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Conditioning on the future

» ...also known as “Immortal time bias", see e.g.
S. Suissa:

Immortal time bias in pharmaco-epidemiology, Am. J.
Epidemiol, 2008 [2].

» Including persons’ follow-up in the wrong state

» ...namely one reached some time in the future

» Normally caused by classification of persons instead of
classification of follow-up time
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Time is a covariate — determinant of rates
Response variable in survival / follow-up is bivariate:

» Differences on the timescale (risk time, “exposure”)
» Events

The relevant unit of observation is person-time:

» small intervals of follow-up — “empirical rates”
> (dit, yit): (event, (sojourn) time) for individual 7 at time t.
» 1 is the response time, t is the covariate time

Covariates relate to each interval of follow-up
Allows multiple timescales, e.g. age, duration, calendar time
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“Stick to this world”

In the paper by Andersen & Keiding this is primarily aimed at the
use of “net survival”, that is the calculation of

ow (- | As) )

for a single cause of death
— formally for a non-exhaustive exit rate from a state.

Survival probability in the situation where:

1. all other causes of death are absent
2. the mortality, A, from cause ¢ is unchanged

... which is indeed not of this world.
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A look at the Cox model

At,x) = No(t) X exp(z'f)
A model for the rate as a function of ¢ and z.

The covariate ¢ has a special status:

v

Computationally, because all individuals contribute to (some
of) the range of t.

v

... the scale along which time is split (the risk sets)
Conceptually t is just a covariate that varies within individual.

v

Cox's approach profiles \y(%) out from the model

v
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» One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log()\(t, xz)) = log()\o(t)) + Biwni + -+ Bprpi = + 1

» Profile likelihood:
» Derive estimates of «; as function of data and (s
— assuming constant rate between death times
» Insert in likelihood, now only a function of data and s
» Turns out to be Cox's partial likelihood
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The Cox-likelihood: mechanics of computing
» The likelihood is computed by suming over risk-sets:

Z]og( @ 'ldeath )

n
zEReZ

> this is essentially splitting follow-up time at event- (and
censoring) times

.. repeatedly in every cycle of the iteration

v

..simplified by not keeping track of risk time

v

v

.. but only works along one time scale
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log(A(t, sz)) = log()\o(t)) + Bimy + o+ By = a1

Suppose the time scale has been divided into small intervals
with at most one death in each:

Empirical rates: (dj, y;:) — each ¢ has at most one d;; = 0.
Assume w.l.o.g. the ys in the empirical rates all are 1.

Log-likelihood contributions that contain information on a
specific time-scale parameter a; will be from:

» the (only) empirical rate (1,1) with the death at time ¢.

» all other empirical rates (0, 1) from those who were at risk at time .
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Note: There is one contribution from each person at risk to this
part of the log-likelihood:

U, B) = Y dilog(Ni(t)) — Ni(t)y:

1€ER;

= > {dio ) e}
1ER

= + Ndeath — €™ Z el

1€ER,

where 7geath is the linear predictor for the person that died.
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The derivative w.r.t. a; is:
1
Datgt(ata =1- at Z em =0 ~ eo‘t = —77
1ER; ZieRt e

If this estimate is fed back into the log-likelihood for «;, we get the
profile likelihood (with o “profiled out”):

1 < 1 > 1 1 ( endeath > 1
g\ =) T Ndeath — 1 =log | <——- | —
Zz’eRt e Zz’eRt e

which is the same as the contribution from time ¢ to Cox's partial
likelihood.
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» Risk time y — log(y) as offset
» Covariate value for the timescale
(time since entry, current age, current date, .. .)
» other covariates

v

v

v

v

Contributions not independent, but likelihood is a product
Same likelihood as for independent Poisson variates
Modelling is by standard glm Poisson
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v
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Example: Mayo Clinic lung cancer

» Survival after lung cancer
» Covariates:

» Age at diagnosis
» Sex
» Time since diagnosis

» Cox model
» Split data:

» Poisson model, time as factor
» Poisson model, time as spline
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Mayo Clinic
lung cancer
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Example: Mayo Clinic lung cancer |

> library( survival )

> library( Epi )

> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be O on the tfe timescale.
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Example: Mayo Clinic lung cancer Il

> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" )

+ age + factor( sex ),
+ method="breslow", eps=10"-8, iter.max=25, data=Lung )
> Lung.s <- splitLexis( Lung,
+ breaks=c (0, sort (unique (Lung$time))),
+ time.scale="tfe" )
> Lung.S <- splitLexis( Lung,
+ breaks=c (0, sort (unique (Lung$time [Lung$lex.Xst=="Dead"])))
+ time.scale="tfe" )
> summary( Lung.s )
Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:

Alive 19857 165 20022 165 69593 228

> summary( Lung.S )

18/ 60



Example: Mayo Clinic lung cancer Il

Transitions:
To
From Alive Dead Records: Events: Risk time:
Alive 15916 16081 165 69593

> subset( Lung.s, lex.id==96 )[,1:11]

9235
9236
9237
9238
9239
9240
9241

lex.id tfe lex.dur

0

5
11
12
13
15
26

I e S a2 XL

> nlevels( factor( Lung

[1] 186

Persons:
228

lex.Cst lex.Xst inst time status age sex ph.ecog

Alive
Alive
Alive
Alive
Alive
Alive
Alive

.s$tfe ) )

Alive
Alive
Alive
Alive
Alive
Alive

Dead

NDNDNNDNDNDN

72

e

NDNNNDNDNDN
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Example: Mayo Clinic lung cancer IV

> system.time (

+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +

+ age + factor( sex ),

+ offset = log(lex.dur),

+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )
+ )

user system elapsed
10.828 0.012 10.837

> length( coef(mLs.pois.fc) )

[1] 188

> system.time(

+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +

+ age + factor( sex ),

+ offset = log(lex.dur),

+ family=poisson, data=Lung.S, eps=10"-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer V

user system elapsed
3.268 0.000 3.257

> length( coef (mLS.pois.fc) )
(1] 142

> t.kn <- ¢(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +

+ age + factor( sex ),

+ offset = log(lex.dur),

+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer VI

user system elapsed
0.173 0.000 0.172

ests <-

rbind( ci.exp(mL.cox),
ci.exp(mLs.pois.fc,subset=c("age", "sex")),
ci.exp(mLS.pois.fc,subset=c("age", "sex")),
ci.exp(mLs.pois.sp,subset=c("age", "sex")) )

cmp <- cbind( ests[c(1,3,5,7) ,],

ests[c(1,3,5,7)+1,] )
rownames ( cmp ) <- c("Cox","Poisson-factor","Poisson-factor (D)","Poisson-splin

n.n

colnames( cmp )[c(1,4)] <- c("age","sex")

VV+VE+++YV

> round( cmp, 7 )
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Example: Mayo Clinic lung cancer VII

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487

Poisson-factor (D) 1.017332 0.9991211 1.035874 0.5984794 0.4310150 0.8310094
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +

+ age + factor( sex ),

+ offset = log(lex.dur),

+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )

CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )

Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
survP <- exp(-rbind(0,Lambda))

vV VVvyvVv

Code and output avaialble in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is
Taking the life-table approach ad absurdum by:

» dividing time very finely and

v

modeling one covariate, the time-scale, with one parameter per
distinct value.

v

the model for the time scale is really with exchangeable
time-intervals.

= difficult to access the baseline hazard.

v

v

= uninitiated tempted to show survival curves where irrelevant
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Follow-up on several timescales

» The risk-time is the same on all timescales
» Only need the entry point on each time scale:

» Age at entry.
» Date of entry.
» Time since treatment at entry.
— if time of treatment is the entry, this is O for all.

» Response variable in analysis of rates:
(d,y) (event, duration)

» Covariates in analysis of rates:

> timescales
» other (fixed) measurements
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Follow-up data in Epi — Lexis objects

A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume

1 1 2 1916.61

2 640 2 1896.23
3 34256 1 1886.97
4 4017 2 1936.81

Timescales of interest:

>‘Age
» Calendar time
» Time since injection

1
1
2
2

1938.79
1945.77
1955.18
1957.61

22
20
0
0

exitdat exitstat

1976.79
1964 .37
1956.59
1992.14

1

1
1
2
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Definition of Lexis

>
+
+
+
+
+

thL <- Lexis( entry

exit =

exit.status
data

object

= 1list( age = injecdat-birthdat,
per = injecdat,
tfi = 0 ),

list( per = exitdat ),
= as.numeric(exitstat==1),
th )
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,

+ tfi =0 ),

+ exit = 1list( per = exitdat ),

+ exit.status = as.numeric(exitstat==1),

+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:
exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]

age
1 22.18
2 49.54
3 68.20
4 20.80

> summary( thL )

per tfi lex.dur

1938.79
1945.77
1955.18
1957.61

Transitions:

To
From O

1 Records:

0 3 20

0

0
0
0

37.99
18.59

1.40
34.52

Events:

20

lex.Cst lex.Xst lex.id

0

0
0
0

Risk time:
512.59

1

1
1
0

Persons:

23

1

2
3
4
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Splitting follow-up time

v

spll <- splitLexis( thL, breaks=seq(0,100,20),
time.scale="age" )

A\

> round(spll,1)
age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat vo:

1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6
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Split on another timescale
> spl2 <- splitLexis( spll, time.scale="tfi",
breaks=c(0,1,5,20,100) )
> round( spl2, 1)

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast inj
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2/60 1
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In the model as response: lex.Xst==
> yi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).
» Covariates are:
» timescales (age, period, time in study)
— non-linear, continuous effect
» other variables for this person (constant in each interval).

» If intervals sufficiently small, a very good approximation to a
continuously varying rate by using time points from each
interval

» And very handy post-processing of results
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Markov predictions from non-Markov models

» Model rates in a Lexis diagram ( age / calendar time ):
Aa,t)
» Aim is summary measures:

Expected life time
Lifetime probability of disease
Lifetime spent diseased

vV vV v Vv

» Easy if rates only depend on age
» — so use cross-sectional rates: A\(a,t = Tj)
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Joint occurrence of Diabetes and Cancer
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Incidence rates per 1000 PY
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Predicted rates — cross-sectional 1995-2010
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Continuous rates (per 2010)

1-month cumulative rates — transition probabilities

(1 — exp(—(As + Ay + Ag))) A/ (A1+ Ao+ Ag),i=1,2,3

1-month transition probabilities (x10*) at age 66 years:
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» Transition rates between states:

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

» Assuming only one transition per interval: small intervals

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

» Assuming only one transition per interval: small intervals
» State probabilities simple closed-form function of rates

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

» Assuming only one transition per interval: small intervals
» State probabilities simple closed-form function of rates
» Numerical integration of closed form functions trivial

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

v

Assuming only one transition per interval: small intervals
State probabilities simple closed-form function of rates
Numerical integration of closed form functions trivial
Matrix multiplication trivial

v

v

v

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

v

Assuming only one transition per interval: small intervals
State probabilities simple closed-form function of rates
Numerical integration of closed form functions trivial
Matrix multiplication trivial

v

v

v

47/ 60



Continuous time rates

» Transition rates between states:

» based on 1-year tabulation of data
» age-period-cohort models
» using smooth effects of age, period and cohort

» Assuming only one transition per interval: small intervals
» State probabilities simple closed-form function of rates

» Numerical integration of closed form functions trivial

» Matrix multiplication trivial

...simplified by a parametric form for rates as function of time
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]

2,246
Trans 7.4 Relap
30,504.1 )\(t) 6,106.5
3,683 1,076
(12.1) (17.6)
pr(t) Hr(t. T, tr)
Dead(Tr) Dead(Relap)

other covariates: Age and date at Tx, sex, donor type, CML type

48/ 60



70 70 70
60— 60— 60—
50 50 50
i< kS
S S
404 2 40 2 40
[=4 =4
S S
@ = =
< 8 8
£ £
n n
30 -g 304 -“E’ 304
= =
20 20
10 10
0 T T ” 07 T T T T
1980 1990 2000 1980 1990 2000 0 5 10 15 20 25
Date Date Time since Relapse

49/ 60



Markov property: Empirical question
Model for mortality rates:

» ¢ time since transplant
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Model for mortality rates:

» 1 time since transplant
7 time since relapse (if relapsed)

v

t, time from transplant to relapse

v

Fit the model for all transitions:

v

» split follow-up time
» fit Poisson model with covariates
» and spline terms for each time scale.

Lexis machinery from the Epi package for R

v

v

... for representation and manipulation of follow-up data.
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Using the Lexis machinery [4, 5]

cmlT <- Lexis(entry = list(cal = cal.yr(dot),

age = cal.yr(dot)-cal.yr(dob),
tst = 0),
exit = list(cal = cal.yr(dof)),
exit.status = dead,
states = c("Transplant","Dead"),
data = cml )

cmll <- cutLexis( cmlT, cut
new.state

new.scale

precursor.states

cal.yr(cmlT$dor),
"Relapse",

"tSr" s
"Transplant")

> subset( cmlL, lex.id==151 )[,1:8]
id cal age tst tsr lex.dur lex.Cst lex.Xst covariates

151 1987.28 36.22 0.00 NA 1.87 Trans Relap
151 1989.16 38.10 1.87 O 4.93 Relap Dead
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Mortality rate per 1000 PY
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Model summary

» Mortality of relapsed patients depends on
when they relapsed.

56/ 60



Model summary

» Mortality of relapsed patients depends on
when they relapsed.

» We also checked if the mortality depended on
time since they relapsed.
It did not.

56/ 60



Model summary
» Mortality of relapsed patients depends on
when they relapsed.

» We also checked if the mortality depended on
time since they relapsed.
It did not.

» Note: It is an empirical question what timescales to use.

56/ 60



Model summary

» Mortality of relapsed patients depends on
when they relapsed.

» We also checked if the mortality depended on
time since they relapsed.
It did not.

» Note: It is an empirical question what timescales to use.

» Note: In order to compute probabilities, we need a model for
the relapse rates () in addition to the mortality rates (u 7, ir)

56/ 60



Model summary

>

v

Mortality of relapsed patients depends on
when they relapsed.

We also checked if the mortality depended on
time since they relapsed.
It did not.

Note: It is an empirical question what timescales to use.

Note: In order to compute probabilities, we need a model for
the relapse rates () in addition to the mortality rates (u 7, ir)

... unfortunately not a Markov model
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Not Markov: the hard way

t

P{T at ¢} :exp( —/ A(s) + uT(s)ds)

0

P {D(T) at ¢} :/()tuT(s)exp( —/Os)\(u) + pur(u) dur) ds

¢
P{R at t} :/ P {Relapsed at s}
0

x P {Survive in Relapse from s to t} ds

= /Ot)\(s)exp( —/Osk(u) + pr(u) du)

t

X exp( 7/5 wr(u,s) du) ds

P {D(R) at t} =1 — P{T at t} — P{D(T) at ¢t} — P {R at t}
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Summary & Conclusions

The world is continuous

Time effect likely to be smooth

A single time scale is rarely sufficient
Different timescales require joint reporting
Continuous time formulae easiest to handle:

v

v

v

v

v

» Parametric form of time-effects allow direct implementation of
probability theory
» Choice of time scales is an empirical problem

» Non/Semi-parametric survival model not well suited for this
» Stick to this world: Fewer tables — more graphs!

Thanks for your attention
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