Analysis of multistate data with realistic rate models and multiple time scales: A dogmatic approach

Bendix Carstensen Steno Diabetes Center Gentofte. Denmark http://BendixCarstensen.com

IARC. Lvon. France. 11 April 2018

1/ 51

The dogma [1]

- ▶ do not condition on the future indisputable
- ▶ do not count people after they are dead disputable
- ▶ stick to this world expandable

2/ 51

do not condition on the future

- commonly seen in connection with "immortal time bias"
- ▶ allocation of follow-up (risk time) to a covariate value only assumed in the future
- ▶ all follow-up among persons ever on insulin allocated to the insulin group
 - including the time prior to insulin use (when not on insulin)
- events always with the correct covariate values
- ▶ ⇒ too much PY in insulin group; rates too small
- ▶ ⇒ too little PY in non-insulin group; rates too large
- ▶ ⇒ insulin vs. non-insulin rates **under**estimated

3/ 51

do not count people after they are dead

- ▶ Reference to Fine & Gray's paper on models for the subdistribution hazard [2]
- ▶ Recall: hazard and cumulative risk for all cause death:

$$F(t) = 1 - \exp(-\Lambda(t))$$
 \Leftrightarrow $\lambda(t) = \Lambda'(t) = (\log(1 - F(t)))'$

▶ Subdistribution hazard — with more causes of death (compting risks), for cumulative risk of cause c, $F_c(t)$:

$$\tilde{\lambda}_c(t) = \left(\log(1 - F_c(t))\right)'$$

lacktriangle Note: F_c depends on all cause-specific hazards

do not count people after they are dead

► The estimation of the subdistribution hazard boils down to:

$$\tilde{h}(t) = P\left\{X(t + dt) = j | X(t) \neq j\right\} / dt$$

that is, the instantaneous rate of failure per time unit from cause j among those who are either alive or have died from causes other than j at time t

- ... sounds crazy, but...
- when modeling the cumulative risk you must refer back to the size of the original population, which include those dead from other causes.
- The debate is rather if the subdistribution hazard is a useful scale for modeling and reporting from competing risk settings

5/ 51

stick to this world

the "net" survival or "cause specific survival":

$$S_c(t) = \exp\left(\int_0^t \lambda_c(s) \, \mathrm{d}s\right)$$

- not a proper probability
- the probability of survival if
 - $\,\blacktriangleright\,$ all other causes of death than c were absent
 - $m{ ilde{c}}$ -specific mortality rate were still the same
- ▶ so it is just a transformation of the cause-specific rate with no real world interpretation
- ...do not label quantities "survival" or "probability" when they are not (of this world)

(further) dogma for "sticking to this world"

- rates are continuous in time (and "smooth")
- rates may depend on more than one time scale
- which, is an empirical question

7/ 51

A look at the Cox model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

Covariates:

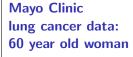
- ► x
- ... often the effect of t is ignored (forgotten?)
- ▶ i.e. left unreported

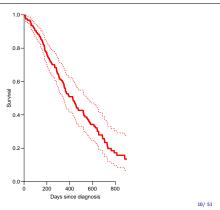
The Cox-likelihood as profile likelihood

▶ One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \underbrace{\beta_1 x_{1i} + \dots + \beta_p x_{pi}}_{\eta_i} = \alpha_t + \eta_i$$

- ▶ Profile likelihood:
 - ▶ Derive estimates of α_t as function of data and β s — assuming constant rate between death/censoring times
 - ▶ Insert in likelihood, now only a function of data and β s
 - ► This turns out to be Cox's partial likelihood
- Cumulative intensity $(\Lambda_0(t))$ obtained via the Breslow-estimator





Splitting the dataset a priori

- $\,\blacktriangleright\,$ The Poisson approach needs a dataset of empirical rates (d,y)with suitably small values of y.
- ▶ each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - $\blacktriangleright \ \, \mathsf{Poisson\text{-}response} \ \, d$
 - ▶ Risk time $u \to \log(u)$ as offset
 - ▶ time scale covariates: current age, current date, . . .
 - other covariates
- ▶ Contributions not independent, but likelihood is a product
- ▶ Same likelihood as for independent Poisson variates
- ▶ Poisson glm with spline/factor effect of time

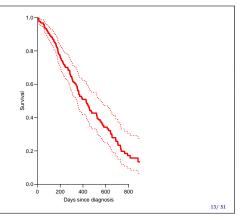
11/ 51

Example: Mayo Clinic lung cancer

- Survival after lung cancer
- Covariates:
 - Age at diagnosis

 - ► Time since diagnosis
- Cox model
- ▶ Split data:
 - ▶ Poisson model, time as factor
 - ▶ Poisson model, time as spline

Mayo Clinic lung cancer 60 year old woman



Example: Mayo Clinic lung cancer I

```
NOTE: entry status has been set to "Alive" for all. NOTE: entry is assumed to be 0 on the tfe timescale.
> summary( Lung )
Transitions:
To To From Alive Dead Records: Events: Risk time: Persons: Alive 63 165 228 165 69593 228
```

Example: Mayo Clinic lung cancer II

```
> system.time(
+ mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~</pre>
                    age + factor( sex ),
method="breslow", data=Lung ) )
  user system elapsed 0.010 0.001 0.009
> summary( Lung.s )
Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228
> subset( Lung.s, lex.id==96 )[,1:11] ; nlevels( factor( Lung.s$tfe ) )
                                                                                   15/ 51
```

Example: Mayo Clinic lung cancer III

```
9237
9238
9239
9240
9241
[1] 186
> system.time(
)
user system elapsed
13.550 17.334 8.761
```

```
Example: Mayo Clinic lung cancer V
```

```
> ests <-

+ rbind( ci.exp(mL.cox),

+ ci.exp(mLs.pois.fc,subset=c("age","sex")),

+ ci.exp(mLs.pois.sp,subset=c("age","sex")) 

> cmp <- cbind( ests[c(1,3,5) ,],

+ ests[c(1,3,5)+1,])

> rownames( cmp ) <- c("Cox", "Poisson-factor", "Poisson-spline")

> colnames( cmp ) [c(1,4)] <- c("age", "sex")

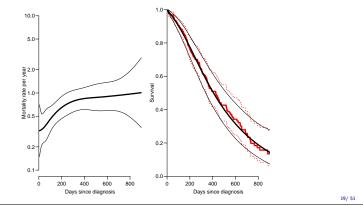
> round( cmp, 7 )

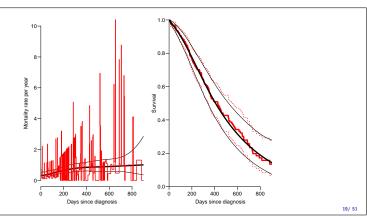
age 2.5% 97.5% sex 2.5% 97.5%

Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487

Poisson-factor 1.017158 0.9989389 1.035710 0.5989574 0.4313720 0.8316487

Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
```





Deriving the survival function

Code and output for the entire example available in http://bendixcarstensen.com/AdvCoh/WNtCMa/

20/ 51

What the Cox-model really is

Taking the life-table approach ad absurdum by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- → difficult to access the baseline hazard (which looks terrible)
- ▶ ⇒ uninitiated tempted to show survival curves where irrelevant

21/ 51

Models of this world

18/ 51

- ightharpoonup Replace the $lpha_t$ s by a parametric function f(t) with a limited number of parameters, for example:
 - ► Piecewise constant
 - ▶ Splines (linear, quadratic or cubic)
 - Fractional polynomials
- ▶ the two latter brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use rates directly in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models
 - **...**

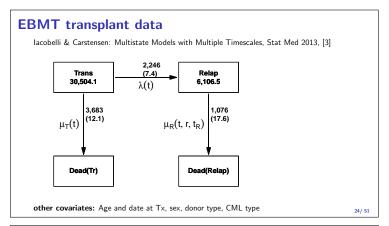
22/ 51

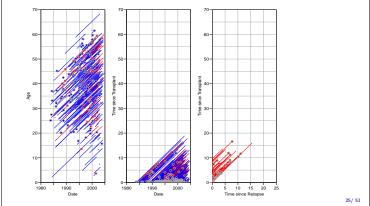
additional dogma

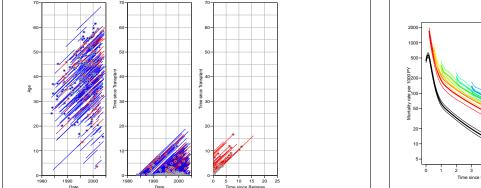
Not sacred, merely consequences of the 3rd commandment:

- Show risk time in states and transitions between states graphically
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- ▶ Determine the relevant timescale(s)
- ▶ **Then** derive the relevant measures to report.
- ► Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly

23/ 51



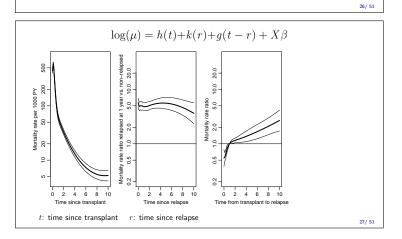


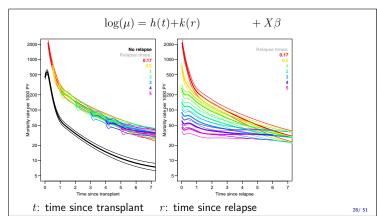


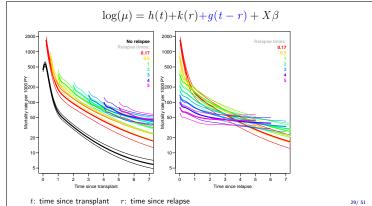
Markov property: Empirical question

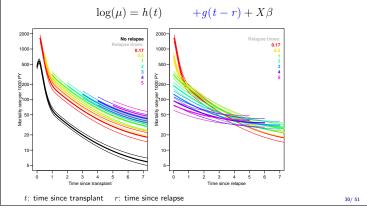
Model for mortality rates:

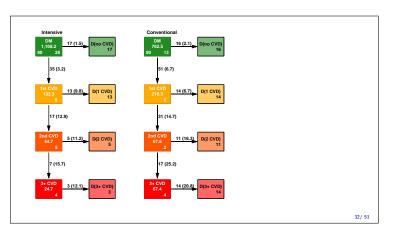
- ▶ t time since transplant
- ▶ r time since relapse (if relapsed)
- $lacktriangleright t_r$ time from transplant to relapse
- ▶ Fit the model for all transitions:
 - ▶ split follow-up time
 - fit Poisson model with covariates
 - ▶ and spline terms for each time scale.
- ▶ Lexis machinery [4, 5] from the **Epi** package for **R**
- ... for representation and manipulation of follow-up data.

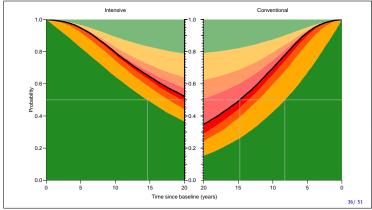


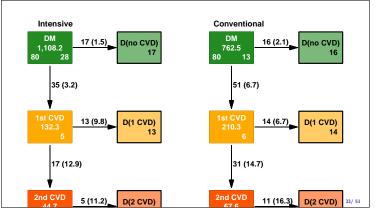


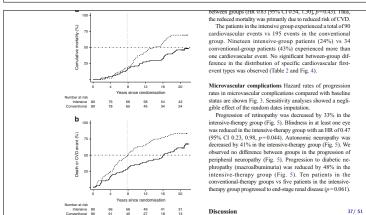








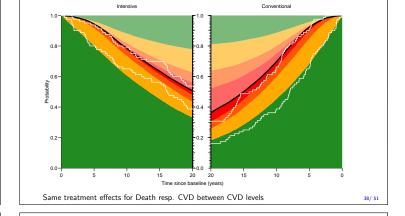




Models used

- ▶ One model for the 4 mortality rates
- ▶ One model for the 3 CVD rates
- ... both models assume:
 - $\,\blacktriangleright\,$ proportional hazards between CVD states (0,1,2(,3) CVD events)
 - proportional hazards between groups (conventional, intervention)
 - proportional hazards between levels of sex and age (at entry)
- Which just means: multiplicative effects of the covariates: time since baseline, CVD state, group, sex and age
- ► Proportional hazards means: no interaction with the time scale

34/ 51



Hazard ratios

	Mortality	CVD event	
$\begin{array}{lll} \mbox{HR, Int. vs. Conv.} \\ \mbox{H}_0 \hbox{: PH btw. CVD groups} \\ \mbox{H}_0 \hbox{: HR} = 1 \end{array}$	0.83 (0.54; 1.30) p=0.438 p=0.425	0.55 (0.39;0.77) p=0.261 p=0.001	
HR vs. 0 CVD events:			
0 (ref.)	1.00	1.00	
1	3.08 (1.82; 5.19)	2.43 (1.67;3.52)	
2	4.42 (2.36; 8.29)	3.48 (2.15;5.64)	
3+	7.76 (4.11;14.65)	,	

Then use fitted rates to estimate the probabilities of being in each state at all times. (This is immensely complicated).

Different treatment effects for Death resp. CVD between CVD levels

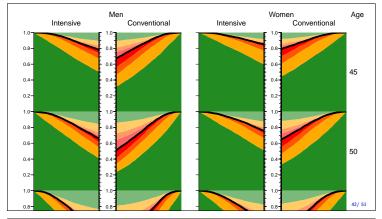
Expected lifetime and YLL (well, gained)

► Expected lifetime (years) in the Steno 2 cohort during the first 20 years after baseline by treatment group and CVD status.

State	where	Int.	Conv.	Int.-Conv.
Alive	under black line	15.6	14.1	1.5
No CVD	green area	12.7	10.0	2.6
Any CVD	orange area	3.0	4.1	-1.1

- ▶ What does "expected" mean?
- ► Expectation w.r.t.
- age and sex-distribution in the Steno2 study!
- Computed as areas under survival curves

Month Conventional Man Conventional Institution Month Conventional Age of the Conventional Age of the



Expected lifetime (years) during the first 20 years after baseline by sex, age, treatment group and CVD status.

sex		Men Women					
state	age	Int.	Conv.	Int.—Conv.	Int.	Conv.	Int.—Conv.
Alive	45	18.5	17.5	1.0	19.1	18.4	0.7
	50	17.2	16.1	1.1	18.0	17.2	0.8
	55	15.6	13.8	1.8	17.4	15.9	1.6
	60	13.9	11.6	2.2	15.5	13.7	1.8
	65	11.2	9.5	1.8	13.3	11.4	2.0
No CVD	45	14.9	12.5	2.4	15.8	14.3	1.5
	50	14.0	11.1	2.9	15.1	12.9	2.2
	55	12.2	9.7	2.5	14.3	11.6	2.7
	60	10.9	8.2	2.7	12.4	9.9	2.6
	65	9.0	6.7	2.2	10.7	8.3	2.4

From rates to probabilities

- ▶ There is a one-to-one correspondence between:
 - ▶ all rates between states (by time) + initial state distribution
 - state distribution by time
- Model for rates

40/51

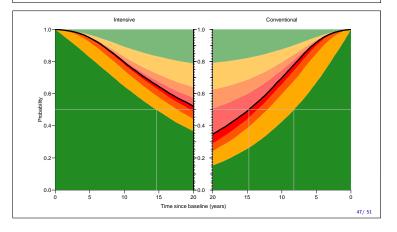
- ⇒ probability of being in a given state at any given time
- ▶ Analytically this is a nightmare
- ▶ Simulation is the answer

45/ 51

From rates to probabilities: simLexis

- Assume a person is in "DM" initially
 - ► Simulate a time of death (transition to "D(no CVD)")
 - ► Simulate a time of CVD (transition to "1st CVD")
 - ► Choose the smaller as the transition
- ▶ If transition is to "1st CVD" simulate death / 2nd CVD, etc.
- ▶ Repeat for, say, 10,000 persons
 - ⇒ simulated cohort study
- ▶ simLexis does this for you, provided you have
 - ▶ initial state and covariates for all persons
 - ▶ models to predict (cumulative) rates
- Count how many is in each state at each time:
 - \Rightarrow state occupancy probabilities
- nState and pState does this for you

46/51



Using the Lexis machinery

- ► Allows estimation of fully parametric rate function
- ▶ Simple test for proportional hazards
- ▶ State occupancy probabilities requires simulation: simLexis — see vignette in Epi package
- Access to other measures such as expected residual lifetime.
- ▶ similar machinery available in Stata:

 - ► Crowther & Lambert [6]
 - ▶ Only one timescale, however. . .

48/ 51

Additional dogma

- ▶ Show risk time in states and transitions between states
- ▶ Model transition rates by smooth **parametric** functions
- ▶ There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- ▶ Time-scale **interactions** is the proper name for "non-proportional hazards"
- ▶ Multiple time scales should be reported jointly

References I

P. K. Andersen and N. Keiding.
Interpretability and importance of functionals in competing risks and multistate models.
Stat Med, 31:1074–1088, 2012.

J P Fine and R J Gray.
A proportional hazards model for the subdistribution of a competing risk.

S. Iacobelli and B. Carstensen.
Multiple time scales in multi-state models.
Stat Med, 32(30):5315–5327, Dec 2013.

Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up.

Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R. Journal of Statistical Software, 38(6):1–18, 1 2011.

References II

M. J. Crowther and P. C. Lambert.

Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences.

Stat Med, 36(29):4719–4742, Dec 2017.

bendixcarstensen.com/AdvCoh/Lexis-ex