

causes other than j at time t

- ▶ ... sounds crazy, but...
- when modeling the cumulative risk you must refer back to the size of the original population, which include those dead from other causes.
- The debate is rather if the subdistribution hazard is a useful scale for modeling and reporting from competing risk settings

10/ 51

0.2

200 400 Days since d 600

Deriving the survival function

- CM <- cbind(1, Ns(seq(10,1000,10)-5, knots=t.kn), 60, 1)
 lambda <- ci.exp(mLs.pois.sp, ctr.mat=CM)
 Lambda <- ci.cum(mLs.pois.sp, ctr.mat=CM, intl=10)[,-4]
 survP <- exp(-rbind(0,Lambda))</pre>

> survP

Code and output for the entire example available in http://bendixcarstensen.com/AdvCoh/WNtCMa/

What the Cox-model really is

Taking the life-table approach ad absurdum by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- ▶ the **model** for the time scale is really with exchangeable time-intervals.
- \rightarrow difficult to access the baseline hazard (which looks terrible)
- ightarrow ightarrow uninitiated tempted to show survival curves where irrelevant

21/ 51

20/ 51

Models of this world

- ▶ Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- the two latter brings model into "this world":
 - smoothly varying rates
 - > parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use rates directly in calculations of expected residual life time
 - state occupancy probabilities in multistate models **۲**...

22/ 51

23/51

24/ 51

additional dogma

Not sacred, merely consequences of the 3rd commandment:

- Show risk time in states and transitions between states graphically
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- Determine the relevant timescale(s)
- Then derive the relevant measures to report.
- Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly

EBMT transplant data

lacobelli & Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]

Markov property: Empirical question

Model for mortality rates:

- t time since transplant
- r time since relapse (if relapsed)
- t_r time from transplant to relapse
- Fit the model for all transitions:
 - split follow-up time
 - fit Poisson model with covariates
 - and spline terms for each time scale.

▶ Lexis machinery [4, 5] from the Epi package for R

... for representation and manipulation of follow-up data.

- One model for the 3 CVD rates
- ... both models assume:
 - proportional hazards between CVD states (0, 1, 2(, 3) CVD events)
 - proportional hazards between groups (conventional, intervention)
 - proportional hazards between levels of sex and age (at entry)
- Which just means: multiplicative effects of the covariates: time since baseline, CVD state, group, sex and age
- Proportional hazards means: no interaction with the time scale

0.6

04

0.2

15 Different treatment effects for Death resp. CVD between CVD levels

20

10

10

39/ 51

15

Expected lifetime and YLL (well, gained)

 Expected lifetime (years) in the Steno 2 cohort during the first 20 years after baseline by treatment group and CVD status.

State	where	Int.	Conv.	IntConv.	
Alive	under black line	15.6	14.1	1.5	
No CVD	green area	12.7	10.0	2.6	
Any CVD	orange area	3.0	4.1	-1.1	

- What does "expected" mean?
- Expectation w.r.t.
- age and sex-distribution in the Steno2 study!
- Computed as areas under survival curves

40/ 51

Expected lifetime (years) during the first 20 years after baseline by sex, age, treatment group and CVD status.

sex		Men			Wor	Women	
state	age	Int.	Conv.	IntConv.	Int.	Conv.	IntConv.
Alive	45	18.5	17.5	1.0	19.1	18.4	0.7
	50	17.2	16.1	1.1	18.0	17.2	0.8
	55	15.6	13.8	1.8	17.4	15.9	1.6
	60	13.9	11.6	2.2	15.5	13.7	1.8
	65	11.2	9.5	1.8	13.3	11.4	2.0
No CVD	45	14.9	12.5	2.4	15.8	14.3	1.5
	50	14.0	11.1	2.9	15.1	12.9	2.2
	55	12.2	9.7	2.5	14.3	11.6	2.7
	60	10.9	8.2	2.7	12.4	9.9	2.6
	65	9.0	6.7	2.2	10.7	8.3	2.4

- simLexis does this for you, provided you have
 - initial state and covariates for all persons
 - models to predict (cumulative) rates
- ► Count how many is in each state at each time: ⇒ state occupancy probabilities
- nState and pState does this for you

Using the Lexis machinery

- Allows estimation of fully parametric rate function
- Simple test for proportional hazards
- State occupancy probabilities requires simulation: simLexis — see vignette in Epi package
- Access to other measures such as expected residual lifetime.
- similar machinery available in Stata:
 - multistate
 - Crowther & Lambert [6]
 - Only one timescale, however...

Additional dogma

- Show risk time in states and transitions between states
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly

^{48/ 51}

References I

- P. K. Andersen and N. Keiding. Interpretability and importance of functionals in competing risks and multistate models. *Stat Med*, 31:1074–1088, 2012.
- J Gray.
 A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94(446), 1999.
- S. Iacobelli and B. Carstensen. Multiple time scales in multi-state models. *Stat Med*, 32(30):5315–5327, Dec 2013.
- Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up. Journal of Statistical Software, 38(5):1–12, 1 2011.
- Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R. Journal of Statistical Software, 38(6):1–18, 1 2011.

References II

M. J. Crowther and P. C. Lambert. Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. Start Med. 36(29):4719–4742, Dec 2017.

bendixcarstensen.com/AdvCoh/Lexis-ex