Analysis of multistate data with realistic rate models and multiple time scales:
 A dogmatic approach

Bendix Carstensen Steno Diabetes Center
Gentofte, Denmark
http://BendixCarstensen.com

IARC, Lyon, France,
11 April 2018

The dogma [1]

- do not condition on the future - indisputable
- do not count people after they are dead - disputable
- stick to this world - expandable

do not condition on the future

- commonly seen in connection with "immortal time bias"
- allocation of follow-up (risk time) to a covariate value only assumed in the future
- all follow-up among persons ever on insulin allocated to the insulin group
- including the time prior to insulin use (when not on insulin)
- events always with the correct covariate values
- \Rightarrow too much PY in insulin group; rates too small
- \Rightarrow too little PY in non-insulin group; rates too large
- \Rightarrow insulin vs. non-insulin rates underestimated

do not count people after they are dead

- Reference to Fine \& Gray's paper on models for the subdistribution hazard [2]
- Recall: hazard and cumulative risk for all cause death:

$$
F(t)=1-\exp (-\Lambda(t)) \quad \Leftrightarrow \quad \lambda(t)=\Lambda^{\prime}(t)=(\log (1-F(t)))^{\prime}
$$

- Subdistribution hazard - with more causes of death (compting risks), for cumulative risk of cause $c, F_{c}(t)$:

$$
\tilde{\lambda}_{c}(t)=\left(\log \left(1-F_{c}(t)\right)\right)^{\prime}
$$

- Note: F_{c} depends on all cause-specific hazards

do not count people after they are dead

- The estimation of the subdistribution hazard boils down to:

$$
\tilde{h}(t)=\mathrm{P}\{X(t+\mathrm{d} t)=j \mid X(t) \neq j\} / \mathrm{d} t
$$

that is, the instantaneous rate of failure per time unit from cause j among those who are either alive or have died from causes other than j at time t

- ...sounds crazy, but. . .
- when modeling the cumulative risk you must refer back to the size of the original population, which include those dead from other causes.
- The debate is rather if the subdistribution hazard is a useful scale for modeling and reporting from competing risk settings

stick to this world

- the "net" survival or "cause specific survival":

$$
S_{c}(t)=\exp \left(\int_{0}^{t} \lambda_{c}(s) \mathrm{d} s\right)
$$

- not a proper probability
- the probability of survival if
- all other causes of death than c were absent
- c-specific mortality rate were still the same
- so it is just a transformation of the cause-specific rate with no real world interpretation
- ...do not label quantities "survival" or "probability" when they are not (of this world)

(further) dogma for "sticking to this world"

- rates are continuous in time (and "smooth")
- rates may depend on more than one time scale
- which, is an empirical question

A look at the Cox model

$$
\lambda(t, x)=\lambda_{0}(t) \times \exp \left(x^{\prime} \beta\right)
$$

A model for the rate as a function of t and x.
Covariates:

- x
- t
- ... often the effect of t is ignored (forgotten?)
- i.e. left unreported

The Cox-likelihood as profile likelihood

- One parameter per death time to describe the effect of time (i.e. the chosen timescale).

$$
\log \left(\lambda\left(t, x_{i}\right)\right)=\log \left(\lambda_{0}(t)\right)+\underbrace{\beta_{1} x_{1 i}+\cdots+\beta_{p} x_{p i}}_{\eta_{i}}=\alpha_{t}+\eta_{i}
$$

- Profile likelihood:
- Derive estimates of α_{t} as function of data and $\beta \mathbf{s}$
- assuming constant rate between death/censoring times
- Insert in likelihood, now only a function of data and $\beta \mathbf{s}$
- This turns out to be Cox's partial likelihood
- Cumulative intensity $\left(\Lambda_{0}(t)\right)$ obtained via the Breslow-estimator

Mayo Clinic

lung cancer data:
60 year old woman

Splitting the dataset a priori

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- - each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
- Poisson-response d
- Risk time $y \rightarrow \log (y)$ as offset
- time scale covariates: current age, current date, ...
- other covariates
- Contributions not independent, but likelihood is a product
- Same likelihood as for independent Poisson variates
- Poisson glm with spline/factor effect of time

Example: Mayo Clinic lung cancer

- Survival after lung cancer
- Covariates:
- Age at diagnosis
- Sex
- Time since diagnosis
- Cox model
- Split data:
- Poisson model, time as factor
- Poisson model, time as spline

Mayo Clinic
 lung cancer
 60 year old woman

Example: Mayo Clinic lung cancer V

> ests <-
$+\quad c i \cdot \exp (m L s . p o i s . f c$, subset=c("age","sex")),
$+\quad$ ci.exp(mLs.pois.sp,subset=c("age","sex"))')
> cmp <- cbind ($\operatorname{ests}[c(1,3,5)$,],
> rownames (cmp) <- c("Cox", "Poisson-factor", "Poisson-spline")
$>$ colnames (cmp) $c \mathrm{c}(1,4)]$ <- c("age","sex")
> round (cmp, 7)
$\begin{array}{lrrrrrr} & \text { age } & 2.5 \% & 97.5 \% & \text { sex } & 2.5 \% & 97.5 \%\end{array}$
$\begin{array}{lllllll}\text { Cox } & 1.017158 & 0.9989388 & 1.035710 & 0.5989574 & 0.4313720 & 0.8316487\end{array}$
Poisson-factor 1.017158 0.998938 1.035710 .5989740 .43137200320 .8328707
Poisson-spline 1.0161890 .99803291 .0346760 .59982870 .43199320 .8328707

13/51

Example: Mayo Clinic lung cancer I

> library(survival
$>$ library(Epi)
Lung <- Lexis(exit $=$ list (tfe=time),
$+\quad$ exit.status $=$ factor(status,labels=c("Alive", "Dead"))
NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
> summary (Lung)
Transitions:
From Alive Dead Records: Events: Risk time: Persons:

Example: Mayo Clinic lung cancer II

system.time

+ mL.cox $<-c o x$
mL.cox <- coxph(Surv(tfe, tfe+lex.dur, lex.Xst=="Dead")
age + factor (sex),
method="breslow", data=Lung)
user system elapsed
$\begin{array}{lll}0.010 & 0.001 & 0.009\end{array}$
> Lung.s <- splitLexis(Lung,
+ summary (Lung.s)
Transitions:
$\begin{array}{rrrrrr}\text { From To } & & & & \\ \text { Alive } & \text { Dead } & \text { Records: } & \text { Events: } & \text { Risk time: } & \text { Persons: } \\ \text { Alive } & 19857 & 165 & 20022 & 165 & 69593\end{array}$
$>\operatorname{subset}($ Lung.s, lex.id==96) [,1:11] ; nlevels (factor(Lung.s\$tfe))

Example: Mayo Clinic lung cancer III

	ex.id	e	lex.dur	x.Cst	x.Xst	nst	ime	status	ge	x	g
9235	96	0	5	Alive	Alive	12	30	2	72	1	2
9236	96	5	6	Alive	Alive	12	30	2	72	1	2
9237	96	11	1	Alive	Alive	12	30	2	72	1	2
9238	96	12	1	Alive	Alive	12	30	2	72	1	2
9239	96	13	2	Alive	Alive	12	30	2	72	1	2
9240	96	15	11	Alive	Alive	12	30	2	72	1	2
9241	96	26		Alive	Dead	12	30	2	72	1	

[1] 186
$>$ system.time(

+ mLs.pois.fc <- glm(lex.Xst=="Dead" ~ - 1 + factor (tfe) +
age + factor (sex),
offset $=\log ($ lex.dur
+
+
+ \quad family=poisson, data $=$ Lung.s, eps $=10^{-}-8$, maxit=25)
user system elapsed
$13.550 \quad 17.334 \quad 8.761$

Example: Mayo Clinic lung cancer IV

> length(coef(mLs.pois.fc))
[1] 188
> t.kn <- c $(0,25,100,500,1000)$
> dim(Ns(Lung.s\$tfe,knots=t.kn))
[1] 20022
4
> system.time(

+ mLs.pois.sp <- glm(lex.Xst=="Dead" ~Ns(tfe, knots=t.kn) +
$+\quad$ offset $=\log (\operatorname{lex} . d u r)$
+) family=poisson, data=Lung.s, eps=10~-8, maxit=25)

```
user system elapsed
0.418 0.510 0.317
```


Deriving the survival function

```
> mLs.pois.sp <- glm(lex.Xst=="Dead" ~Ns(tfe, knots=t.kn )
    ffot age + factor( sex),
offset = log(lex.dur)
family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
```

> CM <- cbind (1, Ns (seq(10,1000,10)-5, knots=t.kn), 60, 1)
> lambda <- ci.exp(mLs.pois.sp, ctr.mat=CM)
Lambda <- ci.cum(mLs.pois.sp, ctr.mat=CM, intl=10) [, -4]
survP <- $\exp (-r b i n d(0, L a m b d a))$

Code and output for the entire example available in http://bendixcarstensen.com/AdvCoh/WNtCMa/

What the Cox-model really is

Taking the life-table approach ad absurdum by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \Rightarrow difficult to access the baseline hazard (which looks terrible)
- \Rightarrow uninitiated tempted to show survival curves where irrelevant

Models of this world

- Replace the $\alpha_{t} s$ by a parametric function $f(t)$ with a limited number of parameters, for example:
- Piecewise constant
- Splines (linear, quadratic or cubic)
- Fractional polynomials
- the two latter brings model into "this world":
- smoothly varying rates
- parametric closed form representation of baseline hazard
- finite no. of parameters
- Makes it really easy to use rates directly in calculations of
- expected residual life time
- state occupancy probabilities in multistate models

additional dogma

Not sacred, merely consequenecs of the 3rd commandment:

- Show risk time in states and transitions between states graphically
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- Determine the relevant timescale(s)
- Then derive the relevant measures to report.
- Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly

EBMT transplant data

lacobelli \& Carstensen: Multistate Models with Multiple Timescales, Stat Med 2013, [3]

other covariates: Age and date at T_{x}, sex, donor type, CML type

Markov property: Empirical question

Model for mortality rates:

- t time since transplant
- r time since relapse (if relapsed)
- t_{r} time from transplant to relapse
- Fit the model for all transitions:
- split follow-up time
- fit Poisson model with covariates
- and spline terms for each time scale.
- Lexis machinery [4, 5] from the Epi package for \mathbf{R}
- ...for representation and manipulation of follow-up data.

t : time since transplant $\quad r$: time since relapse

t : time since transplant $\quad r$: time since relapse

Diabetologia DOI 10.1007/s00125-016-4065-6	(1) Crossmak
ARTICLE	
Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial	
Peter Gæde ${ }^{1,2} \cdot$ Jens Oellgaard $^{1,2,3} \cdot$ Bendix Carstensen $^{3} \cdot$ Peter Rossing 3,4,5. Henrik Lund-Andersen ${ }^{3,5,6} \cdot$ Hans-Henrik Parving ${ }^{5,7}$. Oluf Pedersen ${ }^{8}$	
Received: 7 April 2016/Accepted: 1 July 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com	
Abstract Aims/hypothesis The aim of this work was to study the potentiallono_term imnact of a 78 vears intensified_multifactorial	pharmacological approaches. After 7.8 years the study continued as an observational follow-up with all patients referiyjing treatment as for the oricinal intensive_theranv aroun The ari-

Models used

- One model for the 4 mortality rates
- One model for the 3 CVD rates
- ... both models assume:
- proportional hazards between CVD states ($0,1,2(, 3)$ CVD events)
- proportional hazards between groups (conventional, intervention)
- proportional hazards between levels of sex and age (at entry)
- Which just means: multiplicative effects of the covariates: time since baseline, CVD state, group, sex and age
- Proportional hazards means:
no interaction with the time scale

Hazard ratios

	Mortality		
	CVD event		
HR, Int. vs. Conv.	$0.83(0.54 ; 1.30)$		$0.55(0.39 ; 0.77)$
$\mathrm{H}_{0}: P H$ btw. CVD groups	$\mathrm{p}=0.438$		$\mathrm{p}=0.261$
$\mathrm{H}_{0}: \mathrm{HR}=1$	$\mathrm{p}=0.425$	$\mathrm{p}=0.001$	
HR vs. 0 CVD events:			
0 (ref.)	1.00	1.00	
1	$3.08(1.82 ; 5.19)$	$2.43(1.67 ; 3.52)$	
2	$4.42(2.36 ; 8.29)$	$3.48(2.15 ; 5.64)$	
$3+$	$7.76(4.11 ; 14.65)$		

Then use fitted rates to estimate the probabilities of being in each state at all times. (This is immensely complicated).

Same treatment effects for Death resp. CVD between CVD levels

Different treatment effects for Death resp. CVD between CVD levels

Expected lifetime and YLL (well, gained)

- Expected lifetime (years) in the Steno 2 cohort during the first 20 years after baseline by treatment group and CVD status.

State	where	Int.	Conv.	Int.-Conv.
Alive	under black line	15.6	14.1	1.5
No CVD	green area	12.7	10.0	2.6
Any CVD	orange area	3.0	4.1	-1.1

- What does "expected" mean?
- Expectation w.r.t.
age and sex-distribution in the Steno2 study!
- Computed as areas under survival curves

Expected lifetime (years) during the first 20 years after baseline by sex, age, treatment group and CVD status.

sex state	age	Men			Women		
		Int.	Conv.	Int.-Conv.	Int.	Conv.	Int.-Conv.
Alive	45	18.5	17.5	1.0	19.1	18.4	0.7
	50	17.2	16.1	1.1	18.0	17.2	0.8
	55	15.6	13.8	1.8	17.4	15.9	1.6
	60	13.9	11.6	2.2	15.5	13.7	1.8
	65	11.2	9.5	1.8	13.3	11.4	2.0
No CVD	45	14.9	12.5	2.4	15.8	14.3	1.5
	50	14.0	11.1	2.9	15.1	12.9	2.2
	55	12.2	9.7	2.5	14.3	11.6	2.7
	60	10.9	8.2	2.7	12.4	9.9	2.6
	65	9.0	6.7	2.2	10.7	8.3	2.4

Multistate models in practice:

- Representation:
- States

Transitions

- Sojourn times
- Rates
- Analysis of rates:
- Cox-model
- Poisson model
- Reporting
- Rates

HRs

- Probabilities
- Expected lifetime

From rates to probabilities

- There is a one-to-one correspondence between:
- all rates between states (by time) + initial state distribution
- state distribution by time
- Model for rates
\Rightarrow probability of being in a given state at any given time
- Analytically this is a nightmare
- Simulation is the answer

From rates to probabilities: simLexis

- Assume a person is in "DM" initially
- Simulate a time of death (transition to "D(no CVD)")
- Simulate a time of CVD (transition to "1st CVD")
- Choose the smaller as the transition
- If transition is to "1st CVD" simulate death / 2nd CVD, etc.
- Repeat for, say, 10,000 persons
\Rightarrow simulated cohort study
- simLexis does this for you, provided you have
- initial state and covariates for all persons
- models to predict (cumulative) rates
- Count how many is in each state at each time:
\Rightarrow state occupancy probabilities
- nState and pState does this for you

Using the Lexis machinery

- Allows estimation of fully parametric rate function
- Simple test for proportional hazards
- State occupancy probabilities requires simulation: simLexis - see vignette in Epi package
- Access to other measures such as expected residual lifetime.
- - similar machinery available in Stata:
- multistate
- Crowther \& Lambert [6]
- Only one timescale, however.

Additional dogma

- Show risk time in states and transitions between states
- Model transition rates by smooth parametric functions
- There is no such thing as primary or secondary time scale time scales and other quantitative covariates should be modeled the same way
- Time-scale interactions is the proper name for "non-proportional hazards"
- Multiple time scales should be reported jointly

References I

P. K. Andersen and N. Keiding Interpretability and importance of functionals in competing risks and multistate models. Stat Med, 31:1074-1088, 2012

- J P Fine and R J Gray.

A proportional hazards model for the subdistribution of a competing risk
A proportional hazards model for the subdistribution of a comper American Statistical Association, 94(446), 1999.
S. lacobelli and B. Carstensen. Multiple time scales in multi-state models.
Stat Med, 32(30):5315-5327, Dec 2013 .
Thatyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with long-term follow-up. Journal of Statistical Software, 38(5):1-12, 12011.

- Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R.
Journal of Statistical Software, 38(6):1-18, 12011

References II
(M. J. Crowther and P. C. Lambert. Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. Stat Med, 36(29):4719-4742, Dec 2017
bendixcarstensen.com/AdvCoh/Lexis-ex

