share on average half of
their genes (same relationship as siblings like
brother and sister).
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Within-pair covariation in twin data

If a quantitative trait (continuous outcome variable)
is under the influence of shared genetic factors then
we expect the within-pair covariation to be smaller
in DZ pairs than in MZ pairs:

covDZ(yi1, yi2) = ρDZ:MZcovMZ(yi1, yi2)

So ρDZ:MZ is the ratio of covariances between DZ
and MZ pairs. We assume that var(yij) is the same
in MZ and DZ twins and so ρDZ:MZ is also the ratio
of the within-pair correlation in DZ and MZ pairs.
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Interpretation of ρDZ:MZ

I If ρDZ:MZ = 1 then the outcome is no more
correlated between individuals in MZ pairs than
in DZ pairs, so no evidence of genetic influence.

I If ρDZ:MZ = 1
2 then we have an additive

genetic model, also known as the “classical
twin model”.

I If 0 < ρDZ:MZ < 1 and ρDZ:MZ 6= 1
2 then any

genetic model will need to be non-additive (eg
gene-gene interaction) or incorporate a
contribution to variation from shared
environment.
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Specifying the additive model in BUGS

Recall our original model:

yi1 = ai + εi1

yi2 = ai + εi2

where

var(εij) = σ2
e

cov(εi1, εi2) = 0

ai ∼ N(µ, σ2
a)
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Random effect sharing in MZ and DZ pairs

Now instead of just one random effect ai per pair,
extend the model to incorporate three random
effects per pair ai1, ai2 and ai3, all i.i.d. N(µ, σ2

a).

Regardless of zygosity both individuals in a twin-pair
share the first random effect ai1.

Individuals in MZ pairs share the second random
effect ai2.

For DZ pairs, one member of the pair receives ai2

and the other member receives ai3.

So DZ pairs share less than MZ pairs. Scaling
appropriately by ρ = ρDZ:MZ we have...
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Model equations

For MZ pairs

yi1 =
√
ρ ai1 +

√
1− ρ ai2 + εi1

yi2 =
√
ρ ai1 +

√
1− ρ ai2 + εi2

For DZ pairs

yi1 =
√
ρ ai1 +

√
1− ρ ai2 + εi1

yi2 =
√
ρ ai1 +

√
1− ρ ai3 + εi2

Analysis of twin data and GLMMs 268/ 321

Covariance and variance for MZ and DZ

pairs

Since MZ pairs share both ai1 and ai2, the
within-pair covariance of yi1 and yi2 is√
ρ2σ2

a +
√
1− ρ

2
σ2

a = σ2
a.

DZ pairs share only ai1 so the corresponding
within-pair covariance is

√
ρ2σ2

a = ρσ2
a.

The variance of yij is, however, σ2
a + σ2

e for both
MZ and DZ pairs.
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Model equations

Clearly the model for MZ pairs

yi1 =
√
ρ ai1 +

√
1− ρ ai2 + εi1

yi2 =
√
ρ ai1 +

√
1− ρ ai2 + εi2

is identical to the original model

yi1 = ai1 + εi1

yi2 = ai1 + εi2

but computations in BUGS are easier if both
members of the pair share some random effects but
not others if they are DZ.
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Application: Mammographic density

Female twin pairs (571 MZ 380 DZ) aged 40 to 70
were recruited in Australia and North America.

The outcome is percent mammographic density, the
ratio of dense tissue to non-dense tissue from
mammographic scan.

Age-adjusted mammographic density is a risk factor
for breast cancer.

The correlation for percent density was 0.63 in MZ
pairs and 0.27 in DZ pairs adjusted for age and
location.

Other risk factors for breast density: height, weight,
reproductive, diet.
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Generalised Linear Mixed
Models
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Melbourne Sexual Health Clinic (MSHC)

consults PID warts
80 1 1

816 41 46
726 12 37

2891 38 137
79 4 4

1876 34 73
469 8 27

1124 13 76
210 10 6
539 8 28

1950 22 101
1697 24 86
811 13 56
908 52 48
944 19 65
832 10 33

1482 10 62
456 0 20
420 0 8

1258 3 58
1101 1 22
109 0 3

1006 2 62

23 sexual health physicians di-
agnosing each patient with ei-
ther:

I pelvic inflammatory
disease (PID)

I genital warts

Are there differences between
physicians in the proportion di-
agnosed with PID or warts?
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Diagnosis frequency in MSHC

consults PID warts
80 1.25 1.25

816 5.02 5.64
726 1.65 5.10

2891 1.31 4.74
79 5.06 5.06

1876 1.81 3.89
469 1.71 5.76

1124 1.16 6.76
210 4.76 2.86
539 1.48 5.19

1950 1.13 5.18
1697 1.41 5.07
811 1.60 6.91
908 5.73 5.29
944 2.01 6.89
832 1.20 3.97

1482 0.67 4.18
456 0.00 4.39
420 0.00 1.90

1258 0.24 4.61
1101 0.09 2.00
109 0.00 2.75

1006 0.20 6.16

The proportion of patients diag-
nosed varies:

I PID 0% – 5.73%
1.49% (weighted)
1.72% (unweighted)

I Warts 1.25% – 6.91%
4.86% (weighted)
4.59% (unweighted)

Are the warts percentages “bet-
ter spread” than the PID per-
centages (most less 2% but four
are around 5%)?
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Data Structure

For each outcome (PID or warts) the data are of
the form

(ni, yi); i = 1, . . . , 23

where

ni is the number of consultations (patients
seen) by physician i.

yi is the number of patients diagnosed with the
condition.
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Sampling model at each dose level

For each physician, the patients (i.e. their
outcomes) are assumed to be exchangeable (there is
no information to distinguish one patient from
another).

We model the outcomes within-physician as
independent given a physician-specific probability of
death θi, which leads to the familiar binomial
sampling model:

yi|θi ∼ Bin(ni, θi)
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Setting up a model across physicians

Typical assumption is that each θi is an independent
parameter, that is, a fixed effect.

We can re-express this model using logistic

regression:

logit(θi) = log(θi/(1− θi)) = αi

where αi is the physician-specific log odds of
diagnosis with the condition.
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Estimating the fixed effects

MLE: Estimates are:

θ̂i = yi/ni

α̂i = log(yi/(ni − yi))

Bayes: Estimate θ as the posterior mean using
some (beta?) prior distribution (see Lecture 1).

An even more extreme assumption is that αi = α
for some common log-odds of diagnosis α.

Also this provides no way of quantifying variability
in frequency of diagnosis - is there a compromise?

Analysis of twin data and GLMMs 279/ 321

A hierarchical model

Replace independence with exchangeability - allow
the αi to be drawn from a “population” distribution
of diagnosis frequencies:

αi ∼ N(µ, τ 2).

Then assume the yi are conditionally independent
binomial random variables given the αi:

yi|αi ∼ Bin(ni, expit(αi))

where

expit(αi) = logit−1(αi) = exp(αi)/(1+exp(αi)) = θi.
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Logistic-normal GLMM

This logistic-normal model, where the αi’s are given
a distribution, and so are random rather than fixed

effects, is an example of a generalised linear mixed

model (GLMM).

The model is easily implemented in BUGS to
generate posterior distributions for αi’s and
hyperparameters µ and τ .

This simple model is available in Stata and SAS but
without much flexibility to extend to random
coefficients.
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Fixed and random effects for warts
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Fixed and random effects for PID
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Summary output from BUGS

Warts:

mean sd 2.5% 50% 97.5% Rhat n.eff

mu -3.02 0.08 -3.19 -3.02 -2.87 1 5700

tau2 0.10 0.06 0.03 0.09 0.24 1 15000

tau 0.31 0.08 0.18 0.30 0.49 1 15000

PID:

mean sd 2.5% 50% 97.5% Rhat n.eff

mu -4.57 0.32 -5.27 -4.55 -3.98 1 1000

tau2 1.67 0.84 0.65 1.47 3.82 1 15000

tau 1.26 0.29 0.81 1.21 1.95 1 15000
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Summary output from BUGS

PID after removing those physicians with PID
frequency > 2.5%:

mean sd 2.5% 50% 97.5% Rhat n.eff

mu -4.86 0.27 -5.50 -4.83 -4.39 1 4500

tau2 1.07 0.70 0.29 0.90 2.93 1 4100

tau 0.99 0.30 0.54 0.95 1.71 1 4100
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Penalised loss functions for
model comparison and the
DIC
Friday 15th August 2008, morning

Lyle Gurrin

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen



The need to compare models

Model choice is an important part of data analysis.

This lecture: Present the Deviance Information
Criterion (DIC) and relate it to a cross-validation
procedure for model checking.

When should we use the DIC?

Penalised loss functions for model comparison and the DIC 287/ 321

Posterior predictive checking

One approach to Bayesian model checking is based
on hypothetical replicates of the same process that
generated the data.

In posterior predictive checking (Chapter 6 of BDA),
replicate datasets are simulated using draws from
the posterior distribution of the model parameters.

The adequacy of the model is assessed by the
faithfulness with which the replicates reproduce key
features of the original data.
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Two independent datasets

Suppose that we have training data Z and test data
Y = {Y1, Y2, . . . , Yn}.
We assess model adequacy using a loss function
L(Y,Z) which measures the ability to make
prediction of Y from Z.

Suitable loss functions are derived from scoring rules

which measure the utility of a probabilistic forecast
of Y represented by a probability distribution p(y).
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The log scoring rule

One sensible scoring rule is the log scoring rule

A log {(p(y))}+B(y)

for essentially arbitrary constant A and function
B(.) of the data Y.
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Parametric models

Consider the situation where all candidate models
share a common vector of parameters θ (called the
focus) and differ only in the (prior) structure for θ.

Assume also that Y and Z are conditionally
independent given θ, so that p(Y|θ,Z) = p(Y|θ).
The log scoring rule then becomes the log likelihood
of the data Y as a function of θ, or equivalently the
deviance −2 log{p(Y|θ)}.

Penalised loss functions for model comparison and the DIC 291/ 321

Loss functions

Two suggested loss functions are the “plug-in”
deviance

Lp(Y,Z) = −2 log[p{Y|θ(Z)}]

where θ(Z) = E(θ|Z) and the expected deviance

Le(Y,Z) = −2
∫
log{p(Y|θ)}p(θ|Z)dθ

where the expectation is taken over the posterior
distribution of θ given Z with Y considered fixed.
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Loss functions

Both loss functions are derived from the deviance
but there are important difference between Lp and
Le.

I The plug-in deviance is sensitive to
reparametrisation but the expected deviance is
co-ordinate free.

I The plug-in deviance gives equal loss to all
models that yield the same posterior
expectation of θ, regardless of precision.

I The expected deviance is a function of the full
posterior distribution of θ given Z so takes
precision into account.
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The problem

How to proceed when there are no training data?

An obvious idea is to use the test data to estimate
θ and assess the fit of the model, that is, re-use the
data to create the loss function L(Y,Y).

But this is optimistic. “In-sample” prediction will
always do better than “out-of-sample” prediction.
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Quantifying the optimism

We can get an idea of the degree of optimism for
loss functions that decompose into a sum of
contributions from each Yi (e.g. independence)

L(Y,Z) =
∑n

i=1
L(Yi,Z)

We can gauge the optimism by comparing L(Yi,Y)
with L(Yi,Y−i) where Y−i is the data with Yi

removed.
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Quantifying the optimism

The expected decrease in loss from using L(Yi,Y)
in place of L(Yi,Y−i) is

popti = E{L(Yi,Y−i)− L(Yi,Y)|Y−i}

which is the optimism of L(Yi,Y). The loss
function

L(Yi,Y) + popti

has the same expectation given Y−i as the
cross-validation loss L(Yi,Y−i) so is equivalent for
an observer who has not seen Yi.
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Penalised loss function

The same argument applies to each Yi in turn.

Proposal: Use the sum of the penalised loss
functions

L(Y,Y) + popt

to assess model accuracy where

popt =
∑n

i=1
popti

is the cost of using the data twice.
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Deviance Information Criterion (DIC)

The DIC is defined as

DIC = D + pD

where D = E(D|Y) is a measure of model fit and
pD is the “effective number of parameters”, a
measure of model complexity defined by

pD = D −D{θ(Y)}
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The effective number of parameters

Using previous notation, D = Le(Y,Y) and
D{θ(Y)} = Lp(Y,Y), so pD can be written as

pD = Le(Y,Y)− Lp(Y,Y)

pD can be decomposed into the sum of individual
contributions

pD =
∑n

i=1
pDi

=
∑n

i=1
Le(Yi,Y)− Lp(Yi,Y)
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The normal linear model

We can do the algebra explicitly for the normal
linear model that assumes the Yi are scalar.

Both the expected and plug-in deviance have a
penalty term like pDi

/(1− pDi
).

But the large sample behaviour depends on the
dimension of θ.
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The normal linear model

If the dimension of θ is fixed then pDi
is O(n−1) so

the penalised losses can be written as

D + kpD +O(n−1)

where k = 1 for the plug-in deviance and k = 2 for
the expected deviance. So the penalised plug-in
deviance is the same as the DIC for regular linear
models with scalar outcomes.
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Example: DIC in hierarchical models

In random effects models, however, it is quite
common for the dimension of θ to increase with n.

The behaviour of the penalised plug-in deviance
may be different from DIC.

We illustrate this with the normal-normal
hierarchical model, also known as the one-way
random-effects analysis of variance (ANOVA).
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The Normal-normal hierarchical model

The two-level hierarchical model assumes that:

Yi|θi ∼ N(θi, σ
2
i ),

θi|µ, τ ∼ N(µ, τ 2)

where the variances σ2
1, σ

2
2, . . . , σ

2
n are fixed and µ

and τ are given noninformative priors.
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The Normal-normal hierarchical model

Assume candidate models are indexed by τ , and the
deviance is defined as

D(θ) =
∑n

i=1
[(yi − θi)/σi]

2

It can be shown that the contribution to the
effective number of parameters from observation i is

pDi
= ρi +

ρi(1− ρi)∑n
j=1ρj

where ρi = τ 2/(τ 2 + σ2
i ) is the intra-class

correlation coefficient.
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In the limit as τ 2 → 0

There are two limiting situations.

In the limit as τ 2 → 0, the ANOVA model tends to
a pooled model where all observations have the
same prior mean µ. In this limit, pD = 1 and both
the DIC and penalised plug-in deviance are equal to

∑n

j=1
[(Yj − Y )/σj]

2
+ 2 (45)

where

Y =

∑n
j=1Yj/σ

2
j∑n

j=11/σ
2
j

. (46)
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In the limit as τ 2 →∞
In the limit as τ 2 →∞, the ANOVA model tends to
a saturated fixed-effects model, in which Y−i

contains no information about the mean of Yi. In
this limit, pD = n and DIC = 2n, but the penalised
plug-in deviance tends to infinity.

So there is strong disagreement between DIC and
the penalised plug-in deviance in this case.
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Conclusion

For linear models with scalar outcomes, DIC is a
good approximation to the penalised plug-in
deviance whenever pDi

� 1 for all i, which implies
pD � n.

So pD/n may be used as an indicator of the validity
of DIC in such models.
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Further reading

Plummer M. (2008). Penalized loss functions for
Bayesian model comparison. Biostatistics, 1–17.

Spiegelhalter D, Best N, Carlin B, van der
Linde A. (2002). Bayesian measures of model
complexity and fit (with discussion). Journal of the

Royal Statistical Society, Series B 64, 583–639.

WinBUGS website, which includes David
Spiegelhalter’s slides from the “IceBUGS” workshop
in 2006.
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Comparison of two methods
of oximetry measurement
Friday 15th August 2008, afternoon

Bendix Carstensen

Bayesian Data Analysis
11 – 15 August 2008, Copenhagen

Comparing methods of measurement

We may wish to compare two different methods for
measuring the same underlying (true) value.

Example 1: Lung function measurements using a
spirometer (expensive but accurate) and a peak flow

meter (cheap but less accurate).

Example 2: Standard or traditional method of
measurement compared to a new method based on
recent technology.
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Two methods for oxygen saturation

infant co.ox pulse.ox

1 78 71
1 76.4 72
1 77.2 73
2 68.7 68
2 67.6 67
2 68.3 68
3 82.9 82
3 80.1 77
3 80.7 77
4 62.3 43
4 65.8 69
4 67.5 77
5 75.8 76
5 73.7 72
5 76.3 68
6 78 79
6 78.8 78
6 77.3 78

177 oximetry measures (about
three per infant):

I Co-oximetry using
biochemistry

I Pulse oximetry using light
reflectance

Is there a difference between the
two methods?
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Two methods for oxygen saturation
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Comparing two methods of measurement

The two methods (pulse oximetry and co-oximetry)
are clearly strongly related - their correlation
coefficient is 0.87.

Correlation quantifies the association between the
measurements and not the agreement between
them.

The correlation

I would still be high even if one method was
systematically in error;

I will depend on the range of the true quantity in
the sample.
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Method comparison and regression?

Similarly, there is not much point in considering the
hypothesis that β0 = 0 (intercept) and β1 = 1
(slope).

Any attempt at modelling should take into account
the fact that both methods have measurement
errors.

Evidence for linear relationship is of little use if there
is large random variation between the methods.
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Statistical measures of agreement

Bland and Altman (Lancet (1986) 1 307-310)
suggested that the extent of agreement could be
examined by plotting the difference between pairs of
measurements on the vertical axis against the mean
of each pair on the horizontal axis.

If one method is known to be accurate then the
mean difference will indicate systematic bias.

Avoid plotting the difference against either of the
individual measurements due to the problem of
regression to the mean.
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Distribution of the difference

We work with a model for the sampling distribution
of the difference, and combine this with a prior
distribution for the mean difference.

Give a nominal 95% posterior prediction interval for
the difference (incorporating uncertainty in both the
mean and variance parameter):

Mean difference ± 2 × std dev(difference)

This is often called the limits of agreement and is
based on the usual assumption that the difference
are approximately normally distributed.
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General conclusions

More detailed analyses would look to see if the
differences vary systematically with the “level” (ie
mean value) of the measurements.

Even if the mean difference is very close to zero
(statistically and “clinically”) the variation may still
be large. Once we have the limits of agreement it is
up to the investigators to decide how to proceed.
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Motivation for the Bayesian approach

1. Capture explicitly uncertainty in the parameters
governing our measurement comparison, in
particular the mean difference δ and the
measurement error σ2

e .

2. Represent the hierarchical structure of the data
using a (population) distribution of random
effects at each level of the hierarchy.

3. Easy to incorporate extensions:

I Method-specific residual variances.
I Bias that depends on the level of measurement.
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Structure of the oximetry data

Three level hierarchy:

1. Individual infant (subject-specific random effect
representing their level of oxygen saturation).

2. Three separate measurement occasions
(occasion-specific random effect representing
the oxygen saturation on that occasion).

3. Two methods of measurement, pulse- and
co-oximetry (structural term for “bias” as well
as random error).
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Prior distributions

We need prior distributions for the parameters
representing the mean difference between the two
methods of measurement, as well as the variance
components representing

1. Subject-specific effects: σ2
u

2. Measurement occasion: σ2
v

3. Random error: σ2
e
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