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Introduction 1

1 Introduction

This is a re-do (and extension) of (parts of) the example from the short-titled paper by
Crowther & Lambert [1].

The data provided by the authors has been groomed to a slightly modified form and is
included in the Epi package, where times of relapse (tor), metastasis (tom) and death
(tod) are only non-NA for those that actually do see the events. In addition, we have the
times of exit from the study (tox) and the vital status (Alive/Dead) at tox, xst.

> library(Epi)

> library(popEpi)

> data(BrCa)

> str(BrCa)

'data.frame': 2982 obs. of 17 variables:

$ pid : int 1264 1150 838 1214 1130 1118 386 1417 927 489 ...

$ year : int 1986 1990 1988 1990 1989 1987 1989 1993 1984 1989 ...
$ age : int 54 55 34 42 35 50 46 40 36 42 ...

$ meno : Factor w/ 2 levels "pre","post": 2212122111 ...
$ size : Factor w/ 3 levels "<=20 mm",">20-50 mm",..: 1 211111111 ...
$ grade : Factor w/ 2 levels "2","3": 1111111111

$ nodes : int 00000000O0O0 ...

$ pr : int 1360 763 113 465 82 75 174 0 43 462 ...

$ pr.tr : num 7.22 6.64 4.74 6.14 4.42 ...

$ er : int 149 763 109 79 25 10 56 2 23 75

$ hormon: Factor w/ 2 levels "mo","yes": 1 111111111

$ chemo : Factor w/ 2 levels "mo","yes": 1111111111

$ tor : num NA NA NA NA NA ...

$ tom : num NA NA NA NA NA NA NA NA NA NA ...

$ tod : num NA NA NA NA NA ...

$ tox : num 12.97 8.78 9.41 10.47 10.35 ...

$ xst : Factor w/ 2 levels "Alive","Dead": 1 111121111

1.1 Setting up a Lexis object for the follow-up

Now we are in a position to set up the survival data as a Lexis object. The age and date of
entry are only given as integral years, so in order to make the data credible we add a
random number between 0 and 1 to mimic a real age and date at entry. We define the time
scale tfd (time from diagnosis) as time since entry into the study:

> set.seed( 1952 )

> Lbc <- Lexis( entry = list( tfd = 0,

+ A = age + runif(nrow(BrCa)),

+ P = year + runif(nrow(BrCa)) ),
+ exit = list( tfd = tox ),

+ exit.status = xst,

+ id = pid,

+ data = BrCa )

NOTE: entry.status has been set to "Alive" for all.

> summary( Lbc )

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 1710 1272 2982 1272 21270.74 2982
> names( Lbc )
[1] "tfd" "A" "p "lex.dur" "lex.Cst" "lex.Xst" "lex.id" "pid"
[9] Ilyearll Ilagell llmenoll "SiZe" llgradell Ilnodesll llprll Ilpr‘trll

[17] llerll Ilhormonll n ChemO" Iltorll lltomll IItodll lltoxll lestll



2 Modeling rates Crowther & Lambert

Now we want to cut the follow up at the times of relapse (including metastasis), but keep
track of whether a person died with or without relapse, so we set split.states to true,
and since time since relapse is presumably of interest too we ask for that time scale to be
defined as well (using the argument new.scale):

> Rbc <- cutLexis(Lbc,

+ cut = pmin(Lbc$tor, Lbc$tom, na.rm=TRUE),
+ timescale = "tfd",
+ new.state = "Rel",
+ split.states = TRUE,
+ new.scale = "tfr")
> summary (Rbc, timeScale = TRUE)
Transitions:
To
From Alive Rel Dead Dead(Rel) Records: Events: Risk time: Persons:
Alive 1269 1518 195 0 2982 1713 17203.80 2982
Rel 0 441 0 1077 1518 1077 4066.94 1518
Sum 1269 1959 195 1077 4500 2790 21270.74 2982
Timescales:
tfd A P tfr
nn nn nn IlRelll

From the summary we see that the transitions to death are to different states, depending
on whether a relapse had occurred or not (this is the result of split.states), this will
eventually allow us to assess the cumulative risk of relapse. Moreover new.scale ensured
that a new time scale, tfr, time from relapse has been added to the Lexis object —
reflected in the time.since column of the summary.

We can illustrate the transitions by a plot that gives a convenient overview of
transitions:

> boxes (Rbc, boxpos = list(x = c(15,15,85,85),
+ y = c(85,15,85,15)),
+ show.BE = TRUE,

+ scale.R = 100,

+ cex = 1.1)

2 Modeling rates

In line with Crowther and Lambert we now model the transition rates. To this end we first
split the data in smaller chunks of length 1 month — with some 20,000 PY we would

expect to have some 250,000 records:
> system.time(
+ Sbc <- splitLexis(Rbc, breaks = seq(0, 100, 1/12), "tfd"))

user system elapsed
3.293 2.046 5.339

> summary (Sbc)

Transitions:
To
From Alive Rel Dead Dead(Rel) Records: Events: Risk time: Persons:
Alive 206228 1518 195 0 207941 1713 17203.80 2982
Rel 0 49251 0 1077 50328 1077 4066.94 1518
Sum 206228 50769 195 1077 258269 2790 21270.74 2982

In the popEpi package is a similar function with more elegant syntax and which is
somewhat faster, particularly for large data sets:
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Alive 195
17.203.8 (1.1) > Deadlgs
2082 1269
1,518
8.8)
v 1,077
Rel (26.5) Dead(Rel)
4,066.9 ' | DeadRe)
0 441 :

Figure 1: Transitions in the correctly set up multistate model for the breast cancer survival
dataset. Numbers in the bozes are person-years and (at the bottom) the number of persons
starting resp. ending their follow-up in each state (by the show.BE argument). Numbers on
the arrows are the number of transitions and transition rates per 100 PY (by the scale.R
argument). . /bcMS-box-1

> system.time(
+ Sbc <- splitMulti(Rbc, tfd = seq(0, 100, 1/12)))

user system elapsed
3.186 1.625 4.853

> summary (Sbc)

Transitions:
To
From Alive Rel Dead Dead(Rel) Records: Events: Risk time: Persons:
Alive 206228 1518 195 0 207941 1713 17203.80 2982
Rel 0 49251 0 1077 50328 1077 4066.94 1518
Sum 206228 50769 195 1077 258269 2790 21270.74 2982

2.1 Stacking data?

We could model all 3 rates jointly by stacking the data — the function stack.Lexis would
do this, and create variables lex.Tr (transition type) and lex.Fail (event indicator):

> Stbc <- stack(Sbc)

NOTE: lex.Cst and lex.Xst now have levels:
Alive Rel Dead Dead(Rel)

> round( ftable(xtabs( cbind('No. records'=lex.id/lex.id,
+ lex.Fail,

+ lex.dur) ~ lex.Tr + lex.Xst,
+ data=Stbc),

+ row.vars=c(3,1)), 1)
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lex.Xst Alive Rel Dead Dead(Rel)

lex.Tr
No. records Alive—->Rel 206228.0 1518.0 195.0 0.0
Alive->Dead 206228.0 1518.0 195.0 0.0
Rel->Dead(Rel) 0.0 49251.0 0.0 1077.0
lex.Fail Alive->Rel 0.0 1518.0 0.0 0.0
Alive->Dead 0.0 0.0 195.0 0.0
Rel->Dead(Rel) 0.0 0.0 0.0 1077.0
lex.dur Alive->Rel 17132.8 62.8 8.3 0.0
Alive->Dead 17132.8 62.8 8.3 0.0
Rel->Dead(Rel) 0.0 4023.5 0.0 43.5

Only lex.Tr and lex.Fail should be used when modeling rates from stacked data.

However, stacking data is only needed when all transitions are to be modeled jointly, or
more specifically, when more than one transition out of a given state are modeled jointly.
This type of modeling is rarely wanted, since rates of different types of events (in this case
relapse and death) are unlikely to depend on the same variables in the same way.

It is much more likely that different mortality rates depend on covariates in the same
way — in this case that mortality from “Alive” and from “Rel” depend on time since entry
and on the clinical parameters the same way. Additionally we may take time since relapse
into account.

In such an instance, the original Lexis object where the total follow-up time is
represented exactly once in lex.dur, will suffice as database for the analysis, because at
most one transition out of each state is considered. So we shall leave aside the stacking,
and model the three rates separately.

2.2 Initial model by C & L

The initial approach is basically to model each of the transitions separately; here we use
natural splines with 4 knots placed at the quantiles of the transition times (we refer to the
transitions as ad (alive to dead), ar (alive to relapse), rd (relapse to dead). For the sake of
completeness we also compute knots on the scale of time since relapse, as well as for the
(fixed) difference between tfd and tfr (the time at relapse — note that we do not
construct a separate variable for this):

> ( kd.ad <- with( subset( Sbc, lex.Cst=="Alive" & lex.Xst=="Dead"),

+ quantile( tfd+lex.dur, probs=(1:4-0.5)/4) ) )

12.5% 37.5% 62.5% 87.5%
1.704312 3.874059 6.058864 10.284052

> ( kd.ar <- with( subset( Sbc, lex.Cst=="Alive" & lex.Xst=="Rel'),

+ quantile( tfd+lex.dur, probs=(1:4-0.5)/4) ) )
12.5Y% 37.5Y% 62.5% 87.5Y%

0.8477071 1.8254620 3.3381246 6.8610539

\

( kd.rd <- with( subset( Sbc, lex.Cst=="Rel" & lex.Xst=="Dead(Rel)"),
+ quantile( tfd+lex.dur, probs=(1:4-0.5)/4) ) )

12.5% 37.5% 62.5% 87.5%

1.655031 3.091034 5.156742 8.421629
> ( kr.rd <- with( subset( Sbc, lex.Cst=="Rel" & lex.Xst=="Dead(Rel)"),
+ quantile( tfr+lex.dur, probs=(1:4-0.5)/4) ) )
12.5% 37.5% 62.5% 87.5%
0.3504449 1.1854894 2.2491443 4.4736482

A\

( ka.rd <- with( subset( Sbc, lex.Cst=="Rel" & lex.Xst=="Dead(Rel)"),
+ quantile( tfd-tfr, probs=(1:4-0.5)/4) ) )
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12.5% 37.5% 62.5% 87.5%
0.7091033 1.4934976 2.5708419 4.7351130

With these vectors of knots in place we can fit models for the three rates — note the
similarity of the modeling code for the different models and the immediate readability of
what is being modeled; lex.Cst is used to define the risk set (using subset) and lex.Xst
to define the event type:

> m.ad <- glm(cbind(lex.Xst=="Dead",

+ lex.dur) ~ Ns(tfd, knots = kd.ad),
+ family = poisreg,

+ data = subset(Sbc, lex.Cst=="Alive"))
> m.ar <- glm(cbind(lex.Xst=="Rel",

+ lex.dur) ~ Ns(tfd, knots = kd.ar),
+ family = poisreg,

+ data = subset(Sbc, lex.Cst=="Alive"))
> m.rd <- glm(cbind(lex.Xst=="Dead(Rel)",

+ lex.dur) ~ Ns(tfd, knots = kd.rd),
+ family = poisreg,

+ data = subset(Sbc, lex.Cst=="Rel'"))

> x.rd <- update(m.rd, . ~ . + Ns(tfr, knots=kr.rd))

> r.rd <- update(x.rd, . ~ . - Ns(tfd, knots=kd.rd))

> anova( m.rd, x.rd, r.rd, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(lex.Xst == "Dead(Rel)", lex.dur) ~ Ns(tfd, knots = kd.rd)
Model 2: cbind(lex.Xst == "Dead(Rel)", lex.dur) ~ Ns(tfd, knots = kd.rd) +
Ns(tfr, knots = kr.rd)

Model 3: cbind(lex.Xst == "Dead(Rel)", lex.dur) ~ Ns(tfr, knots = kr.rd)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 50324 10337

2 50321 10260 3 77.541 < 2.2e-16

3 50324 10458 -3 -198.089 < 2.2e-16

We see that the mortality rates in relapse depends strongly on the time since relapse, a
deviance reduction of 77 on 3 df! Ditching the (non-linear) effect of tfd is clearly neither a
feasible option with a deviance difference of 198 on 3 df, so there is pretty strong evidence
that mortality after relapse depends both on time since diagnosis and time since relapse.
We shall deal with this extension later.

As an aside, there is a function glm.Lexis that exploits the structure of the Lexis
objects so the model m.ad can be fitted by:

> M.ad <- glm.Lexis(Sbc, ~ Ns(tfd, knots=kd.ad), to = "Dead")

stats::glm Poisson analysis of Lexis object Sbc with log link:
Rates for the transition: Alive->Dead

> round( cbind( ci.exp(m.ad), ci.exp(M.ad) ), 4 )

exp(Est.) 2.5}, 97.5% exp(Est.) 2.5}, 97.5%
(Intercept) 0.0074 0.0058 0.0094 0.0074 0.0058 0.0094
Ns(tfd, knots kd.ad)1 1.2194 0.7391 2.0119 1.2194 0.7391 2.0119
Ns(tfd, knots kd.ad)?2 4.1187 2.4189 7.0130 4.1187 2.4189 7.0130
Ns(tfd, knots kd.ad)3 1.9162 1.3218 2.7780 1.9162 1.3218 2.7780

> attr( M.ad, 'Lexis' )

$data
[1] n"gpc"

$trans
[1] "Alive->Dead"

$formula
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“Ns(tfd, knots = kd.ad)
<environment: 0x47d192e8>

$scale
[1] 1

First we turn to the transition rates as function of time since diagnosis. Note that since the
lex.dur is in units of single person-years, the predicted rates will be in units of events per
1 person-year and so must explicitly scale the predicted rates if we want them in a different
unit:

> nd <- data.frame(tfd = seq(0, 15, 0.1))
> ad.rate <- ci.pred(m.ad, nd)
> ar.rate <- ci.pred(m.ar, nd)
> rd.rate <- ci.pred(m.rd, nd)

We then can plot the three sets of estimated rates in the same graph:

> clr <- rainbow(3) ; yl <- ¢(0.3,200)
> matshade (nd$tfd, cbind(ad.rate,
+ ar.rate,
rd.rate) * 100, plot = TRUE,
type = "1", 1ty 1, 1wd = 3, col = clr, las = 1,
log = "y", xlab = "Time since diagnosis (years)",
ylim = yl1, ylab "Rate per 100 PY" )
text (par("usr") [2]%0.95, (10°par("usr"))[3]*1.4°(1:3),
c("Alive -> Dead","Alive -> Relapse","Relapse -> Dead"),
col = clr, adj = 1, font = 2 )
matshade (nd$tfd, ci.ratio(rd.rate, ad.rate),
lty = 1, 1lwd = c(3,1,1), col = gray(0.6))
abline(h = 1, col = gray(0.6))

V+V++V+++ o+

Note that since the estimates of the transition rates are uncorrelated we can use the
ci.ratio to derive the mortality rate ratio between persons with and without relapse.

From the graph in figure 2 we see that the occurrence of relapse almost doubles over the
first two years and then decays approximately to the initial level at about 5 years. We also
observe that the mortality RR between persons with relapse and those without decreases
from extremely high (50-100) to about 5, a combination of decreasing mortality among
persons with relapse and an increasing mortality among persons without relapse, the latter
most likely an effect of age..

3 The two time scales — and their difference

We noted that the model x.rd above with effects of both time since diagnosis and time
since relapse represented a substantial improvement over the models with only one of these
time-scales.

We could expand this model further with an effect of time at relapse, tfd — tfr:

> M.rd <- glm.Lexis(Sbc, ~ Ns(tfd , knots = kd.rd), to = "Dead(Rel)")

stats::glm Poisson analysis of Lexis object Sbc with log link:
Rates for the transition: Rel->Dead(Rel)

> X.rd <- glm.Lexis(Sbc, ~ Ns(tfd , knots = kd.rd) +
+ Ns( tfr, knots = kr.rd), to = "Dead(Rel)")

stats::glm Poisson analysis of Lexis object Sbc with log link:
Rates for the transition: Rel->Dead(Rel)



The two time scales — and their difference 7

200.0

100.0

50.0—

N
o
T

Rate per 1Q0 PY
I o
T 7T

N
T

1.0

Relapse —> Dead
Alive —> Relapse
Alive —> Dead

0.5—

I I I
5 10 15

Time since diagnosis (years)

o_

Figure 2: Transition rates as function of time since diagnosis, the gray line is the mortality
rate-ratio between persons with and without relapse — it seems as if the earlier the relapse,
the higher the impact on mortality. ./bcMS-pr-pl

> XX.rd <- glm.Lexis(Sbc, ~ Ns(tfd , knots = kd.rd) +
+ Ns( tfr, knots = kr.rd) +
+ Ns (tfd-tfr, knots = ka.rd), to = "Dead(Rel)")

stats::glm Poisson analysis of Lexis object Sbc with log link:
Rates for the transition: Rel->Dead(Rel)

> anova( M.rd, X.rd, XX.rd, test = "Chisq" )

Analysis of Deviance Table

Model 1: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnmam, Lx$lex.dur) ~ Ns(tfd,
knots = kd.rd)
Model 2: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in’, trnam, Lx$lex.dur) ~ Ns(tfd,
knots = kd.rd) + Ns(tfr, knots = kr.rd)
Model 3: cbind(trt(Lx$lex.Cst, Lx$lex.Xst) %in% trnam, Lx$lex.dur) ~ Ns(tfd,
knots = kd.rd) + Ns(tfr, knots = kr.rd) + Ns(tfd - tfr, knots = ka.rd)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 50324 10337
2 50321 10260 3  77.541 < 2e-16
3 50319 10263 2 6.898 0.03177

We see there is a marginally significant (non-linear) effect of time at relapse.
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Unfortunately there is currently no update method available for glm.Lexis (or
gam.Lexis and coxph.Lexis), so we keep the notation with capital letters for the models
fitted with glm.Lexis, and make a proper glm update to interaction models:
> x.rd <- update( m.rd, . ~ . + Ns( tfr, knots=kr.rd) )

> xx.rd <- update( x.rd, . ~ . + Ns( tfd-tfr, knots=ka.rd) )
> anova( m.rd, x.rd, xx.rd, test="Chisq" )

Analysis of Deviance Table

Model 1: cbind(lex.Xst == "Dead(Rel)", lex.dur) ~ Ns(tfd, knots = kd.rd)

Model 2: cbind(lex.Xst == "Dead(Rel)", lex.dur) ~ Ns(tfd, knots = kd.rd) +
Ns(tfr, knots = kr.rd)

Model 3: cbind(lex.Xst == "Dead(Rel)", lex.dur) ~ Ns(tfd, knots = kd.rd) +

Ns(tfr, knots = kr.rd) + Ns(tfd - tfr, knots = ka.rd)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 50324 10337
2 50321 10260 3  77.541 < 2e-16
3 50319 10263 2 6.898 0.03177

What we are doing here is adding interactions between timescales, popularly known as
“testing for non-proportionality”. Adding time since relapse as a time scale is one extension
of the model with proportional mortality rates between persons with and without relapse,
by letting the HR depend on time since relapse. A further extension is to add an effect of
the difference of the two is yet another interaction term.

The tests are however not particularly relevant; a considerably large dataset as the
current may yield statistical significance where no clinically relevant significant effects are
present. Therefore, testing of proportionality must necessarily be supported by displays of
the shape of the interactions.

We can show how the addition of time since relapse and time at relapse affects the
estimated mortality by showing mortality after relapse as a function of time since diagnosis
for different times of relapse — by showing curves starting at the times of relapse.

We briefly look at the survival in relapse; we see that very few deaths occur after 7 years,
so we only draw the predictions till 7 years

> with( subset(Sbc,lex.Xst=="Dead(Rel)"), quantile(tfr+lex.dur,37:39/40) )

92.5% 95% 97.5%
5.5056817 6.003559 7.282409

> nd <- data.frame (expand.grid(tfd = c(NA, seq(0, 15, 0.1)),
+ tad = ¢(0, 0.5, 1, 2, 3, 5, 8)))
> nd <- subset(transform(nd, tfr = tfd - tad ),
+ (tfr>=0 & tfr<7) | is.na(tfr) )
> head( nd )
tfd tad tfr
1 NA 0 NA
2 0.0 0 0.0
30.1 00.1
4 0.2 0 0.2
5 0.3 0 0.3
6 0. 0 0.
> matshade (nd$tfd, cbind(ci.pred( x.rd, nd),
+ ci.pred(xx.rd, nd)) * 100, plot = TRUE,
+ type = "1", 1ty = c("11", "solid"), lend = "butt",
+ lwd = 3, col = gray(c(5, 0) / 10), alpha = c(0, 0.07), las = 1,
+ log = "y", xlab = "Time since diagnosis (years)",
+ ylim = ¢(5,100), ylab = "Mortality rate per 100 PY" )
> matshade (tt <- seq(0,15,0.1), ci.pred( m.rd, data.frame(tfd = tt) )*100,
+ lwd = 3, 1ty = 1, col = clr[3] )
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Figure 3: Estimated mortality among women in relapse. The gray lines represent mortality
for women relapsed at 0, 0.5, 1, 2, 3, 5, 8 years after diagnosis. 95% confidence intervals
are shown as shades. The full lines are predictions from the model where the time at relapse
is modeled too (xx.rd), the broken lines are the rates where only time since diagnosis and
time since relapse are included (x.rd, no c.i. shown). The blue line is from the model where
only time since diagnosis is included (m.rd, “proportional hazards model”), corresponding to
the blue line in figure 2. ./bcMS-rd-int

From figure 3 we see that the simple model completely misses to describe the initial
increase in mortality after relapse, and that the inclusion of time at relapse shows that
mortality among early relapsees tails off after some 2 years, the faster the earlier the
relapse.

4 Including covariates

Following the example in the paper, we include the available covariates in the models:

> c.ar <- update( m.ar, . ~ . + age + size + nodes + pr.tr + hormon)
> c.ad <- update( m.ad, . ~ + age + size + nodes + pr.tr + hormon)
> c.rd <- update( m.rd, . ~ + age + size + nodes + pr.tr + hormon)
> cx.rd <- update( x.rd, . ~ . + age + size + nodes + pr.tr + hormon)
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> cxx.rd<- update(xx.rd, . ~ . + age + size + nodes + pr.tr + hormon)

We can assess to what extent the covariates have been confounding the effects if the
timescales by showing the rates for a select set of these covariates in a display similar to
the one in figure 3.

> nd <- transform(nd,
+ age = 54,
+ size = "<=20 mm",
+ nodes = 1,
+ pr.tr = 3,
+ hormon = "no")
> head( nd )

tfd tad tfr age size nodes pr.tr hormon
1 NA 0 NA 54 <=20 mm 1 3 no
2 0.0 0 0.0 54 <=20 mm 1 3 no
30.1 0 0.1 54 <=20 mm 1 3 no
4 0.2 0 0.2 54 <=20 mm 1 3 no
5 0.3 0 0.3 54 <=20 mm 1 3 no
6 0.4 0 0.4 54 <=20 mm 1 3 no

With this update we can make exactly the same prediction as for the model without
covariates. Note that we defined age as the current age so that the time from diagnosis
will be the effect in addition to the aging effect.

> matshade (nd$tfd, cbind(ci.pred( cx.rd, nd),

+ ci.pred(cxx.rd, nd)) * 100, plot = TRUE,

+ type = "1", 1ty = c("11", "solid"), lend = "butt",

+ lwd = 3, col = gray(c(5, 0) / 10), alpha = c(0, 0.07), las = 1,
+ log = "y", xlab = "Time since diagnosis (years)",

+ ylim = ¢(5,100), ylab = "Mortality rate per 100 PY" )

> nt <- data.frame(tfd = seq(0, 15, 0.1))

> nt <- transform(nt,
+
+
+
+
+
>
+

age = 54,

size = "<=20 mm",
nodes = 1,
pr.tr = 3,
hormon = "no")

matshade (nt$tfd, ci.pred(c.rd, nt) * 100,
lwd = 3, 1ty = 1, col = clr[3] )

5 Testing for interaction with time

Further, we can now include terms allowing for interaction between covariates and time
since diagnosis (often termed “non-proportionality” in the vein of never foregoing an
opportunity to invent yet another term for a well-known concept). It is not entirely clear
from the models shown in the paper how the non-proportionality is taken into account, but
here we have used the product of the variable with log-time + 0.5 years. In total we have 4
models and 5 variables that we can test for interaction with tfd, so we set up an array to
hold the p-values for the tests.

int.test <- NArray( list( model=c("c.ar","c.ad","c.rd","cx.rd"),
var=c("age","size", "nodes", "pr.tr", "hormon"),

what=c("d.f.","Dev","P") ) )

int.test[1,1,]<-as.numeric(anova( c.ar,update( c.ar,.”.+log(tfd+0.5):age ),test="Chisq")[2,3:5])
int.test[1,2,]<-as.numeric(anova( c.ar,update( c.ar,.”.+log(tfd+0.5):size ),test="Chisq")[2,3:5],

>
+
+
> str( int.test )
>
>
> int.test[1,3,]<-as.numeric(anova( c.ar,update( c.ar,.”.+log(tfd+0.5):nodes ),test="Chisq")[2,3:5],
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Figure 4: Estimated mortality among women in relapse from models with covariates age=¥54,
size=<= 20 mm, nodes=1, pr.tr=3 and hormon=no. The gray lines represent mortality
for women relapsed at 0, 0.5, 1, 2, 3, 5, 8 years after diagnosis. 95% confidence intervals
are shown as shades. The full lines are predictions from the model where the time at relapse
is modeled too (cxx.rd), the broken lines are the rates where only time since diagnosis and
time since relapse are included (cx.rd, no c.i. shown). The blue line is from the model where
only time since diagnosis is included (cm.rd, “proportional hazards model”), corresponding
to the blue line in figure 2.
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> int.test[4,4,]<-as.numeric(anova(cx.rd,update(cx.rd,.”.+log(tfd+0.5) :pr.tr ),test="Chisq")[2,3:5],
int.test[4,5,]<-as.numeric(anova(cx.rd,update(cx.rd,.”.+log(tfd+0.5) :hormon) ,test="Chisq") [2,3:5],
> save( int.test, file="int-test.Rda')

A\

> load( file="/home/bendix/teach/AdvCoh/00/examples/bcMS/int-test.Rda")
> round( int.test[,,2], 2 )

var

model age size nodes pr.tr hormon
c.ar 3.43 81.32 2.60 77.04 55.67
c.ad 0.78 1.10 3.04 3.66 0.80
c.rd 2.92 3.04 2.57 23.35 4.99
cx.rd 3.24 3.28 2.81 21.67 NA

> round( int.test[,,3], 4 )

var
model age size mnodes pr.tr hormon
c.ar 0.0639 0.0000 0.1070 0.0000 0.0000
c.ad 0.3763 0.7760 0.0814 0.0559 0.6710
c.rd 0.0874 0.3854 0.1086 0.0000 0.0827
cx.rd 0.0718 0.3506 0.0936 0.0000 NA

> round( int.test[,,1], 0 )

var
model  age size nodes pr.tr hormon
c.ar 1 3 1 1 2
c.ad 1 3 1 1 2
c.rd 1 3 1 1 2
cx.rd 1 3 1 1 NA

Thus it seems that there are interactions between time from diagnosis and progesterone for
all transition rates, and that relapse rates additionally have interactions between time from
diagnosis and size and hormone therapy. The p-values would of course have looked slightly
differently if some other parametric shape of the interactions were chosen. This is merely a
reflection of the fact that there is no well-defined concept of test for proportionality; as in
all cases of interaction with at least one quantitative variable involved the test for
interaction is always a test versus some pre-specified alternative in the form of a specific
shape of the interaction.

5.1 The interaction models (non-proportionality)

It is bad practice to make interaction tests without showing how the interactions look;
however this is not a trivial task with three different interactions, but if you do not bother
to show the shape and size of estimated interactions, then it is presumably better to refrain
from interaction tests in the first place.

So we include the identified interactions in the models for the rates. Note that we also
for the sake of notational convenience also include a void update of the model for mortality
after relapse where we take time since relapse into account:

+

log(tfd+0.5) :size
log(tfd+0.5) :pr.tr
log(tfd+0.5) :hormon)

i.ar <- update( c.ar,

+ +

i.ad <- c.ad

i.rd <- update( c.rd,
ix.rd <- update(cx.rd,
round(ci.lin(i.ad ), 4)

R
+

log(tfd+0.5) :pr.tr)
log(tfd+0.5) :pr.tr)

VVVYV++yV
+
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Estimate StdErr z P 2.5% 97.5%
(Intercept) -13.5764 0.6005 -22.6084 0.0000 -14.7534 -12.3995
Ns(tfd, knots = kd.ad)1 0.2873 0.2608 1.1019 0.2705 -0.2237 0.7984
Ns(tfd, knots = kd.ad)?2 1.9852 0.2804  7.0809 0.0000 1.4357  2.5347
Ns(tfd, knots = kd.ad)3 1.1706 0.1944 6.0215 0.0000 0.7896 1.5516
age 0.1286 0.0081 15.8754 0.0000 0.1128 0.1445
51ze>20-50 mm 0.1714 0.1610 1.0644 0.2871 -0.1442  0.4869
size>50 mm 0.4069 0.2330 1.7465 0.0807 -0.0497 0.8636
nodes 0.0444 0.0184 2.4150 0.0157 0.0084 0.0804
pr.tr 0.0305 0.0336 0.9069 0.3645 -0.0354 0.0963
hormonyes -0.0955 0.2312 -0.4131 0.6795 -0.5486 0.3576
> round(ci.lin(i.ar ), 4)
Estimate StdErr z P 2.5%  97.5%
(Intercept) -2.9449 0.1964 -14.9979 0.0000 -3.3297 -2.5600
Ns(tfd, knots = kd.ar)1 -4.6099 0.5477 -8.4167 0.0000 -5.6834 -3.5364
Ns(tfd, knots = kd.ar)2 -8.0623 1.1289 -7.1419 0.0000 -10.2748 -5.8498
Ns(tfd, knots = kd.ar)3 -5.7271 0.6743 -8.4932 0.0000 -7.0487 -4.4055
age -0.0061 0.0021 -2.9224 0.0035 -0.0103 -0.0020
51ze>20-50 mm 0.7402 0.1153 6.4223 0.0000 0.5143 0.9661
size>50 mm 1.1455 0.1503  7.6200 0.0000 0.8508 1.4401
nodes 0.0783 0.0045 17.2651 0.0000 0.0695 0.0872
pr.tr -0.1880 0.0218 -8.6069 0.0000 -0.2309 -0.1452
hormonyes -0.3157 0.1497 -2.1089 0.0350 -0.6092 -0.0223
size<=20 mm:log(tfd + 0.5) 3.4405 0.5083 6.7685 0.0000 2.4442 4.4368
size>20-50 mm:log(tfd + 0.5) 3.1347 0.5043 6.2154 0.0000 2.1462 4.1232
size>50 mm:log(tfd + 0.5) 2.9695 0.5082  5.8432 0.0000 1.9735 3.9656
pr.tr:log(tfd + 0.5) 0.1305 0.0170  7.6747 0.0000 0.0972 0.1639
hormonyes:log(tfd + 0.5) 0.2472 0.1224  2.0195 0.0434 0.0073 0.4871

> round(ci.lin(i.rd ), 4)
Estimate StdErr z P 2.5%  97.5%

(Intercept) -0.9357 0.1568 -5.9666 0.0000 -1.2431 -0.6284
Ns(tfd, knots = kd.rd)1 -0.8855 0.1251 -7.0781 0.0000 -1.1306 -0.6403
Ns(tfd, knots = kd.rd)2 -1.3036 0.1670 -7.8076 0.0000 -1.6309 -0.9764
Ns(tfd, knots = kd.rd)3 -0.9527 0.1242 -7.6710 0.0000 -1.1961 -0.7093
age 0.0049 0.0024 2.0239 0.0430 0.0002 0.0096
51ze>20-50 mm 0.1654 0.0712 2.3217 0.0202 0.0258 0.3050
size>50 mm 0.3266 0.0993 3.2891 0.0010 0.1320 0.5212
nodes 0.0296 0.0058 5.1389 0.0000 0.0183 0.0409
pr.tr -0.2771 0.0396 -7.0011 0.0000 -0.3547 -0.1996
hormonyes 0.0432 0.0975 0.4429 0.6578 -0.1478 0.2342
pr.tr:log(tfd + 0.5) 0.1156 0.0245 4.7207 0.0000 0.0676 0.1635

> round(ci.lin(ix.rd), 4)
Estimate StdErr VA P 2.5% 97.5%

(Intercept) -1.0005 0.1583 -6.3198 0.0000 -1.3108 -0.6902
Ns(tfd, knots = kd.rd)1 -1.3815 0.1435 -9.6239 0.0000 -1.6629 -1.1002
Ns(tfd, knots = kd.rd)2 -2.1705 0.2035 -10.6634 0.0000 -2.5695 -1.7716
Ns(tfd, knots = kd.rd)3 -1.3495 0.1431 -9.4320 0.0000 -1.6300 -1.0691
Ns(tfr, knots = kr.rd)1  0.8184 0.1258 6.5077 0.0000 0.5719 1.0649
Ns(tfr, knots = kr.rd)2 1.2898 0.1746 7.3858 0.0000 0.9475 1.6321
Ns(tfr, knots = kr.rd)3 0.6399 0.1112 5.7538 0.0000 0.4219 0.8578
age 0.0043 0.0024 1.7698 0.0768 -0.0005 0.0090
size>20-50 mm 0.1395 0.0715  1.9522 0.0509 -0.0006 0.2796
size>50 mm 0.2880 0.0996  2.8927 0.0038 0.0929 0.4831
nodes 0.0274 0.0058 4.7106 0.0000 0.0160 0.0388
pr.tr -0.2716 0.0395 -6.8838 0.0000 -0.3489 -0.1943
hormonyes 0.0882 0.0982 0.8984 0.3689 -0.1042 0.2807
pr.tr:log(tfd + 0.5) 0.1112 0.0244 4.5625 0.0000 0.0634 0.1590

Note that we have one aliased parameter (NA for z and P) in the model with effects of the
two timescales (tfd, tfr) and their difference. This is because the natural spline
parametrization include the linear effects of the variables modeled. This has no effect of the
predictions however; and these are the only ones we are concerned about.
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In the following we shall use reference values for each of the covariates, and show
mortality rates as function of time since diagnosis for select values of the interaction
variables:

For each of the three covariates with interactions we construct a prediction frame with
varying levels of the interaction variables:

> nd.size <- data.frame(tfd = rep( c(NA,seq(0,15,0.1)), 3 ),

+ age = 45,

+ size = rep( levels(Lbc$size), each=152 ),

+ nodes = 5,

+ pr.tr = 3,

+ hormon = levels(Lbc$hormon) [1] )

> nd.pr <- data.frame(tfd = rep( c(NA,seq(0,15,0.1)), 6 ),

+ age = 45,

+ size = levels(Lbc$size) [2],

+ nodes = 5,

+ pr.tr = rep( 0:5, each=152 ),

+ hormon = levels(Lbc$hormon) [1] )

> nd.hormon <- data.frame(tfd = rep( c(NA,seq(0,15,0.1)), 2 ),
+ age = 45,

+ size = levels(Lbc$size) [2],

+ nodes = 5,

+ pr.tr = 3,

+ hormon = rep( levels(Lbc$hormon), each=152 ) )

For each of these prediction frames we can plot the three estimated transition rates as we
did for the overall rates (or rather the rates estimated using only the tfd variable as
covariate). Moreover we will plot the estimated rates both from the interaction models (i.)
and the main-effects models (c.):

> clr <- rainbow(3) ; yl <- ¢(0.03,60)

> ad.c.rate <- ci.pred(c.ad, nd.size)

> ad.i.rate <- ci.pred(i.ad, nd.size)

> ar.c.rate <- ci.pred(c.ar, nd.size)

> ar.i.rate <- ci.pred(i.ar, nd.size)

> rd.c.rate <- ci.pred(c.rd, nd.size)

> rd.i.rate <- ci.pred(i.rd, nd.size)

> matplot(nd.size$tfd, cbind(ad.c.rate, ad.i.rate,

+ ar.c.rate, ar.i.rate,

+ rd.c.rate, rd.i.rate) * 100,

+ type = "1", 1ty = rep(c("22", "solid"),each = 3),

+ lwd = ¢(2,0,0), col = rep(clr, each = 6), las = 1, lend = "butt",
+ log = "y", xlab = "Time since diagnosis (years)",

+ ylim = yl, ylab = "Rate per 100 PY" )

> text( par("usr")[2]*0.95, (10°par("usr"))[3]*1.47(1:3),

+ c("A->D","A->R","R->D"), col = clr, adj = 1, font = 2 )

> ad.c.rate <- ci.pred(c.ad, nd.pr)

> ad.i.rate <- ci.pred(i.ad, nd.pr)

> ar.c.rate <- ci.pred(c.ar, nd.pr)

> ar.i.rate <- ci.pred(i.ar, nd.pr)

> rd.c.rate <- ci.pred(c.rd, nd.pr)

> rd.i.rate <- ci.pred(i.rd, nd.pr)

> matplot(nd.pr$tfd, cbind(ad.c.rate, ad.i.rate,

+ ar.c.rate, ar.i.rate,

+ rd.c.rate, rd.i.rate) * 100,

+ type = "1", 1ty = rep(c("22", "solid"),each = 3),

+ lwd = ¢(2,0,0), col = rep(clr, each = 6), las = 1, lend = "butt",
+ log = "y", xlab = "Time since diagnosis (years)",

+ ylim = yl, ylab = "Rate per 100 PY" )

> text( par("usr") [2]*0.95, (10 par("usr"))[3]*1.47(1:3),

+ c("A->D","A->R","R->D"), col = clr, adj = 1, font = 2 )
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Figure 5: Transition rates as function of time since diagnosis; the broken lines are from the
main effects models and the full lines from the interaction model with age=54, nodes=5,
pr.tr=3, hormon=no and where size assumes the values < 20 mm, 20-50 mm and > 50
mm (only the Alive— Rel transition). Thus the test of interaction is the comparison of the

sets of parallel broken lines with the non-parallel full lines. ./bcMS-int-size
> ad.c.rate <- ci.pred(c.ad, nd.hormon)

> ad.i.rate <- ci.pred(i.ad, nd.hormon)

> ar.c.rate <- ci.pred(c.ar, nd.hormon)

> ar.i.rate <- ci.pred(i.ar, nd.hormon)

> rd.c.rate <- ci.pred(c.rd, nd.hormon)

> rd.i.rate <- ci.pred(i.rd, nd.hormon)

> matplot(nd.hormon$tfd, cbind(ad.c.rate, ad.i.rate,

+ ar.c.rate, ar.i.rate,

+ rd.c.rate, rd.i.rate) * 100,

+ type = "1", 1ty = rep(c("22","solid"),each = 3),

+ lwd = ¢(2,0,0), col = rep(clr, each = 6), las = 1,

+ lend = "butt", log = "y", ylim = yl, ylab = "Rate per 100 PY",
+ xlab = "Time since diagnosis (years)")

> text(par("usr") [2]%0.95, (10 par("usr"))[3]*1.4°(1:3),

+ c("A->D","A->R","R->D"), col = clr, adj = 1, font = 2 )

The general picture from the figures 5, 6 and 7 is that the major interactions are with
the relapse rates, where it seems that the interactions mainly reveal that the major effects
are early, and are possibly even reversed later.
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Figure 6: Transition rates as function of time since diagnosis, the broken lines are from the
main effects models and the full lines from the interaction model with age=54, size=20-
50 mm, nodes=5, hormon=no and where pr.tr assumes the values 0-6. Thus the test of
interaction is the comparison of the sets of parallel broken lines with the non-parallel full
lines — no interaction for the Alive— Dead transition. ./bcMS-int-pr

This is merely to illustrate how the usual largely uninformative “test of proportionality”
necessarily must be complemented by graphical displays of the non-proportionalities so that
it in substantial terms can be assessed whether the interactions are of relevance or not.

6 Predicting state occupancy

As done in the SiM paper [1] we predict state occupancy for a patient aged 54, with a
transformed progesterone level of 3, and no hormone therapy (7), for different tumour
groups and node numbers 0, 10 and 20. We shall also compute the expected time alive, so
the calculations will be made for node numbers 0, 1, 5 and 10 — a reasonable set of values
seen in the dataset, with 0 being the by far most prevalent number.
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Figure 7: Transition rates as function of time since diagnosis, the broken lines are from the
main effects models and the full lines from the interaction model with age=¥54, size=20-50
mm, nodes=J, pr.tr=3 and where hormon assumes the values no and yes. Thus the test
of interaction is the comparison of the sets of parallel broken lines with the non-parallel full
lines. ./bcMS-int-hormon

6.1 Initial cohort

To this end we construct a Lexis object from Rbc; the main thing here is to maintain the
Lexis-specific attributes which will be used in the simulation process. And all the time
scale variables too, even if A and P will not be used in the simulation (because they are not
in any of the models) — the latter is a feature (or bug) in simLexis; the function will refer
to all timescales in the object even if they are not in the models and hence not explicitly
used in the calculations:

> names( Rbc )

[1] "tfa" "A" "p" "tfr" "lex.dur" "lex.Cst" "lex.Xst" "lex.id"
[9] llpidll llyearll llagell Ilmenoll Usizell IIgradeH llnodesll Ilprll
[17] llpr‘trll Ilerll Uhormonll Ilchemo" Utorli Iltomll Iltodll "tOX"
[25] "xst"
> Lini <- Rbc[NULL,c("tfd","A","P","tfr",
+ "lex.Cst","lex.Xst","lex.dur","lex.id",

+ "age","size", "nodes", "pr.tr", "hormon")]
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> pr.nodes <- ¢(0,1,5,10)
> npr <- nlevels(Rbc$size) * length(pr.nodes)
> Lini[1:npr,"tfd"] <- 0
> Lini[1:npr,"tfr"] <- NA
> Lini[1:npr,"lex.Cst"] <- "Alive"
> Lini[1:npr,"age"] <- 54
> Lini[1:npr,"size"] <- rep(levels(Rbc$size), length(pr.nodes))
> Lini[1:npr, "nodes"] <- rep(pr.nodes, each=nlevels(Rbc$size))
> Lini[1:npr,"pr.tr"] <- 3
> Lini[1:npr, "hormon"] <- "no"
> Lini

tfd A P tfr lex.Cst lex.Xst lex.dur lex.id age size nodes pr.tr hormon
1 0O NA NA NA Alive <NA> NA NA 54 <=20 mm 0 3 no
2 O NA NA NA Alive <NA> NA NA 54 >20-50 mm 0 3 no
3 0O NA NA NA Alive <NA> NA NA 54 >50 mm 0 3 no
4 0O NA NA NA Alive <NA> NA NA 54 <=20 mm 1 3 no
5 0O NA NA NA Alive <NA> NA NA 54 >20-50 mm 1 3 no
6 0O NA NA NA Alive <NA> NA NA 54 >50 mm 1 3 no
7 O NA NA NA Alive <NA> NA NA 54 <=20 mm 5 3 no
8 O NA NA NA Alive <NA> NA NA 54 >20-50 mm 5 3 no
9 0O NA NA NA Alive <NA> NA NA 54 >50 mm 5 3 no
10 0O NA NA NA Alive <NA> NA NA 54 <=20 mm 10 3 no
11 O NA NA NA Alive <NA> NA NA 54 >20-50 mm 10 3 no
12 0O NA NA NA Alive <NA> NA NA 54 >50 mm 10 3 no

> str( Lini )

Classes ‘Lexis’ and 'data.frame': 12 obs. of 13 variables:
$ tfd :num 00 O000O00O0O0O0 ...
$ A : num NA NA NA NA NA NA NA NA NA NA ...
$ P : num NA NA NA NA NA NA NA NA NA NA ...
$ tfr : num NA NA NA NA NA NA NA NA NA NA ...
$ lex.Cst: Factor w/ 4 levels "Alive","Rel",..: 1111111111
$ lex.Xst: Factor w/ 4 levels "Alive","Rel",..: NA NA NA NA NA NA NA NA NA NA ...
$ lex.dur: num NA NA NA NA NA NA NA NA NA NA ...
$ lex.id : int NA NA NA NA NA NA NA NA NA NA ...
$ age : num 54 54 54 54 54 54 54 54 54 54 ...
$ size : Factor w/ 3 levels "<=20 mm",">20-50 mm",..: 1 231231231
$nodes :num 00011155510 ...
$pr.tr : num 3333333333...
$ hormon : Factor w/ 2 levels "mo","yes": 1111111111
- attr(*, "time.scales")= chr "tfd" "A" "P" "tfr"
_ attr(*, "time.since")= chr nuonnonn "Rel"
- attr(x, "breaks")=List of 4
..$ tfd: NULL
..$ A : NULL
..$ P : NULL
..$ tfr: NULL

6.2 Transition rates

In order to simulate a number of persons initiating follow-up (=diagnosed with breast
cancer) with these covariate patterns according to our model, we must also define the
transition objects (that is, specify models for the three transition rates) — we make one
designed to mimic the models used in the SiM paper [1] and one using the better fitting
model for death after relapse—the difference is the model used for the mortality after
relapse:

> TR <- list( Alive = list( Dead
+ Rel

+ Rel
> TRx <- list( Alive

i.ad,

i.ar ),

list( "Dead(Rel)" = i.rd ) )
list( Dead = i.ad,
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+ Rel = i.ar ),

+ Rel = list( "Dead(Rel)" = ix.rd ) )
> lapply( TR, names )

$Alive

[1] "Dead" "Rel"

$Rel

[1] "Dead(Rel)"

> lapply( TR, lapply, class )

$Alive
$Alive$Dead
[1] llglmll n 1ml|

$Alive$Rel
[1] llglmll n 1ml|

$Rel
$Rel$ Dead (Rel)"
[1] llglmll Illmll

6.3 Simulation of a large cohort

With this in place we can simulate:

> system.time( xx <- simLexis( Tr=TR , init=Lini, N=200, t.range=16 ) )

user system elapsed
5.123 0.685 4.973

(There were some problems causing a crash when trying to simulate 10,000 persons in one
go, so we did things in chunks).

> # not evaluated, run interactively before final compilation
> set.seed( 1952 )

> x0 <- simLexis(Tr = TR , init = Lini, N = 2000, t.range = 16)
> x1 <- simLexis(Tr = TR , init = Lini, N = 2000, t.range = 16)
> x2 <- simLexis(Tr = TR , init = Lini, N = 2000, t.range = 16)
> x3 <- simLexis(Tr = TR , init = Lini, N = 2000, t.range = 16)
> x4 <- simLexis(Tr = TR , init = Lini, N = 2000, t.range = 16)
> sL <- rbind(x0, transform(xl, lex.id = lex.id+25000 ),

+ transform(x2, lex.id = lex.id+50000 ),

+ transform(x3, lex.id = lex.id+75000 ),

+ transform(x4, lex.id = lex.id+100000))

> summary( sL )

> s0 <- simLexis(Tr = TRx, init = Lini, N = 2000, t.range = 16)
> s1 <- simLexis(Tr = TRx, init = Lini, N = 2000, t.range = 16)
> 52 <- simLexis(Tr = TRx, init = Lini, N = 2000, t.range = 16)
> s3 <- simLexis(Tr = TRx, init = Lini, N = 2000, t.range = 16)
> s4 <- simLexis(Tr = TRx, init = Lini, N = 2000, t.range = 16)
> sLx<- rbind(s0, transform(sl, lex.id = lex.id+25000 ),

+ transform(s2, lex.id = lex.id+50000 ),

+ transform(s3, lex.id = lex.id+75000 ),

+ transform(s4, lex.id = lex.id+100000))

> summary( sLx )

> save(sL, sLx,

+ file = "/home/bendix/teach/AdvCoh/00/examples/bcMS/sL.Rda")

We asked for simulation of 10,000 persons with each of the 12 covariate patterns in Lini, a
total of 120,000 persons:
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> load(file = "/home/bendix/teach/AdvCoh/00/examples/bcMS/sL.Rda")
> summary (sLx)

Transitions:
To
From Alive Rel Dead Dead(Rel) Records: Events: Risk time: Persons:
Alive 30830 81458 7712 0 120000 89170 902265.3 120000
Rel 0 9428 0 72030 81458 72030 280698.4 81458
Sum 30830 90886 7712 72030 201458 161200 1182963.7 120000

6.4 State occupancy probabilities

We can now devise the state probabilities by using nState and pState — here we just use
an arbitrary subset to get the object structure:

> nn <- nState( sLx[1:1000,], at=seq(0,16,0.1), from=0, time.scale="tfd" )
> pp <- pState( nn, perm=c(1,2,4,3) )
> str( pp )
'pState' num [1:161, 1:4] 1 1 0.996 0.991 0.987 ...
- attr(*, "dimnames")=List of 2
..$ when : chr [1:161] "O"™ "O.1" "0.2" "0.3" ...
..$ State: chr [1:4] "Alive" "Rel" "Dead(Rel)" "Dead"

However this is not what we want; we want the calculation for the 12 different
combinations of node and size; so we devise these levels too:

> (tt <- with(sLx, table(nodes, size)))

size
nodes <=20 mm >20-50 mm >50 mm
0 14923 15773 16443
1 15266 16122 16728
5 16270 17259 17777
10 17607 18457 18833
> prX <- prA <- NArray(c(dimnames(tt), dimnames (pp)))
> str(prh)

logi [1:4, 1:3, 1:161, 1:4] NA NA NA NA NA NA ...

- attr(*, "dimnames")=List of 4

..$ nodes: chr [1:4] "Oo" "i" "5" "iQ"

..$ size : chr [1:3] "<=20 mm" ">20-50 mm" ">50 mm"
..$ when : chr [1:161] "O" "O.1" "0.2" "0.3" ...

..$ State: chr [1:4] "Alive" "Rel" "Dead(Rel)" "Dead"

“

So now we have two arrays to hold the state occupancy probabilities for all combinations of
nodes, size and time from diagnosis; thus we need a loop over the 15 subsets to devise the
relevant probabilities and put them in the arrays:

for( nn in dimnames (prA) [[1]] )

forg ss in dimnames (prA) [[2]] )

prA[nn,ss,,] <- pState( nState( subset( sL , nodes==as.numeric(nn) &
size==ss ),

at = seq(0,16,0.1),
from = 0,
time.scale = "tfd" ),

perm = c(1,2,4,3) )
prX[nn,ss,,] <- pState( nState( subset( sLx, nodes==as.numeric(nn) &
size==ss ),
at = seq(0,16,0.1),
from = 0,
time.scale = "tfd" ),
perm = c(1,2,4,3) )
}
save (prA, prX, file = "pr.Rda")

V+++++++++++++++V
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With this array of probabilities we can now plot the state occupancy probabilities as a
function of time:

load(file = "/home/bendix/teach/AdvCoh/00/examples/bcMS/pr.Rda")
clr <- c("forestgreen", "maroon")
clr <- cbind(clr, adjustcolor(clr[2:1], 0.5))
par(mfcol = c¢(3,4), mar = c(1,1.5,1,1),
mgp = ¢(3,1,0)/1.6, oma = ¢(2,2,2,2), las = 1, bty="n")
nnn <- dimnames(prA)[[1]]
sss <- dimnames (prA) [[2]]
for( nn in nnn )
for( ss in sss )
{
plot.pState(prX[nn,ss,,],
col = clr, xlim = ¢(0,15), ylab = "", xlab = "" )
lines(as.numeric(dimnames (prX) [[3]]), prX[nn,ss,, 2],
lwd = 3, 1ty = 1, col = "black" )
matlines(as.numeric(dimnames (prA) [[3]]), prAlnn,ss,,1:3],
lwd = 1, 1ty = 1, col = "white" )

+V+V++VE++V+++++++++++++VVVFEVVYVY

axis(side = 2, at = 0:10/10, labels = NA, tcl = -0.4)
axis(side = 4, at = 0:10/10, labels = NA, tcl = -0.4)
axis(side = 2, at = 0:50/50, labels = NA, tcl = -0.2)
axis(side = 4, at = 0:50/50, labels = NA, tcl = -0.2)
}
mtext (paste( "Nodes =",nnn),
side = 3, at = (1:4%2-1)/8, outer = TRUE,
line = 0, cex = 0.66, las = 0 )
mtext (paste( "Size" ,sss),
side = 4, at = (3:1*%2-1)/6, outer = TRUE,
line = 0, cex = 0.66, las = 0 )
mtext ("Time since diagnosis (years)",
side = 1, outer = TRUE, line = 1, cex = 0.66, las = 0 )
mtext ("Probability",
side = 2, outer = TRUE, line = 1, cex = 0.66, las = 0 )

From figure 8 we see that the interaction model does not change the cumulative
measures a lot, and also that the coloured areas have pretty much the same size, with or
without the interactions. Also note that the only difference is for the overall survival; the
models only differ in the mortality of the relapsed patients, so the probability of being alive
without relapse and the probability of being dead without relapse is modeled exactly the
same way in the two models.
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Figure 8: Probabilities of being alive without relapse (green), with relapse (purple), dead after
relapse (light purple), and dead without relapse (light green) The black line is the estimated
survival curve. Computed from the model with effects of time since diagnosis as well as since
relapse. The white lines indicates what would have been obtained with the model with only
time since diagnosis, that is plots corresponding to those in the SiM paper [1]../bcMS-states
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7 Years lived with and without relapse

We have the estimated probabilities from the simulation in the arrays prA, respectively
prX. If we want to compute the years lived during the first 15 years, we want the integral
under the curves. To this end we need a function that does the triangulation of the area.
Here we compute the area under the curves up til 15 years past diagnosis; first based on
the naive models, then on the models taking time since relapse into account:

> intgr <- function(y, x) (sum(y[-1]) + sum(y[-length(y)1)) / 2 * x
> cA <- apply(prAl,,1:151,1:3], c(1,2,4), intgr, 0.1)
> CA[::3] <= CA[;:QJ - CA[:)iJ
> dimnames( cA )[[3]] <- c("noRel","Total","Rel")
> cA <- cAl,,c(1,3,2)]
> round(ftable(cA, row.vars = c(3,2)), 2)
nodes 0 1 5 10

State size
noRel <=20 mm 9.94 9.71 8.45 6.67

>20-50 mm 8.41 8.22 6.74 4.82

>50 mm 7.42 T7.19 5.65 3.84
Rel <=20 mm 2.056 2.10 2.36 2.61

>20-50 mm 2.23 2.21 2.37 2.50

>50 mm 2.08 2.08 2.15 2.13
Total <=20 mm 11.99 11.81 10.81 9.28

>20-50 mm 10.63 10.44 9.12 7.32

>50 mm 9.50 9.27 7.80 5.97

> cX <- apply( prX[,,1:151,1:3], c(1,2,4), intgr, 0.1)
> cX[,,3] <- cX[,,2] - cX[,,1]
> dimnames( cX )[[3]] <- c("noRel","Total","Rel")
> cX <- CX[’1C(113;2)J
> round(ftable(cX, row.vars = c(3,2)), 2)
nodes 0 1 5 10
State size
noRel <=20 mm 9.96 9.61 8.45 6.71
>20-50 mm 8.58 8.14 6.67 4.88
>50 mm 7.45 7.06 5.62 3.91
Rel <=20 mm 2.07 2.17 2.34 2.58
>20-50 mm 2.18 2.22 2.41 2.44
>50 mm 2.12 2.18 2.21 2.15
Total <=20 mm 12.03 11.78 10.79 9.29
>20-50 mm 10.76 10.36 9.08 7.32
>50 mm 9.57 9.24 7.83 6.06

Thus it is clear that both the number of nodes and the tumour size influences the expected
lifetime during the first 15 years, although they primarily influence the relapse-free years
lived; the years lived with relapse is not that much affected.

Furthermore, we can show the differences between the two sets of models used, both in
years and percentwise difference:

> round(ftable( cX - cA , row.vars = ¢(3,2) ), 2)
nodes 0 1 5 10
State size
noRel <=20 mm 0.02 -0.10 0.00 0.04
>20-50 mm 0.18 -0.08 -0.07 0.06
>50 mm 0.03 -0.13 -0.03 0.07
Rel <=20 mm 0.02 0.07 -0.02 -0.02
>20-50 mm -0.05 0.00 0.03 -0.06
>50 mm 0.04 0.10 0.06 0.02
Total <=20 mm 0.04 -0.03 -0.02 0.02
>20-50 mm 0.13 -0.08 -0.04 0.00
>50 mm 0.07 -0.03 0.03 0.09
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> round(ftable((cX - cA) / cA*100, row.vars = c(3,2) ), 1)

nodes 0 1 5 10

State size
noRel <=20 mm 0.2 -1.0 0.0 0.6
>20-50 mm 2.1 -1.0-1.1 1.3
>50 mm 0.4 -1.8 -0.6 1.7
Rel <=20 mm 1.1 3.4 -0.9 -0.8
>20-50 mm -2.1 0.1 1.5 -2.6
>50 mm 1.8 4.6 2.7 1.0
Total <=20 mm 0.3 -0.3 -0.2 0.2
>20-50 mm 1.2 -0.7 -0.4 0.0
>50 mm 0.7 -0.4 0.3 1.5

The differences in the years spent in no relapse should be the same, thus the differences
seen there should be purely simulation error.

Note that if we had a simulation-based sample of the probabilities as outlined above, we
would be able to put confidence limits on the entries in this table as well.

The numbers in the tables above correspond to points at 15 years on the curves of
“length of stay” in the C & L’s SiM paper, so we could have generated these curves by
using the cumulative sums instead, and the differences and ratios would then have been
operations inside the resulting arrays.

Again, confidence intervals would be easiest to compute by using simulated data sets
from many bootstrap samples, which are not implemented yet.

8 Metastases

A further state, “metastases” is recorded too. We included these among the
relapses—relapse without metastases is at time tor, whereas metastases is at tom,
regardless of previous relapse.

If we are willing to dispense with subdividing the deaths by the state from which they
occurred we can split the original follow-up (in the Lexis object Lbc) in one go, using the
mcutLexis function. Note that this requires that relapse dates recorded as equal to the
metastasis dates be coded as NA thus treating relapse and metastasis as separate events
(that can not occur at the same time). This is what we did when grooming the data
initially, so we can cut the original Lexis object:

> mbc <- mcutLexis(Lbc,

+ timescale = "tfd",
+ wh = c("tor", "tom"),
+ new.states = c("Rel", "Met"),
+ seq.states = TRUE,
+ new.scales = c("tfr", "tfm"))

NOTE: Precursor states set to Alive
> summary( mbc, timeScale = TRUE )

Transitions:
To

From Alive Dead Rel Rel-Met Met Records: Events: Risk time: Persons:
Alive 1269 195 474 0 1044 2982 1713 17203.80 2982
Rel 0 30 210 234 0 474 264 1436.23 474
Rel-Met 0 187 0 a7 0 234 187 485.92 234
Met 0 860 0 0 184 1044 860 2144.79 1044
Sum 1269 1272 684 281 1228 4734 3024 21270.74 2982

Timescales:
tfd A P tfr tfm

nn nn nn IlRelll llMetll
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> mbc <- Relevel(mbc, list("Alive",

+ "Rel”,

+ Met = c("Met","Rel-Met"),

+ ”Dead”))

> summary (mbc)

Transitions:

To

From Alive Rel Met Dead Records: Events: Risk time: Persons:
Alive 1269 474 1044 195 2982 1713 17203.80 2982
Rel 0 210 234 30 474 264 1436.23 474
Met 0 0 231 1047 1278 1047 2630.71 1278
Sum 1269 684 1509 1272 4734 3024 21270.74 2982

> # or: mbc <- Relevel(mbc, list(1, 3, Met = 4:5, 2))
> print (subset (mbc, lex.id Jinj (1328+0:2))[,1:10],

+ row.names = FALSE, digits = 4)
tfr tfm  tfd A P lex.dur lex.Cst lex.Xst lex.id pid
NA NA 0.000 83.06 1985 1.8727 Alive Rel 1329 1329
2.220e-16 NA 1.873 84.93 1987 3.1923 Rel Dead 1329 1329
NA NA 0.000 44.53 1994 2.4066 Alive Rel 1328 1328
0.000e+00 NA 2.407 46.93 1996 0.9254 Rel Met 1328 1328
9.254e-01 0 3.332 47.86 1997 4.0986 Met Met 1328 1328
NA NA 0.000 68.92 1988 0.9090 Alive Rel 1330 1330
NA NA 0.909 69.83 1988 1.0103 Rel Met 1330 1330
1.010e+00 0 1.919 70.84 1989 0.5530 Met Dead 1330 1330

The lack of subdivision of deaths by state immediately preceding death can of course be
remedied “by hand”:

> xbc <- transform(mbc,

+ lex.Xst = factor(ifelse(lex.Cst != "Alive" &

+ lex.Xst == "Dead",

+ paste("D(", lex.Cst, ")", sep=""),
+ as.character(lex.Xst))))

> xbc <- factorize( xbc )

NOTE: lex.Cst and lex.Xst now have levels:
Alive Rel Met Dead D(Met) D(Rel)

> levels(xbc)
[1] "Alive" "Rel" "Met" "Dead" ”D(Met)" "D(Rel)”

> xbc <- Relevel(xbc, c(1:4,6,5))
> levels(xbc)

[1] "Alive" "Rel" "Met" "Dead" "D(Rel)" "D(Met)"

> summary (xbc)

Transitions:
To

From Alive Rel Met Dead D(Rel) D(Met) Records: Events: Risk time: Persons:
Alive 1269 474 1044 195 0 0 2982 1713 17203.80 2982
Rel 0 210 234 0 30 0 474 264 1436.23 474
Met 0 0 231 0 0 1047 1278 1047 2630.71 1278
Sum 1269 684 1509 195 30 1047 4734 3024 21270.74 2982

> boxes (xbc, boxpos = list(x = c(15,40,15,85,85,85),

+ = ¢(85,50,15,85,50,15)),

+ show.BE = "nz",

+ scale.R = 100,

+ cex = 1.1)
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We could model all 6 transitions, exploring the possible effects of time since entry to the
relapse and metastasis states as well as possible interactions. We might even model
mortality rates from relapse and metastasis with some common parameters.

Eventually we would have specified some model for each of the transitions, and we could
repeat the exercise from above, simulating state occupancies and time spent in different

states.

So far this is left as an exercise to the reader. ..
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9 What is still missing

The arrays prA and prX contain the probabilities of being in each of the four states (well,
cumulated over states) as a function of time. Additionally, there are two more dimensions
to the arrays corresponding to 5 x 3 combinations of two covariates (nodes and size)
whereas other covariates (age, progesterone and hormone therapy) are fixed.

If we wanted some sort of uncertainty associated with the estimates we cold either
simulate using repeat samples from the “posterior” distribution of the model parameters, or
we could do a bootstrap of the original sample, re-estimating the models.

In terms of the simulated cohort, we would instead end up with, say 1000 cohorts, each
of 100 people, and a corresponding extra dimension of 1000 on the arrays of probabilities.
The could then be used for computation of confidence intervals for any type of measure we
were to derive from the simulated cohorts.

Essentially measures of uncertainty would be referring to quantiles of the simulated
probabilities (well, empirical fractions) from each of the samples of say 100, persons. Since
each sample is devised to represent a probability we should take the sampling uncertainty
into account when devising probabilities — that is not just use the empirical fractions but
replace them by a sample from the posterior distribution of the probability given the
empirical fraction.

If we use a flat prior for the probability, the posterior distribution of the probability
given an observed fraction of z/n is Beta with shape (z +1,n — 2 4+ 1). Thus a simple
deterministic jitter of the array of probabilities applied before computing the confidence
limits. However, this does not take the time-dependence of the probabilities into account.

To be continued ...

9.1 Technical note on simLexis implementation

The transition objects are large and clumsy, and may even contain the same models more
than once. It would be better to only have the contents as the names of the transition
models, and inside use get to construct the objects currently used:

> Tr <- lapply( Tr, lapply, get )
This will also make it easier to use bootstrapped data for evaluation of uncertainty. For a
given bootstrap sample of data we would make updated model objects with names

appended with some string, so that the input for each cycle of the simulation loop over
bootstrap samples of data would be using an input transition object of the form:

> bootTr <- lapply( Tr, lapply, function(x) paste("BOOT",x,sep="") )

Generation of the model objects with these names would be using only the unique
elements, avoiding fitting the same model more than once:

> unique.models <- unique( unlist( Tr ) )
> for( m in unique.models )

+ {

+ assign( paste("BOOT",m,sep=""),

* update( get(m), data=boot.Lexis(data) ) )
+ }
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