The resurrection of time as a continuous concept in biostatistics, demography and epidemiology

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark & Department of Biostatistics, University of Copenhagen bxc@steno.dk http://BendixCarstensen.com

IMBEI, Mainz, Germany, 20 September 2016

http://BendixCarstensen.com/AdvCoh/talks/

P.K. Andersen & N. Keiding Interpretability and Importance of Functionals in Competing Risks and Multistate Models, *Stat Med, 2011* [1]:

P.K. Andersen & N. Keiding Interpretability and Importance of Functionals in Competing Risks and Multistate Models, *Stat Med, 2011* [1]:

1. Do not condition on the future

P.K. Andersen & N. Keiding Interpretability and Importance of Functionals in Competing Risks and Multistate Models, *Stat Med, 2011* [1]:

- 1. Do not condition on the future
- 2. Do not regard individuals at risk after they have died

P.K. Andersen & N. Keiding Interpretability and Importance of Functionals in Competing Risks and Multistate Models, *Stat Med, 2011* [1]:

- 1. Do not condition on the future
- 2. Do not regard individuals at risk after they have died
- 3. Stick to this world

...also known as "Immortal time bias", see e.g. S. Suissa:

Immortal time bias in pharmaco-epidemiology, *Am. J. Epidemiol*, 2008 [2].

...also known as "Immortal time bias", see *e.g.* S. Suissa:

Immortal time bias in pharmaco-epidemiology, *Am. J. Epidemiol*, 2008 [2].

Including persons' follow-up in the wrong state

...also known as "Immortal time bias", see *e.g.* S. Suissa:

Immortal time bias in pharmaco-epidemiology, *Am. J. Epidemiol*, 2008 [2].

- Including persons' follow-up in the wrong state
- ... namely one reached some time in the future

... also known as "Immortal time bias", see *e.g.* S. Suissa:

Immortal time bias in pharmaco-epidemiology, *Am. J. Epidemiol*, 2008 [2].

- Including persons' follow-up in the wrong state
- ... namely one reached some time in the future
- Normally caused by classification of persons instead of classification of follow-up time

▶ Time is usually absent from survival analysis results

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person
- Non/Semi-parametric survival model interface invites this misconception

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person
- Non/Semi-parametric survival model interface invites this misconception
- Persons classified by exposure (the latest, often)

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person
- Non/Semi-parametric survival model interface invites this misconception
- **Persons** classified by exposure (the latest, often)
- The real unit of observation should be person-time

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person
- Non/Semi-parametric survival model interface invites this misconception
- **Persons** classified by exposure (the latest, often)
- The real unit of observation should be person-time
- ... intervals of time, each with different **value** of

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person
- Non/Semi-parametric survival model interface invites this misconception
- **Persons** classified by exposure (the latest, often)
- The real unit of observation should be person-time
- ... intervals of time, each with different **value** of
 - ► time

- ► Time is usually absent from survival analysis results
- ... because time is taken to be a response variable observed for each person
- Unit of analysis is often seen as the person
- Non/Semi-parametric survival model interface invites this misconception
- **Persons** classified by exposure (the latest, often)
- The real unit of observation should be person-time
- ... intervals of time, each with different **value** of
 - time
 - other covariates

► Time is a **covariate** — determinant of rates

- Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - ▶ Differences on the timescale (risk time, "exposure")

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - ▶ Differences on the timescale (risk time, "exposure")
 - Events

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - ▶ Differences on the timescale (risk time, "exposure")
 - Events
- ► The relevant unit of observation is person-time:

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - Differences on the timescale (risk time, "exposure")
 - Events
- ► The relevant unit of observation is person-time:
 - small intervals of follow-up "empirical rates"

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - ▶ Differences on the timescale (risk time, "exposure")
 - Events
- The relevant unit of observation is person-time:
 - small intervals of follow-up "empirical rates"
 - (d_{it}, y_{it}) : (event, (sojourn) time) for individual *i* at time *t*.

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - Differences on the timescale (risk time, "exposure")
 - Events
- ► The relevant unit of observation is person-time:
 - small intervals of follow-up "empirical rates"
 - (d_{it}, y_{it}) : (event, (sojourn) time) for individual i at time t.
 - y is the **response** time, t is the **covariate** time

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - ▶ Differences on the timescale (risk time, "exposure")
 - Events
- ► The relevant unit of observation is person-time:
 - small intervals of follow-up "empirical rates"
 - (d_{it}, y_{it}) : (event, (sojourn) time) for individual i at time t.
 - ▶ y is the **response** time, t is the **covariate** time
- Covariates relate to each interval of follow-up

- ► Time is a **covariate** determinant of rates
- **Response** variable in survival / follow-up is bivariate:
 - ▶ Differences on the timescale (risk time, "exposure")
 - Events
- ► The relevant unit of observation is person-time:
 - small intervals of follow-up "empirical rates"
 - (d_{it}, y_{it}) : (event, (sojourn) time) for individual i at time t.
 - ▶ y is the **response** time, t is the **covariate** time
- Covariates relate to each interval of follow-up
- ▶ Allows multiple timescales, *e.g.* age, duration, calendar time

In the paper by Andersen & Keiding this is primarily aimed at the use of "net survival",

In the paper by Andersen & Keiding this is primarily aimed at the use of "net survival", that is the calculation of

$$\exp\left(-\int_0^t \lambda_c(s) \,\mathrm{d}s\right)$$

for a single cause of death

- formally for a non-exhaustive exit rate from a state.

In the paper by Andersen & Keiding this is primarily aimed at the use of "net survival", that is the calculation of

$$\exp\left(-\int_0^t \lambda_c(s)\,\mathrm{d}s\right)$$

for a single cause of death

- formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

1. all other causes of death are absent

In the paper by Andersen & Keiding this is primarily aimed at the use of "net survival", that is the calculation of

$$\exp\left(-\int_0^t \lambda_c(s)\,\mathrm{d}s\right)$$

for a single cause of death

- formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

- 1. all other causes of death are absent
- 2. the mortality, λ_c from cause c is unchanged

In the paper by Andersen & Keiding this is primarily aimed at the use of "net survival", that is the calculation of

$$\exp\left(-\int_0^t \lambda_c(s)\,\mathrm{d}s\right)$$

for a single cause of death

- formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

- 1. all other causes of death are absent
- 2. the mortality, λ_c from cause c is unchanged

In the paper by Andersen & Keiding this is primarily aimed at the use of "net survival", that is the calculation of

$$\exp\left(-\int_0^t \lambda_c(s) \,\mathrm{d}s\right)$$

for a single cause of death

- formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

- 1. all other causes of death are absent
- 2. the mortality, λ_c from cause c is unchanged

... which is indeed **not** of this world.

Sticking to this world

• A further feature of "this world":
- A further feature of "this world":
- ▶ it is **continuous**

- A further feature of "this world":
- ▶ it is **continuous**
- no thresholds in the effect of time

- A further feature of "this world":
- ▶ it is **continuous**
- no thresholds in the effect of time
- specifically, death and disease rates vary smoothly by

- A further feature of "this world":
- ▶ it is **continuous**
- no thresholds in the effect of time
- specifically, death and disease rates vary smoothly by
 - age

- A further feature of "this world":
- ▶ it is **continuous**
- no thresholds in the effect of time
- specifically, death and disease rates vary smoothly by
 - age
 - calendar time

- A further feature of "this world":
- it is continuous
- no thresholds in the effect of time
- specifically, death and disease rates vary smoothly by
 - age
 - calendar time
 - disease duration

- ► A further feature of "this world":
- it is continuous
- no thresholds in the effect of time
- specifically, death and disease rates vary smoothly by
 - age
 - calendar time
 - disease duration
 - • •

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

The covariate t has a special status:

 Computationally, because all individuals contribute to (some of) the range of t.

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- ... the scale along which time is split (the risk sets)

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- ... the scale along which time is split (the risk sets)
- ► Conceptually *t* is just a covariate that varies within individual.

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- ... the scale along which time is split (the risk sets)
- ► Conceptually *t* is just a covariate that varies within individual.
- Cox's approach profiles $\lambda_0(t)$ out from the model

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

Profile likelihood:

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

 $\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$

- Profile likelihood:
 - Derive estimates of α_t as function of data and β s — assuming constant rate between death times

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

 $\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$

- Profile likelihood:
 - Derive estimates of α_t as function of data and β s
 - assuming constant rate between death times
 - Insert in likelihood, now only a function of data and β s

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

 $\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$

- Profile likelihood:
 - Derive estimates of α_t as function of data and β s
 - assuming constant rate between death times
 - Insert in likelihood, now only a function of data and βs
 - Turns out to be Cox's partial likelihood

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

▶ The likelihood is computed by suming over risk-sets:

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

 this is essentially splitting follow-up time at event- (and censoring) times

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration
- ... simplified by not keeping track of risk time

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration
- ... simplified by not keeping track of risk time
- ... but only works along one time scale

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

Suppose the time scale has been divided into small intervals with at most one death in each:

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.
- ► Assume w.l.o.g. the *y*s in the empirical rates all are 1.

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.
- Assume w.l.o.g. the ys in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_t will be from:

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.
- Assume w.l.o.g. the ys in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_t will be from:
 - the (only) empirical rate (1,1) with the death at time t.

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.
- Assume w.l.o.g. the ys in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_t will be from:
 - the (only) empirical rate (1,1) with the death at time t.
 - all other empirical rates (0,1) from those who were at risk at time t.

Note: There is one contribution from each person at risk to this part of the log-likelihood:

l

$$egin{aligned} & t_t(lpha_t,eta) \; = \; \sum_{i\in\mathcal{R}_t} d_i \log(\lambda_i(t)) - \lambda_i(t) y_i \ & = \; \sum_{i\in\mathcal{R}_t} \left\{ d_i(lpha_t+\eta_i) - \mathrm{e}^{lpha_t+\eta_i}
ight\} \ & = \; lpha_t + \eta_{\mathsf{death}} - \mathrm{e}^{lpha_t} \sum_{i\in\mathcal{R}_t} \mathrm{e}^{\eta_i} \end{aligned}$$

where η_{death} is the linear predictor for the person that died.

The derivative w.r.t. α_t is:

$$D_{\alpha_t}\ell_t(\alpha_t,\beta) = 1 - e^{\alpha_t} \sum_{i \in \mathcal{R}_t} e^{\eta_i} = 0 \quad \Leftrightarrow \quad e^{\alpha_t} = \frac{1}{\sum_{i \in \mathcal{R}_t} e^{\eta_i}}$$

If this estimate is fed back into the log-likelihood for α_t , we get the **profile likelihood** (with α_t "profiled out"):

$$\log\left(\frac{1}{\sum_{i\in\mathcal{R}_t} e^{\eta_i}}\right) + \eta_{\mathsf{death}} - 1 = \log\left(\frac{e^{\eta_{\mathsf{death}}}}{\sum_{i\in\mathcal{R}_t} e^{\eta_i}}\right) - 1$$

which is the same as the contribution from time t to Cox's partial likelihood.

The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)
 - other covariates

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)
 - other covariates
- Contributions not independent, but likelihood is a product

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)
 - other covariates
- Contributions not independent, but likelihood is a product
- Same likelihood as for independent Poisson variates

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)
 - other covariates
- Contributions not independent, but likelihood is a product
- Same likelihood as for independent Poisson variates
- Modelling is by standard glm Poisson

Survival after lung cancer

- Survival after lung cancer
- ► Covariates:

- Survival after lung cancer
- ► Covariates:
 - Age at diagnosis

- Survival after lung cancer
- ► Covariates:
 - Age at diagnosis
 - Sex

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- ► Split data:

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- Split data:
 - Poisson model, time as factor

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- Split data:
 - Poisson model, time as factor
 - Poisson model, time as spline

Mayo Clinic lung cancer 60 year old woman

NOTE: entry.status has been set to "Alive" for all. NOTE: entry is assumed to be 0 on the tfe timescale.

```
> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~</pre>
                    age + factor( sex ).
+
                    method="breslow", eps=10^-8, iter.max=25, data=Lung )
+
> Lung.s <- splitLexis( Lung,</pre>
                         breaks=c(0,sort(unique(Lung$time))),
+
                         time.scale="tfe" )
+
> Lung.S <- splitLexis( Lung,</pre>
                         breaks=c(0,sort(unique(Lung$time[Lung$tex.Xst=="Dead"])))
+
+
                         time.scale="tfe" )
> summarv( Lung.s )
Transitions:
     То
From
        Alive Dead Records:
                              Events: Risk time:
                                                    Persons:
  Alive 19857 165
                        20022
                                    165
                                             69593
                                                          228
```

```
> summary( Lung.S )
```

Transitions:

To From Alive Dead Records: Events: Risk time: Persons: Alive 15916 165 16081 165 69593 228

> subset(Lung.s, lex.id==96)[,1:11]

	lex.id	tfe	lex.dur	lex.Cst	lex.Xst	inst	time	status	age	sex	ph.ecog
9235	96	0	5	Alive	Alive	12	30	2	72	1	2
9236	96	5	6	Alive	Alive	12	30	2	72	1	2
9237	96	11	1	Alive	Alive	12	30	2	72	1	2
9238	96	12	1	Alive	Alive	12	30	2	72	1	2
9239	96	13	2	Alive	Alive	12	30	2	72	1	2
9240	96	15	11	Alive	Alive	12	30	2	72	1	2
9241	96	26	4	Alive	Dead	12	30	2	72	1	2

> nlevels(factor(Lung.s\$tfe))

[1] 186

```
> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
                                 age + factor( sex ).
+
                                 offset = log(lex.dur),
+
                      family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+
+
  user
        system elapsed
        0.012 10.837
10.828
> length( coef(mLs.pois.fc) )
[1] 188
> svstem.time(
+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
                                 age + factor( sex ),
+
                                 offset = log(lex.dur),
+
                      family=poisson, data=Lung.S, eps=10<sup>-8</sup>, maxit=25 )
+
+
```

user system elapsed 3.258 0.000 3.257

```
> length( coef(mLS.pois.fc) )
```

[1] 142

```
> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe.knots=t.kn) )
```

```
[1] 20022 4
```

user system elapsed 0.173 0.000 0.172 > ests <-+ rbind(ci.exp(mL.cox), ci.exp(mLs.pois.fc,subset=c("age","sex")), + ci.exp(mLS.pois.fc,subset=c("age","sex")), + ci.exp(mLs.pois.sp,subset=c("age","sex"))) + > cmp <- cbind(ests[c(1,3,5.7) .]. ests[c(1.3.5.7)+1.7])+ > rownames(cmp) <- c("Cox", "Poisson-factor", "Poisson-factor (D)", "Poisson-spling")</pre> > colnames(cmp) [c(1,4)] <- c("age","sex")

> round(cmp, 7)

		age	2.5%	97.5%	sex	2.5%	97.5%
Cox		1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487
Poisson-factor		1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487
Poisson-factor	(D)	1.017332	0.9991211	1.035874	0.5984794	0.4310150	0.8310094
Poisson-spline		1.016189	0.9980329	1.034676	0.5998287	0.4319932	0.8328707

Deriving the survival function

```
> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))</pre>
```

Code and output avaialble in

http://bendixcarstensen.com/AdvCoh/WNtCMa/

Taking the life-table approach *ad absurdum* by:

dividing time very finely and

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- $\blacktriangleright \Rightarrow$ difficult to access the baseline hazard.

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \blacktriangleright \Rightarrow difficult to access the baseline hazard.
- ightarrow ightarrow uninitiated tempted to show survival curves where irrelevant

Models of this world

• Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:

Models of this world

- Replace the α_ts by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use in calculations of

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use in calculations of
 - expected residual life time

- Replace the α_ts by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models

- Replace the α_ts by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- Brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models
 - ▶ ...

▶ The risk-time is the same on all timescales

- ▶ The risk-time is the same on all timescales
- Only need the entry point on each time scale:

- ▶ The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.

- ▶ The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.

- The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.

- The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- ▶ Response variable in analysis of rates:

(d, y) (event, duration)

- The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- Response variable in analysis of rates:

(d, y) (event, duration)

Covariates in analysis of rates:

- The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- Response variable in analysis of rates:

(d, y) (event, duration)

- Covariates in analysis of rates:
 - timescales

- The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- Response variable in analysis of rates:

(d, y) (event, duration)

- Covariates in analysis of rates:
 - timescales
 - other (fixed) measurements

Follow-up data in Epi — Lexis objects

A follow-up study:

>	> round(th, 2)										
	id	sex	birthdat	contrast	injecdat	volume	exitdat	exitstat			
1	1	2	1916.61	1	1938.79	22	1976.79	1			
2	640	2	1896.23	1	1945.77	20	1964.37	1			
3	3425	1	1886.97	2	1955.18	0	1956.59	1			
4	4017	2	1936.81	2	1957.61	0	1992.14	2			

Timescales of interest:

Age

- Calendar time
- Time since injection

```
> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )
```

entry is defined on three timescales,

entry is defined on three timescales, but exit is only defined on one timescale:

entry is defined on **three** timescales, but exit is only defined on **one** timescale: Follow-up time is the same on all timescales:

entry is defined on **three** timescales, but exit is only defined on **one** timescale: Follow-up time is the same on all timescales:

exitdat - injecdat

```
> thL[.1:9]
            per tfi lex.dur lex.Cst lex.Xst lex.id
    age
1 22 18 1938 79
                  0
                      37.99
                                  0
2 49.54 1945.77
                  0 18.59
                                  0
                                                  2
3 68.20 1955.18 0 1.40
                                                  3
                                  0
4 20.80 1957.61
                  0 34.52
                                  0
                                           0
                                                  4
. . .
> summary( thL )
Transitions:
     То
From 0 1 Records:
                   Events: Risk time:
                                         Persons:
   0 3 20
                23
                         20
                                 512.59
                                                23
```

```
> thL[.1:9]
            per tfi lex.dur lex.Cst lex.Xst lex.id
    age
1 22 18 1938 79
                  0
                      37.99
                                  0
2 49.54 1945.77
                  0 18.59
                                  0
                                                  2
                                                  3
3 68.20 1955.18 0 1.40
                                  0
4 20.80 1957.61
                  0 34.52
                                  0
                                          0
                                                  4
. . .
> summary( thL )
Transitions:
     То
From 0 1 Records:
                   Events: Risk time:
                                         Persons:
   0 3 20
                23
                         20
                                 512.59
                                                23
```

```
> thL[.1:9]
            per tfi lex.dur lex.Cst lex.Xst lex.id
    age
1 22 18 1938 79
                  0
                      37.99
                                  0
2 49.54 1945.77
                  0 18.59
                                  0
                                                  2
3 68.20 1955.18 0 1.40
                                                  3
                                  0
4 20.80 1957.61
                  0 34.52
                                  0
                                          0
                                                  4
. . .
> summary( thL )
Transitions:
     To
      1 Records:
                   Events:
                             Risk time:
From 0
                                         Persons:
   0 3 20
                23
                         20
                                 512.59
                                                23
```

```
> thL[.1:9]
            per tfi lex.dur lex.Cst lex.Xst lex.id
    age
1 22 18 1938 79
                  0
                      37.99
2 49.54 1945.77
                  0 18.59
                                                  2
                                  0
3 68.20 1955.18 0 1.40
                                                  3
                                  0
4 20.80 1957.61
                  0 34.52
                                  0
                                          0
                                                  4
. . .
> summary( thL )
Transitions:
     То
From 0 1 Records:
                   Events: Risk time:
                                         Persons:
   0 3 20
                23
                         20
                                 512.59
                                                23
```


Lexis diagram

Lexis diagram

STRASSBURG KARL J. TRÜBNER 1875.

32/60

spl1	<- spli	itLex:	is(thL,	breaks=seq(0,100,20),							
				time.sca	ale="age	·)					
round	l(spl1,1	L)									
age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	injecdat	vo
22.2	1938.8	0.0	17.8	0	0	1	2	1916.6	1	1938.8	
40.0	1956.6	17.8	20.0	0	0	1	2	1916.6	1	1938.8	
60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	1938.8	
49.5	1945.8	0.0	10.5	0	0	640	2	1896.2	1	1945.8	
60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	1945.8	
68.2	1955.2	0.0	1.4	0	1	3425	1	1887.0	2	1955.2	
20.8	1957.6	0.0	19.2	0	0	4017	2	1936.8	2	1957.6	
40.0	1976.8	19.2	15.3	0	0	4017	2	1936.8	2	1957.6	
	spl1 round age 22.2 40.0 60.0 49.5 60.0 68.2 20.8 40.0	<pre>spl1 <- spl3 round(spl1, 1 age per 22.2 1938.8 40.0 1956.6 60.0 1976.6 49.5 1945.8 60.0 1956.2 68.2 1955.2 20.8 1957.6 40.0 1976.8</pre>	<pre>spl1 <- splitLex: round(spl1,1) age per tfi 22.2 1938.8 0.0 40.0 1956.6 17.8 60.0 1976.6 37.8 49.5 1945.8 0.0 60.0 1956.2 10.5 68.2 1955.2 0.0 20.8 1957.6 0.0 40.0 1976.8 19.2</pre>	<pre>spl1 <- splitLexis(thL, round(spl1,1) age per tfi lex.dur 22.2 1938.8 0.0 17.8 40.0 1956.6 17.8 20.0 60.0 1976.6 37.8 0.2 49.5 1945.8 0.0 10.5 60.0 1956.2 10.5 8.1 68.2 1955.2 0.0 1.4 20.8 1957.6 0.0 19.2 40.0 1976.8 19.2 15.3</pre>	<pre>spl1 <- splitLexis(thL, breaks=s</pre>	<pre>spl1 <- splitLexis(thL, breaks=seq(0,100</pre>	<pre>spl1 <- splitLexis(thL, breaks=seq(0,100,20),</pre>				

> >	spl1	<- spli	itLex	is(thL,	breaks=s time.sca	seq(0,100 ale="age),20), ")	,				
>	round	d(spl1,1	1)			-						
	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	injecdat	vol
1	22.2	1938.8	0.0	17.8	0	0	1	2	1916.6	1	1938.8	
2	40.0	1956.6	17.8	20.0	0	0	1	2	1916.6	1	1938.8	
3	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	1938.8	
4	49.5	1945.8	0.0	10.5	0	0	640	2	1896.2	1	1945.8	
5	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	1945.8	
6	68.2	1955.2	0.0	1.4	0	1	3425	1	1887.0	2	1955.2	
7	20.8	1957.6	0.0	19.2	0	0	4017	2	1936.8	2	1957.6	
8	40.0	1976.8	19.2	15.3	0	0	4017	2	1936.8	2	1957.6	

>	spl1	<- spl:	itLex	is(thL,	breaks=seq(0,100,20),							
>					time.sca	a⊥e="age'	")					
>	round	l(spl1,	1)									
	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	injecdat	vol
1	22.2	1938.8	0.0	17.8	0	0	1	2	1916.6	1	1938.8	
2	40.0	1956.6	17.8	20.0	0	0	1	2	1916.6	1	1938.8	
3	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	1938.8	
4	49.5	1945.8	0.0	10.5	0	0	640	2	1896.2	1	1945.8	
5	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	1945.8	
6	68.2	1955.2	0.0	1.4	0	1	3425	1	1887.0	2	1955.2	
7	20.8	1957.6	0.0	19.2	0	0	4017	2	1936.8	2	1957.6	
8	40.0	1976.8	19.2	15.3	0	0	4017	2	1936.8	2	1957.6	

> ;	spl1	<- spli	itLex	is(thL,	breaks=seq(0,100,20),							
/					time.sca	are-"age")					
> :	round	i(spl1,1	L)									
	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	injecdat	vol
1 :	22.2	1938.8	0.0	17.8	0	0	1	2	1916.6	1	1938.8	
2 4	40.0	1956.6	17.8	20.0	0	0	1	2	1916.6	1	1938.8	
3 (60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	1938.8	
4 4	49.5	1945.8	0.0	10.5	0	0	640	2	1896.2	1	1945.8	
5 (60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	1945.8	
6	68.2	1955.2	0.0	1.4	0	1	3425	1	1887.0	2	1955.2	
7 :	20.8	1957.6	0.0	19.2	0	0	4017	2	1936.8	2	1957.6	
8 4	40.0	1976.8	19.2	15.3	0	0	4017	2	1936.8	2	1957.6	
Splitting follow-up time

> s	<pre>spl1 <- splitLexis(thL, breaks=seq(0,100,20),</pre>												
>					time.scale="age")								
> round(spl1,1)													
	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	injecdat	vol	
1 2	22.2	1938.8	0.0	17.8	0	0	1	2	1916.6	1	1938.8		
2 4	40.0	1956.6	17.8	20.0	0	0	1	2	1916.6	1	1938.8		
36	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	1938.8		
4 4	49.5	1945.8	0.0	10.5	0	0	640	2	1896.2	1	1945.8		
56	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	1945.8		
66	68.2	1955.2	0.0	1.4	0	1	3425	1	1887.0	2	1955.2		
7 2	20.8	1957.6	0.0	19.2	0	0	4017	2	1936.8	2	1957.6		
8 4	40.0	1976.8	19.2	15.3	0	0	4017	2	1936.8	2	1957.6		

. . .

Split on another timescale

> round(spl2, 1)

	lex.id	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	inje
1	1	22.2	1938.8	0.0	1.0	0	0	1	2	1916.6	1	19
2	1	23.2	1939.8	1.0	4.0	0	0	1	2	1916.6	1	19
3	1	27.2	1943.8	5.0	12.8	0	0	1	2	1916.6	1	19
4	1	40.0	1956.6	17.8	2.2	0	0	1	2	1916.6	1	19
5	1	42.2	1958.8	20.0	17.8	0	0	1	2	1916.6	1	19
6	1	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	19
7	2	49.5	1945.8	0.0	1.0	0	0	640	2	1896.2	1	19
8	2	50.5	1946.8	1.0	4.0	0	0	640	2	1896.2	1	19
9	2	54.5	1950.8	5.0	5.5	0	0	640	2	1896.2	1	19
10	2	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	19
11	3	68.2	1955.2	0.0	1.0	0	0	3425	1	1887.0	2	19
12	3	69.2	1956.2	1.0	0.4	0	1	3425	1	1887.0	2	19
13	4	20.8	1957.6	0.0	1.0	0	0	4017	2	1936.8	2	19
14	4	21.8	1958.6	1.0	4.0	0	0	4017	2	1936.8	2	19
15	4	25.8	1962.6	5.0	14.2	0	0	4017	2	1936.8	2	19
16	4	40.0	1976.8	19.2	0.8	0	0	4017	2	1936.8	2	19
17	4	40.8	1977.6	20.0	14.5	0	0	4017	2	1936.8	32,	60 19

d_{it} — events in the variable: lex.Xst:
 In the model as response: lex.Xst==1

- d_{it} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{it} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).

- d_{it} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{it} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).
- Covariates are:

- d_{it} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{it} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).
- Covariates are:
 - timescales (age, period, time in study)
 - non-linear, continuous effect

- d_{it} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{it} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).
- Covariates are:
 - timescales (age, period, time in study)
 - non-linear, continuous effect
 - other variables for this person (constant in each interval).

- d_{it} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{it} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).
- Covariates are:
 - timescales (age, period, time in study)
 - non-linear, continuous effect
 - other variables for this person (constant in each interval).
- If intervals sufficiently small, a very good approximation to a continuously varying rate by using time points from each interval

- d_{it} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- y_{it} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).
- Covariates are:
 - timescales (age, period, time in study)
 - non-linear, continuous effect
 - other variables for this person (constant in each interval).
- If intervals sufficiently small, a very good approximation to a continuously varying rate by using time points from each interval
- And very handy post-processing of results

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a, t)$

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:
 - Expected life time

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:
 - Expected life time
 - Lifetime probability of disease

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:
 - Expected life time
 - Lifetime probability of disease
 - Lifetime spent diseased

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:
 - Expected life time
 - Lifetime probability of disease
 - Lifetime spent diseased
 - **١**

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:
 - Expected life time
 - Lifetime probability of disease
 - Lifetime spent diseased
 - **١**...
- Easy if rates only depend on age

- Model rates in a Lexis diagram (age / calendar time): $\lambda(a,t)$
- Aim is summary measures:
 - Expected life time
 - Lifetime probability of disease
 - Lifetime spent diseased
 - ▶ ...
- Easy if rates only depend on age
- ▶ so use cross-sectional rates: $\lambda(a, t = T_0)$

Joint occurrence of Diabetes and Cancer

Joint occurrence of Diabetes and Cancer

Women

Predicted rates — cross-sectional 1995–2010

Continuous rates (per 2010)

1-month cumulative rates \rightarrow transition probabilities

$$(1 - \exp(-(\Lambda_1 + \Lambda_2 + \Lambda_3))) \times \Lambda_i/(\Lambda_1 + \Lambda_2 + \Lambda_3), i = 1, 2, 3$$

1-month transition probabilities ($\times 10^4$) at age 66 years:

to										
Well	DM	DM-Ca	Ca	Ca-DM	D-W	D-DM	D-Ca	D-DC	D-CD	\mathtt{Sum}
9966	8		13		14					10000
	9943	16				41				10000
		9582						418		10000
			9819	9			172			10000
				9866					134	10000
					10000					10000
						10000	•			10000
•					•		10000		•	10000
•					•	•	•	10000	•	10000
					•				10000	10000
	o Well 9966	o Well DM 9966 8 . 9943 	o Well DM DM-Ca 9966 8 . 9943 16 . 9582 	o Well DM DM-Ca Ca 9966 8 . 13 . 9943 16 . . 9582 . 9582 . 9819 	o Well DM DM-Ca Ca Ca-DM 9966 8 . 13 . . 9943 16 . 9582 9819 9 9866 	o Well DM DM-Ca Ca Ca-DM D-W 9966 8 . 13 . 14 . 9943 16 9582 9819 9 . 	o Well DM DM-Ca Ca Ca-DM D-W D-DM 9966 8 . 13 . 14 . . 9943 16 41 9582 	o Well DM DM-Ca Ca Ca-DM D-W D-DM D-Ca 9966 8 . 13 . 14 . 9943 16 41 . 9582 	o Well DM DM-Ca Ca Ca-DM D-W D-DM D-Ca D-DC 9966 8 . 13 . 14 . . . 9943 16 . . . 41 9582 418 418 418 	o Well DM DM-Ca Ca Ca-DM D-W D-DM D-Ca D-DC D-CD 9966 8 . 13 . 14 9943 16 . . 41 9582 418

Lifetime risk

Trend in lifetime risk

Continuous time rates

Transition rates between states:

Continuous time rates

- Transition rates between states:
 - based on 1-year tabulation of data

Continuous time rates

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort
- Assuming only one transition per interval: small intervals

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort
- Assuming only one transition per interval: small intervals
- State probabilities simple closed-form function of rates

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort
- Assuming only one transition per interval: small intervals
- State probabilities simple closed-form function of rates
- Numerical integration of closed form functions trivial

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort
- Assuming only one transition per interval: small intervals
- State probabilities simple closed-form function of rates
- Numerical integration of closed form functions trivial
- Matrix multiplication trivial

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort
- Assuming only one transition per interval: small intervals
- State probabilities simple closed-form function of rates
- Numerical integration of closed form functions trivial
- Matrix multiplication trivial

- Transition rates between states:
 - based on 1-year tabulation of data
 - age-period-cohort models
 - using smooth effects of age, period and cohort
- Assuming only one transition per interval: small intervals
- State probabilities simple closed-form function of rates
- Numerical integration of closed form functions trivial
- Matrix multiplication trivial

... simplified by a parametric form for rates as function of time

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]

other covariates: Age and date at Tx, sex, donor type, CML type

Model for mortality rates:

► *t* time since transplant

- ► t time since transplant
- r time since relapse (if relapsed)

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates
 - and spline terms for each time scale.

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates
 - and spline terms for each time scale.
- Lexis machinery from the Epi package for R

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates
 - and spline terms for each time scale.
- Lexis machinery from the Epi package for R
- ... for representation and manipulation of follow-up data.

```
cmlT <- Lexis(entry = list(cal = cal.yr(dot),</pre>
                          age = cal.vr(dot)-cal.vr(dob),
                          tst = 0).
              exit = list(cal = cal.yr(dof)).
       exit.status = dead.
            states = c("Transplant", "Dead"),
              data = cml)
cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),</pre>
                 new.state = "Relapse",
                 new.scale = "tsr".
          precursor.states = "Transplant")
> subset( cmlL, lex.id==151 )[.1:8]
id
      cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0
                             4.93 Relap Dead ...
```

```
cmlT <- Lexis(entry = list(cal = cal.yr(dot),</pre>
                          age = cal.vr(dot)-cal.vr(dob),
                          tst = 0).
              exit = list(cal = cal.yr(dof)).
       exit.status = dead.
            states = c("Transplant", "Dead"),
              data = cml)
cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),</pre>
                 new.state = "Relapse",
                 new.scale = "tsr".
          precursor.states = "Transplant")
> subset( cmlL, lex.id==151 )[.1:8]
id
      cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0
                             4.93 Relap Dead ...
```

```
cmlT <- Lexis(entry = list(cal = cal.yr(dot),</pre>
                          age = cal.vr(dot)-cal.vr(dob),
                          tst = 0).
              exit = list(cal = cal.yr(dof)).
       exit.status = dead.
            states = c("Transplant", "Dead"),
              data = cml)
cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),</pre>
                 new.state = "Relapse",
                 new.scale = "tsr".
          precursor.states = "Transplant")
> subset( cmlL, lex.id==151 )[.1:8]
id cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0
                             4.93 Relap Dead ...
```

```
cmlT <- Lexis(entry = list(cal = cal.yr(dot),</pre>
                          age = cal.vr(dot)-cal.vr(dob),
                          tst = 0).
              exit = list(cal = cal.yr(dof)).
       exit.status = dead.
            states = c("Transplant", "Dead"),
              data = cml)
cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),</pre>
                 new.state = "Relapse",
                 new.scale = "tsr".
          precursor.states = "Transplant")
> subset( cmlL, lex.id==151 )[.1:8]
id
      cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0
                             4.93 Relap Dead ...
```

```
cmlT <- Lexis(entry = list(cal = cal.yr(dot),</pre>
                          age = cal.vr(dot)-cal.vr(dob),
                          tst = 0).
              exit = list(cal = cal.yr(dof)).
       exit.status = dead.
            states = c("Transplant", "Dead"),
              data = cml)
cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),</pre>
                 new.state = "Relapse",
                 new.scale = "tsr".
          precursor.states = "Transplant")
> subset( cmlL, lex.id==151 )[.1:8]
id
      cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0
                             4.93 Relap Dead ...
```

```
cmlT <- Lexis(entry = list(cal = cal.yr(dot),</pre>
                          age = cal.vr(dot)-cal.vr(dob),
                          tst = 0).
              exit = list(cal = cal.yr(dof)).
       exit.status = dead.
            states = c("Transplant", "Dead"),
              data = cml)
cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),</pre>
                 new.state = "Relapse",
                 new.scale = "tsr".
          precursor.states = "Transplant")
> subset( cmlL, lex.id==151 )[.1:8]
id
      cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0
                             4.93 Relap Dead ...
```

$$\log(\mu) = h(t) + k(r) + g(t-r) + X\beta$$

 $\log(\mu) = h(t) + k(r)$ $+ X\beta$

 $\log(\mu) = h(t) + k(r) + g(t - r) + X\beta$

 $\log(\mu) = h(t) \qquad +g(t-r) + X\beta$

Model summary

 Mortality of relapsed patients depends on when they relapsed.

Model summary

- Mortality of relapsed patients depends on when they relapsed.
- We also checked if the mortality depended on time since they relapsed.
 It did not.
Model summary

- Mortality of relapsed patients depends on when they relapsed.
- We also checked if the mortality depended on time since they relapsed.
 It did not.
- Note: It is an empirical question what timescales to use.

Model summary

- Mortality of relapsed patients depends on when they relapsed.
- We also checked if the mortality depended on time since they relapsed.
 It did not.
- Note: It is an empirical question what timescales to use.
- Note: In order to compute probabilities, we need a model for the relapse rates (λ) in addition to the mortality rates (μ_T, μ_R)

Model summary

- Mortality of relapsed patients depends on when they relapsed.
- We also checked if the mortality depended on time since they relapsed.
 It did not.
- Note: It is an empirical question what timescales to use.
- Note: In order to compute probabilities, we need a model for the relapse rates (λ) in addition to the mortality rates (μ_T, μ_R)
- ... unfortunately not a Markov model

Not Markov: the hard way

$$P \{ \mathsf{T} \text{ at } t \} = \exp \left(-\int_0^t \lambda(s) + \mu_T(s) \, \mathrm{d}s \right)$$

$$P\left\{\mathsf{D}(\mathsf{T}) \text{ at } t\right\} = \int_0^t \mu_T(s) \exp\left(-\int_0^s \lambda(u) + \mu_T(u) \,\mathrm{d}u\right) \mathrm{d}s$$

$$\begin{split} \mathbf{P} \left\{ \mathsf{R} \text{ at } t \right\} &= \int_0^t \mathbf{P} \left\{ \mathsf{Relapsed at } s \right\} \\ & \times \mathbf{P} \left\{ \mathsf{Survive in Relapse from } s \text{ to } t \right\} \, \mathrm{d}s \end{split}$$

$$= \int_0^t \lambda(s) \exp\left(-\int_0^s \lambda(u) + \mu_T(u) \,\mathrm{d}u\right)$$
$$\times \exp\left(-\int_s^t \mu_R(u,s) \,\mathrm{d}u\right) \,\mathrm{d}s$$

$$P \{ \mathsf{D}(\mathsf{R}) \text{ at } t \} = 1 - P \{ \mathsf{T} \text{ at } t \} - P \{ \mathsf{D}(\mathsf{T}) \text{ at } t \} - P \{ \mathsf{R} \text{ at } t \}$$

$$57/60$$

Not Markov: the hard way

$$P \{ \mathsf{T} \text{ at } t \} = \exp \left(-\int_0^t \lambda(s) + \mu_T(s) \, \mathrm{d}s \right)$$

$$P\left\{\mathsf{D}(\mathsf{T}) \text{ at } t\right\} = \int_0^t \mu_T(s) \exp\left(-\int_0^s \lambda(u) + \mu_T(u) \,\mathrm{d}u\right) \mathrm{d}s$$

$$P \{ \mathsf{R} \text{ at } t \} = \int_0^t P \{ \mathsf{Relapsed at } s \}$$

$$\times P \{ \mathsf{Survive in Relapse from } s \text{ to } t \} \, \mathrm{d}s$$

$$= \int_0^t \lambda(s) \exp\left(-\int_0^s \lambda(u) + \mu_T(u) \,\mathrm{d}u\right) \\ \times \exp\left(-\int_s^t \mu_R(u,s) \,\mathrm{d}u\right) \,\mathrm{d}s$$

$$P \{D(\mathsf{R}) \text{ at } t\} = 1 - P \{\mathsf{T} \text{ at } t\} - P \{D(\mathsf{T}) \text{ at } t\} - P \{\mathsf{R} \text{ at } t\}$$

Dotted lines: Markov model, time since transplant Full lines: + time from Tx to Rel for the μ_R

Rel at: 2 mth, 1 y, 3 y $_{58/60}$

► The world is continuous

- The world is continuous
- Time effect likely to be smooth

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:

- The world is continuous
- Time effect likely to be smooth
- A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory
 - Choice of time scales is an empirical problem

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory
 - Choice of time scales is an empirical problem
- Non/Semi-parametric survival model not well suited for this

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory
 - Choice of time scales is an empirical problem
- ► Non/Semi-parametric survival model not well suited for this
- Stick to this world:

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory
 - Choice of time scales is an empirical problem
- ► Non/Semi-parametric survival model not well suited for this
- Stick to this world:

- The world is continuous
- Time effect likely to be smooth
- ► A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory
 - Choice of time scales is an empirical problem
- Non/Semi-parametric survival model not well suited for this
- Stick to this world: Fewer tables more graphs!

- The world is continuous
- Time effect likely to be smooth
- A single time scale is rarely sufficient
- Different timescales require joint reporting
- Continuous time formulae easiest to handle:
 - Parametric form of time-effects allow direct implementation of probability theory
 - Choice of time scales is an empirical problem
- Non/Semi-parametric survival model not well suited for this
- Stick to this world: Fewer tables more graphs!

Thanks for your attention

References

P. K. Andersen and N. Keiding.

Interpretability and importance of functionals in competing risks and multistate models. *Stat Med*, 31:1074–1088, 2012.

S. Suissa.

Immortal time bias in pharmaco-epidemiology. *Am. J. Epidemiol.*, 167:492–499, Feb 2008.

S. lacobelli and B. Carstensen. Multiple time scales in multi-state models. *Stat Med*, 32(30):5315–5327, Dec 2013.

Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up. Journal of Statistical Software, 38(5):1–12, 1 2011.

Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R. Journal of Statistical Software, 38(6):1–18, 1 2011.