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Introduction 1

1 Introduction

The STRATOS topic group 8 has issued a paper with guidance on use of intensity models
[1], “Analysis of time-to-event for observational studies: Guidance to the use of intensity
models” (hereafter the “Intensity guide”). One remarkable thing about the intensity guide
is the total absence of estimates and graphs of intensities.

This note demonstrates how the first example in the intensity guide on mortality of PAD
patients can be analyzed using flexible parametric models for the intensities, leading to
better insight in the underlying intensities and more intuitive testing of models, while
maintaining the same results for the rate ratios and cumulative risks.

The flexible parametric modeling of the underlying intensities requires time-splitting of
the data, which is facilitated by representation of follow-up in a Lexis object as provided
by the Epi package. Also, the Lexis machinery allows simpler and more accurate data
representation and more informative overview of the data.

2 Data

The intensity guide explains the amendment of data alongside the analysis; here we start
by setting up the data as needed.

The following loads the relevant packages and the PAD datasets that were downloaded
from the site indicated in the paper:

> library(Epi)
> library(popEpi)
> library(tidyverse)
> library(survival)
> clear()
> setwd("/home/bendix/teach/AdvCoh/art/STRATOS")
> load("pad.rda", v = T )

Loading objects:
pad1
pad2
pad3

> str(pad1)

'data.frame': 1455 obs. of 23 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ site : int 2 2 2 2 2 2 2 2 2 2 ...
$ pad : Factor w/ 2 levels "Control","PAD": 1 2 2 2 2 2 2 2 2 2 ...
$ d.first : Date, format: "2005-06-09" "2005-06-10" ...
$ sex : Factor w/ 2 levels "female","male": 2 1 2 2 1 2 2 1 2 2 ...
$ d.birth : Date, format: "1935-11-29" "1941-07-14" ...
$ claud.yr : int NA 1990 1998 2001 2004 2004 1996 2001 2004 1997 ...
$ claud.m : int NA 200 2000 300 250 500 200 100 300 500 ...
$ limb.isch : int NA NA NA NA NA NA 2000 2003 NA NA ...
$ diabetes : num 0 0 0 0 1 0 0 0 1 0 ...
$ yr.diab : int NA NA NA NA 2005 NA NA NA 1991 NA ...
$ hyperlipidemia: num 1 1 1 1 1 1 1 1 1 1 ...
$ yr.hyperl : int 1997 1990 1993 NA 1999 2005 1996 1993 1991 1990 ...
$ hypertension : num 0 1 1 0 1 0 0 1 1 1 ...
$ yr.hyperten : int NA 2000 1985 NA 2003 NA NA 1976 1986 1986 ...
$ smoking : Factor w/ 3 levels "never","current",..: 3 3 3 1 2 2 3 1 2 3 ...
$ start.smoke : int 1956 1960 1955 NA 1969 1988 1971 NA 1960 1954 ...
$ end.smoke : int 1966 2003 1984 NA NA NA 1998 NA NA 1998 ...
$ cigarettes : int 18 20 15 NA 20 20 25 NA 14 20 ...
$ lastfu : Date, format: "2011-12-08" "2011-11-07" ...
$ futime : num 2373 2341 2037 2412 2482 ...
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$ status : Factor w/ 3 levels "censor","CV death",..: 1 3 1 1 1 1 1 2 3 1 ...
$ age : num 69.5 63.9 73.7 60.5 66.1 43 57.2 73.2 65.6 69.4 ...

> str(pad2)

'data.frame': 7797 obs. of 55 variables:
$ id : int 1 1 1 1 1 1 2 2 2 2 ...
$ visit : num 0 1 2 3 4 5 0 1 2 3 ...
$ date : Date, format: "2005-06-09" "2006-10-09" ...
$ day : num 0 487 876 1243 1597 ...
$ pad : Factor w/ 2 levels "Control","PAD": 1 1 1 1 1 1 2 2 2 2 ...
$ abp.r : num 1.17 1.22 1.25 1.07 1.17 ...
$ abp.l : num 1.17 1.13 1.25 1.04 1.15 ...
$ anxiety : int 3 2 3 2 2 2 3 4 3 2 ...
$ sleep : int 2 2 1 1 1 1 3 3 1 2 ...
$ alcohol : int 2 1 2 3 3 3 1 1 1 1 ...
$ fruit : int 4 4 4 3 4 4 3 3 4 4 ...
$ vegetable : int 4 4 4 4 4 4 3 3 3 4 ...
$ active1 : int 7 7 7 6 7 7 4 0 7 7 ...
$ active2 : int 0 0 0 0 0 0 0 0 0 0 ...
$ hlc1 : int 1 1 1 1 1 1 1 1 1 1 ...
$ hlc2 : int 2 2 2 2 2 2 2 2 2 2 ...
$ weight : int 75 74 73 72 73 73 75 80 80 80 ...
$ height : int 173 173 172 171 171 170 152 152 152 151 ...
$ bmi : num 25.1 24.7 24.7 24.6 25 ...
$ circum : int 91 93 89 91 86 80 93 102 99 97 ...
$ systolic : int 130 120 130 122 132 120 148 128 170 170 ...
$ diastolic : int 70 70 72 70 68 63 74 70 70 95 ...
$ dpulse.r : num 1 1 1 0 1 1 0 0 0 1 ...
$ dpulse.l : num 1 1 1 1 1 1 0 0 0 1 ...
$ tpulse.r : num 1 1 1 1 1 1 0 0 0 0 ...
$ tpulse.l : num 1 1 1 1 1 1 0 0 0 0 ...
$ erythrocytes: num 3.97 3.87 3.93 4.33 4.08 4.25 3.99 4.22 4.32 4.04 ...
$ hemoglobin : int 131 125 133 139 129 142 126 133 137 122 ...
$ hematocrit : num 39.1 37.6 39.5 40 38 42 36.8 38.4 38 35 ...
$ wbc : num 5.9 4.8 6.7 6 5.2 6.9 5.8 4.6 6.2 5.2 ...
$ platelets : int 202 146 184 197 167 173 145 121 191 180 ...
$ glucose : num 6.1 5.4 6.2 6.6 5.6 6.9 5.6 5.9 6.1 5.4 ...
$ potassium : num 4.2 4.9 4.2 3.9 4 4.6 3.7 4 4.3 3.8 ...
$ urea : num 6.8 6.8 5.2 4.2 6.5 5.3 7.2 9.1 9.6 8 ...
$ creatine : int 72 73 69 71 74 77 82 84 94 101 ...
$ crp : num 3.1 3.1 3 17 3 3 8.7 3.2 6 4 ...
$ chol : num 5.03 5.4 4.7 5.29 4.73 5.05 5.57 5.42 5.84 4.78 ...
$ hdl : num 1.65 1.78 2.27 2 2.26 2.51 0.97 1.22 1.26 1.07 ...
$ ldl : num 2.39 2.82 2.59 2.8 2.33 2.48 3 2.93 3.46 2.63 ...
$ trig : num 1.65 10.6 0.91 0.71 0.43 0.58 2 2.36 2.55 1.97 ...
$ uprotein : num 0 0 0 0 0 0 0 0 0 0 ...
$ uglucose : num 0 0 0 0 0 0 0 0 0 0 ...
$ cvscore : num 0.09 0.087 0.1 0.102 0.119 ...
$ coop.1 : int 1 2 2 3 2 3 3 4 5 3 ...
$ coop.2 : int 2 2 1 3 2 2 3 4 3 3 ...
$ coop.3 : int 1 2 1 2 2 2 2 3 2 3 ...
$ coop.4 : int 1 1 1 3 1 1 1 3 2 3 ...
$ coop.5 : int 2 3 3 2 3 2 2 3 2 3 ...
$ coop.6 : int 3 3 3 4 3 3 2 3 3 3 ...
$ aspirin : num 1 1 1 1 1 1 1 1 1 1 ...
$ clopridrogel: num 1 0 0 0 0 0 0 0 0 0 ...
$ anticlot : num 0 0 0 0 0 0 0 0 0 0 ...
$ ezetimibe : num 0 0 0 0 0 0 0 0 0 0 ...
$ statins : num 1 1 1 1 1 1 1 1 1 1 ...
$ ace : num 1 1 1 1 1 1 1 1 1 1 ...

> str(pad3)

'data.frame': 933 obs. of 6 variables:
$ id : int 2 2 5 6 6 6 7 7 8 8 ...
$ date : Date, format: "2010-05-07" "2011-11-07" ...
$ event: chr "malignancy" "other death" "revascularization" "revascularization" ...
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$ type : chr "other" "death" "minor" "minor" ...
$ pad : Factor w/ 2 levels "Control","PAD": 2 2 2 2 2 2 2 2 2 2 ...
$ day : num 1792 2341 1047 448 511 ...

As illustration along the way we will be printing select records from data frames with both
calendar year and age as columns. It makes little sense to print both with the same
number of significant digits, so here is a definition of a print method for Lexis objects that
print all time scales of Lexis objects with 2 digits after the decimal separator:

> print.Lexis <-
+ function(Lx, d = 2)
+ {
+ tsx <- c(timeScales(Lx), "lex.dur")
+ Lx[,tsx] <- round(Lx[,tsx], d)
+ first.cols <- c("lex.id", tsx, "lex.Cst", "lex.Xst")
+ rest.cols <- setdiff(names(Lx), first.cols)
+ print.data.frame(Lx[,c(first.cols,rest.cols)], row.names = FALSE)
+ }

2.1 Follow-up: a Lexis object

With the datasets read we can set up the relevant parts of the datasets as a Lexis object
[2, 3]. But first we convert all date variables to cal.yr format; this is basically just scaling
them to units of 365.25 days (which we shall call “years”), formatted so that 1970.00
corresponds to 1970-1-1:

> pad1 <- cal.yr(pad1)
> pad2 <- cal.yr(pad2)
> pad3 <- cal.yr(pad3)

We extract the hdl and ldl at first visit from pad2 and attach them as variables to dat1

which is just a version of the pad1 with fewer variables and a different name for the first
level of status:

> dat2 <- ( filter(pad2, visit == 0)
+ %>% select("id", "hdl", "ldl")
+ %>% dplyr::rename(hdl0 = hdl, ldl0 = ldl)
+ )
> #
> dat1 <- ( select(pad1,
+ c("id", "d.first", "d.birth", "lastfu",
+ "status", "pad", "sex"))
+ %>% mutate(status = Relevel(status, list("Alive" = 1)))
+ %>% left_join(dat2)
+ )
> str(dat1)

'data.frame': 1455 obs. of 9 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ d.first: 'cal.yr' num 2005 2005 2005 2005 2005 ...
$ d.birth: 'cal.yr' num 1936 1942 1932 1945 1939 ...
$ lastfu : 'cal.yr' num 2012 2012 2011 2012 2012 ...
$ status : Factor w/ 3 levels "Alive","CV death",..: 1 3 1 1 1 1 1 2 3 1 ...
$ pad : Factor w/ 2 levels "Control","PAD": 1 2 2 2 2 2 2 2 2 2 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 2 2 1 2 2 1 2 2 ...
$ hdl0 : num 1.65 0.97 2.33 1.32 1.12 1.02 1.21 1.67 1.08 1.1 ...
$ ldl0 : num 2.39 3 2.36 2.38 3.59 3.87 2.76 2.89 2.66 1.8 ...

> head(dat1)
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id d.first d.birth lastfu status pad sex hdl0 ldl0
1 1 2005.436 1935.908 2011.933 Alive Control male 1.65 2.39
2 2 2005.439 1941.532 2011.848 nonCV death PAD female 0.97 3.00
3 3 2005.431 1931.749 2011.008 Alive PAD male 2.33 2.36
4 4 2005.417 1944.891 2012.021 Alive PAD male 1.32 2.38
5 5 2005.379 1939.279 2012.174 Alive PAD female 1.12 3.59
6 6 2005.316 1962.293 2012.155 Alive PAD male 1.02 3.87

Then we can set up the follow-up in the cohort from the date d.first to the date lastfu

as a Lexis object, with the exit status as indicated in the variable status. Also we show
the summary table of transitions represented:

> table(dat1$status, exclude = NULL)

Alive CV death nonCV death
1268 74 113

> Lx <- Lexis(entry = list(Per = d.first,
+ Age = d.first - d.birth,
+ tfE = 0),
+ exit = list(Per = lastfu),
+ exit.status = status,
+ id = id,
+ data = dat1) %>% select(-id)

NOTE: entry.status has been set to "Alive" for all.

> summary(Lx, t = T)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 1268 74 113 1455 187 7817.45 1455

Timescales:
Per Age tfE
"" "" ""

There is a total of 1455 persons in the study, and the amount of risk time is 7817 years,
roughly 5 years of follow up on average.

We can also make an informative plot of the dataset—which is really a competing risks
dataset:

> boxes(Lx, boxpos = TRUE, scale.R = 1000, show.BE = TRUE)

2.2 Clinical variables

We will also need the clinical variables measured during follow-up attached to the Lexis

object. To this end we put them in a data frame of the relevant structure and naming. The
visit is not really a quantitative variable, but just a name so we designate it as a factor:

> clin <- ( select(pad2, c("id", "visit", "date", "hdl", "ldl"))
+ %>% rename("lex.id" = "id",
+ "Per" = "date")
+ %>% mutate(visit = factor(paste0("v", visit)))
+ )
> str(clin)

'data.frame': 7797 obs. of 5 variables:
$ lex.id: int 1 1 1 1 1 1 2 2 2 2 ...
$ visit : Factor w/ 6 levels "v0","v1","v2",..: 1 2 3 4 5 6 1 2 3 4 ...
$ Per : 'cal.yr' num 2005 2007 2008 2009 2010 ...
$ hdl : num 1.65 1.78 2.27 2 2.26 2.51 0.97 1.22 1.26 1.07 ...
$ ldl : num 2.39 2.82 2.59 2.8 2.33 2.48 3 2.93 3.46 2.63 ...
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Figure 1: Follow-up, events and (rates per 1000) in the pad1 dataset. Person-years are
indicated inside each box, number of events and transition rates per 1000 PY are shown on
the arrows. ./Sc-box1

> head(clin, 8)

lex.id visit Per hdl ldl
1 1 v0 2005.436 1.65 2.39
2 1 v1 2006.769 1.78 2.82
3 1 v2 2007.834 2.27 2.59
4 1 v3 2008.839 2.00 2.80
5 1 v4 2009.808 2.26 2.33
6 1 v5 2010.745 2.51 2.48
7 2 v0 2005.439 0.97 3.00
8 2 v1 2006.695 1.22 2.93

The rename is needed because we need the id in the data set with clinical variables to have
name lex.id, and the date to have the name of the corresponding time scale in Lx, in this
case Per.

The values from this data frame can now be added to the follow-up in the Lexis object
(and propagated by LOCF). We use a workaround via subset to purge the cal.yr class of
variables in the datasets, in order to avoid clashes of variable types:

> La <- addCov.Lexis(subset(Lx),
+ subset(clin),
+ exnam = "visit",
+ tfc = "tfV")
> summary(La, t = T)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 6951 74 113 7138 187 7817.45 1455

Timescales:
Per Age tfE tfV
"" "" "" ""

> head(La)

lex.id Per Age tfE tfV lex.dur lex.Cst lex.Xst d.first d.birth lastfu status
1 2005.44 69.53 0.00 0 1.33 Alive Alive 2005.436 1935.908 2011.933 Alive
1 2006.77 70.86 1.33 0 1.07 Alive Alive 2005.436 1935.908 2011.933 Alive
1 2007.83 71.93 2.40 0 1.00 Alive Alive 2005.436 1935.908 2011.933 Alive
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1 2008.84 72.93 3.40 0 0.97 Alive Alive 2005.436 1935.908 2011.933 Alive
1 2009.81 73.90 4.37 0 0.94 Alive Alive 2005.436 1935.908 2011.933 Alive
1 2010.74 74.84 5.31 0 1.19 Alive Alive 2005.436 1935.908 2011.933 Alive
pad sex hdl0 ldl0 visit hdl ldl

Control male 1.65 2.39 v0 1.65 2.39
Control male 1.65 2.39 v1 1.78 2.82
Control male 1.65 2.39 v2 2.27 2.59
Control male 1.65 2.39 v3 2.00 2.80
Control male 1.65 2.39 v4 2.26 2.33
Control male 1.65 2.39 v5 2.51 2.48

We locate a couple of persons of interest to be used for illustration of the amended dataset
and also later the time-split dataset.

> subset(La, lex.Xst=="CV death")[1:5,"lex.id"]

[1] 8 33 38 96 98

> subset(La, lex.Xst=="nonCV death")[1:5,"lex.id"]

[1] 2 9 11 14 40

> whv <- c("lex.id","Per","Age","tfE","tfV","lex.dur",
+ "lex.Cst","lex.Xst","visit","hdl0","ldl0","hdl","ldl")
> subset(La, lex.id %in% c(1,2,96))[,whv]

lex.id Per Age tfE tfV lex.dur lex.Cst lex.Xst visit hdl0 ldl0 hdl ldl
1 2005.44 69.53 0.00 0 1.33 Alive Alive v0 1.65 2.39 1.65 2.39
1 2006.77 70.86 1.33 0 1.07 Alive Alive v1 1.65 2.39 1.78 2.82
1 2007.83 71.93 2.40 0 1.00 Alive Alive v2 1.65 2.39 2.27 2.59
1 2008.84 72.93 3.40 0 0.97 Alive Alive v3 1.65 2.39 2.00 2.80
1 2009.81 73.90 4.37 0 0.94 Alive Alive v4 1.65 2.39 2.26 2.33
1 2010.74 74.84 5.31 0 1.19 Alive Alive v5 1.65 2.39 2.51 2.48
2 2005.44 63.91 0.00 0 1.26 Alive Alive v0 0.97 3.00 0.97 3.00
2 2006.70 65.16 1.26 0 1.09 Alive Alive v1 0.97 3.00 1.22 2.93
2 2007.79 66.25 2.35 0 0.94 Alive Alive v2 0.97 3.00 1.26 3.46
2 2008.72 67.19 3.29 0 1.00 Alive Alive v3 0.97 3.00 1.07 2.63
2 2009.72 68.19 4.28 0 0.89 Alive Alive v4 0.97 3.00 1.13 1.86
2 2010.61 69.08 5.17 0 1.24 Alive nonCV death v5 0.97 3.00 1.21 2.29
96 2005.32 74.17 0.00 0 1.20 Alive Alive v0 1.31 2.99 1.31 2.99
96 2006.53 75.37 1.20 0 1.17 Alive Alive v1 1.31 2.99 1.19 3.30
96 2007.69 76.54 2.37 0 4.46 Alive CV death v2 1.31 2.99 1.20 2.92

> summary(La, t = T)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 6951 74 113 7138 187 7817.45 1455

Timescales:
Per Age tfE tfV
"" "" "" ""

We see that tfV (time from last Visit) has been added as new time scale. But it is not a
time like the others; it is NA before the first visit and it is reset at every new clinical visit,
so should be treated with care.

The tfV is reset to 0 at each clinical visit, so at the beginning of all of the intervals
shown here it is necessarily 0.

2.3 Time splitting and restriction of follow-up

Analysis of intensities with parametric functions requires follow-up to be subdivided in
small time intervals. In the analysis of rates we will use the values of the timescales
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(current age, date, time since entry, time since last examination) at the beginning of each
interval as covariates.

The splitting of time can be done either by Epi::splitLexis or popEpi::splitMulti.
The latter returns a data.table unless otherwise instructed, as below. Here we split in
intervals of 3 months after date of entry:

> summary(La)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 6951 74 113 7138 187 7817.45 1455

> options("popEpi.datatable" = FALSE)
> Sa <- splitMulti(La, tfE = seq(0, 20, 1/4))
> summary(Sa)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 37466 74 113 37653 187 7817.45 1455

> subset(Sa, lex.id == 1)[,whv]

lex.id Per Age tfE tfV lex.dur lex.Cst lex.Xst visit hdl0 ldl0 hdl ldl
1 2005.44 69.53 0.00 0.00 0.25 Alive Alive v0 1.65 2.39 1.65 2.39
1 2005.69 69.78 0.25 0.25 0.25 Alive Alive v0 1.65 2.39 1.65 2.39
1 2005.94 70.03 0.50 0.50 0.25 Alive Alive v0 1.65 2.39 1.65 2.39
1 2006.19 70.28 0.75 0.75 0.25 Alive Alive v0 1.65 2.39 1.65 2.39
1 2006.44 70.53 1.00 1.00 0.25 Alive Alive v0 1.65 2.39 1.65 2.39
1 2006.69 70.78 1.25 1.25 0.08 Alive Alive v0 1.65 2.39 1.65 2.39
1 2006.77 70.86 1.33 0.00 0.17 Alive Alive v1 1.65 2.39 1.78 2.82
1 2006.94 71.03 1.50 0.17 0.25 Alive Alive v1 1.65 2.39 1.78 2.82
1 2007.19 71.28 1.75 0.42 0.25 Alive Alive v1 1.65 2.39 1.78 2.82
1 2007.44 71.53 2.00 0.67 0.25 Alive Alive v1 1.65 2.39 1.78 2.82
1 2007.69 71.78 2.25 0.92 0.15 Alive Alive v1 1.65 2.39 1.78 2.82
1 2007.83 71.93 2.40 0.00 0.10 Alive Alive v2 1.65 2.39 2.27 2.59
1 2007.94 72.03 2.50 0.10 0.25 Alive Alive v2 1.65 2.39 2.27 2.59
1 2008.19 72.28 2.75 0.35 0.25 Alive Alive v2 1.65 2.39 2.27 2.59
1 2008.44 72.53 3.00 0.60 0.25 Alive Alive v2 1.65 2.39 2.27 2.59
1 2008.69 72.78 3.25 0.85 0.15 Alive Alive v2 1.65 2.39 2.27 2.59
1 2008.84 72.93 3.40 0.00 0.10 Alive Alive v3 1.65 2.39 2.00 2.80
1 2008.94 73.03 3.50 0.10 0.25 Alive Alive v3 1.65 2.39 2.00 2.80
1 2009.19 73.28 3.75 0.35 0.25 Alive Alive v3 1.65 2.39 2.00 2.80
1 2009.44 73.53 4.00 0.60 0.25 Alive Alive v3 1.65 2.39 2.00 2.80
1 2009.69 73.78 4.25 0.85 0.12 Alive Alive v3 1.65 2.39 2.00 2.80
1 2009.81 73.90 4.37 0.00 0.13 Alive Alive v4 1.65 2.39 2.26 2.33
1 2009.94 74.03 4.50 0.13 0.25 Alive Alive v4 1.65 2.39 2.26 2.33
1 2010.19 74.28 4.75 0.38 0.25 Alive Alive v4 1.65 2.39 2.26 2.33
1 2010.44 74.53 5.00 0.63 0.25 Alive Alive v4 1.65 2.39 2.26 2.33
1 2010.69 74.78 5.25 0.88 0.06 Alive Alive v4 1.65 2.39 2.26 2.33
1 2010.74 74.84 5.31 0.00 0.19 Alive Alive v5 1.65 2.39 2.51 2.48
1 2010.94 75.03 5.50 0.19 0.25 Alive Alive v5 1.65 2.39 2.51 2.48
1 2011.19 75.28 5.75 0.44 0.25 Alive Alive v5 1.65 2.39 2.51 2.48
1 2011.44 75.53 6.00 0.69 0.25 Alive Alive v5 1.65 2.39 2.51 2.48
1 2011.69 75.78 6.25 0.94 0.25 Alive Alive v5 1.65 2.39 2.51 2.48

> subset(Sa, lex.id == 2)[,whv]

lex.id Per Age tfE tfV lex.dur lex.Cst lex.Xst visit hdl0 ldl0 hdl ldl
2 2005.44 63.91 0.00 0.00 0.25 Alive Alive v0 0.97 3 0.97 3.00
2 2005.69 64.16 0.25 0.25 0.25 Alive Alive v0 0.97 3 0.97 3.00
2 2005.94 64.41 0.50 0.50 0.25 Alive Alive v0 0.97 3 0.97 3.00
2 2006.19 64.66 0.75 0.75 0.25 Alive Alive v0 0.97 3 0.97 3.00
2 2006.44 64.91 1.00 1.00 0.25 Alive Alive v0 0.97 3 0.97 3.00
2 2006.69 65.16 1.25 1.25 0.01 Alive Alive v0 0.97 3 0.97 3.00
2 2006.70 65.16 1.26 0.00 0.24 Alive Alive v1 0.97 3 1.22 2.93
2 2006.94 65.41 1.50 0.24 0.25 Alive Alive v1 0.97 3 1.22 2.93
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2 2007.19 65.66 1.75 0.49 0.25 Alive Alive v1 0.97 3 1.22 2.93
2 2007.44 65.91 2.00 0.74 0.25 Alive Alive v1 0.97 3 1.22 2.93
2 2007.69 66.16 2.25 0.99 0.10 Alive Alive v1 0.97 3 1.22 2.93
2 2007.79 66.25 2.35 0.00 0.15 Alive Alive v2 0.97 3 1.26 3.46
2 2007.94 66.41 2.50 0.15 0.25 Alive Alive v2 0.97 3 1.26 3.46
2 2008.19 66.66 2.75 0.40 0.25 Alive Alive v2 0.97 3 1.26 3.46
2 2008.44 66.91 3.00 0.65 0.25 Alive Alive v2 0.97 3 1.26 3.46
2 2008.69 67.16 3.25 0.90 0.04 Alive Alive v2 0.97 3 1.26 3.46
2 2008.72 67.19 3.29 0.00 0.21 Alive Alive v3 0.97 3 1.07 2.63
2 2008.94 67.41 3.50 0.21 0.25 Alive Alive v3 0.97 3 1.07 2.63
2 2009.19 67.66 3.75 0.46 0.25 Alive Alive v3 0.97 3 1.07 2.63
2 2009.44 67.91 4.00 0.71 0.25 Alive Alive v3 0.97 3 1.07 2.63
2 2009.69 68.16 4.25 0.96 0.03 Alive Alive v3 0.97 3 1.07 2.63
2 2009.72 68.19 4.28 0.00 0.22 Alive Alive v4 0.97 3 1.13 1.86
2 2009.94 68.41 4.50 0.22 0.25 Alive Alive v4 0.97 3 1.13 1.86
2 2010.19 68.66 4.75 0.47 0.25 Alive Alive v4 0.97 3 1.13 1.86
2 2010.44 68.91 5.00 0.72 0.17 Alive Alive v4 0.97 3 1.13 1.86
2 2010.61 69.08 5.17 0.00 0.08 Alive Alive v5 0.97 3 1.21 2.29
2 2010.69 69.16 5.25 0.08 0.25 Alive Alive v5 0.97 3 1.21 2.29
2 2010.94 69.41 5.50 0.33 0.25 Alive Alive v5 0.97 3 1.21 2.29
2 2011.19 69.66 5.75 0.58 0.25 Alive Alive v5 0.97 3 1.21 2.29
2 2011.44 69.91 6.00 0.83 0.25 Alive Alive v5 0.97 3 1.21 2.29
2 2011.69 70.16 6.25 1.08 0.16 Alive nonCV death v5 0.97 3 1.21 2.29

> subset(Sa, lex.id == 96)[,whv]

lex.id Per Age tfE tfV lex.dur lex.Cst lex.Xst visit hdl0 ldl0 hdl ldl
96 2005.32 74.17 0.00 0.00 0.25 Alive Alive v0 1.31 2.99 1.31 2.99
96 2005.57 74.42 0.25 0.25 0.25 Alive Alive v0 1.31 2.99 1.31 2.99
96 2005.82 74.67 0.50 0.50 0.25 Alive Alive v0 1.31 2.99 1.31 2.99
96 2006.07 74.92 0.75 0.75 0.25 Alive Alive v0 1.31 2.99 1.31 2.99
96 2006.32 75.17 1.00 1.00 0.20 Alive Alive v0 1.31 2.99 1.31 2.99
96 2006.53 75.37 1.20 0.00 0.05 Alive Alive v1 1.31 2.99 1.19 3.30
96 2006.57 75.42 1.25 0.05 0.25 Alive Alive v1 1.31 2.99 1.19 3.30
96 2006.82 75.67 1.50 0.30 0.25 Alive Alive v1 1.31 2.99 1.19 3.30
96 2007.07 75.92 1.75 0.55 0.25 Alive Alive v1 1.31 2.99 1.19 3.30
96 2007.32 76.17 2.00 0.80 0.25 Alive Alive v1 1.31 2.99 1.19 3.30
96 2007.57 76.42 2.25 1.05 0.12 Alive Alive v1 1.31 2.99 1.19 3.30
96 2007.69 76.54 2.37 0.00 0.13 Alive Alive v2 1.31 2.99 1.20 2.92
96 2007.82 76.67 2.50 0.13 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2008.07 76.92 2.75 0.38 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2008.32 77.17 3.00 0.63 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2008.57 77.42 3.25 0.88 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2008.82 77.67 3.50 1.13 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2009.07 77.92 3.75 1.38 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2009.32 78.17 4.00 1.63 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2009.57 78.42 4.25 1.88 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2009.82 78.67 4.50 2.13 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2010.07 78.92 4.75 2.38 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2010.32 79.17 5.00 2.63 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2010.57 79.42 5.25 2.88 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2010.82 79.67 5.50 3.13 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2011.07 79.92 5.75 3.38 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2011.32 80.17 6.00 3.63 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2011.57 80.42 6.25 3.88 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2011.82 80.67 6.50 4.13 0.25 Alive Alive v2 1.31 2.99 1.20 2.92
96 2012.07 80.92 6.75 4.38 0.08 Alive CV death v2 1.31 2.99 1.20 2.92

We see that the values of hdl0, ldl0, hdl and ldl have been carried correctly forward
across the splits, and that tfV now shows how long the beginning of each interval is from
the date of the most recent clinical measurement.

In the intensity guide, the follow-up after 5 years is censored, so for comparability we do
this here too. This is actually one of the reasons that we split the time along the tfE axis;
it makes it easy to restrict to the first 5 years of follow-up; the clause tfE < 5 has the
desired effect because there is a split at precisely 5 years of follow-up:
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> Sx <- subset(Sa, tfE < 5)
> summary(Sx$tfE + Sx$lex.dur)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1478 1.2500 2.5000 2.5734 3.7500 5.0000

We see that we do have follow-up till precisely 5 years.

2.4 Intermediate event: CV

We shall also be concerned with CV events, defined as occurrence of stroke or myocardial
infarction. To this end we need a data frame with dates of CV occurrences. In Lexis terms
it is a data frame with variables lex.id, cut (time of event) and new.state (name of
event); note that in the dataset pad3 a person may have more than one event, but we only
use the first of these:

> addmargins(with(pad3, table(event, type)))

type
event death major minor other Sum
amputation 0 26 0 0 26
cvd death 74 0 0 0 74
infarction 0 77 0 0 77
malignancy 0 0 0 184 184
other death 113 0 0 0 113
revascularization 0 0 358 57 415
stroke 0 44 0 0 44
Sum 187 147 358 241 933

> with(pad3, addmargins(table(table(id))))

1 2 3 4 5 6 7 8 10 Sum
275 145 56 19 13 1 5 1 1 516

> cv <- as.data.frame( filter(pad3,
+ event %in% c("stroke","infarction"))
+ %>% select(id, date)
+ %>% arrange(id, date)
+ %>% group_by(id)
+ %>% summarize(first(date))
+ %>% rename(lex.id = id,
+ cut = "first(date)")
+ %>% mutate(new.state = "CV")
+ )
> str(cv)

'data.frame': 97 obs. of 3 variables:
$ lex.id : int 8 9 19 45 48 50 67 72 81 82 ...
$ cut : num 2007 2008 2011 2007 2011 ...
$ new.state: chr "CV" "CV" "CV" "CV" ...

> head(cv)

lex.id cut new.state
1 8 2006.589 CV
2 9 2008.111 CV
3 19 2010.635 CV
4 45 2007.095 CV
5 48 2010.797 CV
6 50 2006.953 CV

> with(cv, addmargins(table(table(lex.id))))

1 Sum
97 97
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We can then cut the follow-up at the intermediate event CV to form a proper multistate
model, and show the events. If we have more than a few states, a plot of transitions helps
to get an overview of the data:

> par(mfrow = c(1,2))
> summary(Sx)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 32750 68 91 32909 159 6870.69 1455

> boxes(Sx, boxpos = list(x = c(20,80,80),
+ y = c(80,20,80)),
+ scale.R = 1000,
+ show.BE = "nz",
+ pos.arr = 0.3, cex=1.1)
> Sc <- cutLexis(Sx, cut = cv)
> summary(Sc)

Transitions:
To

From Alive CV CV death nonCV death Records: Events: Risk time: Persons:
Alive 31834 84 59 85 32062 228 6689.38 1455
CV 0 916 9 6 931 15 181.31 84
Sum 31834 1000 68 91 32993 243 6870.69 1455

> boxes(Sc, boxpos = list(x = c(20,20,80,80),
+ y = c(80,20,20,80)),
+ scale.R = 1000,
+ show.BE = "nz",
+ pos.arr = 0.3, cex=1.1)

Alive
6,870.7

1,455          1,296

CV death
            68

nonCV death
            91

68
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91
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nonCV death
            91
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Figure 2: Multistate models, without (dataset Sx, left) and with CV event (dataset Sc, right),
defined by date of first occurrence of either stroke or infarction. Follow-up censored at 5 years,
hence the difference to figure 1. There are fewer CV events than in the cv dataset, because
some occur more than 5 years after entry, where we censored follow-up. ./Sc-boxes3



Modeling mortality 11

We now have the possibility of modeling CV events either separately or as “either CV or
CV death”.

The Lexis object Sx represents follow up in the simple setting with two competing risks
and censored at 5 years after entry; the object Sc represents the same follow-up, but with
follow-up sub-divided by CV occurrence.

So now we have a time-split Lexis object that we can use as basis for the modeling.

3 Modeling mortality

The Lexis object has information on beginning and end of follow up, state transitions etc.
This is exploited in the function coxph.Lexis, allowing for a simple specification of the
model; note that we are using Sx, the three-state data in figure 2; first the model with tfE

as baseline time scale:

> ct <- coxph.Lexis(Sx, tfE ~ pad + sex + I(Age / 10))

survival::coxph analysis of Lexis object Sx:
Rates for transitions Alive->CV death, Alive->nonCV death
Baseline timescale: tfE

> summary(ct)

Call:
coxph(formula = as.formula(paste("Sobj", as.character(formula[3]),

sep = "~")), data = Lx)

n= 32909, number of events= 159

coef exp(coef) se(coef) z Pr(>|z|)
padPAD 0.8756 2.4002 0.1739 5.036 4.75e-07
sexmale 0.6928 1.9992 0.1822 3.802 0.000143
I(Age/10) 0.6600 1.9348 0.1054 6.261 3.84e-10

exp(coef) exp(-coef) lower .95 upper .95
padPAD 2.400 0.4166 1.707 3.375
sexmale 1.999 0.5002 1.399 2.857
I(Age/10) 1.935 0.5168 1.574 2.379

Concordance= 0.701 (se = 0.02 )
Likelihood ratio test= 82.81 on 3 df, p=<2e-16
Wald test = 73.39 on 3 df, p=8e-16
Score (logrank) test = 75.94 on 3 df, p=2e-16

> round(ci.exp(ct), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.37
sexmale 2.00 1.40 2.86
I(Age/10) 1.93 1.57 2.38

. . . then the model with Age as baseline:

> ca <- coxph.Lexis(Sx, Age ~ pad + sex + tfE)

survival::coxph analysis of Lexis object Sx:
Rates for transitions Alive->CV death, Alive->nonCV death
Baseline timescale: Age

> round(ci.exp(ca), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.70 3.37
sexmale 2.02 1.42 2.90
tfE 1.18 1.05 1.33
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The small discrepancies from the results in the intensity guide presumably comes from the
5-year censoring which may not be quite the same, in the Lexis object we censored at 5
years in the cal.yr sense, that is 365.25× 5 = 1826.25 days after entry, in the analysis in
the paper this was at 1825 days, using 365 days as the length of a year.

The coxph.Lexis is just a wrapper for coxph; the following two statements are
equivalent:

> ca <- coxph.Lexis(Sx, Age ~ pad + sex + tfE)
> ca <- coxph(Surv(Age, Age + lex.dur, lex.Cst == "Alive" &
+ lex.Xst %in% c("CV death",
+ "nonCV death") &
+ lex.Xst != lex.Cst)
+ ~ pad + sex + tfE,
+ data = Sx)

The first one is more handy once the Lexis object has been defined; further details is at
the help page for coxph.Lexis.

3.1 Parametric models

The same models as the Cox-models can be fitted using an explicit smoothing for the
baseline effect; we will get the same covariate effect estimates in all models.

To this end we use natural splines to model the non-linear effects of the timescales. Note
that this is where the time-split data is required; the underlying model really assumes that
mortality rates are constant in each small interval.

We fit models with the explanatory variables pad and sex and tfE as baseline (mt) and
linear effect of Age, with Age as baseline (ma) and a linear effect of tfE, both as
(non-linear) time scales (m2), including a non-linear effect of the difference (m3) and
including a general interaction between tfE and Age (mi).

As for the coxph we also have a wrapper for fitting Poisson glm models to Lexis objects;
we just need some reasonably spaced knots to define the spline effects:

> (knE <- seq(0, 4.5, 1.5))

[1] 0.0 1.5 3.0 4.5

> (knA <- c(4:8) * 10)

[1] 40 50 60 70 80

> mt <- glm.Lexis(Sx, ~ Ns(tfE, kn=knE) + pad + sex + I(Age / 10))

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> ma <- glm.Lexis(Sx, ~ Ns(Age, kn=knA) + pad + sex + tfE)

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> m2 <- glm.Lexis(Sx, ~ Ns(Age, kn=knA) +
+ Ns(tfE, kn=knE) + pad + sex)

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> m3 <- glm.Lexis(transform(Sx, Ain = Age - tfE),
+ ~ Ns(Age, kn=knA) +
+ Ns(tfE, kn=knE) +
+ Ns(Ain, kn=knA) + pad + sex)

stats::glm Poisson analysis of Lexis object transform(Sx, Ain = Age - tfE) with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death
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> mi <- glm.Lexis(Sx, ~ Ns(Age, kn=knA) + Ns(tfE, kn=knE) +
+ Ns(Age, kn=knA) : Ns(tfE, kn=knE) + pad + sex)

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> round(ci.exp(mt, subset=c("pad","sex","Age")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.38
sexmale 2.00 1.40 2.86
I(Age/10) 1.93 1.57 2.38

> round(ci.exp(ma, subset=c("pad","sex","tfE")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.39 1.70 3.36
sexmale 2.02 1.41 2.89
tfE 1.18 1.05 1.32

> round(ci.exp(m2, subset=c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.39 1.70 3.36
sexmale 2.02 1.41 2.89

> round(ci.exp(m3, subset=c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.38 1.70 3.35
sexmale 2.02 1.41 2.89

> round(ci.exp(mi, subset=c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.38 1.70 3.35
sexmale 2.02 1.41 2.89

For all model fits a note is issued that the model fitted comprises more than one transition
from the same state (Alive), and therefore the analysis is equivalent to analysis of all-cause
mortality. This is precisely what we want; we are modeling the all-cause mortality.

A more flexible class of models, also a bit simpler to specify are gam (generalized
additive) models that fits the non-linear effects using penalized splines. For there models
there is a smoother called “s”, that will give thin

> Mt <- gam.Lexis(Sx, ~ s(tfE, k=10) + pad + sex + I(Age / 10))

mgcv::gam Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> Ma <- gam.Lexis(Sx, ~ s(Age, k=10) + pad + sex + tfE)

mgcv::gam Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> M2 <- gam.Lexis(Sx, ~ s(Age, k=10) +
+ s(tfE, k=10) + pad + sex)

mgcv::gam Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> M3 <- gam.Lexis(transform(Sx, Ain = Age - tfE),
+ ~ s(Age, k=10) +
+ s(tfE, k=10) +
+ s(Ain, k=10) + pad + sex)

mgcv::gam Poisson analysis of Lexis object transform(Sx, Ain = Age - tfE) with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> Mi <- gam.Lexis(Sx, ~ s(Age, tfE, k=20) + pad + sex)

mgcv::gam Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death
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> round(ci.exp(Mt, subset=c("pad","sex","Age")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.38
sexmale 2.00 1.40 2.86
I(Age/10) 1.93 1.57 2.38

> round(ci.exp(Ma, subset=c("pad","sex","tfE")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.38
sexmale 2.02 1.41 2.89
tfE 1.18 1.06 1.33

> round(ci.exp(M2, subset=c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.38
sexmale 2.02 1.41 2.89

> round(ci.exp(M3, subset=c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.37
sexmale 2.02 1.41 2.89

> round(ci.exp(Mi, subset=c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.40 1.71 3.38
sexmale 2.02 1.41 2.88

The spline models involve no penalization, so quite a bit quicker to fit than the gam models,
but the price to pay is that we need to specify knots for the splines.

We can see that the estimates of the covariate effects are practically the same as in the
Cox models regardless of how we choose the shape of the baseline hazard.

3.2 The Poisson model

In the intensity guide [1], a model with non-linear effects of two timescales is fitted, using a
Poisson model for the counts and person-years in bins of 1 year of FU and 5 years of
current age. The model assumes the baseline to be constant in each bin, without any
restrictions on the intensities in the bins, so it violates the general advice of not grouping
continuous variables.

Even if the model conceptually purports to be the union of the two models with different
underlying time scales, there is no way to compare the two models to the Poisson model;
they are not nested.

We can fit the Poisson model from the intensity guide using our Sx data frame. However,
the follow-up data was only split by tfE, so in order to accommodate the grouping of age
in 5-year bins of age we need to split by age in 5-year intervals too:

> Sp <- splitMulti(Sx, Age = seq(0,120,5))
> summary(Sx) ; summary(Sp)

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 32750 68 91 32909 159 6870.69 1455

Transitions:
To

From Alive CV death nonCV death Records: Events: Risk time: Persons:
Alive 34130 68 91 34289 159 6870.69 1455
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> Sp$A <- factor(floor(Sp$Age / 5) * 5)
> Sp$E <- factor(floor(Sp$tfE))
> mp <- glm.Lexis(Sp, ~ A * E + pad + sex)

stats::glm Poisson analysis of Lexis object Sp with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> round(ci.exp(mp, subset = c("pad","sex")), 2)

exp(Est.) 2.5% 97.5%
padPAD 2.38 1.70 3.35
sexmale 2.01 1.41 2.88

We see that we again get the same regression parameters as in the paper but again at the
expense of a lot of baseline parameters; half of which have a standard error exceeding 1000
(meaning that the parameter numerically is infinity):

> length(coef(mp))

[1] 57

> table(ci.lin(mp)[,2] > 1000)

FALSE TRUE
29 28

So the grouped Poisson model is just as useless as the Cox-model in providing information
on the shape of the baseline intensities.

If we look at the amount of information in the bins it is quite scarce:

> print( xtabs((lex.Cst != lex.Xst) ~ E + A, data = Sp) ,
+ zero = ".")

A
E 35 40 45 50 55 60 65 70 75 80 85
0 . . . 1 1 2 4 2 4 1 .
1 . . . . 2 2 5 7 12 2 .
2 . . . 5 3 6 6 4 6 6 .
3 . . . . 3 2 7 7 8 10 .
4 . . . . 2 5 5 9 10 10 .

> print(round(xtabs( lex.dur ~ E + A, data = Sp), 1),
+ zero = ".")

A
E 35 40 45 50 55 60 65 70 75 80 85
0 2.5 20.7 46.2 149.2 201.3 224.8 300.2 280.3 207.3 15.3 .
1 0.2 18.2 36.2 133.6 188.9 207.7 291.8 268.4 235.5 40.5 .
2 . 11.4 32.7 108.3 186.2 185.0 274.2 270.4 242.0 77.6 .
3 . 7.1 29.0 90.1 169.4 173.1 244.6 270.2 248.0 108.9 .
4 . 5.2 24.8 62.2 149.9 177.5 206.2 281.6 235.9 129.5 0.5

The dots in the last table are bins with less than 0.05 years of total risk time (rounded to
0). We see that the amount of information on each of the rates is scarce; only about half of
the bins have any events; this is why half of the parameter estimates will be −∞.

3.3 Assessing the model with two timescales

With parametric models based on finely split follow-up intervals, the union of the two
models mt and ma is easily fitted (m2), and therefore it is also straight-forward to assess the
relative importance of a non-linear effect of the two time-scales (of course under the
assumption of the additivity of the two time-scale effects), because the model with two
non-linear time scales contains both of the models as sub-models, so the two tests are just
ordinary likelihood-ratio tests in glms:
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> anova(mt, m2, ma, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(tfE,
kn = knE) + pad + sex + I(Age/10)

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
kn = knA) + Ns(tfE, kn = knE) + pad + sex

Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
kn = knA) + pad + sex + tfE

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 32902 1887.9
2 32899 1881.5 3 6.3657 0.09511
3 32901 1885.3 -2 -3.7949 0.14995

> anova(Mt, M2, Ma, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(tfE,
k = 10) + pad + sex + I(Age/10)

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(Age,
k = 10) + s(tfE, k = 10) + pad + sex

Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ s(Age,
k = 10) + pad + sex + tfE

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 32903 1888.7
2 32899 1883.0 3.0778 5.7165 0.1328
3 32901 1885.9 -1.3775 -2.8806 0.1399

There is not much difference in the testing outcome between the glm and gam approaches,
so for the remainder we stick to the glm.

The first test is comparing with the model with linear effect of Age, the second with the
model with linear effect of tfE. None of them are significantly worse than the model with
two time scales, so we might explore the model with linear effects of both:

> m0 <- glm.Lexis(Sx, ~ tfE + pad + sex + I(Age / 10))

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for transitions: Alive->CV death, Alive->nonCV death

> anova(mt, m0, ma, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(tfE,
kn = knE) + pad + sex + I(Age/10)

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ tfE +
pad + sex + I(Age/10)

Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
kn = knA) + pad + sex + tfE

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 32902 1887.9
2 32904 1891.6 -2 -3.6978 0.15741
3 32901 1885.3 3 6.2685 0.09925

These are also tests of non-linearity of the time effect and age-effects respectively, but
versus a model where both are linear. The tests produce almost the same p-values as when
comparing to the additive model.

It can be debated whether formal testing of linearity of time scale effects is of any
relevance, but it has been included here because the fitting of the different models in table
1 in the intensity guide seem to indicate that linearity of the effect of one or the other of
the time scales may be of interest, albeit not explicitly formulated as such. Modeling the
intensities reduces this to a trivial testing problem in generalized linear models.
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3.4 Testing proportionality

Above, we also expanded the model with an interaction term between the to variables in
the guise of a non-linear term in the difference, age at entry (m3) as well as with a more
flexible interaction between the two variables (mi), so testing for non-proportionality can
be split in two:

> anova(m2, m3, mi, test = "Chisq")

Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
kn = knA) + Ns(tfE, kn = knE) + pad + sex

Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
kn = knA) + Ns(tfE, kn = knE) + Ns(Ain, kn = knA) + pad +
sex

Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(Age,
kn = knA) + Ns(tfE, kn = knE) + Ns(Age, kn = knA):Ns(tfE,
kn = knE) + pad + sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 32899 1881.5
2 32896 1879.7 3 1.8578 0.6024
3 32887 1869.3 9 10.4245 0.3172

We see that there is little evidence for an interaction of any kind between the time scales.
So we found no “violation of the proportionality assumption”.

3.5 Predicted mortality rates

Both the Cox-models and the fitted grouped Poisson model use parametrizations of the
time scales with one parameter per interval — a so-called exchangeable model that does
not exploit the quantitative nature of the timescales. This is strongly at variance with
normal biostatistical recommendations against grouping of variables.

We should not entirely rely on p-values in the choice of models, it is of relevance to
quantify the effects of the two time scales. Unlike the Cox-model, the Poisson models with
smooth parametric effects allows us to inspect the shape of the baseline hazard.

We can plot the hazard rates for men entering at age, say, 65 and followed till age 70.
We just set up a prediction data frame (nd), indicating the points where we want the
predicted values of the rates; that will allow us to inspect the predicted rates under the
models with one non-linear time scale and the model with two. Note that since we specify
the follow-up in lex.dur in years, the rates returned by ci.pred will be in units of events
per 1 year, so we multiply by 1000 to get rates per 1000 PY.

> nd <- data.frame(tfE = seq(0, 5, 0.1),
+ sex = "male",
+ pad = "PAD",
+ Age = seq(0, 5, 0.1) + 65)
> par(mfrow=c(1,2))
> matshade(nd$tfE, cbind(ci.pred(mt, nd),
+ ci.pred(m2, nd)) * 1000,
+ lty = 1:2, lwd = 2,
+ xlab = "Time from entry (years)",
+ ylab = "Mortality rate per 1000 PY",
+ ylim = c(5, 100), log = "y", alpha = c(0.15,0.10),
+ plot = TRUE)
> matshade(nd$Age, cbind(ci.pred(ma, nd),
+ ci.pred(m2, nd)) * 1000,
+ lty = 1:2, lwd = 2, xlab = "Age (years)", ylab = "",
+ ylim = c(5, 100), log = "y", alpha = c(0.15,0.10),
+ plot = TRUE)
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Figure 3: Estimated mortality rates for PAD persons entering at age 65. The black curve in
the left panel is the model with time since entry as time scale, in the right panel the black
curve is the model with age as time scale. The red broken curves are the same in the two
plots, they represent the joint effect of the two time scales from the model with both timescales
modeled with non-linear effects. ./Sc-rates

The plots in figure 3 are really the main reason to use a parametric model instead of the
Cox-model; they are trivial to produce from the parametric model and really cumbersome
to get from the Cox model (at least so cumbersome that they were not included in the
intensity guide).

The red dotted curves in figure 3 are the mortality rates from the model m2 with two
non-linear time scales for a person aged 65 at entry followed for 5 years, and whether we
label the curve by tfE or by Age it will be the same, so essentially we are just comparing
with two different curves; we could have put them all in the same plot, and have the x-axis
labeled both 65 through 70 and 0 through 5.

3.6 Joint effect of timescales

What is of real interest is to see how mortality looks for persons that enter at different ages.
We have a model with two time scales, and they advance at the same pace, so it is of course
of relevance to see how the joint effect of the two time scales look for different ages at entry.

We can illustrate this by plotting the mortality of persons the first 5 years after entry for
persons entering at different ages, say 45, 50,. . . ,75:

> nd <- (data.frame(expand.grid(tfE = c(NA, seq(0, 5, 0.1)),
+ Ain = seq(45, 75, 5)),
+ sex = "male",
+ pad = "PAD")
+ %>% mutate(Age = Ain + tfE))
> head(nd)
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tfE Ain sex pad Age
1 NA 45 male PAD NA
2 0.0 45 male PAD 45.0
3 0.1 45 male PAD 45.1
4 0.2 45 male PAD 45.2
5 0.3 45 male PAD 45.3
6 0.4 45 male PAD 45.4

> matshade(nd$Age, cbind(ci.pred(m2, nd),
+ ci.pred(ma, nd),
+ ci.pred(mt, nd)) * 1000,
+ lty = c("solid","52","11"), lwd = 2, lend = "butt",
+ col = "black", alpha = 0.1,
+ xlab = "Age (years)", ylab = "Mortality per 1000 py",
+ ylim = c(2, 200), log = "y", plot = TRUE)
> nx <- data.frame(Age = seq(47, 77, 5),
+ tfE = rep(2, 7),
+ sex = "male",
+ pad = "PAD")
> lines(nx$Age, ci.pred(mt, nx)[,1] * 1000,
+ col = "blue", type = "b", pch = 16, cex = 0.5)
> abline(v = seq(45, 75, 5), col = gray(0.7), lty=3)

From figure 4 we see that mortality increases sharply during the first 2 years after entry
and then levels off. This is presumably a clinical artifact because persons who are very sick
—too sick to attend the initial clinical visit— are not in the study, so only after a few years
the study population achieves the “normal” population mortality rates. But we can also see
that the curves after the first two years seem to form a pretty consistent age-shape
independent of age at diagnosis and duration.

This can be illustrated by drawing the estimated mortality rates for duration 0 through 5
years for persons diagnosed at ages 45, 47, . . . :

> n2 <- (data.frame(expand.grid(tfE = c(NA, seq(0, 5, 0.1)),
+ Ain = seq(45, 75, 2)),
+ sex = "male",
+ pad = "PAD")
+ %>% mutate(Age = Ain + tfE))
> head(n2)

tfE Ain sex pad Age
1 NA 45 male PAD NA
2 0.0 45 male PAD 45.0
3 0.1 45 male PAD 45.1
4 0.2 45 male PAD 45.2
5 0.3 45 male PAD 45.3
6 0.4 45 male PAD 45.4

> matshade(n2$Age, ci.pred(M2, n2) * 1000,
+ lty = c("solid","44","22"), lwd = 2, col = "black",
+ xlab = "Age (years)",
+ ylim = c(2, 200), log = "y", plot = TRUE)

From figure ?? we see that even disregarding the first 2 years after entry where mortality
increases steeply, the mortality is only well described with functions of both age and time
from entry, and that the younger at diagnosis, the higher is the mortality at any age. This
type of insight is only achieved from intensity models where the intensity itself is studied.

From a testing-formal point of view we may reduce the model with two time scales to a
model with linear effects of both age and time from entry, but that would be to go to the
other extreme from the Cox-model. It seems more relevant to accommodate both time
scales in the model, after all it is only 7 parameters for both time scales, way less than used
in the Cox model behind the scenes.
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Figure 4: Mortality rates from three models: The broken (almost straight) lines are from the
model with a non-linear effect of current age but a linear effect of time since entry. The
dotted non-linear curves are from the model with non-linear effect of time since entry but
linear effect of age (as illustrated by the blue line touching the curves at tfE=2 years). The
full lines are mortality rates from the model with non-linear effects of both current age and
time from entry (but no interaction); this is the relevant model to report. ./Sc-2scales

3.7 Exploring proportionality

In the model with the two timescales the duration effects may be modified by the
age-effect. Testing for “proportionality” i.e. interaction between tfE and Age, we found it
negligible by p-value standards. But still it would be worth exploring the actual effect of
this by plotting the predictions together for the main effects and the interaction model,
interactions may be relevant even if not significant:

> matshade(nd$Age, cbind(ci.pred(m2, nd),
+ ci.pred(m3, nd),
+ ci.pred(mi, nd)) * 1000,
+ lty = c("solid","12","43"), lwd = 2, lene = "butt",
+ col = "black", alpha = 0.1,
+ xlab = "Age (years)", ylab = "Mortality per 1000 py",
+ ylim = c(2, 200), log = "y", plot = TRUE)

From figure 6 it is pretty clear that the model with additional effect of age at entry does
not provide any substantial change in predicted mortalities over the main-effects model,
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Figure 5: Mortality rates from the model with non-linear effects of both current age and time
from entry for persons diagnosed at ages 45, 47, . . . , for periods 0–5 years after entry (the
extent of data). The darker areas are just places where two different predictions overlap.
./Sc-2scales2-5

and the general interaction model’s predictions are simply not credible. So we conclude
that the main effects model is a tenable description of data, and that the discussion of the
mortality rates should be based on this:

> matshade(nd$Age, cbind(ci.pred(m2, mutate(nd, sex = "female",
+ pad = "Control")),
+ ci.pred(m2, mutate(nd, sex = "female" )),
+ ci.pred(m2, mutate(nd, pad = "Control")),
+ ci.pred(m2, nd)) * 1000,
+ lty = c(3,3,1,1), lwd = 2, col = clr <- c("forestgreen","red"),
+ alpha = c(0,0,1,1)/8,
+ xlab = "Age (years)",
+ ylab = "Mortality per 1000 py",
+ ylim = c(2, 200), log = "y", plot = TRUE)
> text(45, c(150,200), c("Contol","PAD"), col = clr, adj = 0)

Showing the shape of the mortality rates together with the predictions for different levels
of the covariates shows that the sex effect is a bit smaller than the PAD effect (this is also
apparent from the HR estimates). But it also shows that these effects are quite large
compared the effect of age (after 2 years of FU). We also see a very sharp increase in the
mortality during the first two years after entry, possibly owing to a healthy recruitee effect.
The latter two points are only available from a parametric model for the intensities, and
therefore completely missed in the intensity guide.
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Figure 6: Comparison of the model with main effects of time from inclusion and current age
(full lines), the model with additional non-linear effect of age at entry (dotted lines) and the
general interaction model (broken lines). ./Sc-2int

4 Multiple states and clinical covariates

We now turn to the effect of the clinical measurements, based on the dataset amended with
clinical measurements and a CV complications state (see fig. 2). Inclusion of the state CV
and addition of the clinical measurements are really two different topics that can be treated
separately.

Anyway, the models fitted in the intensity guide are:

> cf <- coxph.Lexis(Sc, tfE ~ pad + sex + I(Age/10) + hdl0 + ldl0,
+ to = "CV death")

survival::coxph analysis of Lexis object Sc:
Rates for transitions Alive->CV death, CV->CV death
Baseline timescale: tfE

> ct <- coxph.Lexis(Sc, tfE ~ pad + sex + I(Age/10) + hdl + ldl,
+ to = "CV death")

survival::coxph analysis of Lexis object Sc:
Rates for transitions Alive->CV death, CV->CV death
Baseline timescale: tfE

> cv <- coxph.Lexis(Sc, tfE ~ pad + sex + I(Age/10) + hdl + ldl,
+ to = c("CV","CV death"))

survival::coxph analysis of Lexis object Sc:
Rates for transitions Alive->CV, Alive->CV death
Baseline timescale: tfE
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Figure 7: Mortality rates from the final model for persons entering at ages 45, 50, . . . , 75,
separately for persons with (red) and without (green) PAD at entry. Dotted lines are rates
for women, full lines are men; the shaded areas are 95% confidence intervals—only shown
for men. ./Sc-finalrates

> round(cbind(ci.exp(cf),
+ ci.exp(ct),
+ ci.exp(cv)), 2)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
padPAD 2.87 1.65 5.00 2.21 1.26 3.90 2.22 1.53 3.22
sexmale 1.67 0.97 2.88 1.37 0.78 2.38 1.94 1.30 2.89
I(Age/10) 1.93 1.40 2.67 2.17 1.55 3.05 1.58 1.28 1.95
hdl0 0.74 0.39 1.41 0.18 0.08 0.41 0.46 0.28 0.76
ldl0 0.92 0.72 1.18 0.74 0.55 0.99 0.89 0.73 1.07

The models with time-updated variables are not quite replicas of the estimates in the
intensity guide; the data used in the intensity guide updates the clinical measurements at
an annual basis, whereas the Lexis objects Sa, and by that token also Sx and Sc, correctly
updates the clinical measurements at the actual time of measurement and not at integer
years of follow-up.

As an aside, I suspect that this shortcoming in the paper is a product of the complicated
programming needed to get it done correctly. This merely emphasizes the need for versatile
tools to represent and handle multistate data. Since it is quite a painful exercise to add
clinical information to follow-up data, it has been wrapped in a special function
addCov.Lexis that was used to construct the Sa object, and hence its descendants Sx and
Sc.
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4.1 Parametric modeling of multistate model

We can directly replicate the results with a parametric models, first using glm:

> pf <- glm.Lexis(Sc, ~ Ns(Age, kn = knA) + Ns(tfE, kn = knE) +
+ pad + sex + hdl0 + ldl0,
+ to = "CV death")

stats::glm Poisson analysis of Lexis object Sc with log link:
Rates for transitions: Alive->CV death, CV->CV death

> pt <- glm.Lexis(Sc, ~ Ns(Age, kn = knA) + Ns(tfE, kn = knE) +
+ pad + sex + hdl + ldl,
+ to = "CV death")

stats::glm Poisson analysis of Lexis object Sc with log link:
Rates for transitions: Alive->CV death, CV->CV death

> pv <- glm.Lexis(Sc, ~ Ns(Age, kn = knA) + Ns(tfE, kn = knE) +
+ pad + sex + hdl + ldl,
+ from = c("Alive"),
+ to = c("CV","CV death"))

stats::glm Poisson analysis of Lexis object Sc with log link:
Rates for transitions: Alive->CV, Alive->CV death

. . . and subsequently using gam models

> Pf <- gam.Lexis(Sc, ~ s(Age) + s(tfE) +
+ pad + sex + hdl0 + ldl0,
+ to = "CV death")

mgcv::gam Poisson analysis of Lexis object Sc with log link:
Rates for transitions: Alive->CV death, CV->CV death

> Pt <- gam.Lexis(Sc, ~ s(Age) + s(tfE) +
+ pad + sex + hdl + ldl,
+ to = "CV death")

mgcv::gam Poisson analysis of Lexis object Sc with log link:
Rates for transitions: Alive->CV death, CV->CV death

> Pv <- gam.Lexis(Sc, ~ s(Age) + s(tfE) +
+ pad + sex + hdl + ldl,
+ to = c("CV","CV death"))

mgcv::gam Poisson analysis of Lexis object Sc with log link:
Rates for transitions: Alive->CV, Alive->CV death

> round(cbind(ci.exp(pf, subset=c("pad","sex","dl")),
+ ci.exp(Pf, subset=c("pad","sex","dl")),
+ ci.exp(cf, subset=c("pad","sex","dl"))), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
padPAD 2.856 1.640 4.973 2.871 1.649 4.998 2.871 1.649 4.998
sexmale 1.706 0.989 2.945 1.686 0.978 2.909 1.671 0.969 2.882
hdl0 0.747 0.394 1.417 0.742 0.389 1.414 0.740 0.388 1.413
ldl0 0.920 0.719 1.179 0.922 0.719 1.182 0.922 0.719 1.182

> round(cbind(ci.exp(pt, subset=c("pad","sex","dl")),
+ ci.exp(Pt, subset=c("pad","sex","dl")),
+ ci.exp(ct, subset=c("pad","sex","dl"))), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
padPAD 2.206 1.254 3.882 2.216 1.259 3.899 2.215 1.259 3.897
sexmale 1.392 0.795 2.436 1.377 0.788 2.407 1.365 0.782 2.384
hdl 0.176 0.076 0.409 0.176 0.076 0.407 0.177 0.077 0.408
ldl 0.737 0.547 0.993 0.735 0.545 0.991 0.737 0.546 0.995

> round(cbind(ci.exp(pv, subset=c("pad","sex","dl")),
+ ci.exp(Pv, subset=c("pad","sex","dl")),
+ ci.exp(cv, subset=c("pad","sex","dl"))), 3)
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exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
padPAD 2.209 1.524 3.201 2.219 1.531 3.216 2.222 1.533 3.220
sexmale 1.955 1.310 2.917 1.953 1.309 2.914 1.938 1.300 2.890
hdl 0.454 0.273 0.756 0.455 0.273 0.756 0.458 0.275 0.763
ldl 0.884 0.732 1.069 0.882 0.729 1.067 0.888 0.734 1.074

Again we get the same results as from the Cox model. The Cox model also gives estimates
of the linear effect of the time scale Age, but that is really of little use if the shape of the
effect of the underlying time scale tfE is not known.

We can of course check the proportionality assumption, that is any interactions with the
time-scales, by adding a suitable parametric interaction term as show the shape and the
p-value.

5 Cumulative risks

We can estimate the absolute risk of CV event (diagnosis or CV death), but it requires a
model for non-CVD mortality as well, so we model this as well:

> mf <- glm.Lexis(Sc, ~ Ns(Age, kn = knA) + Ns(tfE, kn = knE) +
+ pad + sex + hdl0 + ldl0,
+ from = "Alive",
+ to = "nonCV death")

stats::glm Poisson analysis of Lexis object Sc with log link:
Rates for the transition: Alive->nonCV death

> Mf <- gam.Lexis(Sc, ~ s(Age) + s(tfE) +
+ pad + sex + hdl0 + ldl0,
+ from = "Alive",
+ to = "nonCV death")

mgcv::gam Poisson analysis of Lexis object Sc with log link:
Rates for the transition: Alive->nonCV death

> round(cbind(ci.exp(mf, subset=c("pad","sex","dl")),
+ ci.exp(Mf, subset=c("pad","sex","dl"))), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
padPAD 1.857 1.186 2.909 1.870 1.194 2.929
sexmale 2.137 1.291 3.539 2.114 1.278 3.499
hdl0 0.783 0.443 1.384 0.786 0.443 1.394
ldl0 1.026 0.826 1.273 1.028 0.828 1.278

Together with the model pf we can now compute the cumulative risks with confidence
intervals for two different men aged 58 and 72 years, both with a baseline HDL of 1.3 and
LDL of 3:

> np58 <- data.frame(tfE = seq(0, 5, 0.1),
+ Age = seq(0, 5, 0.1) + 58,
+ pad = "PAD",
+ sex = "male",
+ hdl0 = 1.3,
+ ldl0 = 3)

We can use the ci.Crisk function to compute the cumulative risks (and simulation based
confidence intervals) for persons with the given set of covariates for the 4 combinations of
PAD and ages 58 and 72:



26 Cumulative risks STRATOS: MissInt

> ci58p <- ci.Crisk(list(CVD = pf,
+ nonCVD = mf),
+ nd = np58)

NOTE: Times are assumed to be in the column tfE at equal distances of 0.1

> ci58c <- ci.Crisk(list(CVD = pf,
+ nonCVD = mf),
+ nd = mutate(np58, pad = "Control"))

NOTE: Times are assumed to be in the column tfE at equal distances of 0.1

> ci72p <- ci.Crisk(list(CVD = pf,
+ nonCVD = mf),
+ nd = mutate(np58, Age = Age + 14))

NOTE: Times are assumed to be in the column tfE at equal distances of 0.1

> ci72c <- ci.Crisk(list(CVD = pf,
+ nonCVD = mf),
+ nd = mutate(np58, Age = Age + 14,
+ pad = "Control"))

NOTE: Times are assumed to be in the column tfE at equal distances of 0.1

> str(ci58p)

List of 4
$ Crisk: num [1:51, 1:3, 1:3] 1 0.999 0.997 0.996 0.995 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfE : chr [1:51] "0" "0.1" "0.2" "0.3" ...
.. ..$ cause: chr [1:3] "Surv" "CVD" "nonCVD"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
$ Srisk: num [1:51, 1:2, 1:3] 0 0.000322 0.000694 0.001132 0.001636 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfE : chr [1:51] "0" "0.1" "0.2" "0.3" ...
.. ..$ cause: chr [1:2] "nonCVD" "nonCVD+CVD"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
$ Stime: num [1:51, 1:3, 1:3] 0 0.0999 0.1997 0.2994 0.399 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfE : chr [1:51] "0" "0.1" "0.2" "0.3" ...
.. ..$ cause: chr [1:3] "Surv" "CVD" "nonCVD"
.. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
$ time : num [1:51] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...
- attr(*, "int")= num 0.1

We can then produce the two plots from figure 6 in the with proper simulation based
confidence intervals, by taking the values from the Crisk component from the results of
ci.Crisk.

> clr <- c("orange","black")
> par(mfrow=c(1,2), las = 1, bty = "n")
> matshade(ci58p$time,
+ cbind(ci58p$Crisk[, "CVD",],
+ ci58p$Crisk[,"nonCVD",],
+ ci58c$Crisk[, "CVD",],
+ ci58c$Crisk[,"nonCVD",])*100, plot = TRUE,
+ lty = c("solid", "23"), lwd = 2, alpha = 0.1*c(0,1,0,1),
+ col = rep(clr, each = 2),
+ ylim = c(0,15), yaxs = "i",
+ xlab = "Time since entry (years)",
+ ylab = "Cumulative risk (%)")
> matshade(ci72p$time,
+ cbind(ci72p$Crisk[, "CVD",],
+ ci72p$Crisk[,"nonCVD",],
+ ci72c$Crisk[, "CVD",],
+ ci72c$Crisk[,"nonCVD",])*100, plot = TRUE,
+ lty = c("solid", "23"), lwd = 2, alpha = 0.1*c(0,1,0,1),
+ col = rep(clr, each = 2),
+ ylim = c(0,15), yaxs = "i",
+ xlab = "Time since entry (years)",
+ ylab = "Cumulative risk (%)")
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Figure 8: Cumulative risk of CV death and other-cause death from two separate models,
evaluated for men aged 58 and 72. Solid lines are CV death, broken lines are non-CV
death. Orange lines are persons with PAD at entry, black are persons without. 95% confi-
dence intervals are shown as shades, but only for the non-CV death (broken lines). This is
the counterpart of figure 6 in the intensity guide, except for the added confidence intervals.
./Sc-crisk

6 From rates to risks

Hernan [4] advocated the use of survival curves in reporting effects, essentially recovering
the baseline hazard from the Cox-model. The point being that large hazard ratios for tiny
rates may be of less relevance than small hazard ratios for large rates.

Moreover, Hernan notes that interactions with time can be better shown on the
cumulative risk or survival scale. However, the concepts of interaction and survival are not
related; we can always compare cumulative risks (or survival, the cumulative risk of being
in the alive state), regardless of how rates depend on time and other covariates. Likewise,
we can also graph an interaction on the rate scales, which seems more logical, because that
is the scale on which it is estimated.

Resorting to cumulative risks requires a definition of the origin from which to compute
the cumulative risks. This is often conveniently overlooked because reference is to a study
entry in a clinical trial, whereas no such thing as a meaningful entry date necessarily exists
in an epidemiological study. Many epidemiological cohort studies include persons by
invitation to a clinical examination of some sort, so the date of inclusion is basically just a
random date in these persons’ lives. Register based studies will typically have a fixed
calendar time as entry (for some persons at least).

The cumulative risk(s) is a function of the rates, so once we have a model for the rates
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we can compute the cumulative risks. These come in different guises:

• conditional on one particular set of values of the explanatory variables; this is
interpretable as the cumulative fraction seeing an event in a group of identical
persons.

• using a set of values of the explanatory variables. The average of the cumulative risks
over the set will then represent the cumulative fraction seeing an event in a group of
persons with a distribution of explanatory variables as in the chosen set.

The latter was used by Hernan [4] to suggest comparison of population difference associated
with a treatment allocation by looking at the cumulative risks in a group of persons
identical to the study population but assuming treatment allocation identical to either A or
B for the entire population. This gives the average treatment effect in the study population,
but the exercise can of course be done both for models with and without interactions.

However, the calculation of cumulative risks in the example shown above would not have
revealed the distinct healthy-participant effect, it would merely have overestimated the
survival in the background population by including the healthy participant effect during
the first 1–2 years. A proper analysis and inspection of the rates would allow calculation of
survival conditional on being alive at a given age, instaed of conditional on entering a
study. The latter is hardly relevant.

7 Additional guidance to the use of intensity models

It seems that some additional advice on the use, or rater choice of intensity models is
needed. So here are some suggestions:

• When modeling intensities, show the time scale effects on the intensity scale.

• Use parametric models for the intensity with smooth effects of time scales.

• Use multiple time scales if necessary.

• Show the joint effects of the time scales used.

• Parametric modeling puts the “proportional hazards” testing in the familiar setting of
testing for and in particular estimating interaction effects. Mere testing is not
advisable.

• Do not group quantitative variables, even if they are time scales.

These issues are treated in chapters 5 and 6 of “Epidemiology with R”[5].
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