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The dogma [1]

I do not condition on the future — indisputable

I do not count people after they are dead — disputable

I stick to this world — expandable
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do not condition on the future

I commonly seen in connection with “immortal time bias”

I allocation of follow-up (risk time) to a covariate value only
assumed in the future

I all follow-up among persons ever on insulin allocated to the
insulin group
— including the time prior to insulin use (when not on insulin)

I events always with the correct covariate values

I ⇒ too much PY in insulin group; rates too small

I ⇒ too little PY in non-insulin group; rates too large

I ⇒ insulin vs. non-insulin rates underestimated
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do not count people after they are dead

I Reference to Fine & Gray’s paper on models for the
subdistribution hazard [2]

I Recall: hazard and cumulative risk for all cause death:

F (t) = 1−exp
(
−Λ(t)

)
⇔ λ(t) = Λ′(t) =

(
log
(
1−F (t)

))′

I Subdistribution hazard — with more causes of death
(compting risks), for cumulative risk of cause c, Fc(t):

λ̃c(t) =
(

log
(
1− Fc(t)

))′

I Note: Fc depends on all cause-specific hazards
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do not count people after they are dead

I The estimation of the subdistribution hazard boils down to:

h̃(t) = P {X (t + dt) = j |X (t) 6= j} / dt

that is, the instantaneous rate of failure per time unit from
cause j among those who are either alive or have died from
causes other than j at time t

I . . . sounds crazy, but. . .
I when modeling the cumulative risk you must refer back to

the size of the original population, which include those dead
from other causes.

I The debate is rather if the subdistribution hazard is a useful
scale for modeling and reporting from competing risk settings

5/ 51

stick to this world

I the “net” survival or “cause specific survival”:

Sc(t) = exp

(∫ t

0

λc(s) ds

)

I not a proper probability
I the probability of survival if

I all other causes of death than c were absent
I c-specific mortality rate were still the same

I so it is just a transformation of the cause-specific rate with no
real world interpretation

I . . . do not label quantities “survival” or “probability” when they
are not (of this world)
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(further) dogma for “sticking to this world”

I rates are continuous in time (and “smooth”)

I rates may depend on more than one time scale

I which, is an empirical question
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A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

Covariates:

I x

I t

I . . . often the effect of t is ignored (forgotten?)

I i.e. left unreported
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi︸ ︷︷ ︸

ηi

= αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death/censoring times
I Insert in likelihood, now only a function of data and βs
I This turns out to be Cox’s partial likelihood

I Cumulative intensity (Λ0(t)) obtained via the
Breslow-estimator
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Mayo Clinic
lung cancer data:
60 year old woman
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Splitting the dataset a priori

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y → log(y) as offset
I time scale covariates: current age, current date, . . .
I other covariates

I Contributions not independent, but likelihood is a product
I Same likelihood as for independent Poisson variates
I Poisson glm with spline/factor effect of time
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Example: Mayo Clinic lung cancer

I Survival after lung cancer

I Covariates:

I Age at diagnosis
I Sex
I Time since diagnosis

I Cox model

I Split data:

I Poisson model, time as factor
I Poisson model, time as spline
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Mayo Clinic
lung cancer
60 year old woman
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Example: Mayo Clinic lung cancer I
> library( survival )
> library( Epi )
> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.

> summary( Lung )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69593 228
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Example: Mayo Clinic lung cancer II
> system.time(
+ mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", data=Lung ) )

user system elapsed
0.010 0.001 0.009

> Lung.s <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time))),
+ time.scale="tfe" )
> summary( Lung.s )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> subset( Lung.s, lex.id==96 )[,1:11] ; nlevels( factor( Lung.s$tfe ) )
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Example: Mayo Clinic lung cancer III
lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog

9235 96 0 5 Alive Alive 12 30 2 72 1 2
9236 96 5 6 Alive Alive 12 30 2 72 1 2
9237 96 11 1 Alive Alive 12 30 2 72 1 2
9238 96 12 1 Alive Alive 12 30 2 72 1 2
9239 96 13 2 Alive Alive 12 30 2 72 1 2
9240 96 15 11 Alive Alive 12 30 2 72 1 2
9241 96 26 4 Alive Dead 12 30 2 72 1 2

[1] 186

> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )

user system elapsed
13.550 17.334 8.761
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Example: Mayo Clinic lung cancer IV
> length( coef(mLs.pois.fc) )

[1] 188

> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )

user system elapsed
0.418 0.510 0.317
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Example: Mayo Clinic lung cancer V
> ests <-
+ rbind( ci.exp(mL.cox),
+ ci.exp(mLs.pois.fc,subset=c("age","sex")),
+ ci.exp(mLs.pois.sp,subset=c("age","sex")) )
> cmp <- cbind( ests[c(1,3,5) ,],
+ ests[c(1,3,5)+1,] )
> rownames( cmp ) <- c("Cox","Poisson-factor","Poisson-spline")
> colnames( cmp )[c(1,4)] <- c("age","sex")

> round( cmp, 7 )

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))

Code and output for the entire example available in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely and

I modeling one covariate, the time-scale, with one parameter per
distinct value.

I the model for the time scale is really with exchangeable
time-intervals.

I ⇒ difficult to access the baseline hazard (which looks terrible)

I ⇒ uninitiated tempted to show survival curves where irrelevant
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Models of this world

I Replace the αts by a parametric function f (t) with a limited
number of parameters, for example:

I Piecewise constant
I Splines (linear, quadratic or cubic)
I Fractional polynomials

I the two latter brings model into “this world”:
I smoothly varying rates
I parametric closed form representation of baseline hazard
I finite no. of parameters

I Makes it really easy to use rates directly in calculations of
I expected residual life time
I state occupancy probabilities in multistate models
I . . .
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additional dogma

Not sacred, merely consequenecs of the 3rd commandment:

I Show risk time in states and transitions between states
graphically

I Model transition rates by smooth parametric functions
I There is no such thing as primary or secondary time scale —

time scales and other quantitative covariates should be
modeled the same way

I Determine the relevant timescale(s)
I Then derive the relevant measures to report.
I Time-scale interactions is the proper name for

“non-proportional hazards”
I Multiple time scales should be reported jointly
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EBMT transplant data
Iacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]
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Markov property: Empirical question

Model for mortality rates:

I t time since transplant

I r time since relapse (if relapsed)

I tr time from transplant to relapse

I Fit the model for all transitions:

I split follow-up time
I fit Poisson model with covariates
I and spline terms for each time scale.

I Lexis machinery [4, 5] from the Epi package for R

I . . . for representation and manipulation of follow-up data.
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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log(µ) = h(t)+k(r)+g(t − r) + Xβ
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Years of life gained by multifactorial intervention in patients
with type 2 diabetes mellitus and microalbuminuria: 21 years
follow-up on the Steno-2 randomised trial
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Abstract
Aims/hypothesis The aim of this work was to study the poten-
tial long-term impact of a 7.8 years intensified, multifactorial
intervention in patients with type 2 diabetes mellitus and
microalbuminuria in terms of gained years of life and years
free from incident cardiovascular disease.
Methods The original intervention (mean treatment duration
7.8 years) involved 160 patients with type 2 diabetes and
microalbuminuria who were randomly assigned (using sealed
envelopes) to receive either conventional therapy or intensi-
fied, multifactorial treatment including both behavioural and

pharmacological approaches. After 7.8 years the study contin-
ued as an observational follow-up with all patients receiving
treatment as for the original intensive-therapy group. The pri-
mary endpoint of this follow-up 21.2 years after intervention
start was difference in median survival time between the orig-
inal treatment groups with and without incident cardiovascu-
lar disease. Non-fatal endpoints and causes of death were ad-
judicated by an external endpoint committee blinded for treat-
ment allocation.
Results Thirty-eight intensive-therapy patients vs 55
conventional-therapy patients died during follow-up (HR 0.55
[95% CI 0.36, 0.83], p=0.005). The patients in the intensive-
therapy group survived for a median of 7.9 years longer than the
conventional-therapy group patients. Median time before first
cardiovascular event after randomisation was 8.1 years longer
in the intensive-therapy group (p=0.001). The hazard for all
microvascular complications was decreased in the intensive-
therapy group in the range 0.52 to 0.67, except for peripheral
neuropathy (HR 1.12).
Conclusions/interpretation At 21.2 years of follow-up of
7.8 years of intensified, multifactorial, target-driven treat-
ment of type 2 diabetes with microalbuminuria, we demon-
strate a median of 7.9 years of gain of life. The increase in
lifespan is matched by time free from incident cardiovas-
cular disease.
Trial registration: ClinicalTrials.gov registration no.
NCT00320008.
Funding: The study was funded by an unrestricted grant from
Novo Nordisk A/S.
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Models used

I One model for the 4 mortality rates

I One model for the 3 CVD rates

I . . . both models assume:

I proportional hazards between CVD states (0, 1, 2(, 3) CVD events)
I proportional hazards between groups (conventional, intervention)
I proportional hazards between levels of sex and age (at entry)

I Which just means: multiplicative effects of the covariates:
time since baseline, CVD state, group, sex and age

I Proportional hazards means:
no interaction with the time scale
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Hazard ratios

Mortality CVD event

HR, Int. vs. Conv. 0.83 (0.54; 1.30) 0.55 (0.39;0.77)
H0: PH btw. CVD groups p=0.438 p=0.261
H0: HR = 1 p=0.425 p=0.001

HR vs. 0 CVD events:
0 (ref.) 1.00 1.00
1 3.08 (1.82; 5.19) 2.43 (1.67;3.52)
2 4.42 (2.36; 8.29) 3.48 (2.15;5.64)
3+ 7.76 (4.11;14.65)

Then use fitted rates to estimate the probabilities of being in each
state at all times. (This is immensely complicated).
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CVD. Transitions between, and time in, different states of CVD
(0, 1, 2 or 3 or more events since randomisation, respectively)
are shown in ESM Fig. 5. Twenty-eight patients (35%) in the
intensive group vs 13 (16%) in the conventional group com-
pleted the entire follow-up without any incident macrovascular
events; HR for CVD event in the intensive-therapy group 0.55
(95% CI 0.39, 0.77; p<0.001).

Patients in both groups with one post-baseline cardiovascular
event had a higher mortality rate than patients without; HR 3.08
(95% CI 1.82, 5.19) and an almost linear increase in mortality of
2.08 (95% CI 1.73, 2.51) per extra event. A similar pattern was
seen for further CVD events. When the hazard for mortality was
adjusted for CVD status, there was no difference in mortality

between groups (HR 0.83 [95% CI 0.54, 1.30], p=0.43). Thus,
the reduced mortality was primarily due to reduced risk of CVD.

The patients in the intensive group experienced a total of 90
cardiovascular events vs 195 events in the conventional
group. Nineteen intensive-group patients (24%) vs 34
conventional-group patients (43%) experienced more than
one cardiovascular event. No significant between-group dif-
ference in the distribution of specific cardiovascular first-
event types was observed (Table 2 and Fig. 4).

Microvascular complications Hazard rates of progression
rates in microvascular complications compared with baseline
status are shown Fig. 3. Sensitivity analyses showed a negli-
gible effect of the random dates imputation.

Progression of retinopathy was decreased by 33% in the
intensive-therapy group (Fig. 5). Blindness in at least one eye
was reduced in the intensive-therapy group with an HR of 0.47
(95% CI 0.23, 0.98, p=0.044). Autonomic neuropathy was
decreased by 41% in the intensive-therapy group (Fig. 5). We
observed no difference between groups in the progression of
peripheral neuropathy (Fig. 5). Progression to diabetic ne-
phropathy (macroalbuminuria) was reduced by 48% in the
intensive-therapy group (Fig. 5). Ten patients in the
conventional-therapy groups vs five patients in the intensive-
therapy group progressed to end-stage renal disease (p=0.061).

Discussion

In the current report from the Steno-2 study we demonstrate
that intensified treatment for 7.8 years was associated with a
7.9 years longer median lifespan over a period of 21.2 years
follow-up. Furthermore, the increased lifespan was matched
by the years gained free from incident CVD. The reduced
mortality was caused by a decreased risk of incident CVD
and cardiovascular mortality.

Absolute risk and RR reductions for all endpoints were
well in line with earlier reported findings, confirming the du-
rability of the intensified, multifactorial approach [13].

The frequency of recurrent events was high in both groups,
but patients in the original conventional-therapy group expe-
rienced more than twice as many cardiovascular events per
person than patients from the original intensive-therapy group.
Only a few studies have reported results on recurrent events;
none of these have been exclusively in patients with type 2
diabetes [2, 3] and the follow-up periods were much shorter,
hence direct comparison is difficult.

In the Steno-2 study, we observed high rates of progression
for microvascular complications with the vast majority of pa-
tients progressing in one or more complication types. Yet, we
found significant and clinically relevant risk reductions for au-
tonomic neuropathy, nephropathy, and retinopathy, as well as
blindness, and a trend towards reduced risk for end-stage renal
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Fig. 2 Cumulative mortality (a) and cumulative incidence of the com-
posite cardiovascular or death endpoint (b). Solid lines, patients in the
intensive-therapy group; dashed lines, patients in the conventional-thera-
py group; vertical dotted lines, end of trial and start of intensification of
conventional-therapy group patients’ treatment; horizontal dashed lines
intersect with survival curves at median survival time (a) and median
CVD-free survival time (b). The median survival time in the original
intensive-therapy group was at least 7.9 years longer than in the conven-
tional-therapy group (48% of patients in the intensive-therapy group died
during follow-up, so formally this might be an underestimate, since 50%
mortality is required to calculate the median). The median difference in
survival before first CVD event was 8.1 years in favour of the original
intensive-therapy group
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Expected lifetime and YLL (well, gained)

I Expected lifetime (years) in the Steno 2 cohort during the first
20 years after baseline by treatment group and CVD status.

State where Int. Conv. Int.−Conv.

Alive under black line 15.6 14.1 1.5
No CVD green area 12.7 10.0 2.6
Any CVD orange area 3.0 4.1 −1.1

I What does “expected” mean?
I Expectation w.r.t.

age and sex-distribution in the Steno2 study!
I Computed as areas under survival curves
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Expected lifetime (years) during the first 20 years after baseline by
sex, age, treatment group and CVD status.

sex Men Women

state age Int. Conv. Int.−Conv. Int. Conv. Int.−Conv.

Alive 45 18.5 17.5 1.0 19.1 18.4 0.7
50 17.2 16.1 1.1 18.0 17.2 0.8
55 15.6 13.8 1.8 17.4 15.9 1.6
60 13.9 11.6 2.2 15.5 13.7 1.8
65 11.2 9.5 1.8 13.3 11.4 2.0

No CVD 45 14.9 12.5 2.4 15.8 14.3 1.5
50 14.0 11.1 2.9 15.1 12.9 2.2
55 12.2 9.7 2.5 14.3 11.6 2.7
60 10.9 8.2 2.7 12.4 9.9 2.6
65 9.0 6.7 2.2 10.7 8.3 2.4
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Multistate models in practice:
I Representation:

I States
I Transitions
I Sojourn times
I Rates

I Analysis of rates:

I Cox-model
I Poisson model

I Reporting

I Rates
I HRs
I Probabilities
I Expected lifetime
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From rates to probabilities
I There is a one-to-one correspondence between:

I all rates between states (by time) + initial state distribution
I state distribution by time

I Model for rates
⇒ probability of being in a given state at any given time

I Analytically this is a nightmare

I Simulation is the answer
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From rates to probabilities: simLexis

I Assume a person is in “DM” initially
I Simulate a time of death (transition to “D(no CVD)”)
I Simulate a time of CVD (transition to “1st CVD”)
I Choose the smaller as the transition

I If transition is to “1st CVD” simulate death / 2nd CVD, etc.
I Repeat for, say, 10,000 persons
⇒ simulated cohort study

I simLexis does this for you, provided you have
I initial state and covariates for all persons
I models to predict (cumulative) rates

I Count how many is in each state at each time:
⇒ state occupancy probabilities

I nState and pState does this for you
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Using the Lexis machinery

I Allows estimation of fully parametric rate function

I Simple test for proportional hazards

I State occupancy probabilities requires simulation:
simLexis — see vignette in Epi package

I Access to other measures such as expected residual lifetime.

I — similar machinery available in Stata:

I multistate
I Crowther & Lambert [6]
I Only one timescale, however. . .
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Additional dogma

I Show risk time in states and transitions between states

I Model transition rates by smooth parametric functions

I There is no such thing as primary or secondary time scale —
time scales and other quantitative covariates should be
modeled the same way

I Time-scale interactions is the proper name for
“non-proportional hazards”

I Multiple time scales should be reported jointly
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