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1 Introduction

This note is made to facilitate computations of cumulative risks in models for rates in
competing risk settings.

1.1 Risk calculations in practice

In a the competing risk setting (and also the more general multistate setting) standard
probability theory leads to expressions like:

P(dead from 1 before t) =

∫ t

0

µi(s) exp

(
−
∫ s

0

µ1(u) + µ2(u) + µ3(u) du

)
ds

This looks pretty scary from a practical computational point of view. But integrals are
easily approximated by sums; an area under a curve is approximated by the area of an
approximating histogram. So if the incidence or mortality rates (the µs in this notation)
are known as explicit functions of time, the computations are particularly simple.

This is basis for the approach in this note: Make a parametric model for the rates, so
that the values of say µ1(t) can be computed for values of t between 0 and 100 years in
intervals of say 3 months. Once that is done and the values put in a vector, then the
formulae from probability as above theory are easily worked out using simple sums and
cumulative sums.

1.2 Multiple calculations

The other purpose of this note is to show the calculations can be facilitated by setting
up arrays in R to hold the results, so that a fairly short piece of code makes the
calculations over may different causes of death and for a range of levels of several
conditioning variables, such as sex, disease status etc. This is in the very R-specific
section “Tidying the code”.

The point of this section is that you should set up an array to collect your results, and
in particular that you should set up the array in such a way that it can easily modified
without too many consequences for the remaining code. Because you will inevitably end
up wanting to modify it.

2 Data set

We will use the dataset mortDK, which is available as part of the Epi package. We will
need access to splines so will also need to attach the splines package.

> library(Epi)
> library(splines)

We start by inspecting the structure of the data; it is mortality rates in the Danish
population by calendar time (5-year classes) and age (1-year classes):

> data(mortDK)
> head(mortDK)
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age per sex risk dt rt r1 r2 r3 r4 r5 r6 r7
1 0 43 1 224654 12072 53.736 3.494 0.098 0.085 0.347 0.089 1.282 0.013
2 0 43 2 212730 8688 40.841 2.994 0.061 0.056 0.259 0.127 1.011 0.009
3 0 48 1 202692 7035 34.708 1.692 0.074 0.039 0.222 0.074 0.834 0.015
4 0 48 2 192602 5001 25.965 1.516 0.078 0.067 0.119 0.036 0.597 0.021
5 0 53 1 193164 5797 30.011 0.601 0.119 0.036 0.140 0.026 0.766 0.047
6 0 53 2 182400 3991 21.880 0.450 0.088 0.044 0.088 0.016 0.488 0.000

r8 r9 r10 r11 r12 r13 r14 r15
1 0.036 10.826 0.027 5.092 0.125 1.340 29.962 0.921
2 0.033 8.739 0.038 3.685 0.132 1.020 21.976 0.700
3 0.049 6.276 0.054 1.919 0.049 0.745 21.718 0.947
4 0.026 4.875 0.042 1.231 0.062 0.633 15.919 0.742
5 0.047 3.018 0.031 1.066 0.031 0.564 22.810 0.709
6 0.055 2.489 0.033 0.691 0.027 0.378 16.541 0.493

> str(mortDK)

'data.frame': 1820 obs. of 21 variables:
$ age : num 0 0 0 0 0 0 0 0 0 0 ...
$ per : num 43 43 48 48 53 53 58 58 63 63 ...
$ sex : num 1 2 1 2 1 2 1 2 1 2 ...
$ risk: num 224654 212730 202692 192602 193164 ...
$ dt : num 12072 8688 7035 5001 5797 ...
$ rt : num 53.7 40.8 34.7 26 30 ...
$ r1 : num 3.494 2.994 1.692 1.516 0.601 ...
$ r2 : num 0.098 0.061 0.074 0.078 0.119 0.088 0.122 0.089 0.099 0.129 ...
$ r3 : num 0.085 0.056 0.039 0.067 0.036 0.044 0.048 0.044 0.043 0.065 ...
$ r4 : num 0.347 0.259 0.222 0.119 0.14 0.088 0.069 0.061 0.047 0.065 ...
$ r5 : num 0.089 0.127 0.074 0.036 0.026 0.016 0.042 0.006 0.024 0.005 ...
$ r6 : num 1.282 1.011 0.834 0.597 0.766 ...
$ r7 : num 0.013 0.009 0.015 0.021 0.047 0 0.005 0 0.047 0.025 ...
$ r8 : num 0.036 0.033 0.049 0.026 0.047 0.055 0.042 0.039 0.052 0.099 ...
$ r9 : num 10.83 8.74 6.28 4.88 3.02 ...
$ r10 : num 0.027 0.038 0.054 0.042 0.031 0.033 0.032 0.022 0.061 0.055 ...
$ r11 : num 5.09 3.68 1.92 1.23 1.07 ...
$ r12 : num 0.125 0.132 0.049 0.062 0.031 0.027 0.021 0.033 0.033 0.025 ...
$ r13 : num 1.34 1.02 0.745 0.633 0.564 0.378 0.587 0.277 0.553 0.298 ...
$ r14 : num 30 22 21.7 15.9 22.8 ...
$ r15 : num 0.921 0.7 0.947 0.742 0.709 0.493 0.397 0.393 0.412 0.363 ...

To illustrate the modelling approach we do however need the original data in the form of
number of deaths and person-years. This is constructed from the number of cases for the
different causes of death, by multiplying by the risk time (in the variable risk, and since
the rates in the data set is given in cases per 1000 PY, we must divide by 1000 to get
the correct number of deaths from each cause:

> mortDK <- transform( mortDK, d1 = round(r1*risk/1000),
+ d2 = round(r2*risk/1000),
+ d3 = round(r3*risk/1000),
+ d4 = round(r4*risk/1000),
+ d5 = round(r5*risk/1000),
+ d6 = round(r6*risk/1000),
+ d7 = round(r7*risk/1000),
+ d8 = round(r8*risk/1000),
+ d9 = round(r9*risk/1000),
+ d10 = round(r10*risk/1000),
+ d11 = round(r11*risk/1000),
+ d12 = round(r12*risk/1000),
+ d13 = round(r13*risk/1000),
+ d14 = round(r14*risk/1000),
+ d15 = round(r15*risk/1000) )
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After constructing the number of deaths for the 15 different causes of death we make a
further grouping into three broad classes, mainly for illustration purposes:

> mortDK <- transform( mortDK, d.can = d2, # Cancers
+ d.cvd = d7+d8, # Cardio-vascular diseases
+ d.oth = d1+d3+d4+d5+d6+d9+d10+d11+d12+d13+d14+d15 )
> head( mortDK, 3 )

age per sex risk dt rt r1 r2 r3 r4 r5 r6 r7
1 0 43 1 224654 12072 53.736 3.494 0.098 0.085 0.347 0.089 1.282 0.013
2 0 43 2 212730 8688 40.841 2.994 0.061 0.056 0.259 0.127 1.011 0.009
3 0 48 1 202692 7035 34.708 1.692 0.074 0.039 0.222 0.074 0.834 0.015

r8 r9 r10 r11 r12 r13 r14 r15 d1 d2 d3 d4 d5 d6 d7 d8
1 0.036 10.826 0.027 5.092 0.125 1.340 29.962 0.921 785 22 19 78 20 288 3 8
2 0.033 8.739 0.038 3.685 0.132 1.020 21.976 0.700 637 13 12 55 27 215 2 7
3 0.049 6.276 0.054 1.919 0.049 0.745 21.718 0.947 343 15 8 45 15 169 3 10

d9 d10 d11 d12 d13 d14 d15 d.can d.cvd d.oth
1 2432 6 1144 28 301 6731 207 22 11 12039
2 1859 8 784 28 217 4675 149 13 9 8666
3 1272 11 389 10 151 4402 192 15 13 7007

We then check the coding of the age and the period variables:

> with( mortDK, table(age) )

age
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
78 79 80 81 82 83 84 85 86 87 88 89 90
20 20 20 20 20 20 20 20 20 20 20 20 20

> with( mortDK, tapply(dt,age,sum) )

0 1 2 3 4 5 6 7 8 9 10
73499 5786 3405 2569 1987 1715 1494 1439 1308 1312 1190

11 12 13 14 15 16 17 18 19 20 21
1101 1047 1190 1409 1631 2058 2236 2926 3098 3070 3144
22 23 24 25 26 27 28 29 30 31 32

3157 3181 3265 3184 3179 3299 3396 3610 3758 3865 4003
33 34 35 36 37 38 39 40 41 42 43

4305 4447 4850 5007 5432 5922 6347 6813 7266 7887 8641
44 45 46 47 48 49 50 51 52 53 54

9196 10031 10820 11872 12868 13708 14874 16340 17476 19016 20500
55 56 57 58 59 60 61 62 63 64 65

22411 23888 25864 27862 30061 32238 34704 37258 39737 42290 45359
66 67 68 69 70 71 72 73 74 75 76

48022 50561 53541 56403 59962 62683 64658 67347 69169 71034 72837
77 78 79 80 81 82 83 84 85 86 87

74270 74122 74410 73415 71391 69065 65814 61753 57123 52564 47003
88 89 90

41462 35957 128166

> with( mortDK, table(per) )

per
43 48 53 58 63 68 73 78 83 88
182 182 182 182 182 182 182 182 182 182
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Since we are interested in proper modelling of the age, we cannot use the age class 90+,
so we exclude this. This means that our analyses of mortality rates will correspond to
analyses where persons have been censored form follow-up at their 90th birthday.

Finally we add 0.5 to the age variable and 2.5 to the period variable to have numerical
values corresponding to the midpoint of the intervals represented by the observations:

> mortDK <- subset( mortDK, age < 90 )
> mortDK <- transform( mortDK, age = age+0.5,
+ per = per+2.5 )

Finally, to be on the safe side we just check up on the number of deaths from summing
the 15 causes and from summing the 3 causes — they should add up to the same.

> apply( mortDK[,22:39], 2, sum )

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
31450 518143 15143 35984 6522 47680 218808 783766 138027 39749
d11 d12 d13 d14 d15 d.can d.cvd d.oth

47232 57132 50680 67718 158333 518143 1002574 695650

> sum( mortDK[,22:36] )

[1] 2216367

> sum( mortDK[,37:39] )

[1] 2216367

3 Modelling

We will model the rates as functions of age and calendar time. We use the midpoint of
the intervals as continuous variables. We shall use natural splines which require that a
number of knots be defined, as well as a pair of boundary knots. These will be used
extensively, so we define them a priori, so that it is possible to change them by only
changing on place in the program. Moreover, we will want to predict age and calendar
time effects at a number of prespecified points, so we specify these in advance too.

> a.Bo <- c(0,90) # boundary knots for age
> a.kn <- seq(5,85,5) # internal knots for age
> a.int <- 1/20 # interval length for prediction of mortality by age
> a.pr <- seq(0,90,a.int) # prediction point for age-specific mortality
> p.kn <- 5:8*10 # boundary knots for calendar time
> p.Bo <- c(40,90) # internal knots for calendar time
> p.ref <- 70 # reference point for calendar time
> p.pr <- 38:88 # prediction points for RR by calendar time

In order to extract the effects we will need so-called contrast matrices, i.e. matrices that
we multiply to estimated parameters in order to extract the estimated effects. These are
based on the natural splines that we will use in the modelling:

> CA <- ns( a.pr, knots=a.kn, Bo=a.Bo, intercept=TRUE )
> CA.ref <- ns( rep(p.ref,nrow(CA)), knots=p.kn, Bo=p.Bo )
> CP <- ns( p.pr, knots=p.kn, Bo=p.Bo, intercept=FALSE )
> CP.ref <- ns( rep(p.ref,nrow(CP)), knots=p.kn, Bo=p.Bo )
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Having set up all the paraphernalia, we can now fit the models — this is done separately
for each sex and separately for each cause of death:

> m.can <- glm( d.can ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==1) )
> m.cvd <- glm( d.cvd ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==1) )
> m.oth <- glm( d.oth ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==1) )
> f.can <- glm( d.can ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==2) )
> f.cvd <- glm( d.cvd ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==2) )
> f.oth <- glm( d.oth ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==2) )

Note that everything here is very parallel; the code to fit models for the the 6 different
transition rates is almost the same, only the response variable and the subset definition
are differs between them.

4 Rates and rate-ratios

We want first to show how the estimated age- and period-effects look for the different
causes separately for the two sexes.

So first we extract the age-specific rates for the reference period defined above. The
contrast matrices CA and CA.ref are placed beside each other (using cbind(), so their
columns correspond to all parameters in the model. The argument E=T causes the
exponential of the estimates (with c.i.) to be computed and placed in columns 5–7 of the
result, which we then select (see the documentation for ci.lin):

> mr.can <- ci.lin( m.can, ctr.mat=cbind(CA,CA.ref), E=T )[,5:7]
> mr.cvd <- ci.lin( m.cvd, ctr.mat=cbind(CA,CA.ref), E=T )[,5:7]
> mr.oth <- ci.lin( m.oth, ctr.mat=cbind(CA,CA.ref), E=T )[,5:7]



8 4 Rates and rate-ratios

> fr.can <- ci.lin( f.can, ctr.mat=cbind(CA,CA.ref), E=T )[,5:7]
> fr.cvd <- ci.lin( f.cvd, ctr.mat=cbind(CA,CA.ref), E=T )[,5:7]
> fr.oth <- ci.lin( f.oth, ctr.mat=cbind(CA,CA.ref), E=T )[,5:7]

We can plot the estimated cause-specific mortality rates in different ways:

1. Plot the rates by each sex in the same frame to show the difference between males
and females, and remembering to scale the y-axis the same way for all three
mortality types:

> yl <- c(0.01,100) # y-axis limits to be used in all plots
> par( mfrow=c(1,3) )
> matplot( a.pr, cbind(mr.can,fr.can)*1000, log="y", ylim=yl,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> text( 0, 100, "Cancer", adj=0 )
> matplot( a.pr, cbind(mr.cvd,fr.cvd)*1000, log="y", ylim=yl,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> text( 0, 100, "Cardiovascular", adj=0 )
> matplot( a.pr, cbind(mr.oth,fr.oth)*1000, log="y", ylim=yl,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> text( 0, 100, "Other causes", adj=0 )

The result of this is shown in figure 1.
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Figure 1: Age-specific mortalities in the reference year 1970. Red is females blue males.

We can make the plot a bit more intelligible by making sure that the y-axis is only
shown once, and properly labeled, that we have a grid for reference and that the
labels are intelligible:

> yl <- c(0.01,100)
> yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) )
> yg <- as.vector( outer( 1:9, 10^(-2:2), "*" ) )
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> par( mfrow=c(1,3), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1, oma=c(4,4,1,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> axis( side=2, at=yt, labels=formatC(yt) )
> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(mr.can,fr.can)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> box()
> text( 0, 100, "Cancer", adj=0 )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(mr.cvd,fr.cvd)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> text( 0, 100, "Cardiovascular", adj=0 )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(mr.oth,fr.oth)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> text( 0, 100, "Other causes", adj=0 )
> mtext( side=1, line=2.5, "Age (years)", outer=T )
> mtext( side=2, line=2.5, "Mortality rate (per 1000 PY)", outer=T, las=0 )

The result of this is shown in figure 2.
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Figure 2: Age-specific mortalities in the reference year 1970. Red is females blue males.

2. Plot the different rates in the same frame to show them relative to each other
separately for each sex. We can re-use the tricks from before to make the figure
nicer in the first attempt:

> yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) ) # tick marks on the y-axis
> yg <- as.vector( outer( 1:9, 10^(-2:2), "*" ) ) # horizontal grid lines
> par( mfrow=c(1,2), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1, oma=c(4,4,1,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> axis( side=2, at=yt, labels=formatC(yt) )
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> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(mr.can,mr.cvd,mr.oth)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(topo.colors(3),each=3) )
> box()
> text( 0, 100, "Males", adj=0 )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(fr.can,fr.cvd,fr.oth)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(topo.colors(3),each=3) )
> box()
> text( 0, 100, "Females", adj=0 )
> text( 90, 0.1*0.8^(0:2), c("Cancer","Cardiovascular","Other"),
+ col=topo.colors(3), adj=1, font=2 )
> mtext( side=1, line=2.5, "Age (years)", outer=T )
> mtext( side=2, line=2.5, "Mortality rate (per 1000 PY)", outer=T, las=0 )

The result of this is shown in figure 3.
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Figure 3: Age-specific mortalities in the reference year 1970.

3. Plot the cause specific rates stacked, so that they together add up to the total
mortality rate. Again we use the same bag of tricks as before

> yl <- c(0.01,100) * 4
> yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) )
> yg <- as.vector( outer( 1:9, 10^(-2:2), "*" ) )
> par( mfrow=c(1,2), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1, oma=c(4,4,1,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> axis( side=2, at=yt, labels=formatC(yt) )
> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(mr.can,
+ mr.can+mr.cvd,
+ mr.can+mr.cvd+mr.oth)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(topo.colors(3),each=3) )
> box()
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> text( 0, 400, "Males", adj=0 )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,90) )
> abline( v=seq(0,90,10), h=yg, col=gray(0.8) )
> matlines( a.pr, cbind(fr.can,
+ fr.can+fr.cvd,
+ fr.can+fr.cvd+fr.oth)*1000,
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(topo.colors(3),each=3) )
> box()
> text( 0, 400, "Females", adj=0 )
> text( 90, 0.1*0.8^(0:2), c("Cancer","Cardiovascular","Other"),
+ col=topo.colors(3), adj=1, font=2 )
> mtext( side=1, line=2.5, "Age (years)", outer=T )
> mtext( side=2, line=2.5, "Mortality rate (per 1000 PY)", outer=T, las=0 )

The result of this is shown in figure 4.
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Figure 4: Age-specific mortalities in the reference year 1970, stacked over causes.

4.1 Time effects

We fitted models for the mortality rates with a period effect, so we would like also to
know how rates vary by calendar time. We showed the age-specific rates for the year
1970 (coded as 70), so the appropriate display would be the rate-ratios relative to the
year 1970. To this end we need the defined contrast matrices from previously, CP and
CP.ref. When we multiply CP to the period parameters, we get the period RR (at the
times we stored in p.pr) relative to some arbitrary point where the chosen spline
function for calendar time (per) is 0. When multiplying the CP.ref we get the RR for
the year p.ref, in this case 1970, relative to the same arbitrary reference point. Hence
subtraction will give us the RR relative to 1970. Since we are multiplying the matrices
to the same set of parameters, we might as well use the difference of the matrices to
multiply with the parameters.
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Furthermore, since we are not accessing all the parameters from the model, we must
use the subset argument to ci.lin. Note that the subset argument to ci.lin selects
those parameters where the given argument is a substring of the parameter name.

> m.can.RR <- ci.lin( m.can, subset="per", ctr.mat=CP-CP.ref, E=T )[,5:7]
> m.cvd.RR <- ci.lin( m.cvd, subset="per", ctr.mat=CP-CP.ref, E=T )[,5:7]
> m.oth.RR <- ci.lin( m.oth, subset="per", ctr.mat=CP-CP.ref, E=T )[,5:7]
> f.can.RR <- ci.lin( f.can, subset="per", ctr.mat=CP-CP.ref, E=T )[,5:7]
> f.cvd.RR <- ci.lin( f.cvd, subset="per", ctr.mat=CP-CP.ref, E=T )[,5:7]
> f.oth.RR <- ci.lin( f.oth, subset="per", ctr.mat=CP-CP.ref, E=T )[,5:7]

Once we have computed the period-specific RRs, we can plot them, either by cause of
death or by sex, comparing trends between causes of death separately for each sex:

> yl <- c(0.5,2)
> yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) )
> yg <- 5:20/10
> par( mfrow=c(1,2), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1, oma=c(4,4,1,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(1935,1990) )
> axis( side=2, at=yt, labels=formatC(yt) )
> abline( v=seq(1930,2000,10), h=yg, col=gray(0.8) )
> matlines( p.pr+1900, cbind(m.can.RR,m.cvd.RR,m.oth.RR),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(topo.colors(3),each=3) )
> box()
> text( 1940, 2, "M", adj=c(0,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(1935,1990) )
> abline( v=seq(1930,2000,10), h=yg, col=gray(0.8) )
> matlines( p.pr+1900, cbind(f.can.RR,f.cvd.RR,f.oth.RR),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(topo.colors(3),each=3) )
> box()
> text( 1940, 2, "F", adj=0 )
> mtext( side=1, line=2.5, "Date of death", outer=T )
> mtext( side=2, line=2.5, "Rate-ratio", outer=T, las=0 )

The results of this is shown in figure 5.
As before we can also do this by cause of death, comparing the two sexes:

> yl <- c(0.5,2)
> yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) )
> yg <- 5:20/10
> par( mfrow=c(1,3), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1, oma=c(4,4,1,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(1935,1990) )
> axis( side=2, at=yt, labels=formatC(yt) )
> abline( v=seq(1930,2000,10), h=yg, col=gray(0.8) )
> matlines( p.pr+1900, cbind(m.can.RR,f.can.RR),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> box()
> text( 1940, 2, "Cancer", adj=c(0,1) )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(1935,1990) )
> abline( v=seq(1930,2000,10), h=yg, col=gray(0.8) )
> matlines( p.pr+1900, cbind(m.cvd.RR,f.cvd.RR),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3) )
> box()
> text( 1940, 2, "Cardiovascular", adj=0 )
> plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(1935,1990) )
> abline( v=seq(1930,2000,10), h=yg, col=gray(0.8) )
> matlines( p.pr+1900, cbind(m.oth.RR,f.oth.RR),
+ type="l", lty=1, lwd=c(3,1,1),
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Figure 5: Age-specific RR, relative to the reference year 1970. Red is females blue males.

+ col=rep(c("blue","red"),each=3) )
> box()
> text( 1940, 2, "Other causes", adj=0 )
> mtext( side=1, line=2.5, "Date of death", outer=T )
> mtext( side=2, line=2.5, "Rate-ratio", outer=T, las=0 )

The results of this is shown in figure 6.
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Figure 6: Age-specific RR relative to the reference year 1970. Red is females, blue males.
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4.2 Cumulative risks

The cumulative risks for each cause are the probabilities that a person ends up dead
from a given cause of death. The formulae for computing these probabilities are in the
case where we have say 3 causes of death, all rely on the survival function, i.e. the
probability of being alive at some time:

S(t) = exp

(
−
∫ t

0

µcan(u) + µcvd(u) + µoth(u) du

)
The probability of being dead from each of the three causes are:

pdead from cancer(t) =

∫ t

0

S(u)µcan(u) du

pdead from CVD(t) =

∫ t

0

S(u)µcvd(u) du

pdead from other causes(t) =

∫ t

0

S(u)µoth(u) du

These formulae are easily transformed into R-code, exploiting that we already have
computed the mortality rates by age. Note that the age-specific mortality rates
(referring to the calendar time 1970) are stored in the variables mr.can, mr.cvd mr.oth

for men and the corresponding variables for women; this was done by the calculations
shown on page 7.

For the calculation of the cumulative probabilities it essential that we know the scale
of the mortality rates that we have extracted from the models. We fitted the models
using an offset term log(risk), and since risk is population-follow-up time in years, it
follows that the rates we derived by ci.lin() are in units of “cases per one
person-year”. Since the rates were calculated for each a.int year, we must multiply with
this interval width when we compute the integral making up the survival function. To
crosscheck that we got things approximately right, we also make a quick plot of the
survival functions for men and women together, as seen in figure 7.

> m.surv <- exp( -cumsum( (mr.can[,1]+mr.cvd[,1]+mr.oth[,1])*a.int ) )
> f.surv <- exp( -cumsum( (fr.can[,1]+fr.cvd[,1]+fr.oth[,1])*a.int ) )
> matplot( a.pr, cbind(m.surv,f.surv), type = "l", ylim=c(0,1),
+ col=c("blue","red"), lwd=3, lty=1 )

Once the survival function is known, we can now compute the cumulative probabilities
of being dead from each of the causes before a given age. Again, note that the function
we are integrating is the survival times the mortality, and since it is computed in
intervals of length a.int apart, we must multiply by this to get the integral correct:

> m.pd.can <- cumsum( mr.can[,1]*m.surv*a.int )
> m.pd.cvd <- cumsum( mr.cvd[,1]*m.surv*a.int )
> m.pd.oth <- cumsum( mr.oth[,1]*m.surv*a.int )
> f.pd.can <- cumsum( fr.can[,1]*f.surv*a.int )
> f.pd.cvd <- cumsum( fr.cvd[,1]*f.surv*a.int )
> f.pd.oth <- cumsum( fr.oth[,1]*f.surv*a.int )
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Figure 7: Survival functions based on the sum of the three component causes. Red is
females, blue males.

Note that we are formally making an error here; the survival function is calculated using
the rates in each interval, so it is the survival at the end of each interval. In these
calculations we multiply this with the mortality rates at the beginning of each interval.
This error is minimized by choosing the intervals suitably small, we chose a length
a.int equal to 1/20 year, see p. 6.

We can then plot the stacked probabilities showing the eventual distribution of causes
of death among diabetes patients:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> # Males
> matplot( a.pr, cbind(m.surv,
+ m.surv+m.pd.cvd,
+ m.surv+m.pd.cvd+m.pd.can,
+ m.surv+m.pd.cvd+m.pd.can+m.pd.oth),
+ type="l", lty=1, lwd=3,
+ ylim=c(0,1), col="blue",
+ xlab = "Age", ylab="Fraction males dead" )
> ll <- min( which(a.pr>83) )
> text( 90, (m.surv+m.pd.cvd/2)[ll], "CVD", adj=1 )
> text( 90, (m.surv+m.pd.cvd+m.pd.can/2)[ll], "Cancer", adj=1 )
> text( 90, (m.surv+m.pd.cvd+m.pd.can+m.pd.oth/2)[ll], "Other", adj=1 )
> # Females
> matplot( a.pr, cbind(f.surv,
+ f.surv+f.pd.cvd,
+ f.surv+f.pd.cvd+f.pd.can,
+ f.surv+f.pd.cvd+f.pd.can+f.pd.oth),
+ type="l", lty=1, lwd=3,
+ ylim=c(0,1), col="red",
+ xlab = "Age", ylab="Fraction males dead" )
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> ll <- min( which(a.pr>83) )
> text( 90, (f.surv+f.pd.cvd/2)[ll], "CVD", adj=1 )
> text( 90, (f.surv+f.pd.cvd+f.pd.can/2)[ll], "Cancer", adj=1 )
> text( 90, (f.surv+f.pd.cvd+f.pd.can+f.pd.oth/2)[ll], "Other", adj=1 )

The resulting curves are shown in the upper panel of figure 8.

4.3 Conditional survival and cause of death distribution

It can be argued whether the above calculations are relevant, in that they address the
predicted cause of death pattern, assuming that the cross-sectional we computed apply
throughout life. This can partly being alleviated by doing the analysis conditional on
survival to age 60, say. This is equivalent to only using mortalities from age 60, and is
simplest implemented by making an indicator for these ages and multiplying with this in
all calculations:

> incl <- (a.pr>59.99)
> m.surv <- exp( -cumsum( (mr.can[,1]+mr.cvd[,1]+mr.oth[,1])*a.int*incl ) )
> f.surv <- exp( -cumsum( (fr.can[,1]+fr.cvd[,1]+fr.oth[,1])*a.int*incl ) )
> m.pd.can <- cumsum( mr.can[,1]*m.surv*a.int*incl )
> m.pd.cvd <- cumsum( mr.cvd[,1]*m.surv*a.int*incl )
> m.pd.oth <- cumsum( mr.oth[,1]*m.surv*a.int*incl )
> f.pd.can <- cumsum( fr.can[,1]*f.surv*a.int*incl )
> f.pd.cvd <- cumsum( fr.cvd[,1]*f.surv*a.int*incl )
> f.pd.oth <- cumsum( fr.oth[,1]*f.surv*a.int*incl )

We can now plot these lines to show how distribution of causes of death changes when
we condition on survival to a given age, they are shown in the lower part of figure 8.

Note that the multiplication trick has rendered the survival equal to 1 for the entire
age-span up to 60; so we get a set of curves that does not “take off” till after age 60.

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> # Males
> matplot( a.pr, cbind(m.surv,
+ m.surv+m.pd.cvd,
+ m.surv+m.pd.cvd+m.pd.can,
+ m.surv+m.pd.cvd+m.pd.can+m.pd.oth),
+ type="l", lty=1, lwd=3,
+ ylim=c(0,1), col="blue",
+ xlab = "Age", ylab="Fraction males dead" )
> ll <- min( which(a.pr>83) )
> text( 90, (m.surv+m.pd.cvd/2)[ll], "CVD", adj=1 )
> text( 90, (m.surv+m.pd.cvd+m.pd.can/2)[ll], "Cancer", adj=1 )
> text( 90, (m.surv+m.pd.cvd+m.pd.can+m.pd.oth/2)[ll], "Other", adj=1 )
> # Females
> matplot( a.pr, cbind(f.surv,
+ f.surv+f.pd.cvd,
+ f.surv+f.pd.cvd+f.pd.can,
+ f.surv+f.pd.cvd+f.pd.can+f.pd.oth),
+ type="l", lty=1, lwd=3,
+ ylim=c(0,1), col="red",
+ xlab = "Age", ylab="Fraction males dead" )
> ll <- min( which(a.pr>83) )
> text( 90, (f.surv+f.pd.cvd/2)[ll], "CVD", adj=1 )
> text( 90, (f.surv+f.pd.cvd+f.pd.can/2)[ll], "Cancer", adj=1 )
> text( 90, (f.surv+f.pd.cvd+f.pd.can+f.pd.oth/2)[ll], "Other", adj=1 )

The comparison between the upper an lower panels is not easy, we shall subsequently
return how to illustrate these effects by over-plotting.
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Figure 8: Cumulative risk functions, the lower panel conditional on survival till age 60,
based on the sum of the three component causes. Red is females, blue males.
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5 Tidying the code — some R-tricks exemplified

5.1 Setting up an array

In the above section we have done computations separately for men and women and for
each of three causes of death, and we have computed cumulative risks to ages 0–90.
Moreover we also conditioned on survival to age 60, but we may want to expand this to
a whole sequence of ages of conditioning.

Thus we have three factors across which we want to do the calculations and the plots.
It would therefore be convenient if we could just have the relevant code once, and collect
the relevant results in a data structure that allows us to access it later.

The structure which is used for this sort of data collection is an array. It is basically a
multidimensional table, where you can refer to the elements by indices.

The input to all our analyses are the mortality rates; the single rates are classified by
sex (2 levels), cause (3 levels) and age (90 levels, say). Hence we set up an array with
these dimensions and the fill the rates into it. First the array, which we initialize by NAs
and then specify the dimensions

> rates <- array( NA, dim=c(2,3,90) )

We would like to be able to refer to the elements of the array by names in the
dimensions, so we would also stick in a dimnames argument, which is a named list:

> rates <- array( NA, dim=c(2,3,90),
+ dimnames=list(sex=c("M","F"),
+ cause=c("can","cvd","oth"),
+ age=0:89) )
> dim( rates )

[1] 2 3 90

> dimnames( rates )

$sex
[1] "M" "F"

$cause
[1] "can" "cvd" "oth"

$age
[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14"
[16] "15" "16" "17" "18" "19" "20" "21" "22" "23" "24" "25" "26" "27" "28" "29"
[31] "30" "31" "32" "33" "34" "35" "36" "37" "38" "39" "40" "41" "42" "43" "44"
[46] "45" "46" "47" "48" "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59"
[61] "60" "61" "62" "63" "64" "65" "66" "67" "68" "69" "70" "71" "72" "73" "74"
[76] "75" "76" "77" "78" "79" "80" "81" "82" "83" "84" "85" "86" "87" "88" "89"

You can now refer to elements of the array either by numbers or names by using a set of
“[]”s with three indices, separated by commas. If you leave an empty space between
commas it is interpreted as all elements along that dimension.

> rates["M",1:2,1:4]

age
cause 0 1 2 3
can NA NA NA NA
cvd NA NA NA NA
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> rates["M",,1:4]

age
cause 0 1 2 3
can NA NA NA NA
cvd NA NA NA NA
oth NA NA NA NA

> rates[,,1:4]

, , age = 0

cause
sex can cvd oth
M NA NA NA
F NA NA NA

, , age = 1

cause
sex can cvd oth
M NA NA NA
F NA NA NA

, , age = 2

cause
sex can cvd oth
M NA NA NA
F NA NA NA

, , age = 3

cause
sex can cvd oth
M NA NA NA
F NA NA NA

The last does not look very nice; the display is cleaner if we put it in an ftable

statement (f for “flat” table):

> ftable( rates[,,1:7] )

age 0 1 2 3 4 5 6
sex cause
M can NA NA NA NA NA NA NA

cvd NA NA NA NA NA NA NA
oth NA NA NA NA NA NA NA

F can NA NA NA NA NA NA NA
cvd NA NA NA NA NA NA NA
oth NA NA NA NA NA NA NA

There is nothing in the array yet, but as you can see the specification of the array is a
bit clumsy, because the dim has to fit with the lengths of dimnames. The solution to this
is to specify only the dimnames, and then compute the dim from it; also note here that
we have put in ages in 6-month intervals for illustration later):

> dnam <- list( sex=c("M","F"),
+ cause=c("can","cvd","oth"),
+ age=seq(0,90,0.5) )
> rates <- array( NA, dimnames=dnam, dim=sapply(dnam,length) )
> str( rates )
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logi [1:2, 1:3, 1:181] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 3
..$ sex : chr [1:2] "M" "F"
..$ cause: chr [1:3] "can" "cvd" "oth"
..$ age : chr [1:181] "0" "0.5" "1" "1.5" ...

sapply is a function that applies a function to each element of a list, in this case
length, and returns a vector with one value per list element. So basically just finds out
how many levels there are along each of the dimensions we want.

Finally we note that even if we specified the age-dimension by a numerical vector, the
third dimension must be referred to as a character:
> rates[,,"7.5"]

cause
sex can cvd oth
M NA NA NA
F NA NA NA

Note, that if there is only one level of a dimension in an array, this dimension is
dropped, so the array rates[,,"7.5"] is a two-dimensional array. We can however
request to keep the third dimension as a separate dimension with only one level, which
enables us to see what age we actually have selected by the "7.5":
> rates[,,"7.5",drop=F]

, , age = 7.5

cause
sex can cvd oth
M NA NA NA
F NA NA NA

> ftable( rates[,,"7.5",drop=F] )

age 7.5
sex cause
M can NA

cvd NA
oth NA

F can NA
cvd NA
oth NA

If you refer to the age-dimension as a number you do not get the element corresponding
to that age, but you get the 7th element (7.5 truncated to 7), corresponding to age 3.
> rates[,,7.5,drop=F]

, , age = 3

cause
sex can cvd oth
M NA NA NA
F NA NA NA

> rates[,,7.6,drop=F]

, , age = 3

cause
sex can cvd oth
M NA NA NA
F NA NA NA

However, so far we only have an array of missing values. . .
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5.2 Putting values into the array

Now we want the array to hold the mortality rates not in half year intervals, but in
intervals as we computed them, namely in the ages as given in the vector a.pr, so we
redefine the array:

> dnam <- list( sex=c("M","F"),
+ cause=c("can","cvd","oth"),
+ age=a.pr )
> rates <- array( NA, dimnames=dnam, dim=sapply(dnam,length) )
> str( rates )

logi [1:2, 1:3, 1:1801] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 3
..$ sex : chr [1:2] "M" "F"
..$ cause: chr [1:3] "can" "cvd" "oth"
..$ age : chr [1:1801] "0" "0.05" "0.1" "0.15" ...

Now we can take the predicted rates and put into the array — note that we do not store
the the confidence limits here, we only select the rates from column 5 of the result from
ci.lin:

> rates["M","can",] <- ci.lin( m.can, ctr.mat=cbind(CA,CA.ref), E=T )[,5]
> rates["M","cvd",] <- ci.lin( m.cvd, ctr.mat=cbind(CA,CA.ref), E=T )[,5]
> rates["M","oth",] <- ci.lin( m.oth, ctr.mat=cbind(CA,CA.ref), E=T )[,5]
> rates["F","can",] <- ci.lin( f.can, ctr.mat=cbind(CA,CA.ref), E=T )[,5]
> rates["F","cvd",] <- ci.lin( f.cvd, ctr.mat=cbind(CA,CA.ref), E=T )[,5]
> rates["F","oth",] <- ci.lin( f.oth, ctr.mat=cbind(CA,CA.ref), E=T )[,5]

It is possible to reduce the code further because we need only specify the model and the
extraction of rates once if we set up a nested for loop where we cycle over sex and site.

To this end we must find out where the response variables are in the data frame in
order to access them properly:

> names( mortDK )

[1] "age" "per" "sex" "risk" "dt" "rt" "r1" "r2" "r3"
[10] "r4" "r5" "r6" "r7" "r8" "r9" "r10" "r11" "r12"
[19] "r13" "r14" "r15" "d1" "d2" "d3" "d4" "d5" "d6"
[28] "d7" "d8" "d9" "d10" "d11" "d12" "d13" "d14" "d15"
[37] "d.can" "d.cvd" "d.oth"

It appears that they are variable numbers 37 to 39, in the same order as in the array. So
now can we set up the loops where the outer one is over sex and the inner over cause.

In the call to glm we must have the same response variable to refer to, so we make a
new variable in the data frame which is repeatedly overwritten:

> for ( sx in 1:2 ) for( cs in 1:3 )
+ {
+ mortDK$D <- mortDK[,36+cs]
+ model <- glm( D ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==sx) )
+ }
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Apart from this we also must extract the rates and put them into our array inside the
loop. Note how we use the loop variables sx and cs to fill the rates into the right places
of the array.

> for ( sx in 1:2 ) for( cs in 1:3 )
+ {
+ mortDK$D <- mortDK[,36+cs]
+ model <- glm( D ~
+ ns(age,knots=a.kn,Bo=a.Bo,i=T) - 1
+ + ns(per, kn=p.kn, Bo=p.Bo),
+ offset=log(risk),
+ family=poisson,
+ data = subset(mortDK,sex==sx) )
+ rates[sx,cs,] <- ci.lin( model, ctr.mat=cbind(CA,CA.ref), E=T )[,5]
+ }

Also note that the third dimension of the array is defined by a.pr and so are the rows of
CA and CA.ref, see p. 6 — so it is guaranteed that the results of ci.lin will always fit
into the array.

We want to compute cumulative risks for death for each cause, and also cumulative
risks conditional on survival till some age. So an array to hold these results would have
to be classified by an extra dimension, namely the age at which we condition:

> dnam <- list( sex=c("M","F"),
+ cause=c("can","cvd","oth"),
+ age=a.pr,
+ cond=c(0,seq(50,80,5)) )
> crisk <- array( NA, dimnames=dnam, dim=sapply(dnam,length) )
> str( crisk )

Logically we would actually also want to include the cumulative risk of being alive —
the survival, so we redefine the array again:

> dnam <- list( sex=c("M","F"),
+ cause=c("can","cvd","oth","S"),
+ age=a.pr,
+ cond=c(0,seq(50,80,5)) )
> crisk <- array( NA, dimnames=dnam, dim=sapply(dnam,length) )
> str( crisk )

logi [1:2, 1:4, 1:1801, 1:8] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ sex : chr [1:2] "M" "F"
..$ cause: chr [1:4] "can" "cvd" "oth" "S"
..$ age : chr [1:1801] "0" "0.05" "0.1" "0.15" ...
..$ cond : chr [1:8] "0" "50" "55" "60" ...

Now we can use the previous formulae to put values into this array, first without
conditioning on survival till a particular age (or, conditioning on survival till age 0), i.e.
for cond equal to "0":

> for( sx in 1:2 )
+ {
+ crisk[sx,"S",,"0"] <- exp( -cumsum( (rates[sx,"can",]+
+ rates[sx,"cvd",]+
+ rates[sx,"oth",]) * a.int ) )
+ for( cs in 1:3 )
+ {
+ crisk[sx,cs,,"0"] <- cumsum( rates[sx, cs, "0"] *
+ crisk[sx,"S",,"0"] * a.int )
+ }
+ }
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When we want to condition on survival to a given age we devised a variable which was
the indicator of age above the age at which we conditioned. So effectively we need a loop
around the two we already have that devises this for us. But recall the dimensions of the
arrays are characters, so we need to fish out the numeric and then devise the indicator:

Note the following:

> dimnames(crisk)[4]

$cond
[1] "0" "50" "55" "60" "65" "70" "75" "80"

> dimnames(crisk)[[4]]

[1] "0" "50" "55" "60" "65" "70" "75" "80"

> as.numeric( dimnames(crisk)[[4]] )

[1] 0 50 55 60 65 70 75 80

The first gives a list with one element, namely the vector of names, technically this is a
sublist of length 1. The second with the “[[]]” gives the fourth element of the list, in
this case the character vector. But we need the numbers, so it is the last type of
expression we need in our loop. Actually we also use the character vector as our
loop-variable. Note that this will also work for age 0, and that we subtract a small
amount from the age at which we condition, in order to avoid larger or equal to, since
equality is alway uncertain on a computer:

> for( ac in dimnames(crisk)[[4]] )
+ {
+ incl <- ( a.pr > (as.numeric(ac)-a.int/10) )
+ for( sx in 1:2 )
+ {
+ crisk[sx,"S",,ac] <- exp( -cumsum( (rates[sx,"can",]+
+ rates[sx,"cvd",]+
+ rates[sx,"oth",]) * a.int * incl ) )
+ for( cs in dimnames(rates)[[2]] )
+ {
+ crisk[sx,cs,,ac] <- cumsum( rates[sx,cs,] *
+ crisk[sx,"S",,ac] * a.int * incl )
+ }
+ }
+ }

For further generality, to make the code independent of the number of causes, we note
that the terms rates[sx,"can",] etc. should be replaced by a sum over the first of the
two dimensions of rates[sx,,] — when the level of the first dimension is fixed the
result is a two-dimensional array. For this purpose we use the function apply, which
applies a specified function across one or more dimensions of an array. The expressions

> rates[sx,"can",] + rates[sx,"cvd",] + rates[sx,"oth",]

is equivalent to:

> apply( rates[sx,,], 2, sum )
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which is to interpreted as “apply the function sum on the two-dimensional array
rates[sx,,] (classified by (cause,age), since we have fixed sex to the current value of
sx), such that the result is classified by dimension 2 of the array (in this case age). Thus
the second argument to apply is the dimension(s) of the original array that will be
classifying the result; the function (in this case sum) is applied to all elements of the
array in each slice along this dimension.

Thus the final generality which also caters for any number of competing risks:

> for( ac in dimnames(crisk)[[4]] )
+ {
+ incl <- ( a.pr > (as.numeric(ac)-a.int/10) )
+ for( sx in dimnames(rates)[[1]] )
+ {
+ crisk[sx,"S",,ac] <- exp( -cumsum( apply(rates[sx,,],2,sum) * a.int * incl ) )
+ for( cs in dimnames(rates)[[2]] )
+ {
+ crisk[sx,cs,,ac] <- cumsum( rates[sx,cs,] *
+ crisk[sx,"S",,ac] * a.int * incl )
+ }
+ }
+ }

So now we have all the modelling and the computation of the rates embedded in two
nested loops, that all live off a few variables we have defined up front, such as the causes
of death (and where they are stored in the database), the ages at which we condition on
survival etc.

If we for example had a dataset with two groups of persons, such as diabetes patients
and non-diabetic we would expand the arrays with a DM / non-DM dimension and put
an extra loop around the two loops we already have.

The advantage of this approach is that we are absolutely sure that both sexes and all
causes of death are dealt with in the same way, and we have only one place in the code
where the formulae are translated into code. Moreover, if we for example want to change
the set of ages where we condition on survival to.

5.3 Saving results

Apart from the clarity in the expression of statistical and demographic theory in
computer code, a main reason to collect results in an array is that subsequent plotting
and reporting of results in tabular form gets easier. This is particularly the case when
model fitting (unlike in this example) takes a long time.

Plotting results is (even in R!) is a trial and error process and therefore it is handy to
have the numbers you actually want to plot collected in an array. Hence you would
typically want to save the resulting array(s) for future retrieval:

> save( rates, crisk, file="../data/rates-risk.Rdata" )
> load( file="../data/rates-risk.Rdata" )

5.4 Plotting results

When we want make plots of the cumulative probabilities we would do this the same
way we did with the previous plots, but now exploiting the fact that we have have all
the results we want to plot available in an array.
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In order to compare males and females we plot the figure for females mirrored, so the
first try

> matplot( a.pr,
+ cbind( crisk["M","S",,"0"],
+ crisk["M","S",,"0"]+crisk["M","can",,"0"],
+ crisk["M","S",,"0"]+crisk["M","can",,"0"]+crisk["M","cvd",,"0"],
+ crisk["M","S",,"0"]+crisk["M","can",,"0"]+crisk["M","cvd",,"0"],+crisk["M","oth",,"0"] ),
+ type="l", lty=1, lwd=2, col="blue" )

However, instead we would rather make automatic the cumulative sum over survival and
the causes. This can be done using apply with the function cumsum. The structure of
the result can be shown this way:

> str( apply(crisk,c(1,3,4),cumsum) )

num [1:4, 1:2, 1:1801, 1:8] 4.34e-06 8.57e-06 1.93e-03 1.00 3.82e-06 ...
- attr(*, "dimnames")=List of 4
..$ : chr [1:4] "can" "cvd" "oth" "S"
..$ sex : chr [1:2] "M" "F"
..$ age : chr [1:1801] "0" "0.05" "0.1" "0.15" ...
..$ cond: chr [1:8] "0" "50" "55" "60" ...

This use of apply has taken cumulative sum along the dimension number 2 for each
slice of the array classified by a combination of the 1st, 3rd and 4th dimension. The
result is classified by first the dimension returned by cumsum, that is the former
dimension number 2, and then the remaining dimensions (1,3,4).

Moreover the sum is in the order (can, cvd, oth, S), but we would really prefer the
order (S,can, cvd, oth), but this can be fixed by permuting the 2nd dimension before
using the apply function:

> str( apply(crisk[,c(4,1,2,3),,],c(1,3,4),cumsum) )

num [1:4, 1:2, 1:1801, 1:8] 0.998 0.998 0.998 1 0.999 ...
- attr(*, "dimnames")=List of 4
..$ : chr [1:4] "S" "can" "cvd" "oth"
..$ sex : chr [1:2] "M" "F"
..$ age : chr [1:1801] "0" "0.05" "0.1" "0.15" ...
..$ cond: chr [1:8] "0" "50" "55" "60" ...

So no we can produce an array of the stacked cumulative risks that we want to plot

> stcr <- apply( crisk[,c(4,1,2,3),,], c(1,3,4), cumsum )
> str( stcr )

num [1:4, 1:2, 1:1801, 1:8] 0.998 0.998 0.998 1 0.999 ...
- attr(*, "dimnames")=List of 4
..$ : chr [1:4] "S" "can" "cvd" "oth"
..$ sex : chr [1:2] "M" "F"
..$ age : chr [1:1801] "0" "0.05" "0.1" "0.15" ...
..$ cond: chr [1:8] "0" "50" "55" "60" ...

This enables us to compare males and females directly, by reverting the x-axis of the
females:
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> par( mfrow=c(1,2), mar=c(0,0,0,0), oma=c(3,3,1,3), mgp=c(3,1,0)/1.6,
+ las=1, bty="n" )
> matplot( a.pr, t(stcr[,"M",,"0"]),
+ ylim=c(0,1), xlim=c(0,90), xaxs="i", yaxs="i",
+ type="l", lty=1, lwd=3, col="blue", bty="l" )
> matplot( a.pr, t(stcr[,"F",,"0"]),
+ ylim=c(0,1), xlim=c(90,0), xaxs="i", yaxs="i", yaxt="n",
+ type="l", lty=1, lwd=3, col="red", bty="]" )
> axis( side=4 )

We would also like to plot the conditional probabilities, conditioning on survival till age
60. This just requires a matlines extra for each sex, using dotted lines instead to
distinguish from the original ones. For clarity we have stretched the age-axis by
discarding ages under 50:

> par( mfrow=c(1,2), mar=c(0,0,0,0), oma=c(3,3,1,3), mgp=c(3,1,0)/1.6,
+ las=1, bty="n" )
> matplot( a.pr, t(stcr[,"M",,"0"]),
+ ylim=c(0,1), xlim=c(50,90), xaxs="i", yaxs="i",
+ type="l", lty=1, lwd=3, col="blue", bty="l" )
> matlines( a.pr, t(stcr[,"M",,"60"]),
+ type="l", lty=1, lwd=2, col="blue" )
> matplot( a.pr, t(stcr[,"F",,"0"]),
+ ylim=c(0,1), xlim=c(90,50), xaxs="i", yaxs="i", yaxt="n",
+ type="l", lty=1, lwd=3, col="red", bty="]" )
> matlines( a.pr, t(stcr[,"F",,"60"]),
+ type="l", lty=1, lwd=2, col="red" )
> axis( side=4 )

These two plots are shown in figure 9
If we want to plot the conditional survivals for all the ages we conditioned on in the

analysis we can simplify things using a for-loop:

> par( mfrow=c(1,2), mar=c(0,0,0,0), oma=c(3,3,1,3), mgp=c(3,1,0)/1.6,
+ las=1, bty="n" )
> matplot( a.pr, t(stcr[,"M",,"0"]),
+ ylim=c(0,1), xlim=c(50,90), xaxs="i", yaxs="i",
+ type="l", lty=1, lwd=3, col="blue", bty="l" )
> for( ca in 2:8 ) matlines( a.pr, t(stcr[,"M",,ca]),
+ type="l", lty=1, lwd=1, col="blue" )
> matplot( a.pr, t(stcr[,"F",,"0"]),
+ ylim=c(0,1), xlim=c(90,50), xaxs="i", yaxs="i", yaxt="n",
+ type="l", lty=1, lwd=3, col="red", bty="]" )
> for( ca in 2:8 ) matlines( a.pr, t(stcr[,"F",,ca]),
+ type="l", lty=1, lwd=1, col="red" )
> axis( side=4 )

This is shown in the top panel of figure 10.
It may be of interest to see this pattern for a different ordering of the causes of death,

for example by interchanging cvd and other causes. This can be very simply achieved by
changing the cumulative summing order when forming stcr, so it is just replacing
c(4,1,2,3) by c(4,1,3,2):

> stcr <- apply( crisk[,c(4,1,3,2),,], c(1,3,4), cumsum )
> par( mfrow=c(1,2), mar=c(0,0,0,0), oma=c(3,3,1,3), mgp=c(3,1,0)/1.6,
+ las=1, bty="n" )
> matplot( a.pr, t(stcr[,"M",,"0"]),
+ ylim=c(0,1), xlim=c(50,90), xaxs="i", yaxs="i",
+ type="l", lty=1, lwd=3, col="blue", bty="l" )
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Figure 9: Stacked cumulative probabilities of survival and death from three different causes,
from bottom up: Cancer, CVD and other causes. Red is females, blue males.

> for( ca in 2:8 ) matlines( a.pr, t(stcr[,"M",,ca]),
+ type="l", lty=1, lwd=1, col="blue" )
> matplot( a.pr, t(stcr[,"F",,"0"]),
+ ylim=c(0,1), xlim=c(90,50), xaxs="i", yaxs="i", yaxt="n",
+ type="l", lty=1, lwd=3, col="red", bty="]" )
> for( ca in 2:8 ) matlines( a.pr, t(stcr[,"F",,ca]),
+ type="l", lty=1, lwd=1, col="red" )
> axis( side=4 )
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This is shown in the bottom panel of figure ??, where it appears that conditioning on
successively older ages of survival mainly influences the fraction of persons that die from
cancer, whereas the fraction dying from CVD is not varying much.
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Figure 10: Stacked cumulative probabilities of survival and death from three different
causes. In the top panel the causes from bottom up are cancer, cvd and other causes; in
the bottom panel they are cancer, other, cvd. Red is females, blue males.
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