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stick to this world

> the “net” survival or “cause specific survival™:

S.(t) = exp </Ut/\c(s) ds)

» not a proper probability
» the probability of survival if
» all other causes of death than ¢ were absent
» c-specific mortality rate were still the same
> so it is just a transformation of the cause-specific rate with no
real world interpretation
» ...do not label quantities “survival” or “probability” when they
are not (of this world)
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The dogma [1]

» do not condition on the future — indisputable
» do not count people after they are dead — disputable
» stick to this world — expandable

2/51

(further) dogma for “sticking to this world”

> rates are continuous in time (and “smooth”)
> rates may depend on more than one time scale
» which, is an empirical question

7/51

do not condition on the future

» commonly seen in connection with “immortal time bias”

» allocation of follow-up (risk time) to a covariate value only
assumed in the future

» all follow-up among persons ever on insulin allocated to the
insulin group
— including the time prior to insulin use (when not on insulin)
» events always with the correct covariate values
» = too much PY in insulin group; rates too small
» = too little PY in non-insulin group; rates too large
» = insulin vs. non-insulin rates underestimated
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A look at the Cox model

At, x) = N(t) x exp(2'B)
A model for the rate as a function of ¢ and z.
Covariates:
- T
> 1
» ...often the effect of ¢ is ignored (forgotten?)
> ie. left unreported
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do not count people after they are dead

» Reference to Fine & Gray's paper on models for the
subdistribution hazard [2]

» Recall: hazard and cumulative risk for all cause death:
I
F(t)=1-exp(—A(t)) & M) =AN(t)= (log(lfF(t))>

» Subdistribution hazard — with more causes of death
(compting risks), for cumulative risk of cause ¢, F.(t):

Ae(t) = (log(l - F(,(t)))/

» Note: F, depends on all cause-specific hazards
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The Cox-likelihood as profile likelihood

» One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

10g(>\(f IL)) = ]Og(A()(f)) + ﬁlxli + -4 [ﬁpxpi =+ ni
—
i
» Profile likelihood:

» Derive estimates of o, as function of data and f3s
— assuming constant rate between death/censoring times
» Insert in likelihood, now only a function of data and f3s
» This turns out to be Cox’s partial likelihood
» Cumulative intensity (A(¢)) obtained via the
Breslow-estimator

9/ 51

do not count people after they are dead

» The estimation of the subdistribution hazard boils down to:
R(t) = PAX(t+ dt) = jIX(8) £} /dt

that is, the instantaneous rate of failure per time unit from
cause j among those who are either alive or have died from
causes other than j at time ¢

» ...sounds crazy, but. ..

» when modeling the cumulative risk you must refer back to
the size of the original population, which include those dead
from other causes.

» The debate is rather if the subdistribution hazard is a useful
scale for modeling and reporting from competing risk settings
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Splitting the dataset a priori

» The Poisson approach needs a dataset of empirical rates (d, y)
with suitably small values of y.
» — each individual contributes many empirical rates
> (one per risk-set contribution in Cox-modelling)
» From each empirical rate we get:
» Poisson-response d
» Risk time y — log(y) as offset
» time scale covariates: current age, current date, ...
» other covariates
» Contributions not independent, but likelihood is a product
» Same likelihood as for independent Poisson variates
» Poisson glm with spline/factor effect of time
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Example: Mayo Clinic lung cancer I

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog
0 72

9235 96 5 Alive Alive 12 30 2 2
9236 96 5 6 Alive Alive 12 30 2 72 2
9237 96 11 1 Alive Alive 12 30 2 72 1 2
9238 96 12 1 Alive Alive 12 30 2 72 1 2
9239 96 13 2  Alive Alive 12 30 2 72 1 2
9240 96 15 11 Alive Alive 12 30 2 72 1 2
9241 96 26 4  Alive Dead 12 30 2 72 1 2
[1] 186

> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
offset = log(lex.dur),
family=poisson, data=Lung.s, eps=10"-8, maxit=25 )

4+

)

user system elapsed
13.550 17.334 8.761

16/ 51

Example: Mayo Clinic lung cancer

» Survival after lung cancer
» Covariates:

» Age at diagnosis
» Sex
» Time since diagnosis

» Cox model
» Split data:

» Poisson model, time as factor
» Poisson model, time as spline
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Example: Mayo Clinic lung cancer IV
> length( coef (mLs.pois.fc) )

[1] 188

> t.kn <- ¢(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(

+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +

+ age + factor( sex ),

offset = log(lex.dur),

family=poisson, data=Lung.s, eps=10"-8, maxit=25 )

+ o+ o+

)

user system elapsed
0.418 0.510 0.317
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Example: Mayo Clinic lung cancer V
> ests <-
rbind( ci.exp(mL.cox),
ci.exp(mLs.pois.fc,subset=c("age", "sex")),
ci.exp(mLs.pois.sp,subset=c("age","sex")) )
cmp <- cbind( ests[c(1,3,5) ,],
ests[c(1,3,5)+1,] )
rownames ( cmp ) <- c("Cox","Poisson-factor", "Poisson-spline")
colnames( cmp )[c(1,4)] <- c("age","sex")

VV+V+ o+ o+

v

round( cmp, 7 )

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
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Example: Mayo Clinic lung cancer |

> library( survival )

> library( Epi )

> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive", "Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be O on the tfe timescale.

> summary( Lung )

Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69593 228
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Example: Mayo Clinic lung cancer Il
> system.time(
+ mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", data=Lung ) )

user system elapsed
0.010 0.001  0.009

> Lung.s <- splitLexis( Lung,
+ breaks=c (0, sort (unique (Lung$time))),
+ time.scale="tfe"
> summary( Lung.s )
Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> subset ( Lung.s, lex.id==96 )[,1:11] ; nlevels( factor( Lung.s$tfe ) )
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),

+ offset = log(lex.dur),

+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )

> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )

> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]

> survP <- exp(-rbind(0,Lambda))

Code and output for the entire example available in
http://bendixcarstensen. com/AdvCoh/WNtCMa/
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What the Cox-model really is
Taking the life-table approach ad absurdum by:

» dividing time very finely and
» modeling one covariate, the time-scale, with one parameter per
distinct value.

» the model for the time scale is really with exchangeable
time-intervals.

» = difficult to access the baseline hazard (which looks terrible)
» = uninitiated tempted to show survival curves where irrelevant
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Markov property: Empirical question
Model for mortality rates:

> t time since transplant

> 7 time since relapse (if relapsed)
> t. time from transplant to relapse
» Fit the model for all transitions:

» split follow-up time
» fit Poisson model with covariates
» and spline terms for each time scale.

» Lexis machinery [4, 5] from the Epi package for R
» ...for representation and manipulation of follow-up data.
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Models of this world

» Replace the ays by a parametric function f(¢) with a limited
number of parameters, for example:
» Piecewise constant
» Splines (linear, quadratic or cubic)
» Fractional polynomials
» the two latter brings model into “this world™:
» smoothly varying rates
» parametric closed form representation of baseline hazard
» finite no. of parameters
» Makes it really easy to use rates directly in calculations of

» expected residual life time
» state occupancy probabilities in multistate models
L
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additional dogma
Not sacred, merely consequenecs of the 3rd commandment:

» Show risk time in states and transitions between states
graphically

» Model transition rates by smooth parametric functions

» There is no such thing as primary or secondary time scale —
time scales and other quantitative covariates should be
modeled the same way

» Determine the relevant timescale(s)

» Then derive the relevant measures to report.

» Time-scale interactions is the proper name for
“non-proportional hazards”

» Multiple time scales should be reported jointly
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EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]

2,246
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other covariates: Age and date at Tx, sex, donor type, CML type 20/ 51

log(u) = h(t)+k(r)+g(t —r)+ X
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log(u) = h(t) +g(t—r)+ XB

No relapse
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t: time since transplant  r: time since relapse 30/ 51

Hazard ratios

Mortality CVD event
HR, Int. vs. Conv. 0.83 (0.54; 1.30) 0.55 (0.39;0.77)
Ho: PH btw. CVD groups p=0.438 p=0.261
Ho: HR=1 p=0.425 p=0.001
HR vs. 0 CVD events:
0 (ref.) 1.00 1.00
1 3.08 (1.82; 5.19) 2.43 (1.67;3.52)
2 442 (2.36; 8.29)  3.48 (2.15;5.64)
3+ 7.76 (4.11;14.65)

Then use fitted rates to estimate the probabilities of being in each

state at all times. (This is immensely complicated).
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the reduced mortality was primarily due to reduced risk of CVD.
The patients in the intensive group experienced a total of 90
cardiovascular events vs 195 events in the conventional
group. Nineteen intensive-group patients (24%) vs 34
group patients (43%) i more than
one cardiovascular event. No significant between-group dif-
ference in the distribution of specific cardiovascular first-
event types was observed (Table 2 and Fig. 4).
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was reduced in the intensive-therapy group with an HR of 0.47
(95% CI 0.23, 0.98, p=0.044). Autonomic neuropathy was
decreased by 41% in the intensive-therapy group (Fig. 5). We
observed no difference between groups in the progression of
peripheral neuropathy (Fig. 5). Progression to diabetic ne-
phropathy (macroalbuminuria) was reduced by 48% in the
intensive-therapy group (Fig. 5). Ten patients in the
conventional-therapy groups vs five patients in the intensive-
therapy group progressed to end-stage renal disease (p=0.061).
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Models used

» One model for the 4 mortality rates
> One model for the 3 CVD rates
> ...both models assume:

» proportional hazards between CVD states (0, 1,2(,3) CVD events)
» proportional hazards between groups (conventional, intervention)
» proportional hazards between levels of sex and age (at entry)
» Which just means: multiplicative effects of the covariates:
time since baseline, CVD state, group, sex and age
» Proportional hazards means:
no interaction with the time scale
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Expected lifetime and YLL (well, gained)

» Expected lifetime (years) in the Steno 2 cohort during the first
20 years after baseline by treatment group and CVD status.

State where Int. Conv. Int.—Conv.
Alive under black line 15.6 14.1 1.5
No CVD  green area 12.7  10.0 2.6
Any CVD orange area 3.0 4.1 -1.1

» What does “expected” mean?
» Expectation w.r.t.
age and sex-distribution in the Steno2 study!

» Computed as areas under survival curves
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From rates to probabilities

» There is a one-to-one correspondence between:

» all rates between states (by time) + initial state distribution
» state distribution by time

» Model for rates
= probability of being in a given state at any given time

» Analytically this is a nightmare
> Simulation is the answer
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From rates to probabilities: simLexis

> Assume a person is in “DM" initially
» Simulate a time of death (transition to “D(no CVD)")
» Simulate a time of CVD (transition to “1st CVD")
» Choose the smaller as the transition

> If transition is to “1st CVD" simulate death / 2nd CVD, etc.
» Repeat for, say, 10,000 persons
= simulated cohort study
» simLexis does this for you, provided you have
» initial state and covariates for all persons
» models to predict (cumulative) rates
» Count how many is in each state at each time:
= state occupancy probabilities
» nState and pState does this for you
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Expected lifetime (years) during the first 20 years after baseline by
sex, age, treatment group and CVD status.

sex Men Women

state age Int. Conv. Int.—Conv. Int. Conv. Int.—Conv.

Alive 45 185 17.5 1.0 19.1 184 0.7
50 172 16.1 1.1 180 17.2 0.8
55 156 13.8 18 174 159 1.6
60 139 116 22 155 137 1.8
65 11.2 9.5 18 133 114 2.0

No CVD 45 149 125 24 158 143 15
50 140 111 29 151 129 2.2
55 122 9.7 25 143 116 2.7
60 10.9 8.2 27 124 9.9 2.6
65 9.0 6.7 22 107 8.3 2.4

Using the Lexis machinery

» Allows estimation of fully parametric rate function

» Simple test for proportional hazards

» State occupancy probabilities requires simulation:
simlLexis — see vignette in Epi package

» Access to other measures such as expected residual lifetime.

» — similar machinery available in Stata:

» multistate
» Crowther & Lambert [6]
» Only one timescale, however. ..
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Multistate models in practice:
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» Representation:
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> Analysis of rates:

» Probabilities
» Expected lifetime

Additional dogma

» Show risk time in states and transitions between states
» Model transition rates by smooth parametric functions

> There is no such thing as primary or secondary time scale —
time scales and other quantitative covariates should be
modeled the same way

» Time-scale interactions is the proper name for
“non-proportional hazards"

v

Multiple time scales should be reported jointly
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