Matched and nested case-control studies

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark b@bxc.dk http://BendixCarstensen.com

Department of Biostatistics, University of Copenhagen, 18 November 2016

http://BendixCarstensen.com/AdvEpi

1/ 98

Case-control studies

Bendix Carstensen

Matched and nested case-control studies 18 November 2016 Department of Biostatistics, University of Copenhagen http://BendixCarstensen.com/AdvEpi

Relationship between follow–up studies and case–control studies

- In a cohort study, the relationship between exposure and disease incidence is investigated by following the entire cohort and measuring the rate of occurrence of new cases in the different exposure groups.
- The follow-up allows the investigator to register those subjects who develop the disease during the study period and to identify those who remain free of the disease.

Rationale behind case-control studies

In a follow-up study, rates among exposed and non-exposed are estimated by:

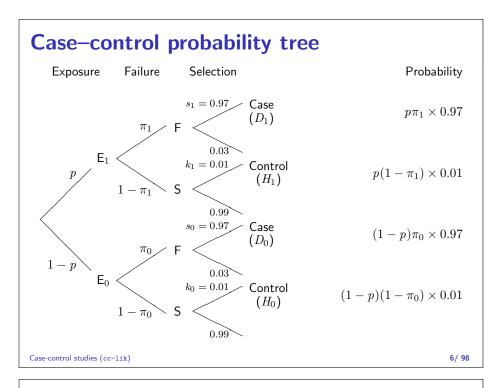
$$rac{D_1}{Y_1}$$
 and $rac{D_0}{Y_0}$

and the rate ratio by:

$$\frac{D_1}{Y_1} \bigg/ \frac{D_0}{Y_0} = \frac{D_1}{D_0} \bigg/ \frac{Y_1}{Y_0}$$

Case-control studies (cc-lik)

Rationale behind case-control studies


 Case-control study: same cases but controls represent the distribution of risk time

$$\frac{H_1}{H_0} \approx \frac{Y_1}{Y_0}$$

• ... therefore the rate ratio is estimated by:

$$\left. \frac{D_1}{D_0} \right/ \frac{H_1}{H_0}$$

 Controls represent risk time, not disease-free persons.

What is estimated by the case-control ratio? $\begin{aligned}
\frac{D_1}{H_1} &= \frac{0.97}{0.01} \times \frac{\pi_1}{1 - \pi_1} = \left(\frac{s_1}{k_1} \times \frac{\pi_1}{1 - \pi_1}\right) \\
\frac{D_0}{H_0} &= \frac{0.97}{0.01} \times \frac{\pi_0}{1 - \pi_0} = \left(\frac{s_0}{k_0} \times \frac{\pi_0}{1 - \pi_0}\right) \\
\frac{D_1/H_1}{D_0/H_0} &= \frac{\pi_1/(1 - \pi_1)}{\pi_0/(1 - \pi_0)} = OR_{\text{population}} \\
--\text{ but only for equal sampling fractions:} \\
s_1/k_1 &= s_0/k_0 \quad \Leftarrow \quad s_1 = s_0 \wedge k_1 = k_0
\end{aligned}$

Estimation from case-control study

Odds-ratio of disease between exposed and unexposed **given inclusion**:

$$OR = \frac{\omega_1}{\omega_0} = \frac{\pi_1}{1 - \pi_1} / \frac{\pi_0}{1 - \pi_0}$$

odds-ratio of disease (for a small interval) between exposed and unexposed *in the study* is the same as odds-ratio for disease between exposed and unexposed in the "study base",

Estimation from case-control study

- ... under the assumption that:
 - inclusion probability is the same for exposed and unexposed cases.
 - inclusion probability is the same for exposed and unexposed controls.

The selection mechanism can **only** depend on case/control status.

Case-control studies (cc-lik)

9/ 98

Disease OR and exposure OR

The disease-OR comparing exposed and non-exposed given inclusion in the study is the same as the population-OR:

$$\frac{D_1}{H_1} \Big/ \frac{D_0}{H_o} = \frac{\pi_1}{1 - \pi_1} \Big/ \frac{\pi_0}{1 - \pi_0} = OR_{pop}$$

The disease-OR is equal to the exposure-OR comparing cases and controls:

$$\left. \frac{D_1}{H_1} \right/ \frac{D_0}{H_o} = \left. \frac{D_1}{D_o} \right/ \frac{H_1}{H_o} = \frac{D_1 H_0}{D_0 H_1}$$

Case-control studies (cc-lik)

10/ 98

Log-likelihood for case-control studies

The **observations** in a case-control study are

- Response: case/control status
- Covariates: exposure status, etc.

Parameters possible to estimate are odds of disease **conditional on inclusion** into the study.

and therefore also

odds ratio of disease between groups conditional on inclusion into the study.

Log-likelihood for case-control studies

The log-likelihood is a binomial likelihood with odds of being a case (conditional on being included):

- odds ω_0 for unexposed and
- odds ω_1 for exposed or
- odds ω_0 for unexposed and
- ► the odds-ratio θ = ω₁/ω₀ between exposed and unexposed.

Only the odds-ratio parameter, θ , is of interest

Case-control studies (cc-lik)

12/ 98

Log-likelihood for case-control studies

Case/control outcome and exposure (0/1):

- ► unexposed group: N₀ persons, D₀ cases, N₀ − D₀ controls, case-odds ω₀
- exposed group:
 N₁ persons, D₁ cases, N₁ − D₁ controls, case-odds ω₁ = θω₀

Binomial log-likelihood:

$$D_0 \ln(\omega_0) - N_0 \ln(1 + \omega_0) + D_1 \ln(\theta \omega_0) - N_1 \ln(1 + \theta \omega_0)$$

 — logistic regression with case/control status as outcome and exposure as explanatory variabale
 Case-control studies (cc-lik)

Log-likelihood for case-control studies

Binomial outcome (case/control) and binary exposure (0/1)

Odds-ratio (θ) is the ratio of ω_1 to ω_0 , so:

$$\ln(\theta) = \ln(\omega_1/\omega_0) = \ln(\omega_1) - \ln(\omega_0)$$

Estimates of $\ln(\omega_1)$ and $\ln(\omega_0)$ are:

$$\widehat{\ln(\omega_1)} = \ln\left(\frac{D_1}{H_1}\right) \text{ and } \widehat{\ln(\omega_0)} = \ln\left(\frac{D_0}{H_0}\right)$$

Log-likelihood for case-control studies Estimated log-odds have standard errors: $\sqrt{\frac{1}{D_1} + \frac{1}{H_1}}$ and $\sqrt{\frac{1}{D_0} + \frac{1}{H_0}}$ Exposed and unexposed form two independent bodies of data, so the estimate of $\ln(\theta)$ [= ln(OR)] is $\ln\left(\frac{D_1}{H_1}\right) - \ln\left(\frac{D_0}{H_0}\right), \quad \text{s.e.} = \sqrt{\frac{1}{D_1} + \frac{1}{H_1} + \frac{1}{D_0} + \frac{1}{H_0}}$ 15/98 Case-control studies (cc-lik)

BCG vaccination and leprosy

New cases of leprosy were examined for presence or absence of the BCG scar. During the same period, a 100% survey of the population of this area, which included examination for BCG scar, had been carried out.

BCG scar	Leprosy cases	Population survey
Present	101	46,028
Absent	159	34,594

The tabulated data refer only to subjects under 35. What are the sampling fractions in this study?

Case-control studies (cc-lik)

16/98

Odds ratio with confidence interval $OR = \frac{D_1/H_1}{D_0/H_0} = \frac{101/46,028}{159/34,594} = 0.48$ s.e. $(\ln[OR]) = \sqrt{\frac{1}{D_1} + \frac{1}{H_1} + \frac{1}{D_0} + \frac{1}{H_0}}$ $=\sqrt{\frac{1}{101} + \frac{1}{46.028} + \frac{1}{159} + \frac{1}{34,594}}$ = 0.127 $erf = exp(1.96 \times 0.127) = 1.28$ $OR \stackrel{\times}{\div} erf = 0.48 \stackrel{\times}{\div} 1.28 = (0.37, 0.61)$ (95% c.i.)

Case-control studies (cc-lik)

Unmatched stu	dy with 1000	controls	
BCG scar	Leprosy cases	Controls	
Present Absent	101 159	554 446	
What are the san	npling fractions he	re?	
$OR = \frac{1}{1}$	$\frac{01/554}{59/446} = \frac{0.1823}{0.3565}$	= 0.51	
	$\sqrt{\frac{1}{101} + \frac{1}{554} + \frac{1}{159}}$)
	xp(1.96s.e.(ln[OR]))		
95% c.i.:	$0.51 \stackrel{\times}{\div} \text{erf} = (0.39)$, 0.68)	
Case-control studies (cc-lik)			18/ 98

Frequency matched studies

Bendix Carstensen

Matched and nested case-control studies 18 November 2016 Department of Biostatistics, University of Copenhagen http://BendixCarstensen.com/AdvEpi

Age-stratified odds-ratio: BCG data

Exposure: BCG

Potential confounder: age

- ► Age and BCG-scar correlated.
- Age is associated with leprosy.
- Bias in the estimation of the relationship between BCG-scar and leprosy.

Estimate an OR for leprosy associated with BCG in each age-stratum.

Combine to an overall estimate (if not too variable between strata).

	Ca	ses	Ρορι	ulation	OR
BCG	_	+		+	estimate
Age					
0–4	1	1	7,593	11,719	0.65
5–9	11	14	7,143	10,184	0.89
10–14	28	22	5,611	7,561	0.58
15–19	16	28	2,208	8,117	0.48
20–24	20	19	2,438	5,588	0.41
25–29	36	11	4,356	1,625	0.82
30–34	47	6	5,245	1,234	0.54
				Overall	0.58

The simulated cc-study, stratified by age

	Ca	ses	Population		
BCG		+	_	+	
Age					
0–4	1	1	101	137	
5–9	11	14	91	115	
10–14	28	22	82	101	
15–19	16	28	28	87	
20–24	20	19	25	69	
25–29	36	11	63	21	
30–34	47	6	56	24	
Total	159	101	446	554	

Frequency matched studies (cc-str)

21/ 98

Matching and efficiency

- If some strata have many controls per case and other only few, there is a tendency to "waste"
 - controls in strata with many controls
 - cases in strata with few controls
- The solution is to match or stratify

the study **design**:

 Make sure that the ratio of cases to controls is approximately the same in all strata (e.g. age-groups).

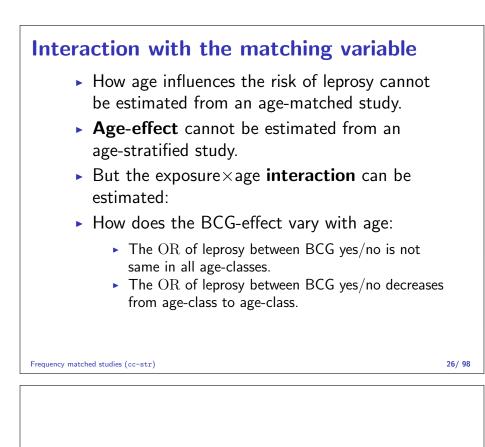
	Ca	Cases		lation
BCG	_	+	_	+
Age				
0-4	1	1	3	5
5–9	11	14	48	52
10–14	28	22	67	133
15–19	16	28	46	130
20–24	20	19	50	106
25–29	36	11	126	62
30–34	47	6	174	38

Frequency matched studies (cc-str)

23/ 98

Simulated cc-study (group-matched)

- **Not** possible to estimate effect of age.
- Age must be included in model.
 But estimates of age-effects do not have any meaning.
- Testing of the age-effect is irrelevant.
- If a variable is used for matching (stratified sampling) it **must** be included in the model.

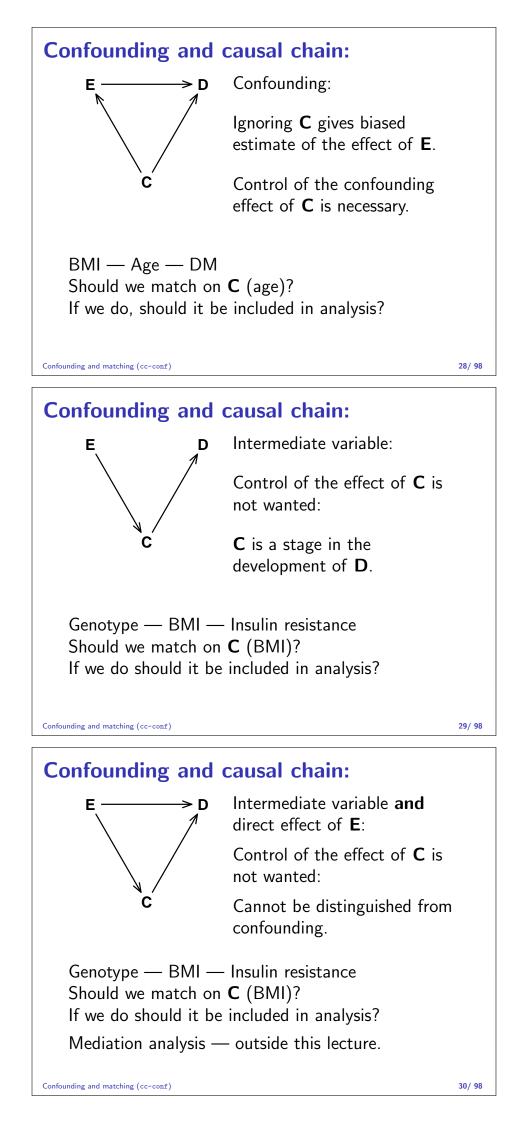

24/98

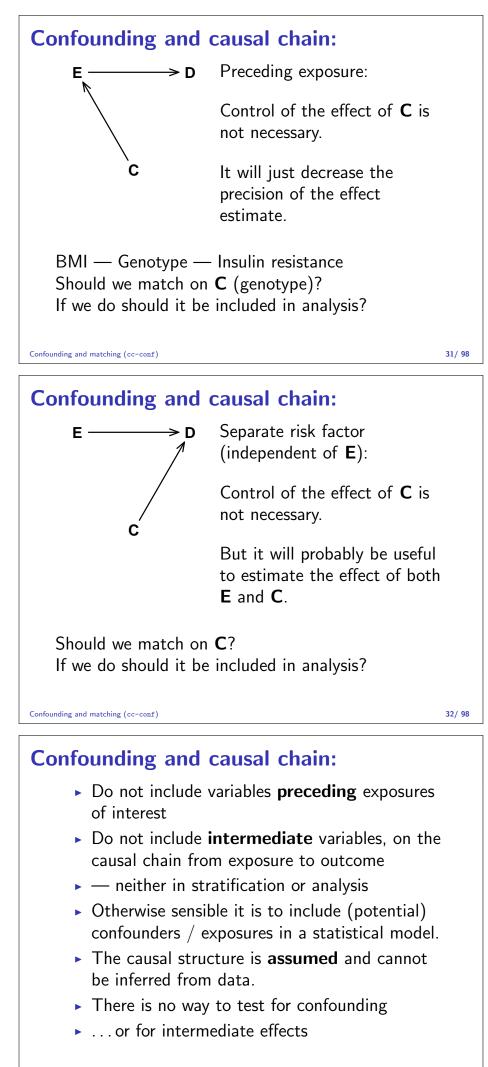
Matching: BIAS!

If the study is stratified on a variable, this variable must enter in the analysis too:

Stratum	Ca	ses	Con	trols	Odds
Exp	+		+		ratio
1	89	11	80	20	2.0
2	67	33	50	50	2.0
3	33	67	20	80	2.0
Total	189	111	150	150	1.7

The bias from ignoring matching will always be toward 1.


Confounding and matching


Bendix Carstensen

Matched and nested case-control studies 18 November 2016 Department of Biostatistics, University of Copenhagen http://BendixCarstensen.com/AdvEpi

Confounding definition

- Exposure effect estimated wrongly because a factor is associated both with exposure and disease.
- Age and sex are the most common confounders.
- Confounder characteristics:
 - Associated to exposure
 - Risk factor by itself (associated to disease).
- Associated to exposure only: Irrelevant
- Associated to disease only: Independent risk factor

Logistic regression in CC-studies

Bendix Carstensen

Matched and nested case-control studies 18 November 2016 Department of Biostatistics, University of Copenhagen http://BendixCarstensen.com/AdvEpi

Analysis by logistic regression

- Assuming the odds ratio, θ, to be constant over strata, each stratum adds a separate contribution to the log likelihood function for θ.
- The log likelihood can be analyzed in a model where odds is a product of age-effect and exposure effect.
- This is a logistic regression model:

case-control odds(a) = $\mu_a \times \theta$

- a multiplicative model for **odds**.
- additive model for log-odds:

 $\log(\mathsf{odds}) = m_a + b$

Logistic regression in CC-studies (cc-lr)

Recall the sampling fractions:

What is estimated by the case-control ratio?

$$\frac{D_1}{H_1} = \frac{0.97}{0.01} \times \frac{\pi_1}{1 - \pi_1} = \left(\frac{s_1}{k_1} \times \frac{\pi_1}{1 - \pi_1}\right)$$

$$\frac{D_0}{H_0} = \frac{0.97}{0.01} \times \frac{\pi_0}{1 - \pi_0} = \left(\frac{s_0}{k_0} \times \frac{\pi_0}{1 - \pi_0}\right)$$

Study valid only for equal sampling fractions: $s_1/k_1 = s_0/k_0 = s/k$.

Population odds **multiplied** ratio of sampling fractions for cases to controls.

Logistic regression for C-C studies

Model for the population:

$$\ln\left[\frac{\pi}{1-\pi}\right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Model for the observed data:

$$\ln(\mathsf{odds}(\mathsf{case}|\mathsf{incl.})) = \ln\left[\frac{\pi}{1-\pi}\right] + \ln\left[\frac{s}{k}\right]$$
$$= \left(\ln\left[\frac{s}{k}\right] + \beta_0\right) + \beta_1 x_1 + \beta_2 x_2$$

Logistic regression in CC-studies (cc-lr)

36/98

Logistic regression for C-C studies

Analysis of P {case | inclusion}
 — i.e. binary observations:

$$Y = \begin{cases} 1 & \sim \text{ case} \\ 0 & \sim \text{ control} \end{cases}$$

- Effects of covariates are estimated correctly.
- Intercept is (almost always) meaningless.
 Depends on the sampling fractions for cases, s, and controls, k, which are usually not known.

Logistic regression in CC-studies (cc-lr)

37/98

Parameter interpretation in logistic regression

Model for persons with covariates x_A , resp. x_B :

 $\ln\left(\mathsf{odds}(\mathsf{case} \mid x_A)\right) = \left(\ln\left[\frac{s}{k}\right] + \beta_0\right) + \beta_1 x_{1A} + \beta_2 x_{2A}$ $\ln\left(\mathsf{odds}(\mathsf{case} \mid x_B)\right) = \left(\ln\left[\frac{s}{k}\right] + \beta_0\right) + \beta_1 x_{1B} + \beta_2 x_{2B}$

$$\ln(\operatorname{OR}_{x_A \text{ vs. } x_B}) = \beta_1(x_{1A} - x_{1B}) + \beta_2(x_{2A} - x_{2B})$$

 $\exp(\beta_1)$ is OR for a difference of 1 in x_1 $\exp(\beta_2)$ is OR for a difference of 1 in x_2 — assuming that other variables are fixed.

Stratified sampling

- We have different sampling fraction for each stratum (age-class, sex, ...)
- Model for the observed data:

$$\ln\left(\operatorname{odds}(\operatorname{case}|\operatorname{incl.})\right) = \ln\left[\frac{\pi}{1-\pi}\right] + \ln\left[\frac{s_a}{k_a}\right]$$
$$= \left(\ln\left[\frac{s_a}{k_a}\right] + \beta_0\right) + \beta_1 x_1 + \beta_2 x_2$$

- Thus, an intercept for each stratum
- but with no interpretation
- this is why the stratification variable must be in the model

Logistic regression in CC-studies (cc-lr)

39/98

SAS commands — data

```
data a1 ;
     input bcg alder cases cont rcont mcont ;
     total = cases + cont ;
    rtotal = cases + rcont ;
    mtotal = cases + mcont ;
    cards:
    1 7 1 7593 101
                        3
    0 7 1 11719 137
                       5
    1 6 11 7143 91 48
    0 6 14 10184 115
                       52
    1 5 28 5611 82 67
    0 5 22 7561 101 133
    1 4 16 2208 28 46
   0 4 28 8117 87 130
1 3 20 2438 25 50
    0 3 19 5588 69 106
    1 2 36 4356 63 126
    0 2 11 1625 21 62
    1 \ 1 \ 47 \ 5245 \ 56 \ 174
    0 1 6 1234 24 38
Logistic regression in CC-studies (cc-lr)
```

SAS commands — random sample of controls

Random sample of controls

Deviance			6	6.6268	1.1045	
Analysis O Parameter INTERCEPT ALDER ALDER ALDER ALDER ALDER BCG BCG	f Pa: 1 2 3 4 5 6 7 0 1	rameter DF 1 1 1 1 1 1 0 1 0	Estimates Estimate -4.5008 4.2062 4.0452 3.9700 3.9233 3.4711 2.6685 0.0000 -0.5475 0.0000	Std Err 0.7138 0.7333 0.7345 0.7363 0.7363 0.7282 0.7414 0.0000 0.1604 0.0000	ChiSquare 39.7577 32.9008 30.3339 29.0739 28.6209 22.7200 12.9538 11.6557	Pr>Chi 0.0001 0.0001 0.0001 0.0001 0.0003 0.0006
ogistic regression in CC-stuc	lies (cc-	lr)				42/98

LR Statistics For Type 3 Analysis: Chi-Square Pr > ChiSq 149.73 <.0001 DF Source alder 6 1 11.78 0.0006 bcg Contrast Estimate Results Standard Chi-Estimate Conf. Limits Pr>ChiSq Label Square Error $\begin{array}{ccccccc} + bcg & -0.5475 & 0.1604 & -0.8619 & -0.2332 \\ Exp(+bcg) & 0.5784 & 0.0928 & 0.4224 & 0.7920 \\ - bcg & 0.5475 & 0.1604 & 0.2332 & 0.8619 \\ Exp(-bcg) & 1.7290 & 0.2773 & 1.2626 & 2.3676 \end{array}$ 11.66 0.0006 11.66 0.0006

Logistic regression in CC-studies (cc-lr)

43/ 98

Matched sample of controls I

eviance		6	4.4399	0.7400	
alysis Of TERCEPT DER DER DER DER DER DER DER DER	Parameter DF 1 2 1 3 1 4 1 5 1 6 1 7 0 0 1 1 0	-	4.4399 Std Err 0.7998 0.8129 0.8136 0.8139 0.8116 0.8271 0.0000 0.1547 0.0000	0.7400 ChiSquare 1.7786 0.0857 0.0400 0.0009 0.0077 0.0002 0.0026 13.6790	Pr>Ch 0.182 0.769 0.841 0.976 0.930 0.988 0.959 0.000

Matched sample of controls II

Source	DF	Chi	e Pr>	Chiga		
alder	6	2.3		0.8867		
bcg	1	13.8		0.0002		
Contrast	Estimate Re	sults				
		Standard	~ ~ ~		Chi-	
Label	Estimate	Error	Conf. L	imits	Square	Pr>Ch
+bcg	-0.5721		-0.8752		13.68	0.0
-bcg	0.5644 0.5721				13.68	0.0
Exp(-bcg)					10.00	0.0
ic regression in CC-	studies (cc-lr)					45/ 9

Matched sample of controls III

Standard deviation of $\ln(OR)$ shrinks from 0.160 to 0.155 by age-matching.

The age-BCG and the age-leprosy associations are not very strong.

Logistic regression in CC-studies (cc-lr)

Caveat: remember the matching variable With age in the model: Label Estimate StdErr Conf. Limits ChiSq +bcg -0.5721 0.1547 -0.8752 -0.2689 13.68 Exp(+bcg) 0.5644 0.0873 0.4168 0.7642 Without age in the model: (**wrong!**—OR biased toward 1):

+bcg -0.4769 0.1416 -0.7543 -0.1994 11.35 Exp(+bcg) 0.6207 0.0879 0.4703 0.8192

Change in $\ln(OR)$ is $0.0952 \approx 61\%$ s.e. !

Interpretation and study design

Bendix Carstensen

Matched and nested case-control studies 18 November 2016 Department of Biostatistics, University of Copenhagen http://BendixCarstensen.com/AdvEpi

Odds-ratio and rate ratio

If the disease probability, π, in the study period (length of period: T) is small:

 $\pi = \text{cumulative risk} \approx \text{cumulative rate} = \lambda T$

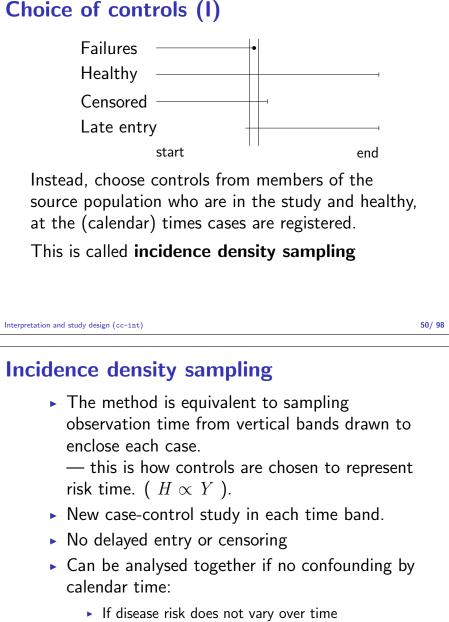
For small π , $1 - \pi \approx 1$, so:

$$OR = \frac{\pi_1/(1-\pi_1)}{\pi_0/(1-\pi_0)} \approx \frac{\pi_1}{\pi_0} \approx \frac{\lambda_1}{\lambda_0} = RR$$

• π small \Rightarrow OR estimate of RR.

Interpretation and study design (cc-int)

48/ 98


Important assumption behind rate ratio interpretation

The entire "study base" must have been available throughout:

- no censorings.
- no delayed entries.

This will clearly not always be the case, but it may be achieved in carefully designed studies.

- or
- If the fraction of exposed does not vary over time

Interpretation and study design (cc-int)

Incidence density sampling

Implications for sampling:

- a person can be a control more than once
- a person chosen as a control can be a case later
- each person is sampled at a specific time
- covariates refer to this time
- if the same person included multiple times, it will typically with different covariate values
- representing the non-diseased risk time
- and not the non-diseased persons

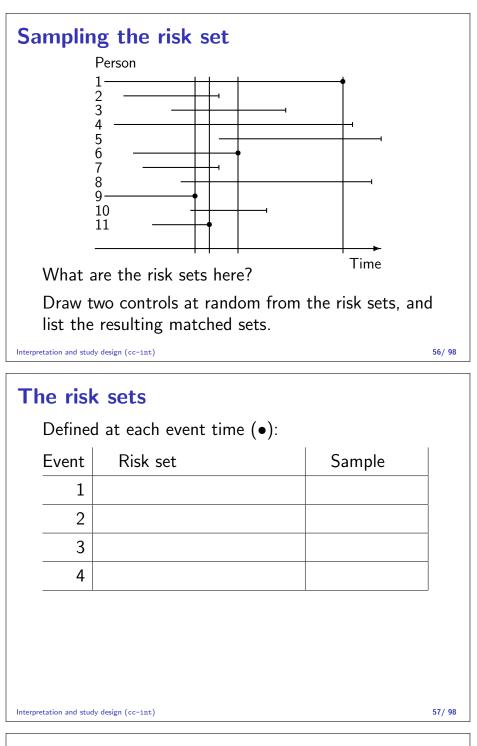
Nested case-control study

- Case-control study nested in cohort:
- Controls are chosen from a cohort from which the cases arise.
- Controls are chosen among those at risk of becoming cases at the time of diagnosis of each case.
- In Scandinavia, most case-control studies are nested in the entire population, because this is available as a cohort in the population registers.

Interpretation and study design (cc-int)

53/98

Reasons for nested case-control study


- Collection of data on covariates:
 - not measured in the cohort study
 - but available for measuring
 - e.g. stored blood samples
- Data collection only for cases and matched controls.
- Alternative would be collecting data on the entire cohort at risk at each failure time (=diagnosis of case).
- Any cohort study can be used as basis for generating a nested case-control study.

Interpretation and study design (cc-int)

54/98

Nested case-control study

The technical term is to **sample the risk set**, i.e. instead of collecting exposure information on all individuals in the risk set, we only do it for a subsample of them.

The risk sets

Event	Risk set	Controls
1	1,2,3,4,6,7,8, 9 ,10,11	4,1
2	1,2,3,4,6,7,8,10, 11	2,1
3	1,3,4,5, 6 ,8,10	8,3
4	1 ,4,5,8	4,5

Individuals 4 and 1 are used twice as controls.

Individual 1 eventually becomes a case.

 Perfectly OK, because they are at risk at the time where they are selected to represent the risk set.

How many controls per case?

The standard deviation of $\ln(OR)$:

Equal number of cases and controls:

$$\sqrt{\frac{1}{D_1} + \frac{1}{H_1} + \frac{1}{D_0} + \frac{1}{H_0}} \approx \sqrt{\frac{1}{D_1} + \frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{D_0}}$$
$$= \sqrt{\left(\frac{1}{D_1} + \frac{1}{D_0}\right) \times (1+1)}$$

Interpretation and study design (cc-int)

59/98

How many controls per case? Twice as many: $\sqrt{\frac{1}{D_1} + \frac{1}{H_1} + \frac{1}{D_0} + \frac{1}{H_0}} \approx \sqrt{\frac{1}{D_1} + \frac{1}{2D_1} + \frac{1}{D_0} + \frac{1}{2D_0}}$ $= \sqrt{\left(\frac{1}{D_1} + \frac{1}{D_0}\right) \times (1 + 1/2)}$ *m* times as many: $\sqrt{\frac{1}{D_1} + \frac{1}{H_1} + \frac{1}{D_0} + \frac{1}{H_0}} \approx \sqrt{\left(\frac{1}{D_1} + \frac{1}{D_0}\right) \times (1 + 1/m)}$

- ► The standard deviation of the ln[OR] is (approximately) √1 + 1/m times larger in a case-control study, compared to the corresponding cohort-study.
- Therefore, 5 controls per case is normally sufficient: $\sqrt{1+1/5} = 1.09$.
- Only relevant if controls are "cheap" compared to cases.
- If cases and controls cost the same, and cases are available the most efficient is to have the same number of cases and controls.

Individually matched studies

Bendix Carstensen

Matched and nested case-control studies 18 November 2016 Department of Biostatistics, University of Copenhagen http://BendixCarstensen.com/AdvEpi

Individually matched study

- If strata are defined so finely that there is only one case in each, we have an individually matched study.
- The reason for this may be:
 - Comparability between cases and controls
 - Convenience in sampling
 - Controlling for age, calendar time (incidence density sampling)
 - Control for ill-defined factors

Individually matched studies (cc-match)

62/98

Individually matched study

- Pitfall in design:
- Overmatching (cases and controls are identical on some risk factors).
- Problem in analysis:
- Conventional method for analysis (logistic regression) breaks down, because we get one parameter per set (one parameter per case)!

Individually matched study

- If matching is on a well-defined quantitative variable as e.g. age, then broader stata may be formed *post hoc*, and age included in the model.
- ➤ ⇒ assuming effect of age (matching variable) is continuous.
- If matching is on "soft" variables (neighborhood, occupation, ...) the original matching cannot be ignored:
- ... no way to have a continuous effect of a non-quantitative variable.

 \blacktriangleright \Rightarrow matched analysis.

Individually matched studies (cc-match)

64/98

Salmonella Manhattan study

Telephone interview concerning the food items ingested during the last three days:

- Case: Verified infection with *S.* Manhattan
- ► Control: Person from same geographical area.
- ▶ 16 matched pairs 1:1 matched study.
- Exposure: Eaten sliced saxony ham (hamburgerryg)

OBS	PARNR	KONTROL	HAMBURG	OBS	PARNR	KONTROL	HAMBURG
1	1	0	0	17	12	0	0
2	1	1	0	18	12	1	0
3	3	0	1	19	14	0	1
4	3	1	0	20	14	1	0
5	4	0	1	21	16	0	0
6	4	1	0	22	16	1	0
7	5	0	1	23	17	0	1
8	5	1	1	24	17	1	0
9	7	0	1	25	18	0	0
10	7	1	0	26	18	1	1
11	8	0	0	27	19	0	1
12		1	1	28	19	1	1
13		0	0	29	20	0	1
14		1	0	30	20	1	1
15		0	1	31	23	0	1
16	11	1	1	32	23	1	0
Individually m	atched studie	s (cc-match)					66/ 98

1:1 matched studies — Tabulation

1:1 matched case-control study can be tabulated as:

No. of pairs		Control exposure		
	+	_		
+	a	b	a + b	
—	c	d	c+d	
	a + c	b+d	N	
	irs + _	$\begin{array}{c} + \\ + \\ - \\ - \\ c \end{array}$	$\begin{array}{c c} & & & \\ \hline + & - \\ \hline + & a & b \\ - & c & d \end{array}$	

This is a table of **pairs**.

Individually matched studies (cc-match)

67/98

Remember: Exposure OR = Disease OR: $OR = \omega = \frac{P \{E+|case\} P \{E-|control\}}{P \{E-|case\} P \{E+|control\}}$ estimated by: $\hat{\omega} = \frac{b}{c}$ Standard error on the log-scale:

s.e.
$$[\ln(\hat{\omega})] = \sqrt{\frac{1}{b} + \frac{1}{c}}$$

Individually matched studies (cc-match)

68/98

Salmonella Manhattan study

Exercise: Tabulate the Salmonella data:

	No. of matched		Control			
	pairs		+	—		
-						
	Case	I				
(exposure	_				
-						
Individually matched studies (cc-match)				69/98		

OR estimated by:

$$\hat{\omega} = \frac{b}{c} =$$

Standard error on the log-scale:

s.e.
$$[\ln(\hat{\omega})] = \sqrt{\frac{1}{b} + \frac{1}{c}} =$$

Find approximate 95% c.i. for the OR:

Individually matched studies (cc-match)

70/ 98

71/ 98

Solution to exercise:

OR estimated by:

$$\hat{\omega} = \frac{b}{c} = \frac{6}{2} = 3.0$$

Standard error on the log-scale:

s.e.
$$[\ln(\hat{\omega})] = \sqrt{\frac{1}{b} + \frac{1}{c}} = \sqrt{\frac{1}{6} + \frac{1}{2}} = 0.8165$$

Approximate 95% c.i. for OR:

$$3.0 \stackrel{\times}{\div} \exp(1.96 \times 0.8165) = (0.6055, 14.8636)$$

Individually matched studies (cc-match)

1:1 matched studies: — Test I

		Control	Control exposure		
Pairs		+	_		
Case	+	a	b	a + b	
exposure	—	c	d	c + d	
		a + c	b+d	N	

• McNemars test of OR=1 compares b and c:

$$\frac{(b-c)^2}{b+c} \sim \chi^2(1)$$

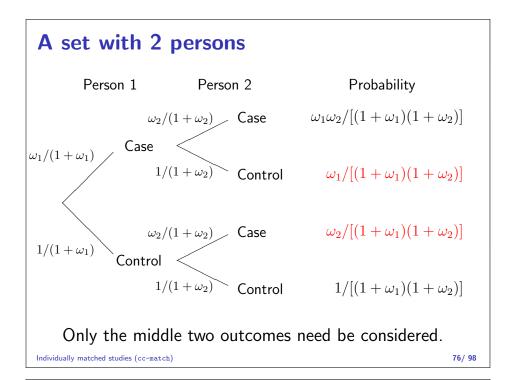
• ω_P — baseline odds for pair P

- this is the irrelevant (nuisance) parameter

• θ_i — covariate effects for person *i* in the pair.

Two persons in a pair — based on pair (P) and covariates:

- person i = 1: $\omega_1 = \omega_P \theta_1$
- person i = 2: $\omega_2 = \omega_P \theta_2$


Individually matched studies (cc-match)

1:1 matched studies: Likelihood

odds(disease) = $\omega_P \theta_i$ ln[odds(disease)] = ln[ω_P] + ln[θ_i] = $\boxed{\mathsf{Cnr}_P}$ + ln(OR)

One parameter per pair: no. of parameters $\approx N/2$. Profile likelihood approach breaks down, instead:

- Probability of data, conditional on design, i.e. on 1 case and 1 control per set.
- Distribution of covariates for case and control contains the information.

Likelihood from one matched pair

 $L = P \{ subj. 1 case | 1 case, 1 control \}$

$$= \frac{\omega_1}{\omega_1 + \omega_2} = \frac{\omega_P \theta_1}{\omega_P \theta_1 + \omega_P \theta_2} = \frac{\theta_1}{\theta_1 + \theta_2}$$

Log-likelihood contribution from one matched pair:

$$\log\left(\frac{\theta_{\mathsf{case}}}{\theta_{\mathsf{case}}+\theta_{\mathsf{control}}}\right)$$

Independent of the parameters ω_P .

Individually matched studies (cc-match)

77/ 98

1:m matching

Odds for disease in one matched set:

person 1 : $\omega_P \theta_1 = \omega_1$ person 2 : $\omega_P \theta_2 = \omega_2$... person m + 1 : $\omega_P \theta_{m+1} = \omega_{m+1}$

Probability that person 1 is the case, and the others are the controls:

$$\frac{\omega_1}{1+\omega_1} \times \frac{1}{1+\omega_2} \times \cdots \times \frac{1}{1+\omega_{m+1}}$$

1:m matching

Probability that person 2 is the case, and the others are the controls:

$$\frac{1}{1+\omega_1} \times \frac{\omega_2}{1+\omega_2} \times \cdots \times \frac{1}{1+\omega_{m+1}}$$

. . .

Probability that person m + 1 is the case, and the others are the controls:

$$\frac{1}{1+\omega_1} \times \frac{1}{1+\omega_2} \times \cdots \times \frac{\omega_{m+1}}{1+\omega_{m+1}}$$

Individually matched studies (cc-match)

79/98

Probability of 1 case and *m* controls: $\sum_{i} \frac{\omega_{i}}{(1+\omega_{1}) \times (1+\omega_{2}) \times \cdots (1+\omega_{m+1})}$ $= \frac{\sum_{i} \omega_{i}}{(1+\omega_{1}) \times (1+\omega_{2}) \times \cdots (1+\omega_{m+1})}$

Conditional probability that person 1 is the case and persons $2, 3, \ldots, m+1$ are the controls, *given* one case and m controls:

$$\frac{\omega_1}{\omega_1 + \omega_2 + \dots + \omega_{m+1}} = \frac{\theta_1}{\theta_1 + \theta_2 + \dots + \theta_{m+1}}$$

— the ω_P is the same so it cancels

Individually matched studies (cc-match)

80/98

1:m matching

Log-likelihood contribution from one matched set:

$$\ell = \log\left(\frac{\theta_{\mathsf{case}}}{\sum_{i \, \in \, \mathsf{cases} \, \& \, \mathsf{controls}} \theta_i}\right)$$

Log-likelihood for the total study:

$$\ell = \sum_{\text{matched sets}} \log \left(\frac{\theta_{\text{case}}}{\sum_{i \, \in \, \text{cases \& controls}} \theta_i} \right)$$

Individually matched studies (cc-match)

1:m matching

- Number of controls can vary between sets.
- Variable constant within matched sets: impossible to estimate a multiplicative effect:

$$\frac{\exp(\beta x_{\text{case}})\theta_{\text{case}}}{\sum_{i}\exp(\beta x_{i})\theta_{i}} = \frac{\exp(\beta x)\theta_{\text{case}}}{\sum_{i}\exp(\beta x)\theta_{i}} = \frac{\theta_{\text{case}}}{\sum_{i}\theta_{i}}$$

- Over matching: $x_i = x$ within strata.
- Interactions between such variables and other variable can be estimated.
- In particular, interaction with matching variables can be estimated.

Individually matched studies (cc-match)

82/98

1:m matching

The conditional log-likelihood for a 1 : *m*-matched CC-study looks like a Cox-log-likelihood:

$$\ell = \sum_{\text{failure times}} \ln \left(\frac{\theta_{\text{case}}}{\sum_{i \, \in \, \text{Risk set}} \theta_i} \right)$$

The matched case-control likelihood is of this form if at each death time:

- The case dies.
- Only controls from the same set are at risk.

Individually matched studies (cc-match)

83/98

Use of proc phreg

- Input is a dataset with one observation per person.
- "Survival time" for controls > for cases.
- Cases events, controls censorings.
- Matched set variable required for strata-command.
- Ties handling = discrete. (not really necessary if only one case per matched set).

This is what traditionally is recommended for programs that can handle a stratified Cox-model.

Use of	proc pl	nreg I				
model h	eg data = manł kontrol * kontr parnr ;		b / ties =	discrete ;		
The PHREC	G Procedure					
Data Set Dependent Censoring	nformation t Variable g Variable g Value(s) iling	WORK.MANH1 kontrol kontrol 1 DISCRETE	1			
	Summary of the	e Number of E	vent and Ce	ensored Value	s Percent	
Stratum	parnr	Total	Event	Censored	Censored	
1 2 3 4 5 6 7	1 3 4 5 7 8 9	2 2 2 2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1 1	$50.00 \\ 50.0$	
Individually matched	studies (cc-match)					85/98
Use of 9 10 11 12 13 14 15 16	proc pl 11 12 14 16 17 18 19 20 23	nreg 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	
Total		32	 16	16	50.00	
Testing Test Likelihoo Score Wald		ypothesis: BE ni-Square 2.0930 2.0000 1.8104		Pr > ChiSq 0.1480 0.1573 0.1785		
Analysis Variable	s of Maximum L: Parameter Estimate	Standard	imates hi-Square	Pr>ChiSq	Hazard Ratio	
hamb	1.09861	0.81650	1.8104	0.1785	3.000	
Individually matched	studies (cc-match)					86/98
How th	e S. Ma	anhatta	n stu	dy REA	ALLY V	was
PARNR 1 3 4 5 7 8 9 10 11 12 14 16 17 18 19 20 22 23	1 2 1 2 1 1 1 3		trol * kont ies = discr	crol (1) = ha	mb	

The PHREG Pro	cedure						
Model							
Model Information							
Data Set Dependent Var Censoring Var Censoring Val	riable .ue(s)	WORK.MANH kontrol kontrol 1					
Ties Handling	5	DISCRETE					
Number of Obs Number of Obs			63 63				
Summary of t	the Number of	f Event and C	Censored Valu	les			
Stratum pa	arnr Total	Event	Censored		ercent		
1 1	3	1	2	66.67			
2 3 3 4	32	1	2 1	66.67 50.00			
4 5 5 7	4 4	1 1		75.00			
6 8 7 9	3 4	1 1					
8 10 9 11		0 1	2 3	100.00 75.00			
Individually matched studies	(cc-match)				88/ 98		
10 12			3	75.00			
11 14 12 16	3 4	1	3	75.00			
13 17 14 18 15 19		1 1	3 3	75.00			
15 19 16 20	9 4) 4	1 1	3 3	75.00 75.00			
17 22 18 23	2 2	0 1	2	100.00 75.00			
Total	63	 16	47				
		11 Hypothesi					
Test	-	-Square		• ChiSq			
Likelihood Ra		5.8323	1	0.0157			
Score Wald		5.6749 4.9411	1 1	0.0172 0.0262			
Analysis of M Parameter		ter Standard	l	Pr > ChiSq	Hazard Ratio		
		35 0.68824	-	-			
	Hazard	95% Hazard	Ratio				
Parameter	Ratio	Confidence L					
			17.792				
hamb	4.617	1.198	11.192				
		1.198	11.192				
	4.617	1.198	11.132		89/ 98		
hamb	4.617	1.198			89/ 98		
hamb	4.617				89/ 98		
hamb Individually matched studies Using pro proc logistic	4.617 (cc-match)	istic			89/ 98		
hamb Individually matched studies Using proc proc logistic class parm	4.617 (cc-match) c log c data = man c hamb(ref=" rol = hamb;	istic			89/ 98		
hamb Individually matched studies Using proc class parm model kontr strata parm	4.617 (cc-match) c log c data = man c hamb(ref=" rol = hamb;	istic			89/ 98		
hamb Individually matched studies Using proc class parm model kontr strata parm run ; 	4.617 (cc-match) C log. : data = man : hamb(ref="(rol = hamb; r; Strata Summan	istic			89/ 98		
hamb Individually matched studies Using proc class parm model kontr strata parm run ; 	4.617 (cc-match) C log. c data = man c hamb(ref="(c col = hamb; ar; Strata Summar control	istic I	 		89/ 98		
hamb Individually matched studies Using proc class parm model kontr strata parm run ; 	4.617 (cc-match) C log. : data = man : hamb(ref="(rol = hamb; rr; Strata Summar control Nu) 1	istic I			89/ 98		
hamb Individually matched studies Using proc class parm model kontr strata parm run ; 	4.617 (cc-match) C log c data = man c hamb(ref="(rol = hamb; r; Strata Summar control Nu) 1 2 1	istic h;)"); fy mber of Strata F	requency		89/ 98		
hamb Individually matched studies Using proc class parner model kontr strata parner run ; Response Pattern C 2 1	4.617 (cc-match) 0 C log. : data = main : hamb(ref="(rol = hamb; rr; Strata Summar : ontrol Nu) 1 2 1 2	istic h; "); fy mber of Strata 2 1	Trequency 4		89/ 98		
hamb Individually matched studies Using proc class parm model kontr strata parm run ; Response Pattern C 1 C 2 1 3 1	4.617 (cc-match) C log. c data = man c hamb(ref="(rol = hamb; rr; Strata Summar control 0 1 0 2 1 3	istic h;)"); fy mber of Strata 2 1 3 12	Prequency 4 2 9 48		89/ 98		
hamb Individually matched studies Using proc logistic class parny model kontr strata parn run ; Response Pattern 0 2 1 3 1 4 1	4.617 (cc-match) C log c data = man c hamb(ref="(rol = hamb); r; Strata Summar control Nu) 1 2 1 2 3 Analysis o:	istic h;; "); fy mber of Strata 1 3 12 f Maximum Lik Stan	Trequency 4 2 9 48 Telihood Esti	Wald			
hamb Individually matched studies Using proc class parm model kontr strata parm run ; Response Pattern 0 1 0 2 1 3 1 4 1	4.617 (cc-match) C log. c data = main c hamb(ref="(rol = hamb; rr; Strata Summar control 2 1 2 3 Analysis o: DF Est:	istic h;)"); f Maximum Lik Stan imate	Frequency 4 2 9 48 celihood Esti dard Frror Chi-	Wald	89/ 98		
hamb Individually matched studies Using proc logistic class parn model kontr strata parn run ; Response Pattern C 1 C 2 1 3 1 4 1 Parameter	4.617 (cc-match) C log. c data = main c hamb(ref="(rol = hamb; rr; Strata Summar control 2 1 2 3 Analysis o: DF Est:	istic h;)"); f Maximum Lik Stan imate	Frequency 4 2 9 48 celihood Esti dard Frror Chi-	Wald Square Pr	> ChiSq		

90/98

Individually matched studies (cc-match)

Using proc logistic II						
ParameterDFEstimateErrorChi-SquarePr > ChiSqhamb110.76490.34414.94110.0262						
The LOGISTIC Procedure Conditional Analysis						
Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits						
hamb 1 vs 0 4.617 1.198 17.792						
Obs: $0.7648 = 1.5296/2$, $exp(1.5296) = 4.617$ — estimates from proc logistic are using the so-called Helmert-contrasts; a leftover from pre-computing times, difficult to understand and largely irrelevant in epidemiology.	91/ 98					
Using clogit in Stata I						
. use manh . gen case = (pk==2)						
. clogit case hamburg, group(parnr)						
note: 2 groups (4 obs) dropped because of all positive or all negative outcomes.						
Iteration 0: log likelihood = -17.713566 Iteration 1: log likelihood = -17.70835 Iteration 2: log likelihood = -17.708349						

Individually matched studies (cc-match)

Using clogit in Stata II . clogit case hamburg, group(parnr) or note: 2 groups (4 obs) dropped because of all positive or all negative outcomes. Iteration 0: log likelihood = -17.713566 Iteration 1: log likelihood = -17.70835 Iteration 2: log likelihood = -17.708349							
	Conditional (f Log likelihood		0	gression	LR chi Prob >	of obs = 2(1) = chi2 = R2 =	59 5.83 0.0157 0.1414
	case	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
	hamburg	4.617468	3.177906	2.22	0.026	1.198331	17.79226
Individ	ually matched studies (cc-match)					93/98

Using clogistic in R I

Matched studies in practice

- Think of the scenario where extensive follow-up and all measurements were available for all persons in the cohort.
- Use "history" of a person as predictor of mortality / morbidity.
- Definition of "history":
 - Original treatment allocation.
 - Profile of measurements over time.
 - ► Genotype.
 - • •

Individually matched studies (cc-match)

95/98

Definition of history

- ▶ Is the entire profile of measurements relevant:
 - Only the most recent.
 - Only measurements older than 1 year, say
 - (latency).
 - Cumulative measures?
- What are the relevant summary measures of a persons history.
- Age (current age, age at entry)
- Calendar time (current or at entry)
- Exposure history

Selecting controls: Incidence density sampling

- Timescale: Controls should be alive when the corresponding case dies.
- More than one time-scale:
- e.g. age and calendar time:
- Match on:
 - date of event (calendar time)
 - date of birth (and hence age at event).
- Ensure comparability of covariates within matched sets.

Individually matched studies (cc-match)

97/98

Summary

- Case-control study:
 Select persons based on outcome status.
- Nested case-control studies saves money when extra information on persons must be collected.

Logistic regression.

- If all information is in the cohort it is always better to analyze the full cohort.
- Individually matched case-control studies for control of ill-defined variables.
 Conditional logistic regression.

Individually matched studies (cc-match)