Analysis of multistate data with realistic rate models and multiple time scales: A dogmatic approach

Bendix Carstensen	Steno Diabetes Center	
	Gentofte, Denmark	
	http://BendixCarstensen.com	

IARC, Lyon, France, 11 April 2018

1/ 51

The dogma [1]

- ▶ do not condition on the future indisputable
- do not count people after they are dead disputable
- stick to this world expandable

do not condition on the future

- commonly seen in connection with "immortal time bias"
- allocation of follow-up (risk time) to a covariate value only assumed in the future
- all follow-up among persons ever on insulin allocated to the insulin group
 - including the time **prior** to insulin use (when not on insulin)
- events always with the correct covariate values
- ightarrow
 ightarrow too **much** PY in insulin group; rates too **small**
- ightarrow \Rightarrow too **little** PY in non-insulin group; rates too **large**
- $ightarrow \Rightarrow$ insulin vs. non-insulin rates **under**estimated

do not count people after they are dead

- Reference to Fine & Gray's paper on models for the subdistribution hazard [2]
- ▶ Recall: hazard and cumulative risk for all cause death:

$$F(t) = 1 - \exp(-\Lambda(t)) \quad \Leftrightarrow \quad \lambda(t) = \Lambda'(t) = \left(\log(1 - F(t))\right)'$$

► Subdistribution hazard — with more causes of death (compting risks), for cumulative risk of cause c, F_c(t):

$$\tilde{\lambda}_c(t) = \left(\log(1 - F_c(t))\right)'$$

• Note: F_c depends on all cause-specific hazards

4/ 51

do not count people after they are dead

► The estimation of the subdistribution hazard boils down to:

$$\dot{h}(t) = P \{X(t + dt) = j | X(t) \neq j\} / dt$$

that is, the instantaneous rate of failure per time unit from cause j among those who are either alive or have died from causes other than j at time t

- ... sounds crazy, but...
- when modeling the cumulative risk you must refer back to the size of the original population, which include those dead from other causes.
- The debate is rather if the subdistribution hazard is a useful scale for modeling and reporting from competing risk settings

5/ 51

stick to this world

the "net" survival or "cause specific survival":

$$S_c(t) = \exp\left(\int_0^t \lambda_c(s) \, \mathrm{d}s\right)$$

- not a proper probability
- the probability of survival if
 - \blacktriangleright all other causes of death than c were absent
 - \blacktriangleright $c\mbox{-specific mortality rate were still the same$
- so it is just a transformation of the cause-specific rate with no real world interpretation
- ... do not label quantities "survival" or "probability" when they are not (of this world)

(further) dogma for "sticking to this world"

- rates are continuous in time (and "smooth")
- rates may depend on more than one time scale
- which, is an empirical question

7/ 51

A look at the Cox model

 $\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$

A model for the rate as a function of t and x. Covariates:

- ► *x*
- ► t
- ... often the effect of t is ignored (forgotten?)
- *i.e.* left unreported

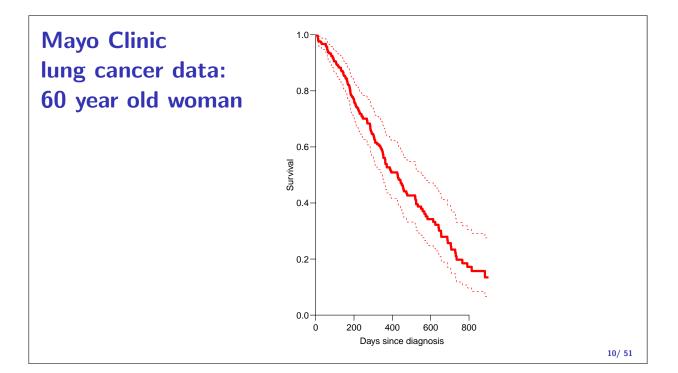
8/51

The Cox-likelihood as profile likelihood

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \underbrace{\beta_1 x_{1i} + \dots + \beta_p x_{pi}}_{\eta_i} = \alpha_t + \eta_i$$

- Profile likelihood:
 - Derive estimates of *α_t* as function of data and βs
 assuming constant rate between death/censoring times
 - Insert in likelihood, now only a function of data and $\beta {\bf s}$
 - This turns out to be Cox's partial likelihood
- ► Cumulative intensity (Λ₀(t)) obtained via the Breslow-estimator



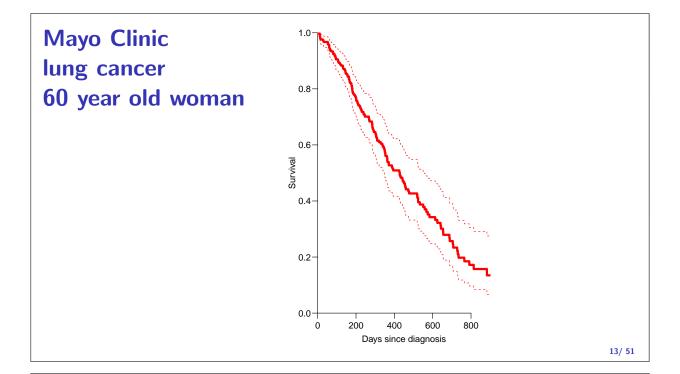
Splitting the dataset a priori

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - \blacktriangleright Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - ▶ time scale covariates: current age, current date, ...
 - other covariates
- Contributions not independent, but likelihood is a product
- ► Same likelihood as for independent Poisson variates
- Poisson glm with spline/factor effect of time

11/ 51

Example: Mayo Clinic lung cancer

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- Split data:
 - Poisson model, time as factor
 - Poisson model, time as spline

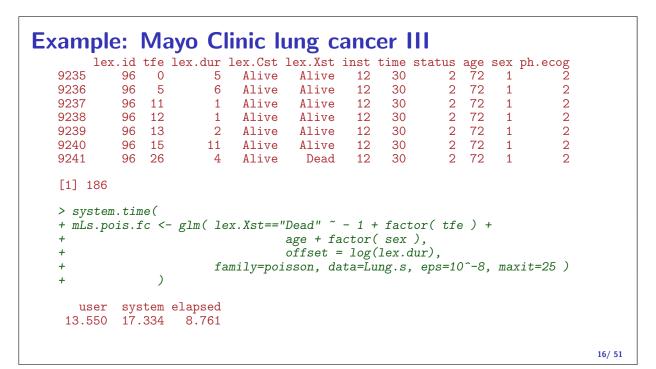


Example: Mayo Clinic lung cancer I

```
> library( survival )
> library( Epi )
> Lung <- Lexis( exit = list( tfe=time ),
+
                exit.status = factor(status,labels=c("Alive", "Dead")),
                data = lung )
+
NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
> summary( Lung )
Transitions:
    То
From Alive Dead Records: Events: Risk time: Persons:
 Alive
        63 165
                       228
                                165
                                         69593
                                                      228
```

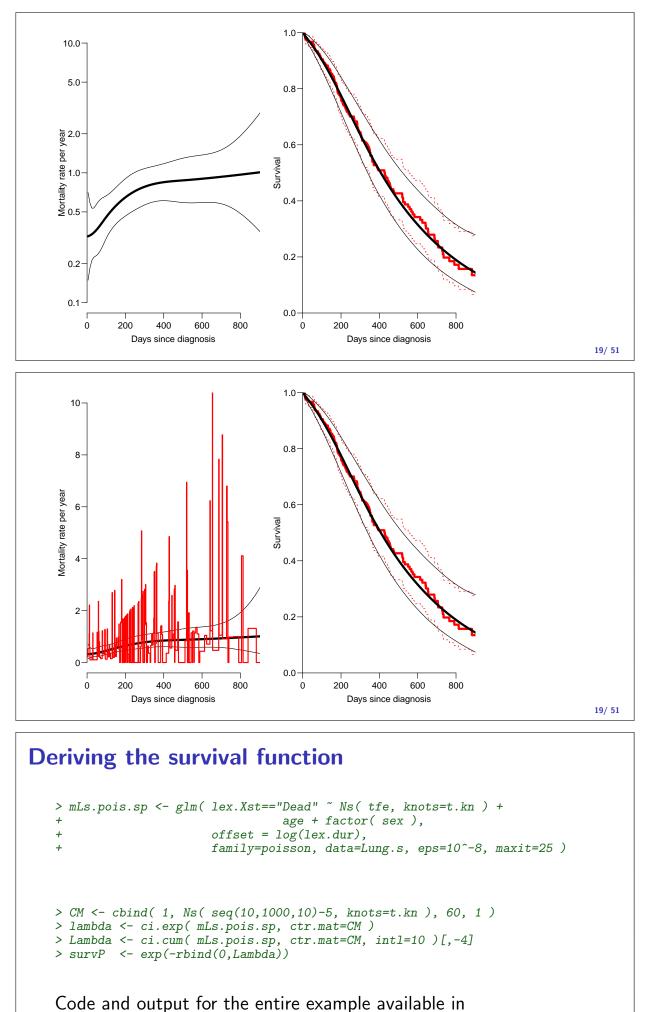
14/ 51

Example: Mayo Clinic lung cancer II > system.time(+ mL.cox <- coxph(Surv(tfe, tfe+lex.dur, lex.Xst=="Dead") ~ age + factor(sex), method="breslow", data=Lung)) user system elapsed 0.010 0.001 0.009 > Lung.s <- splitLexis(Lung,</pre> breaks=c(0, sort(unique(Lung\$time))), + time.scale="tfe") > summary(Lung.s) Transitions: То Alive Dead Records: Events: Risk time: Persons: From Alive 19857 165 20022 165 69593 228 > subset(Lung.s, lex.id==96)[,1:11] ; nlevels(factor(Lung.s\$tfe))



```
Example: Mayo Clinic lung cancer IV
   > length( coef(mLs.pois.fc) )
   [1] 188
   > t.kn <- c(0,25,100,500,1000)
   > dim( Ns(Lung.s$tfe,knots=t.kn) )
   [1] 20022
                 4
   > system.time(
   + mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
                                  age + factor( sex ),
                         offset = log(lex.dur),
   +
   +
                         family=poisson, data=Lung.s, eps=10<sup>-8</sup>, maxit=25 )
                 )
      user system elapsed
     0.418 0.510
                   0.317
```

```
Example: Mayo Clinic lung cancer V
   > ests <-
    + rbind( ci.exp(mL.cox),
             ci.exp(mLs.pois.fc,subset=c("age","sex")),
    +
             ci.exp(mLs.pois.sp,subset=c("age","sex")) )
   > cmp <- cbind( ests[c(1,3,5) ,],
                     ests[c(1,3,5)+1,] )
   > rownames( cmp ) <- c("Cox", "Poisson-factor", "Poisson-spline")
> colnames( cmp )[c(1,4)] <- c("age", "sex")</pre>
   > round( cmp, 7 )
                                                                  2.5%
                                  2.5%
                                           97.5%
                                                                           97.5%
                                                        sex
                         age
                    1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
   Cox
   Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
   Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
```



http://bendixcarstensen.com/AdvCoh/WNtCMa/

What the Cox-model really is

Taking the life-table approach ad absurdum by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \blacktriangleright \Rightarrow difficult to access the baseline hazard (which looks terrible)
- ightarrow ightarrow uninitiated tempted to show survival curves where irrelevant

21/ 51

Models of this world

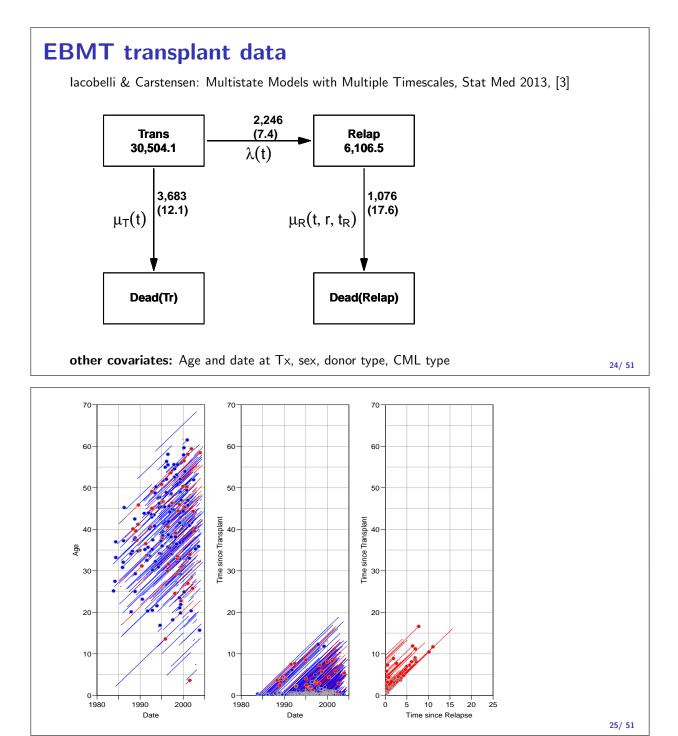
- Replace the α_ts by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- ▶ the two latter brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use rates directly in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models
 - **۱**

22/ 51

additional dogma

Not sacred, merely consequences of the 3rd commandment:

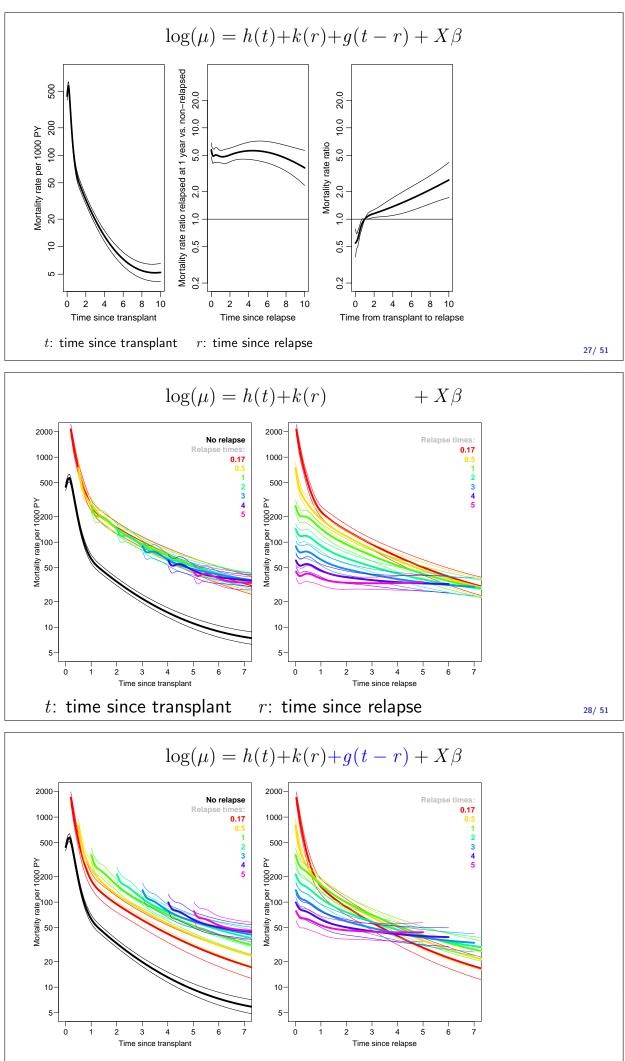
- Show risk time in states and transitions between states graphically
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- Determine the relevant timescale(s)
- **Then** derive the relevant measures to report.
- Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly



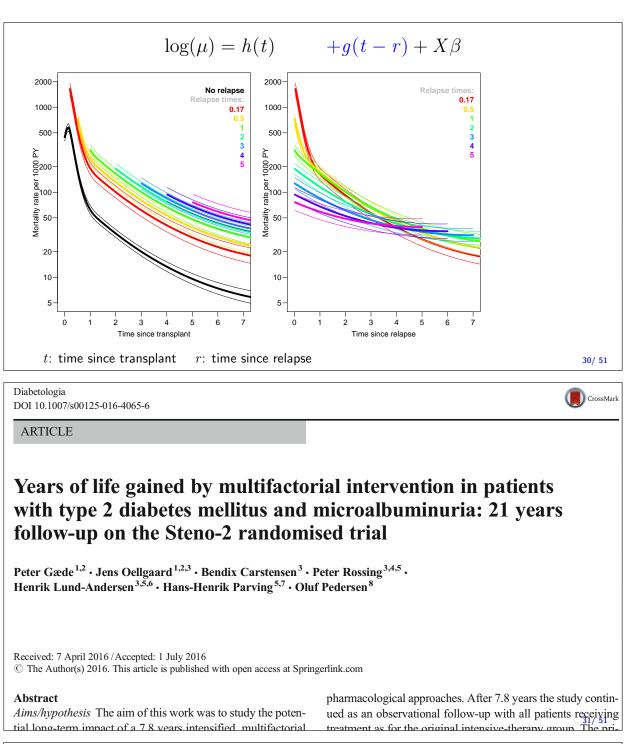
Markov property: Empirical question

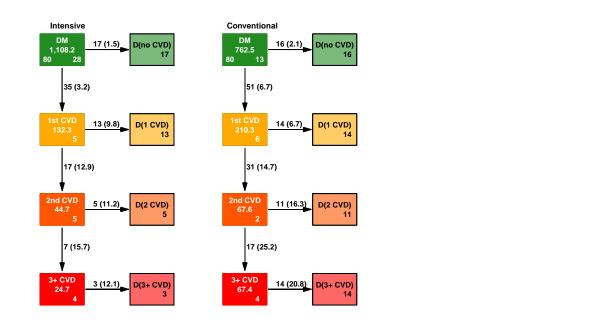
Model for mortality rates:

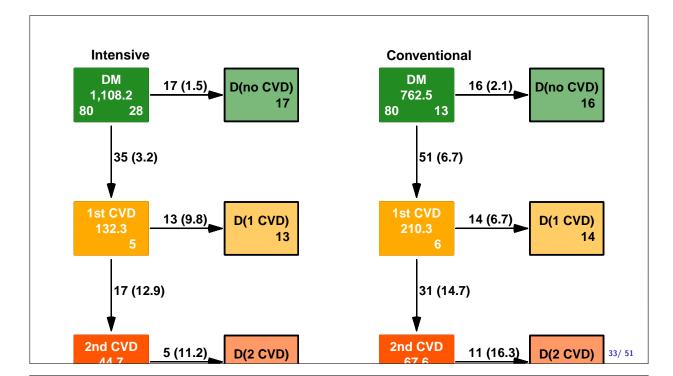
- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates
 - and spline terms for each time scale.
- ▶ Lexis machinery [4, 5] from the **Epi** package for **R**
- ... for representation and manipulation of follow-up data.



t: time since transplant r: time since relapse





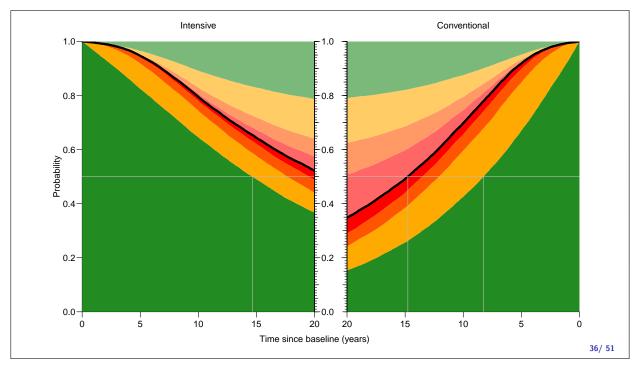


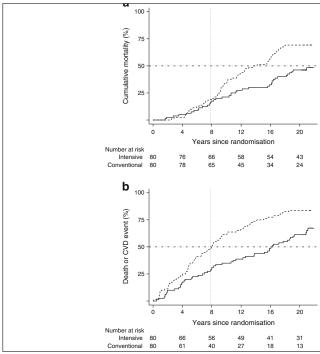
Models used

- One model for the 4 mortality rates
- One model for the 3 CVD rates
- ... both models assume:
 - proportional hazards between CVD states (0, 1, 2(, 3) CVD events)
 - proportional hazards between groups (conventional, intervention)
 - proportional hazards between levels of sex and age (at entry)
- Which just means: multiplicative effects of the covariates: time since baseline, CVD state, group, sex and age
- Proportional hazards means: no interaction with the time scale

34/ 51

	Mortality	CVD event
HR, Int. vs. Conv.	0.83 (0.54; 1.30)	0.55 (0.39;0.77)
H_0 : PH btw. CVD groups	p=0.438	p=0.261
$H_0: HR = 1$	p=0.425	p=0.001
HR vs. 0 CVD events:		
0 (ref.)	1.00	1.00
1	3.08 (1.82; 5.19)	2.43 (1.67;3.52)
2	4.42 (2.36; 8.29)	3.48 (2.15;5.64)
3+	7.76 (4.11;14.65)	. ,





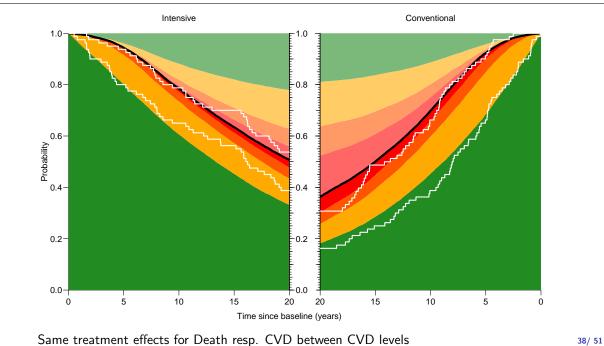
between groups (HK 0.83 [95% CI 0.54, 1.30], p=0.43). Thus, the reduced mortality was primarily due to reduced risk of CVD.

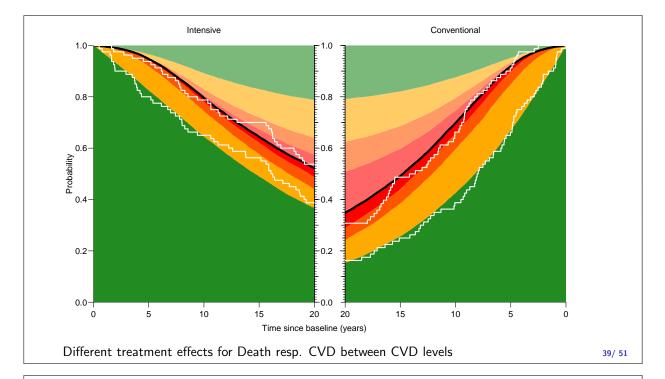
The patients in the intensive group experienced a total of 90 cardiovascular events vs 195 events in the conventional group. Nineteen intensive-group patients (24%) vs 34 conventional-group patients (43%) experienced more than one cardiovascular event. No significant between-group difference in the distribution of specific cardiovascular firstevent types was observed (Table 2 and Fig. 4).

Microvascular complications Hazard rates of progression rates in microvascular complications compared with baseline status are shown Fig. 3. Sensitivity analyses showed a negligible effect of the random dates imputation.

Progression of retinopathy was decreased by 33% in the intensive-therapy group (Fig. 5). Blindness in at least one eye was reduced in the intensive-therapy group with an HR of $0.47\,$ (95% CI 0.23, 0.98, p = 0.044). Autonomic neuropathy was decreased by 41% in the intensive-therapy group (Fig. 5). We observed no difference between groups in the progression of peripheral neuropathy (Fig. 5). Progression to diabetic nephropathy (macroalbuminuria) was reduced by 48% in the intensive-therapy group (Fig. 5). Ten patients in the conventional-therapy groups vs five patients in the intensivetherapy group progressed to end-stage renal disease (p = 0.061).

Discussion



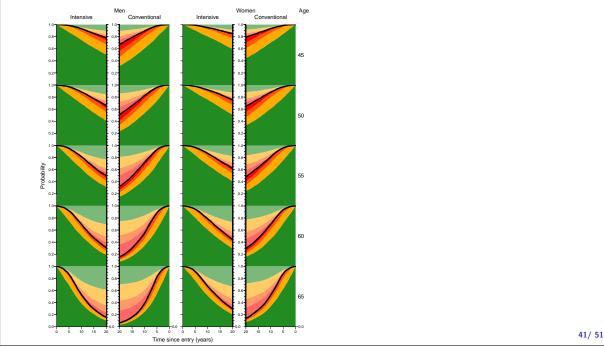


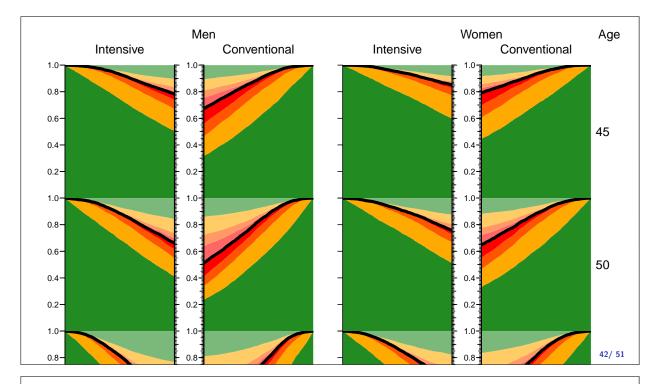
Expected lifetime and YLL (well, gained)

Expected lifetime (years) in the Steno 2 cohort during the first 20 years after baseline by treatment group and CVD status.

State	where	Int.	Conv.	IntConv.
Alive	under black line	15.6	14.1	1.5
No CVD	green area	12.7	10.0	2.6
Any CVD	orange area	3.0	4.1	-1.1

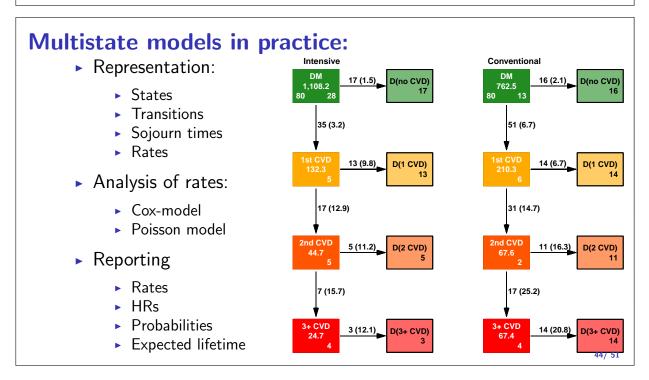
- What does "expected" mean?
- Expectation w.r.t. age and sex-distribution in the Steno2 study!
- Computed as areas under survival curves





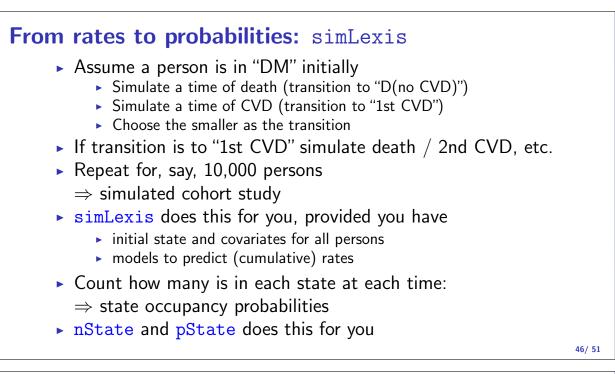
Expected lifetime (years) during the first 20 years after baseline by sex, age, treatment group and CVD status.

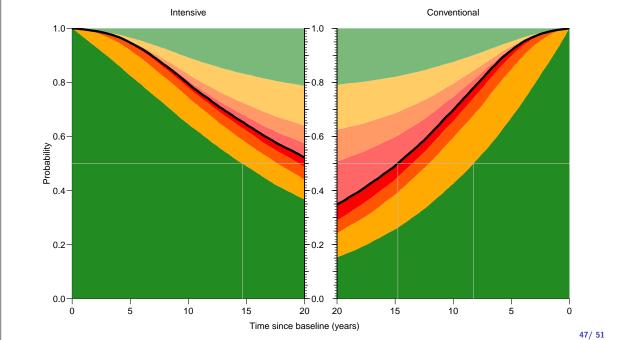
sex		Men)		Wor	nen	
state	age	Int.	Conv.	IntConv.	Int.	Conv.	IntConv.
Alive	45	18.5	17.5	1.0	19.1	18.4	0.7
	50	17.2	16.1	1.1	18.0	17.2	0.8
	55	15.6	13.8	1.8	17.4	15.9	1.6
	60	13.9	11.6	2.2	15.5	13.7	1.8
	65	11.2	9.5	1.8	13.3	11.4	2.0
No CVD	45	14.9	12.5	2.4	15.8	14.3	1.5
	50	14.0	11.1	2.9	15.1	12.9	2.2
	55	12.2	9.7	2.5	14.3	11.6	2.7
	60	10.9	8.2	2.7	12.4	9.9	2.6
	65	9.0	6.7	2.2	10.7	8.3	2.4



From rates to probabilities

- ► There is a one-to-one correspondence between:
 - ▶ all rates between states (by time) + initial state distribution
 - state distribution by time
- Model for rates
 - \Rightarrow probability of being in a given state at any given time
- Analytically this is a nightmare
- Simulation is the answer





Using the Lexis machinery

- Allows estimation of fully parametric rate function
- Simple test for proportional hazards
- State occupancy probabilities requires simulation: simLexis — see vignette in Epi package
- Access to other measures such as expected residual lifetime.
- similar machinery available in Stata:
 - multistate
 - Crowther & Lambert [6]
 - Only one timescale, however...

48/ 51

Additional dogma

- Show risk time in states and transitions between states
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly

49/ 51

References I P. K. Andersen and N. Keiding. Interpretability and importance of functionals in competing risks and multistate models. Stat Med, 31:1074-1088, 2012. J P Fine and R J Gray. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94(446), 1999 S. lacobelli and B. Carstensen. Multiple time scales in multi-state models. Stat Med, 32(30):5315-5327, Dec 2013. Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up. Journal of Statistical Software, 38(5):1-12, 1 2011. Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R. Journal of Statistical Software, 38(6):1-18, 1 2011.

References II
M. J. Crowther and P. C. Lambert. Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. <i>Stat Med</i> , 36(29):4719–4742, Dec 2017.
bendixcarstensen.com/AdvCoh/Lexis-ex