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SUMMARY
The proportional hazard regression model is reviewed, and its analysis using GLIM is
described. Methods of estimating the underlying survivor functions are discussed. The
Poisson model which allows the use of GLIM is introduced and interpreted. Two different
treatments of tied observations are mentioned, and their properties are compared in the
context of a specific example.
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1. INTRODUCTION

IN many practical contexts investigators are faced with the analysis of positively skewed data,
some of which are right-censored. Medical examples include cases in which the individual
observations are the survival times of patients, times until progression of a disease for different
patients, or more optimistically, times until the disappearance of symptoms. Censoring occurs
because some patients may still be alive, or may not have reached the specified end-point of the
investigation, at the time at which the data were collected. Other patients may lose contact with
the investigation, and thus contribute further censoring. The testing of industrial components
provides further examples of this kind of observations.

Recently, a number of regression-type models have been suggested for the analysis of such
data. Fully parametric models, making use of exponential and Weibull distributions, have been
proposed by Prentice (1973), and their practical implementation by means of GLIM (Baker and
Nelder, 1978) has been described.by Aitkin and Clayton (1980).

" A more adaptable model which is only partially parametric was introduced by Cox (1972).
Special programs have been developed in order to fit Cox’s model, and the next version of the
GLIM program, GLIM4, is being adapted to cope with it (see Baker and Clarke, 1979). The
purpose of this paper is to show that Cox’s model can be fitted using the existing versions of
GLIM, and that tied observations and time-dependent covariates can be accommodated.
Furthermore, estimates of the underlying survivor function can easily be derived from the
program output. The fitting is achieved using Poisson errors, and the equivalent Poisson model
gives some insight into the survival data problem.

The regression models mentioned above have been reviewed by Kay (1977) and are
introduced at length in the book of Kalbfleisch and Prentice (1980). The “Man-years in view”
model of Case and Lea (1955) has been fitted with GLIM by Mr G. Berry of the MRC
Pneumoconiosis Unit, Penarth, using an approach similar to that adopted here.

2. THE PROPORTIONAL HAZARD REGRESSION MODEL

In order to simplify terminology, the exposition will be presented in terms of the survival
times of patients in a medical investigation. The author hopes that readers will remain aware of
the wider range of possible applications. A vector z = (zy,...,2,) of explanatory variables is
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available for each patient, and could include such information as age on admission to the study,
sex, social class, and so on. These covariates could change with time. The survival time of each
patient has a distribution, depending on z, which can be characterized in terms of either its
survivor function &%, where %(t; z) is the probability that the patient survives a time greater
than ¢, or its hazard function A, which is the ratio of density to survivor function. In Cox’s (1972)
model the hazard functions of different patients are proportional and satisfy

Alt; z) = exp (2P) Ao(), | 2.1

where Bis a p x 1 vector of unknown parameters, and Ao(t) is an unknown function representing
the hazard for the standard set of conditions z = 0. Often, when the covariates z consist of a
small number of categorical variables, the patients fall into groups sharing certain values of z.

The data consist of survival times, some censored, and others corresponding to deaths.
Suppose that there are q deaths, occurring after survival times t,,...,t,, and suppose to begin
with that all of these death times are distinct. Now consider the death occurring after survival
time t,. Let N, be the number of survival times, censored or uncensored, which are greater than
or equal to t,. Suppose that the N, corresponding patients fall into k(h) groups, the jth group
consisting of N,; patients all with explanatory vector z,;=z, (&) (j=1,....k(h);
Ny 1+...+ Ny = Ny b = 1,...,q). Suppose that the death at time 7, which befell one of these
N, patients, involved one in the j*(h)th group.

Inhis 1972 paper, and at greater length in a 1975 paper, Cox explains why the model (2.1)can
be fitted by maximizing a “partial likelihood” of the form

4 eXP (2, ) B)
2.2
LS N, 5@, B | 2)
In the next section it will be shown how current versions of GLIM can be used to maximize
the expression in (2.2).

3. A PoissoN MODEL

In order to fit the survival model of Section 2 by use of GLIM an auxiliary Poisson model
must be considered. A particular realization of this model produces a likelihood which, at its
maximum, is proportional to expression (2.2). The model can be fitted with GLIM, using the
Poisson error, and thus the maximum likelihood estimate of the parameter § and likelihood
ratios, valid for both the Poisson model and the survival model, can be found. Under the
assumptions that the explanatory vectors z are not time dependent and that all survivor
functions are continuous, the Poisson model can be interpreted in terms of survivals as will be
made clear in Section 5. However, these stronger assumptions are not necessary for. the
technique to work and for the next two sections the equivalence of the Poisson and survival
models will be treated as a happy coincidence.

The auxiliary Poisson model can be described as follows. For each value of , from 1 to g, let
X 15+ Xp iy be independent Poisson random variables, where X, ; has parameter y, ; with

;= Ny jexp(a,+2z, ;) (= 1,.... k(h)).
The o, are constant factors whose interpretation will be clarified in Section 5. If X, ;«, takes the
value 1, and the others take the value 0, then the likelihood of o, and g based on X, 4, ..., X, 1z I8
Ny, joi ©XD (% + 2y o1y B) ‘
exp {Z; N, jexp (¢, +7y ; B)}

As the sum of these Poisson random variables takes the value 1, and follows the Poisson
distribution with parameter Z; y, ;, the maximum likelihood estimates will satisfy Z; i1, ; = 1,s0
that

I, joony €XP(— 25y j) =

expd, = {Z; N, ;exp(z, ,B)}
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At its maximum, therefore, the likelihood of the « and ﬁ based on -all 'the
X, G=1..kh;h=1,.,91s v :

ﬁ Ny prn @ XD 2, s B)
h=1 ZjNh,jexp(zh,j B ,
This is proportional to the maximum of the likelihood in (2.2). Thus the Poisson miodel and the
survival model will have identical estimates of p and identical likelihood ratios.
This Poisson model can be fitted using GLIM, but before giving an example I shall discuss
the problem of tied observations, and give an interpretation of the Poisson model.

4. THE TREATMENT OF TIED OB,SEkVATIONs

The data being analysed may be in a form in which deaths occur after distinct survival times
t,...,t, but a multiplicity of deaths my (= 1) occur after each time t, (h = 1,...,q). There are
m; +...+m, deaths in all. Generalizations of the proportional-hazards regression model which
incorporate ties have been given by Kalbfleisch and Prentice (1973), by Cox (1972) and by Peto
(1972). The first is an exact treatment, and the other two are approximations, Peto’s being
rougher than Cox’s. These last two-can be fitted using GLIM.

Suppose that m, ; of the deaths occurring at time t, befall patients in the jth group, that is
patients with explanatory vector

Zh,j (j = 1, eeey k(h); mh, 1 +-.. +mh"k(;,) = mh; h = 1,..., q).
In Peto’s generalization the likelihood of B is given by ‘
| | [  exp(Z;m, 7, B)

h=1 (Zh) {zj Nh,j eXp (Zh,j B)/Nk}m
h

Ifin the Poisson model of Section 3, we put X, ; = my ; (j = 1,...k(h); b = 1,...,q), then the
likelihood of the a;, and Bis | ‘
q [{Hj N, ;™ 7} exp (my, o, + Z;my, ;24 B)]'
exp {Z; N, jexp (o +2, B}
As the maximum likelihood estimates satisfy

@1

h=1

%;N,, jexp (6, + 24,5 B =m,
at its maximum this likelihood becomes ‘
a [{HjNh'j i} e "™ exp(Z; My, ; T, ; ﬁ):l |

h=1 {Z; Ny, jexp (24,5 B)/m, ;™ :
‘which is proportional to (4.1). Both Peto’s survival model and the equivalent Poisson model will
yield the same value for p and the same likelihood ratios. '

To fit Cox’s generalization we must consider the M, = m? combinations of m, individuals

which can be chosen from the N, with survival time >t,. Define the explanatory vector s for
such a combination as the sum of the z values for the individuals concerned. Suppose that M,
of the M, possible combinations form a group with common explanatory vector

Sh,, (l = 1,..., k(h); Mh,l +... +Mh.k_(h) = Mh; h = 1,..., q).

Let the combination corresponding to the m, deaths be in the I*(h)th group, having explanatory
vector s, gy In Section 6 of his 1972 paper, Cox explains that p should be estimated by
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maximizing the “partial likelihood” given by |
4 exp (s, l"'(h)vm :[
. . 4.2
hl]l [Zl M, ,exp (s, B) (4.2
The equivalent Poisson model has, for h=1,...,q, independent random variables
Xy, 15+» Xp iy Where X, | has parameter -
ph = M, exp (e, +s,,8) (1= 1,....k(h)).

If X, ) = 1,and all of the other X, , equal zero, then, as in Section 3, Cox’s survival model and
the Poisson model will have proportional maximum likelihoods and the same estimate of f.

5. AN INTERPRETATION OF THE PoissoN MODEL

The following argument gives an interpretation of the Poisson model, and shows how the
estimates of the a, can be used to calculate estimates of the survivor functions of the patients.
The explanatory vectors z will not be allowed to vary with time, and the underlying hazard A,(t)
of (2.1) will be assumed to be continuous in t. Ties are, thus, theoretically impossible, but any
occurring in the data will be assumed to correspond to survival times which are arbitrarily close
to one another, rather than being treated as the result of data grouping. This is a rather rough
approach to the problem of ties, and will give results corresponding to Peto’s treatment.

As all survival times are independent, there is no loss of generality in assuming that they are
measured from the same starting point. Thus we can imagine that at time ¢, — Jt,, N, patients are
at risk, and m, are about to die. These patients consist of N, ; with explanatory vector z, ; of
whom m,, ; are about to die (j = 1,..., k(h)). Suppose that all these patients remain at risk during
the short time (t;, — 6t,, t,,), and that 1,(t) is constant with value A4(t,) over this interval. During
this interval, the excess life of a patient beyond t,— dt, behaves like an exponential random
variable with parameter exp (z) 1o(,)- The number of failures in each group is thus a Poisson
random variable, taking the value m, ;, with parameter N, ;exp(z, ; B) 4o(2) 6t If we interpret
expa, as Ao(t,) dt;, this means that m, ; is just a realization of the Poisson random variable X ;
mentioned in Section 3 and in the account of Peto’s method in Section 4.

The survivor function Z(t; z) of a patient is related to the hazard A(t; z) according to

F(t; z) = exp { - f! Mu; z) du},

and so
F(t; 2) = {F ()} 2P, (5.1)
where : _

Folt) = exp { - ft' Ao(u) du}. _

Under the stronger assumptions of this section, the fitting of the model can be completed by
estimating the Z(t; z). As B has already been dealt with, (5.1) shows that it only remains to
estimate % y(z). '

The time scale can be divided into small intervals (¢t — dt, t), including the interval(t, — 6t,, t,)
referred to above. Poisson models in which all X, ; = 0 can be constructed for the time intervals
during which no deaths occur. They will involve parameters oo where expa = A4(t) 6t has
estimate 0. Thus, & () can be estimated by

Fot) = exp{ ~ X exp Gy} (5.2)

where the sum is over all death times less than t. The estimates 4, are given in the GLIM output.
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This approach was outlined by Breslow (1972) under the assumption that 4, was a step-
function. He gave the estimate (5.2) which is a genéralization of an estimate considered by
Nelson (1969).

6. AN EXAMPLE

So far, a Poisson model has been developed which is equivalent to the survival model of Cox,
but its fitting via GLIM has not been discussed. An example is more informative than a general
account, and for such an example we turn to data of Freireich et al., which were used in Section -
10 of the paper by Cox (1972), and are shown in Table 1. They concern the remission of

TABLE 1
Times of remission (weeks) of leukaemia patients

Sample 0 6* 6 6 6 7 9 10*
10 11* 13 16 17*  19*  20*
22 23 25% 32 32%  34% 35

Sample 1 1 1 2 2 3 4 4
. 5 5 8 8 8 8 11
11 12 12 15 17 22 23

* Censored.

leukaemia patients in terms of weeks after commencement of treatment. Patients formed two
samples; Sample 0 had been treated with the drug 6-MP, and Sample 1 with a placebo. Some of
the observations are right-censored, and these are denoted with asterisks.

The uncensored survivals covered 17 distinct values, ty,..., ;7. In Table 2 these values ¢, are
listed, together with N, ; and m,, ;, where N, ; is the number of survival times in Sample j which
are greater than or equal to t,, and m, ;is the number of survival times which are exactly equal to
t, (j =0,1; h = 1,...,17). Survival times censored at time ¢, are included as being greater than or
equal to t,. In general, the detailed circumstances of collection of such observations, for example
whether the censored time was the last appointment that a patient kept or the first that he
missed, would govern their treatment.

TABLE 2
Details of each uncensored survival time

Ly Nyo Ny, My o My, 1
1 21 21 0 2
2 21 19 0 2
3 21 17 0 1
4 21 16 0 2
5 21 14 0 2
6 21 12 3 0

1 17 12 1 0
8 16 12 0 4

10 15 8 1 0

11 13 8 0 2

12 12 6 0 2

13 12 4 1 0

15 11 4 0 1

16 11 3 1 0

17 10 3 0 1

22 7 2 1 1

23 6 1 1 1
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The model fitted by Cox assigned the explanatory vector (0,0) to patients in Sample 0 and
(1, t —10) for those in Sample 1, where ¢ is the time from commencement of treatment. Hence,
patients in the two samples will have hazards Ao(t) and exp {B, +(t —10) B,} Ao(t) respectively.
The parameter f, measures the difference in failure rates between the two groups, and S,
measures the dependence of this difference on time.

First of all the Poisson model which is equivalent to Peto’s treatment of ties will be
considered. For each death time t,, this model concerns two Poisson observations X, , and
X, 1, with parameters p; o = Ny o€Xp () and’ py ; = Ny 1 €Xp {o, + B+ B2t — 10)} and
realized values m, o and m,, ;. The parameters a;, can be fitted as a factor with 17 levels, one for
each death time, and S, as a factor with 2 levels, one for each sample. The parameter B, is fitted
as a regression coefficient, and log N,, ; must be used as an “offset”.

Cox’s treatment of ties is more difficult to accomplish. Consider the two failures at time
t, = 4. There were then N, = 37 patients “at risk™: N, o = 21 in Sample 0, and N, ; = 16 in
Sample 1. There are M, = 327 = 666 possible pairs of patients at risk, forming 3 distinct

21

groups. The first group consists of M, o = ) )= 210 pairs of paﬁents, both from Sample 0.

The explanatory vector of these pairs is the sum of the explanatory vectors of two individuals
from Sample 0 and is thus s, o = (0,0). Then there are M, ; = 21 x 16 = 336 pairs of patients
consisting of one from each sample, and having explanatory vector (1,£—10). Finally there
16
2
vector (2,2t —20). Three Poisson variables, X, o, X4 1 and X, , correspond to this death
time. They have parameters M, oexp(ay), My expiog+pi+ B,(t,—10)} and
M, ;exp {aq+2f; +2B,(ts—10) respectively, and realized values of 0,0 and 1, as both deaths at
"t = 4 befell patients in Sample 1. Similar groups of Poisson random variables can be formed for
“each death time. The last death time is represented by only two Poisson random variables as no
‘pairs of patients both from Sample 1 were then “at risk”. This gives 46 Poisson observations in
all. Again the o, can be fitted as a factor with 17 levels, f, asa factor with 2, and B, as a regression
coefficient. The log M, ; are used as “offsets”. '
In GLIM the death-time factor was denoted by A, the sample factor by X, and the time
dependence by T. The models A+ X+T, A+X and A were fitted, and the results are
summarized in Table 3. Two separate analyses were performed, using Peto’s and Cox’s

are M, , = = 120 pairs of patients, both from Sample 1 and having explanatory

TABLE 3 ‘
Analysis of the data of Freireich et al.
(Standard errors of estimates are given in parentheses)

Peto’s treatment Cox’s treatment

of ties of ties
A+X+T
Deviance 2762 30-28
df 15 27
B1 1-51 (0-42) © 1-63 (043)
B, —0-008 (0-06) 0-007 (0-07)
A+X '
Deviance . 2763 - 30-29
d.f , 16 - - 28 :
B 1-51 (0-41) 1-63 (0-43)
A
Deviance - 42-85 46-54

df 17 29
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treatments of ties. The results obtained using the latter are similar to those quoted by Cox (1972,
Section 10), and GLIM is likely to give the more accurate results.

Both analyses indicate clearly that 8, is not significant, but f, is. The goodness-of-ﬁt of the
model based on Cox’s treatment of ties cannot be assessed by reference to y* tables. This is
because the number of parameters in the saturated model will increase with the number of
observations, thus violating the assumptions underlying the asymptotic Justlﬁcatlon of the test.
The same is true of the model based on Peto’s treatment of ties, unless it is assumed that neither
the number of groups nor the number of distinct death times grows unboundedly with the
number of observations. In both cases comparisons of models are assessed by reference to y?
tables in the usual way.

Peto’s treatment of ties leads naturally to the survivor function estimate (5.2). I suggest that
an estimate of %, be derived from the result of Cox’s treatment as follows. Equations (4.1) and
(4.2) are both approximations to the true likelihood for particular failure times, (4.2) being the
closer approximation. Thus,

N, - _— -
(mZ) {Z; N, ;€xp (Zy, ; Brew)/N WM =L M, exP (S, 1 Boow

so that

. N , A ’ N )
(m:) {mh exp(_ah,Peto)/Nh}, h;*eXP(_“h,cOx) (h=1,..,9).

Equation (5.3) can now be replaced by

3 - _ s M (N\™ ([ Ghcox
e 5 (5] "ag(b)}

The estimates of % ,(t) found in the two analyses from the model 4 + X are hsted in Table 4. The
two sets of results correspond closely

TABLE 4
Estimates of the survivor function & yt)

" Peto’s treatment Cox’s treatment

Time interval of ties of ties
[0, 1) 098 0-98
1,2 096 097
[2,3) 095 0-96
[3,4) 093 ;094
[4,5) 090 0-92
[5,6) 087 0-89
[6,7) - 086 0-88
[7,8) 081 0-83

[8, 10) 079 082
[10, 11) : 076 079
[11, 12) 072 075
[12,13) 0-70 073
13, 15) 0-68 0-70
[15, 16) 0-65 0-68
- [16, 17) 062 065
[17,22) 055 0-58
[22, 23) ) 045 047

When this method is used with larger or more complicated data sets an auxiliary program
can be written, in any suitable language, in order to transform the raw observations into input
for the GLIM program.
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