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Inference in Multistate models

P.K. Andersen & N. Keiding
Interpretability and Importance of Functionals in Competing Risks
and Multistate Models, Stat Med, 2011 [1]:

1. Do not condition on the future

2. Do not regard individuals at risk after they have died

3. Stick to this world
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Conditioning on the future

I . . . also known as “Immortal time bias”, see e.g.
S. Suissa:
Immortal time bias in pharmaco-epidemiology, Am. J.
Epidemiol, 2008 [2].

I Including persons’ follow-up in the wrong state

I . . . namely one reached some time in the future

I Normally caused by classification of persons instead of
classification of follow-up time
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Why these mistakes?

I Time is usually absent from survival analysis results

I . . . because time is taken to be a response variable observed
for each person

I Unit of analysis is often seen as the person

I Non/Semi-parametric survival model interface invites this
misconception

I Persons classified by exposure (the latest, often)

I The real unit of observation should be person-time
I . . . intervals of time, each with different value of

I time
I other covariates
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Time

I Time is a covariate — determinant of rates

I Response variable in survival / follow-up is bivariate:

I Differences on the timescale (risk time, “exposure”)
I Events

I The relevant unit of observation is person-time:

I small intervals of follow-up — “empirical rates”
I (dit , yit): (event, (sojourn) time) for individual i at time t .
I y is the response time, t is the covariate time

I Covariates relate to each interval of follow-up

I Allows multiple timescales, e.g. age, duration, calendar time
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“Stick to this world”

In the paper by Andersen & Keiding this is primarily aimed at the
use of “net survival”, that is the calculation of

exp

(
−
∫ t

0

λc(s) ds

)
for a single cause of death
— formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

1. all other causes of death are absent
2. the mortality, λc from cause c is unchanged

. . . which is indeed not of this world.
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Sticking to this world

I A further feature of “this world”:

I it is continuous

I no thresholds in the effect of time

I specifically, death and disease rates vary smoothly by

I age
I calendar time
I disease duration
I . . .
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A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals contribute to (some
of) the range of t .

I . . . the scale along which time is split (the risk sets)

I Conceptually t is just a covariate that varies within individual.

I Cox’s approach profiles λ0(t) out from the model
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood
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The Cox-likelihood: mechanics of computing

I The likelihood is computed by suming over risk-sets:

`(η) =
∑
t

log

(
eηdeath∑
i∈Rt

eηi

)
I this is essentially splitting follow-up time at event- (and

censoring) times

I . . . repeatedly in every cycle of the iteration

I . . . simplified by not keeping track of risk time

I . . . but only works along one time scale
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log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Suppose the time scale has been divided into small intervals
with at most one death in each:

I Empirical rates: (dit , yit) — each t has at most one dit = 0.

I Assume w.l.o.g. the ys in the empirical rates all are 1.

I Log-likelihood contributions that contain information on a
specific time-scale parameter αt will be from:

I the (only) empirical rate (1, 1) with the death at time t .
I all other empirical rates (0, 1) from those who were at risk at time t .
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Note: There is one contribution from each person at risk to this
part of the log-likelihood:

`t(αt , β) =
∑
i∈Rt

di log(λi(t))− λi(t)yi

=
∑
i∈Rt

{
di(αt + ηi)− eαt+ηi

}
= αt + ηdeath − eαt

∑
i∈Rt

eηi

where ηdeath is the linear predictor for the person that died.
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The derivative w.r.t. αt is:

Dαt
`t(αt , β) = 1− eαt

∑
i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for αt , we get the
profile likelihood (with αt “profiled out”):

log

(
1∑

i∈Rt
eηi

)
+ ηdeath − 1 = log

(
eηdeath∑
i∈Rt

eηi

)
− 1

which is the same as the contribution from time t to Cox’s partial
likelihood.
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Splitting the dataset a priori

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y → log(y) as offset
I Covariate value for the timescale

(time since entry, current age, current date, . . . )
I other covariates

I Contributions not independent, but likelihood is a product
I Same likelihood as for independent Poisson variates
I Modelling is by standard glm Poisson
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Example: Mayo Clinic lung cancer

I Survival after lung cancer

I Covariates:

I Age at diagnosis
I Sex
I Time since diagnosis

I Cox model

I Split data:

I Poisson model, time as factor
I Poisson model, time as spline
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Example: Mayo Clinic lung cancer I

> library( survival )
> library( Epi )
> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
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Example: Mayo Clinic lung cancer II
> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", eps=10^-8, iter.max=25, data=Lung )
> Lung.s <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time))),
+ time.scale="tfe" )
> Lung.S <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time[Lung$lex.Xst=="Dead"]))),
+ time.scale="tfe" )
> summary( Lung.s )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> summary( Lung.S )
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Example: Mayo Clinic lung cancer III
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 15916 165 16081 165 69593 228

> subset( Lung.s, lex.id==96 )[,1:11]

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog
9235 96 0 5 Alive Alive 12 30 2 72 1 2
9236 96 5 6 Alive Alive 12 30 2 72 1 2
9237 96 11 1 Alive Alive 12 30 2 72 1 2
9238 96 12 1 Alive Alive 12 30 2 72 1 2
9239 96 13 2 Alive Alive 12 30 2 72 1 2
9240 96 15 11 Alive Alive 12 30 2 72 1 2
9241 96 26 4 Alive Dead 12 30 2 72 1 2

> nlevels( factor( Lung.s$tfe ) )

[1] 186
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Example: Mayo Clinic lung cancer IV
> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )

user system elapsed
10.828 0.012 10.837

> length( coef(mLs.pois.fc) )

[1] 188

> system.time(
+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.S, eps=10^-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer V
user system elapsed
3.258 0.000 3.257

> length( coef(mLS.pois.fc) )

[1] 142

> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer VI
user system elapsed
0.173 0.000 0.172

> ests <-
+ rbind( ci.exp(mL.cox),
+ ci.exp(mLs.pois.fc,subset=c("age","sex")),
+ ci.exp(mLS.pois.fc,subset=c("age","sex")),
+ ci.exp(mLs.pois.sp,subset=c("age","sex")) )
> cmp <- cbind( ests[c(1,3,5,7) ,],
+ ests[c(1,3,5,7)+1,] )
> rownames( cmp ) <- c("Cox","Poisson-factor","Poisson-factor (D)","Poisson-spline")
> colnames( cmp )[c(1,4)] <- c("age","sex")

> round( cmp, 7 )
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Example: Mayo Clinic lung cancer VII
age 2.5% 97.5% sex 2.5% 97.5%

Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor (D) 1.017332 0.9991211 1.035874 0.5984794 0.4310150 0.8310094
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))

Code and output avaialble in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely and

I modeling one covariate, the time-scale, with one parameter per
distinct value.

I the model for the time scale is really with exchangeable
time-intervals.

I ⇒ difficult to access the baseline hazard.

I ⇒ uninitiated tempted to show survival curves where irrelevant
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Models of this world

I Replace the αts by a parametric function f (t) with a limited
number of parameters, for example:

I Piecewise constant
I Splines (linear, quadratic or cubic)
I Fractional polynomials

I Brings model into “this world”:
I smoothly varying rates
I parametric closed form representation of baseline hazard
I finite no. of parameters

I Makes it really easy to use in calculations of
I expected residual life time
I state occupancy probabilities in multistate models
I . . .
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Follow-up on several timescales

I The risk-time is the same on all timescales
I Only need the entry point on each time scale:

I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

I Response variable in analysis of rates:

(d , y) (event, duration)

I Covariates in analysis of rates:
I timescales
I other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1

2 640 2 1896.23 1 1945.77 20 1964.37 1

3 3425 1 1886.97 2 1955.18 0 1956.59 1

4 4017 2 1936.81 2 1957.61 0 1992.14 2

...

Timescales of interest:

I Age
I Calendar time
I Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 3 20 23 20 512.59 23
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Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
...

34/ 60



0 10 20 30 40 50 60 70

20
30

40
50

60
70

80

tfi

ag
e

age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Analysis of results

I dit — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

I yit — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

I Covariates are:
I timescales (age, period, time in study)

— non-linear, continuous effect
I other variables for this person (constant in each interval).

I If intervals sufficiently small, a very good approximation to a
continuously varying rate by using time points from each
interval

I And very handy post-processing of results
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Markov predictions from non-Markov models

I Model rates in a Lexis diagram ( age / calendar time ):
λ(a, t)

I Aim is summary measures:

I Expected life time
I Lifetime probability of disease
I Lifetime spent diseased
I . . .

I Easy if rates only depend on age

I — so use cross-sectional rates: λ(a, t = T0)
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Joint occurrence of Diabetes and Cancer
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Predicted rates — cross-sectional 1995–2010
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Continuous rates (per 2010)

1-month cumulative rates → transition probabilities(
1− exp

(
−(Λ1 + Λ2 + Λ3)

))
× Λi/(Λ1 + Λ2 + Λ3), i = 1, 2, 3

1-month transition probabilities (×104) at age 66 years:

to
from Well DM DM-Ca Ca Ca-DM D-W D-DM D-Ca D-DC D-CD Sum
Well 9966 8 . 13 . 14 . . . . 10000
DM . 9943 16 . . . 41 . . . 10000
DM-Ca . . 9582 . . . . . 418 . 10000
Ca . . . 9819 9 . . 172 . . 10000
Ca-DM . . . . 9866 . . . . 134 10000
D-W . . . . . 10000 . . . . 10000
D-DM . . . . . . 10000 . . . 10000
D-Ca . . . . . . . 10000 . . 10000
D-DC . . . . . . . . 10000 . 10000
D-CD . . . . . . . . . 10000 10000
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Lifetime
risk
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Trend in
lifetime
risk
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Continuous time rates

I Transition rates between states:

I based on 1-year tabulation of data
I age-period-cohort models
I using smooth effects of age, period and cohort

I Assuming only one transition per interval: small intervals

I State probabilities simple closed-form function of rates

I Numerical integration of closed form functions trivial

I Matrix multiplication trivial

. . . simplified by a parametric form for rates as function of time
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EBMT transplant data
Iacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]
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Markov property: Empirical question

Model for mortality rates:

I t time since transplant

I r time since relapse (if relapsed)

I tr time from transplant to relapse

I Fit the model for all transitions:

I split follow-up time
I fit Poisson model with covariates
I and spline terms for each time scale.

I Lexis machinery from the Epi package for R

I . . . for representation and manipulation of follow-up data.
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Using the Lexis machinery [4, 5]

cmlT <- Lexis(entry = list(cal = cal.yr(dot),
age = cal.yr(dot)-cal.yr(dob),
tst = 0),

exit = list(cal = cal.yr(dof)),
exit.status = dead,

states = c("Transplant","Dead"),
data = cml )

cmlL <- cutLexis( cmlT, cut = cal.yr(cmlT$dor),
new.state = "Relapse",
new.scale = "tsr",

precursor.states = "Transplant")

> subset( cmlL, lex.id==151 )[,1:8]

id cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0 4.93 Relap Dead ...
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new.scale = "tsr",

precursor.states = "Transplant")

> subset( cmlL, lex.id==151 )[,1:8]

id cal age tst tsr lex.dur lex.Cst lex.Xst covariates
151 1987.28 36.22 0.00 NA 1.87 Trans Relap ...
151 1989.16 38.10 1.87 0 4.93 Relap Dead ...
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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Model summary

I Mortality of relapsed patients depends on
when they relapsed.

I We also checked if the mortality depended on
time since they relapsed.
It did not.

I Note: It is an empirical question what timescales to use.

I Note: In order to compute probabilities, we need a model for
the relapse rates (λ) in addition to the mortality rates (µT , µR)

I . . . unfortunately not a Markov model
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Not Markov: the hard way

P {T at t} =exp
(
−
∫ t

0

λ(s) + µT (s) ds
)

P {D(T) at t} =
∫ t

0

µT (s)exp
(
−
∫ s

0

λ(u) + µT (u) du
)
ds

P {R at t} =
∫ t

0

P {Relapsed at s}

× P {Survive in Relapse from s to t} ds

=

∫ t

0

λ(s)exp
(
−
∫ s

0

λ(u) + µT (u) du
)

× exp
(
−
∫ t

s

µR(u, s) du
)
ds

P {D(R) at t} =1− P {T at t} − P {D(T) at t} − P {R at t} 57/ 60
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Summary & Conclusions

I The world is continuous
I Time effect likely to be smooth
I A single time scale is rarely sufficient
I Different timescales require joint reporting
I Continuous time formulae easiest to handle:

I Parametric form of time-effects allow direct implementation of
probability theory

I Choice of time scales is an empirical problem

I Non/Semi-parametric survival model not well suited for this
I Stick to this world: Fewer tables — more graphs!

Thanks for your attention
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