

Hazard ratios

	Mortality	CVD event 0.55(0.39;0.77			
HR, Int. vs. Conv.	0.83(0.54; 1.30)				
H ₀ : PH btw. CVD groups	p=0.438	p=0.261			
$H_0: HR = 1$	p=0.425	p=0.001			
HR vs. 0 CVD events:					
0 (ref.)	1.00	1.00			
1	3.08(1.82; 5.19)	2.43(1.67;3.52)			
2	4.42(2.36; 8.29)	3.48(2.15;5.64)			
3+	7.76(4.11;14.65)				

Intensive Conventional 0 n e 0.4 0.2 0.0 10 10 15 20 20 15 Time since baseline (years) 6/26

etween groups (HK 0.85 [95% CI 0.54, 1.30], p=0.45). Thu Detween groups (THE US3 (19% CL 0.54, 120), p⁻⁰ CL 3), TB(p⁻⁰ CL 3), TB

5/26

event types was observed (Table 2 and Fig. 4). **Microvascular complications** Hazard rates of progression rates in microvascular complications compared with baseline status are shown Fig. 3. Sensitivity analyses showed a negli-gible effect of the random dates imputation. Progression of retinopathy was decreased by 33% in the intensive-therapy group (Fig. 5). Blindness in at least on eye was reduced in the intensive-therapy group with an IR of 0.47 (95% cf 0.23, 0.98, p=0.044). Autonomic neuropathy was decreased by 41% in the intensive-therapy group (Fig. 5). We observed no difference between groups in the progression of peripheral neuropathy (Fig. 5). Tron patients in the conventional-therapy group Fig. 5). Ten patients in the conventional-therapy group sys five patients in the intensive-therapy group progressed to end-stage renal disease (p=0.061).

Expected lifetime and YLL (well, gained)

Expected lifetime (years) in the Steno 2 cohort during the first 20 years after baseline by treatment group and CVD status.

Discussion

State	Intensive	Conventional	IntConv.
Alive	15.6	14.1	1.5
No CVD	12.7	10.0	2.6
Any CVD	3.0	4.1	-1.1

8/26

7/26

sex Men Women state age Int. Conv. IntConv. Int. Conv. IntConv. Alive 45 18.5 17.5 1.0 19.1 18.4 0.7 50 17.2 16.1 1.1 18.0 17.2 0.7							51	994 657	58 66	4 8 9	311 1 4	95	0.005	2nd CVD	2nd C	VD Conventi	onal					
state age Int. Conv. IntConv. Int. Conv. IntConv.					5 1 5 1	5 1 5 1	1994.662 58. 1994.746 58	58.66	9 8.3 2 8.3	316 1.5 399 1.5	00 83	0.083	2nd CVD 2nd CVD	2nd (2nd (VD Conventi VD Conventi	onal onal						
Alive	45	18.5	17.5		1.0	19.1	18.4		0.7		51 51	994.829 994.912	58.83 58.91	6 8.4 9 8.5	483 1.6 566 1.7	67 (50 (0.083 0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal onal	
	50 55	17.2 15.6	16.1		1.1 1 º	18.0 17 4	17.2		0.8		51 51	994.996 995.079	59.00 59.08	2 8.6	549 1.8 733 1.9	33 (17 (0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal	
	55 60	13.9	13.0		2.2	17.4	13.9		1.6		51 51	995.162 995.246	59.16 59.25	98.8 28.8	316 2.0 399 2.0	00 (83 (0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal	
	65	11.2	9.5		1.8	13.3	11.4		2.0		5 1 5 1	995.329 995.412	59.33	b 8.9 9 9.0	983 2.1 066 2.2	67 (50 (0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal	
No CVD	45 50	14.9 14.0	12.5 11 1		2.4	15.8 15 1	14.3		1.5		51	995.496 995.579 995	59.50	2 9.1 6 9.1	149 2.3 233 2.4 316 2 5	33 (17 (0.083	2nd CVD 2nd CVD 2nd CVD	2nd (2nd (VD Conventi VD Conventi	onal	
	55	12.2	9.7		2.5	14.3	11.6		2.7		51	995.746 995.829	59.75	9 9.0 2 9.3 6 9.4	399 2.5 183 2.6	83 (67 (0.083	2nd CVD 2nd CVD 2nd CVD	2nd C 2nd C 2nd C	VD Conventi VD Conventi	onal	
	60 65	10.9 9.0	8.2 6.7		2.7 2.2	12.4 10.7	9.9 8.3		2.6 2.4		01	0001020			100 210				2.114			
									9/ 26													
ultistate	mo	dels i	n pra	ctice:						Rep	rese	ntati	on o	of m	ultis	tate	e FL	J: Le:	kis			
Representation	sentat	ion:									5 1 5 1	995.912 995.996	60.00	99.8 29.6 69.7	549 2.8 733 2 9	33 (17 (0.083	2nd CVD 2nd CVD 2nd CVD	2nd C 2nd C 2nd C	VD Conventi VD Conventi	onal	
► S [·] ► T	tates ransitie	ons									5 1 5 1	996.162 996.246	60.16	9 9.8 2 9.8	316 3.0 399 3.0	00 0 83 0	0.083	2nd CVD 2nd CVD	2nd C 2nd C 2nd C	VD Conventi VD Conventi	onal	
► S	ojourn	times									5 1 5 1	996.329 996.412	60.33 60.41	6 9.9 9 10.0	983 3.1 066 3.2	67 50	0.083	2nd CVD 2nd CVD	2nd (2nd (VD Conventi VD Conventi	onal onal	
R Analy	ates	ratec									51 51	996.496 996.579	60.50 60.58	2 10.1 6 10.1	149 3.3 233 3.4	33 (17 (0.083	2nd CVD 2nd CVD	2nd (2nd (VD Conventi VD Conventi	onal onal	
	lox-mo	del									5 1 5 1	996.662 996.746	60.66	9 10.3 2 10.3	316 3.5 399 3.5	00 0 83 0	0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal onal	
► P	oisson	model									51 51	996.829 996.912 996 904	60.83 60.91	0 10.4 9 10.8 2 10 4	±¤3 3.6 566 3.7 349 3 0	o/ (50 (33 (0.083	∠nd CVD 2nd CVD 2nd CVD	2nd (2nd (2nd (VD Conventi VD Conventi	onal onal	
► Repor	ting										5 1 5 1	997.079 997.160	61.08	2 10.0 6 10.7 9 10 8	733 3.9 316 4 0	17 0 00 0	0.083	2nd CVD 2nd CVD 2nd CVD	2nd C 2nd C 2nd C	VD Conventi VD Conventi	onal	
► R ► H	IRs										51	997.246 997.329	61.25	2 10.8 6 10.9	399 4.0 983 4.1	83 67	0.083	2nd CVD 2nd CVD	2nd (2nd (2nd (VD Conventi VD Conventi	onal	
► P ► E	robabil	ities d lifetim	ne								5 1	997.412	61.41	9 11.0	066 4.2	50	0.083	2nd CVD	2nd C	VD Conventi	onal	
									10/ 26													
presenta	ation	of n	nultis	tate F	U: L	exis				Rep	rese	ntati	ion d	of m	ultis	tate	e Fl	J: Le:	kis	v		_
 Allowi 	ing mi	ultiple	time sc	ales						1	51 51	997.496 997.579	61.50	2 11.3	149 4.3 233 4.4	33 17	0.083 0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal	
► ti	ime-sca	le varia	bles — t	he startir	ng point	on each	time sca	le			5 1 5 1	997.662 997.746	61.66	9 11.3 2 11.3	316 4.5 399 4.5	00 83	0.083	2nd CVD 2nd CVD	2nd (2nd (VD Conventi VD Conventi	onal	
► so ► st	ojourn tate va	time va riables:	riable le	x.dur —	- risktim	e, exposi	ıre				5 1 5 1	997.829 997.912	61.83 61.91	6 11.4 9 11.8	483 4.6 566 4.7	67 (50 (0.083 0.083	2nd CVD 2nd CVD	2nd C 2nd C	VD Conventi VD Conventi	onal onal	
 Allowi 	ing mi	ultiple	states								5 1	997.996	62.00	2 11.0	649 4.8	33 (0.051	2nd CVD	D(2 CV	D) Conventi	onal	
► 1	ex.Cst	the	e state in	which fo	ollow-up	(lex.du	r) occur	s														
► 1	ex.Xst	- the	e state in	which																		
									11/ 26													_
presenta	ation	of n	nultis	tate F	U: Le	exis				Rep	rese	ntati	ion o	of m	ultis	tate	e FL	J: Le:	kis			
.ex.id 5 1993.	per 162 57	age .169 6	dur ts .816 0.00	sb lex.du)0 0.08	ır lex.Ca 33 I	st lex. M	(st al DM Conv	locatio entiona	n sex 1 M	le	x.id 5 1	реі 993.162	ag 57.16	e (96.8	dur t 316 0.0	sb le: 00 (x.dur 0.083	lex.Cst DM	lex.X	st alloca DM Conventi	tion	s
5 1993. 5 1993.	246 57 329 57	.252 6 .336 6	.899 0.08 .983 0.16	83 0.08 87 0.08	33 I 33 I	M M	DM Conv DM Conv	entiona entiona	1 M 1 M		51 	993.246	57.25	2 6.8	399 0.0	83 (0.083	DM		DM Conventi	onal	
5 1993. 5 1993.	412 57 496 57	.419 7 .502 7	.066 0.25 .149 0.33	50 0.08 33 0.08	33 I 33 I	OM OM	DM Conv DM Conv	entiona entiona	1 M 1 M		51 51	993.829 993.912	57.83 57.91	6 7.4 9 7.5	183 0.6 566 0.7	67 50	0.083 0.047	DM DM	1st (DM Conventi VD Conventi	onal onal	
5 1993. 5 1993.	579 57 662 57	.586 7 .669 7	.233 0.41	0.08	33 I 33 I	M M	DM Conv DM Conv	entiona entiona	1 M 1 M		51 	993.959	57.96	6 7.6	513 0.7	97 (0.037	1st CVD	1st C	VD Conventi	onal -	
5 1993. 5 1993. 5 1993.	746 57 829 57 912 57	.752 7 .836 7 .010 7	.399 0.58	53 0.08 57 0.08	33 I 33 I 17 T)M M	DM Conv DM Conv	entiona entiona	т М Т М		51	994.496 994.579 994.579	58.50	2 8.1 6 8.1	149 1.3 233 1.4	33 (17 (05 (0.083	1st CVD 1st CVD	1st C 2nd C	VD Conventi VD Conventi	onal	
5 1993. 5 1993. 5 1993	912 57 959 57 996 58	.919 (.966 7 .002 7	.613 0.79	0.04 07 0.03 0.04	1 37 1st CN 33 1st CN	n 18t (D 1st (D 1st (CVD Conv CVD Conv	entiona entiona	. п 1 М 1 М		5 1 5 1	994 744	58 75	- d.i	399 1 F	83 i	0.083	2nd CVD	2110 (2nd (VD Convention	onal	
5 1994. 5 1994.	079 58 162 58	.086 7 .169 7	.733 0.91	17 0.08	33 1st CN 33 1st CN	D 1st (CVD Conv CVD Conv	entiona entiona	1 M 1 M		5 1	994.829	58.83	6 8.4	483 1.6	67	0.083	2nd CVD	2nd C	VD Conventi	onal	
5 1994. 5 1994.	246 58 329 58	.252 7 .336 7	.899 1.08 .983 1.16	33 0.08 57 0.08	33 1st CN 33 1st CN	D 1st	CVD Conv CVD Conv	entiona entiona	1 M 1 M		5 1 5 1	997.912 997.996	61.91	9 11.8 2 11.6	566 4.7 549 4.8	50 33	0.083 0.051	2nd CVD 2nd CVD	2nd (D(2 CV	VD Conventi D) Conventi	onal onal	

Modeling CVD rates in Lexis objects

- Representation of rates fully parametrically
- Allows simple calculation of the rate function
- Simple test for proportional hazards
- State occupancy probabilities requires simulation: simLexis
 see vignette in Epi
- Access to other measures such as expected residual lifetime.
 similar machinery available in Stata:
 - multistate
 - SiM (under review): Crowther, M. J. & Lambert, P. C.: Parametric multi-state survival models: flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. Under review.
 - Only one timescal however...

History

18/ 26

- Epi package grew out of "Statistical Practice in Epidemiology with R", annually since 2002 in Tartu Estonia
- Lexis machinery conceived by Martyn Plummer, IARC
- Naming originally by David Clayton & Michael Hills, stlexis in Stata, later renamed stsplit
- David Claytion wrote a lexis function for the Epi package. Obsolete now.

24/26

Summary

- Proper representation of multistate data essential: States, transitions, risk time
- Readable modeling code
- Calculation of state probabilities requires a simulation in any realistic situation
- Epi package grew out of Statistical Practice in Epidemiology with R, SPE annually since 2002 in Tartu, Estonia: http://bendixcarstensen.com/SPE
- Examples of use in:
- http://bendixcarstensen.com/AdvCoh/Lexis-ex/

Thanks for your attention