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Background In studies of all-cause mortality, the fundamental epidemiological
concepts of rate and risk are connected through a well-defined
one-to-one relation. An important consequence of this relation is
that regression models such as the proportional hazards model that
are defined through the hazard (the rate) immediately dictate how
the covariates relate to the survival function (the risk).

Methods This introductory paper reviews the concepts of rate and risk and
their one-to-one relation in all-cause mortality studies and intro-
duces the analogous concepts of rate and risk in the context of
competing risks, the cause-specific hazard and the cause-specific
cumulative incidence function.

Results The key feature of competing risks is that the one-to-one corres-
pondence between cause-specific hazard and cumulative incidence,
between rate and risk, is lost. This fact has two important implica-
tions. First, the naı̈ve Kaplan–Meier that takes the competing
events as censored observations, is biased. Secondly, the way in
which covariates are associated with the cause-specific hazards
may not coincide with the way these covariates are associated
with the cumulative incidence. An example with relapse and
non-relapse mortality as competing risks in a stem cell transplant-
ation study is used for illustration.

Conclusion The two implications of the loss of one-to-one correspondence
between cause-specific hazard and cumulative incidence should
be kept in mind when deciding on how to make inference in a
competing risks situation.

Keywords Censored data, competing risks, regression models, survival analysis

Introduction
Epidemiology deals with the occurrence of diseases in
populations when observed over time, and the fre-
quency with which diseased cases occur is measured
using the concepts of ‘risk’ and ‘rate’. Standard text
books in epidemiology (e.g. Rothman,1 Ch. 3; dos
Santos Silva,2 Section 4.2) typically define the risk

as the fraction D=N of N originally disease-free indi-
viduals in the population who develop the disease
over a specified follow-up period, say, from time 0
to time t. Note that the risk must necessarily increase
with t. On the other hand, the rate would typically be
defined as the number, D, of individuals in the popu-
lation who develop the disease during a specified
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follow-up period (from 0 to t) divided by the amount
of person-time at risk, Y, observed when following
disease-free individuals from the population from 0
to t. The rate D=Y may increase, stay roughly constant,
or decrease when varying the length t of the
follow-up period.

The statistical counterpart of a risk is a ‘probability’.
Thus, if F(t) denotes the probability that a randomly
selected disease-free individual gets the disease before
time t then the risk D=N estimates F(t) if all
N disease-free individuals in the population are
followed from 0 to t. However, in most follow-up
studies there will inevitably be loss to follow-up,
‘censoring’, and F(t) must then be estimated using
more complicated techniques able to account for
censoring.

The statistical discipline that deals with censored
follow-up data is ‘survival analysis’ and in the next
paragraphs we will summarize basic (perhaps
well-known) features of survival analysis. We will
do that in the context where the event under study
(‘the disease’) is all-cause mortality, that is, an event
which will occur with probability one if the follow-up
period is sufficiently long (t is ‘large’). However, our
motivation for doing this is to set the scene for the
situation where observation of the disease under
study may be preceded by other events, the occur-
rence of which prevents us from observing the disease
of interest. This ‘competing risks’ situation (which is
the rule rather than the exception in epidemiological
follow-up studies) is the topic for the present article.
We shall discuss which concepts from classical sur-
vival analysis (i.e. studies of all-cause mortality) im-
mediately extend to competing risks and we shall
discuss when to be more careful.

Survival analysis
In survival analysis, the object is the time elapsed
from an initiating event, e.g. the onset of some dis-
ease, to death. The probability F(t) of dying before
time t, the cumulative distribution function, is in
some epidemiological texts, e.g. Olsen et al.,3 p. 3
and Rothman and Greenland,4 p. 37, denoted the ‘cu-
mulative incidence function’, and if time to death was
observed for every one in the sample then, as ex-
plained above, F(t) can be estimated as the relative
frequency of survival times less than t. However, the
challenge is to estimate F(t) based on incomplete
data, i.e. to make inference on the underlying, poten-
tially completely observed population in the presence
of censored observations. For this to be feasible, cen-
soring must be ‘independent’, that is, an individual
censored at time t should be representative for those
still at risk at that time. In other words, those cen-
sored should not be individuals with systematically
high or low risk of dying. Under independent censor-
ing, F(t) may be estimated by 1�bSðtÞ, where bSðtÞ is
the ‘Kaplan–Meier estimator’ for the probability

S(t)¼ 1� F(t) of surviving time t. The Kaplan–Meier
estimator at time t is a product with a factor for each
failure time before t. The factor at failure time s is
ð1� Ds=NsÞ where Ds is the number of failures
observed at s (often Ds¼ 1), and Ns the number of
individuals in the study still ‘at risk’, i.e. alive and
uncensored, at time s. We illustrate this calculation
in a small set of data in Table 1.

The concept in survival analysis that corresponds
to the rate is the hazard function h(t). This has the
interpretation that for a small interval from time
t to time tþ d, h(t) � d is approximately the condi-
tional probability of death before time tþ d given sur-
vival until time t. Thus, the hazard function
provides a dynamic (‘local in time’) description
of how the instantaneous risk of failing varies.
The epidemiological rate D=Y mentioned above is
then a sensible estimate for the hazard function if
this is roughly time-constant, i.e. when h(t)¼ h thenbh ¼ D=Y estimates h.

In survival analysis, there is a simple ‘one-to-one’
correspondence between the hazard function and
the survival function. This relationship is

SðtÞ ¼ e�HðtÞ or FðtÞ ¼ 1� e�HðtÞ ð1Þ

see e.g. Clayton and Hills.5 Here, H(t) is the cumula-
tive hazard function at time t, that is, the hazard
function h(�) added (or, mathematically more precise,
‘integrated’) over the time interval from 0 to t. It fol-
lows that, for given hazard function h(t), one may
compute the survival function S(t) (or the cumulative
incidence function F(t)), and vice versa: for given
cumulative incidence the hazard may be computed.
Under independent censoring, the cumulative hazard
at time t may be estimated by the ‘Nelson–Aalen es-
timator’, bHðtÞ. This is a sum with a term for each
failure time before t, the term at failure time s being
Ds=Ns, a computation which is also illustrated in
Table 1. Though values of the cumulative hazard do
not have a simple interpretation, the Nelson–Aalen
estimator is still useful since the slope of the curve
is an estimate of the hazard. Note how the
‘one-to-one correspondence’ between rate and risk is
reflected in the Kaplan–Meier and Nelson–Aalen
estimators, which are both based on the same
basic pieces of information: the number of failures,
Ds and the number at risk, Ns at each failure time, s.

This has important consequences for the analysis of
survival data because models for the hazard function,
e.g. the Cox regression model6 which is very fre-
quently used, immediately imply models for the cu-
mulative incidence F(t). Thus, if a Cox regression
model is fitted for the hazard function and if, based
on this Cox model, presence of a certain factor is seen
to be associated with a higher hazard function then
presence of the factor is also associated with a higher
cumulative incidence. The interpretation of the par-
ameter estimated in a Cox regression model is a
hazard ratio.
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Example
For illustration, we use data of the European Group
for Blood and Marrow Transplantation (EBMT). The
data consist of all chronic myeloid leukaemia (CML)
patients, having received an allogeneic stem cell
transplantation from an Human Leukocyte Antigen
(HLA)-identical sibling or a matched unrelated
donor during the years 1997–2000. Patients had to
be Philadelphia chromosome positive, transplanted
with bone marrow or peripheral blood, and 518
years of age, leaving 3982 patients. Median follow-up
was 8.5 years. An important and very predictive risk
score is the EBMT risk score by Gratwohl et al.,7 ori-
ginally taking values 0 through 7, and often (also
here) for convenience grouped into five distinct
groups, with EBMT risk score 0, 1 (n¼ 506), 2
(n¼ 1159), 3 (n¼ 1218), 4 (n¼ 745) and 5, 6, 7
(n¼ 354). Failure from transplantation may either
be due to relapse, or to non-relapse mortality
(NRM). Often these two endpoints are taken together
to define what is called relapse-free survival (RFS),
which is the time from transplantation to either re-
lapse or death, whichever comes first. Table 2 shows
counts and observed percentages of these events in
each of the EBMT risk groups. The censored patients
were alive without relapse at the end of their
follow-up.

Figure 1 shows both the Nelson–Aalen estimates of
the cumulative hazards (A) and the Kaplan–Meier

estimates of the survival curves (B) for RFS for each
of the five risk groups.

Cox regression for RFS gives hazard ratios (HR)
[95% confidence intervals (CIs)] of 1.27 (1.08–1.48),
1.61 (1.38–1.88), 2.08 (1.77–2.45) and 3.26 (2.73–
3.91) of EBMT risk groups 2, 3, 4 and 5/6/7, respect-
ively, with respect to the reference risk group of 0/1.
Clearly, higher EBMT risk scores imply higher rates of
the composite endpoint relapse or death, consistent
with the left panel of Figure 1. Note that, due to
the one-to-one correspondence between rate and
risk, higher EBMT score also implies higher risk of
relapse or death, i.e. lower RFS curves.

Table 1 Illustration of estimates of the survival function bS, the overall cumulative hazard bH, cause-specific cumulative
hazards bH1; bH2 and cause-specific cumulative incidences bF1;bF2 based on a small set of censored survival data with 2
competing events

s Ds Cause Ns
bSðsÞ bHðsÞ bH1ðsÞ bH2ðsÞ bF1ðsÞ bF2ðsÞ

0 – – 12 1 0 0 0 0 0

5 1 1 12 0.917 0.083 0.083 0.000 0.083 0.000

6 0 0 11 0.917 0.083 0.083 0.000 0.083 0.000

7 1 1 10 0.825 0.183 0.183 0.000 0.175 0.000

8 1 2 9 0.733 0.294 0.183 0.111 0.175 0.092

9 0 0 8 0.733 0.294 0.183 0.111 0.175 0.092

12 0 0 7 0.733 0.294 0.183 0.111 0.175 0.092

13 1 1 6 0.611 0.461 0.350 0.111 0.297 0.214

15 1 2 5 0.489 0.661 0.350 0.311 0.297 0.214

16 1 1 4 0.367 0.911 0.600 0.311 0.419 0.214

20 0 0 3 0.367 0.911 0.600 0.311 0.419 0.214

22 0 0 2 0.367 0.911 0.600 0.311 0.419 0.214

23 1 2 1 0.000 1.911 0.600 1.311 0.419 0.581

s denotes the times of observation, Ds is the number of failures observed at s, cause is the corresponding cause (defined as 0 for the
censored observations) and Ns is the number of subjects still at risk just before s. The Kaplan–Meier estimator bS multiplies factors
1� Ds=Ns for previous times of observations (e.g. 0:917 ¼ 1� 1=12; 0:825 ¼ ð1� 1=12Þð1� 0=11Þð1� 1=10ÞÞ, the Nelson–Aalen es-
timator add terms Ds=Ns for previous times of observation (e.g. 0:083 ¼ 1=12; 0:183 ¼ 1=12þ 0=11þ 1=10Þ. Similarly, bH1 (and bH2)
add terms Ds=Ns for previous times of observation corresponding to failures from the given cause (e.g. 0:111 ¼ 1=9). Finally bF1 (andbF2) estimate the cumulative incidences using Equation (2) based on the columns bS and Ns (and cause) (e.g.

0:175 ¼ 1 � 1=12þ 0:917 � 1=10). Here, bS is used in the time point just before s. Note that, for all times s, bSðsÞ þ bF1ðsÞ þ bF2ðsÞ ¼ 1

and bHðsÞ ¼ bH1ðsÞ þ bH2ðsÞ.

Table 2 Number of censored observations and number of
events for relapse and NRM in each of the EBMT risk
groups

EBMT risk
group Total

Relapse
n(%)

NRM
n(%)

Censored
n(%)

0,1 506 113 (22.3) 94 (18.6) 299 (59.1)

2 1159 247 (21.3) 323 (27.9) 589 (50.8)

3 1218 292 (24.0) 404 (33.2) 522 (42.9)

4 745 193 (25.9) 300 (40.3) 252 (33.8)

5,6,7 354 112 (31.6) 169 (47.7) 73 (20.6)
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In conclusion, survival data (all-cause mortality
data) may be characterized either by the ‘global par-
ameter’, the cumulative incidence function F(t) or by
the ‘local parameter’, the hazard function h(t). These
two ways of characterization are equivalent due to
their one-to-one correspondence.

Competing risks
Suppose now that the event of interest is the onset of
a given disease but that, obviously, individuals may
die without getting the disease. We may then be
interested in the risk or probability of getting the dis-
ease in a given follow-up period from 0 to t or in the
rate or hazard of getting the disease. A naı̈ve analysis
inspired by the methods for survival analysis outlined
above could consider death without the disease as
‘independent censoring’, thereby aiming at making
inference for an underlying, potentially completely
observed population. However, that population
would be one without ‘censoring’, that is, a purely
hypothetical population where individuals could not
die without the disease. A much more satisfactory
approach, to be outlined in the following, is one
where one acknowledges that individuals may die
without the disease and where inference for disease
risks and rates are made ‘in the presence of the com-
peting risk of dying’.

Define F1(t) as the probability (cumulative inci-
dence) of getting the disease before time t. Define,
further, the ‘cause-specific hazard function’ for the
disease, h1(t) as follows: h1(t) � d is (approximately,
when d is small) the conditional probability of getting
the disease before time tþ d given that the individual
is alive and disease-free up to time t. Now, in each
little interval from t to tþ d between time 0 and time t

where the individual is still at risk (alive and
disease-free), he or she has the possibilities of either
getting the disease or dying (without having got it).
Therefore, the cumulative incidence of getting the dis-
ease not only depends on h1(t) but also on the hazard
of dying. This ‘cause-specific hazard of death’, h2(t) is
defined similarly to h1(t); h2(t) � d is (approximately,
when d is small) the conditional probability of dying
before time tþ d given that the individual is alive and
disease-free up to time t. The consequence is that in
the presence of the competing risk of death there is
no longer a one-to-one correspondence between the
(cause-specific) hazard (the rate h1(t)) and the prob-
ability (cumulative incidence) (the risk F1(t)) for the
disease and in order to compute the cumulative inci-
dence, the cause-specific hazard for the competing
event is also needed. The relationship can be derived,
as follows. Divide the interval from 0 to t into many
small intervals each of length d. To get the disease
before time t, it must occur in exactly one of these
small intervals and the probability of getting the dis-
ease before time t, i.e. the cumulative incidence F1(t),
is therefore the sum of the probabilities of getting the
disease exactly in each little interval. The probability
of getting the disease in the little interval from time s
to time sþ d is the probability of being alive and
disease-free until time s times the conditional prob-
ability of getting the disease between s and sþ d given
alive and disease-free at s. The latter conditional prob-
ability is, by the definition of the cause-specific
hazard (approximately) equal to h1(s) � d whereas
the probability of being alive and disease-free (that
is, the probability of staying event-free) until time s
is (by an argument similar to that leading to Equation
(1) for survival data) equal to S(s) ¼ e�H1(s)�H2(s).
Here H1(s) and H2(s) are the cumulative cause-specific
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Figure 1 Nelson–Aalen estimates of the cumulative hazards (A) and the Kaplan–Meier estimates of the survival curves
(B) for RFS for each of the five EBMT risk groups
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hazards for the two competing events, disease and
death without the disease. The result is that F1(t) is
a sum of terms given by S(s) � h1(s) � d, where the sum
is over all small intervals between 0 and t.
Mathematically, this sum is the integral

F1ðtÞ ¼

Z t

0

SðsÞ � h1ðsÞ � ds: ð2Þ

Estimation of F1 (and F2) based on a small data set
using this expression is illustrated in Table 1.
Equation (2) shows that, via the factor S(s) which
involves H2(s), the cumulative incidence for one fail-
ure cause (here: the disease) depends on the rate
(cause-specific hazard) for the competing cause
(here: death without the disease). This is the key fea-
ture of competing risks. There is no longer a one-to-
one correspondence between cumulative incidence
and cause-specific hazard (‘rate and risk’). This fact
has two important implications:

(1) a naı̈ve estimator for the cumulative incidence
F1(t) which only studies cause 1 events (disease
cases), e.g. 1 minus the Kaplan–Meier estimator
based only on disease events and treating deaths
as independent censorings is (upwards) biased;

(2) the way in which the cumulative incidence F1(t)
is associated with covariates may not coincide
with the way in which the cause-specific
hazard h1(t) is associated with covariates, but
will also depend on the association between cov-
ariates and the cause-specific hazard for the
competing event h2(t).

Example
To illustrate the first point, consider the highest risk
group, with EBMT risk score 5, 6 and 7. Figure 2
shows the naı̈ve Kaplan–Meier estimates for relapse
(censoring patients that died before relapse) and for
NRM (censoring patients with relapse) for this high-
est risk group. The estimate of NRM is shown as a
survival curve (starting at 1 and decreasing), the es-
timate of relapse as an incidence curve (starting at 0
and increasing).

The estimated 5-year probabilities of relapse and
NRM, obtained from these naı̈ve Kaplan–Meiers, are
0.515 and 0.569, respectively. It is clear that these can
never be unbiased estimates of the probabilities of
relapse and NRM at 5 years, since they add up to
more than 1. This is impossible, since relapse and
NRM are mutually exclusive events. The correct esti-
mates, using Equation (2) are shown in Figure 3. The
previously obtained naı̈ve Kaplan–Meier estimates are
shown in grey.

The estimated 5-year probabilities of relapse and
NRM, obtained from this relation, are 0.316 and
0.475, respectively, and the 5-year RFS probability is
1� 0.316� 0.475¼ 0.209, exactly as obtained in the
previous section (Figure 1).

Next, we turn to the second point: the way covari-
ates affect hazards may be different from the way
they affect cumulative incidences. Figure 4 shows
Nelson–Aalen estimates of the cumulative
cause-specific hazards of relapse and NRM for each
of the five EBMT risk groups.

The overall picture is that higher EBMT risk score
implies higher cause-specific hazards. This is particu-
larly clear for NRM; the same is true in general for
relapse, but the two lowest risk groups, those with
risk scores 0, 1 and with risk score 2, are
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Figure 2 Naı̈ve Kaplan–Meier estimates of relapse and
NRM, shown as incidence and survival curves, respectively
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approximately equal. Table 3 shows the HRs and 95%
CIs of the EBMT risk groups for relapse and NRM,
obtained from two Cox proportional hazards models,
one for relapse (censoring patients dying without re-
lapse), the other for NRM (censoring patients with
relapse).

Although, based on Figure 4, one could question the
validity of the proportional hazards assumption, we
see from Table 3 that the cumulative cause-specific
hazards for relapse are quite similar for risk scores
0, 1 and for risk score 2. If anything, the risk group
with score ¼ 2 has slightly higher rate. Note that
whereas, as argued above, the Kaplan–Meier estima-
tor should not be used for ‘risk estimation’ in the
presence of competing risks, we have used both the
Nelson–Aalen estimator and the Cox regression model
for the cause-specific ‘rates’. We will return to an ex-
planation of this apparent paradox in the next
section.

Based on these Cox models for the cause-specific
hazards for relapse and NRM, we calculated, again
using Equation (2), the model-based cumulative

incidences for relapse and NRM for each of
the EBMT risk groups. The results are shown in
Figure 5.

Comparing these cumulative incidences of relapse
for the two lowest risk groups, we notice a striking
thing: the cumulative incidence of relapse is lower for
the group with EBMT risk score 2, compared with the
group with EBMT risk score 0, 1. Contrast this with
what we saw earlier, namely that there is no differ-
ence in the cause-specific hazard of relapse between
these two lowest risk groups (if anything, the rate for
EBMT risk score 2 is higher). The example thus shows
that the effect of EBMT risk score on the risk of re-
lapse, the cumulative incidence, is different from its
effect on the rate, the cause-specific hazard. The fact
that the cumulative incidence of relapse is lower for
the EBMT risk score 2 group, compared with the
EBMT risk score 0, 1 group, even though the
cause-specific hazard of relapse is (somewhat)
higher, can be seen as follows. Ignoring true censor-
ings for the moment, the ‘rate’, the cause-specific
hazard of relapse, acts on those individuals still at
risk, i.e. on those alive without relapse. The Cox
model tells us that, at any point in time, this rate is
higher for the EBMT risk score 2 group. But the
cause-specific hazard of the competing event, NRM,
is also higher for the EBMT risk score 2 group, com-
pared with the EBMT risk score 0, 1 group, and the
difference here is much larger. That means that over
time, the risk set of the EBMT risk score 2 group
decreases much more quickly than that of the
EBMT risk score 0, 1 group. As a result, even
though, relative to the size of the risk set, more indi-
viduals will have a relapse in the EBMT risk score 2
group, in absolute size there will in fact be fewer
individuals with a relapse. Hence, the ‘risk’, the
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Figure 4 Nelson–Aalen estimates of the cumulative cause-specific hazards of (A) relapse and (B) NRM for each of the five
EBMT risk groups

Table 3 Cause-specific hazard ratios and 95% CIs of the
EBMT risk groups for relapse and NRM

EBMT
risk group

Relapse
HR (95% CI)

NRM
HR (95% CI)

0, 1

2 1.01 (0.81–1.27) 1.57 (1.25–1.97)

3 1.28 (1.03–1.59) 2.01 (1.61–2.52)

4 1.57 (1.25–1.99) 2.68 (2.12–3.37)

5, 6, 7 2.67 (2.06–3.47) 3.98 (3.09–5.13)
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cumulative incidence of relapse, will be lower in the
EBMT risk score 2 group.

Risk and rate models for
competing risks
Recall the useful interpretation of the hazard rate in
all-cause mortality studies from ‘Survival analysis’
section: h(t) is approximately the instantaneous risk
per time unit of failure at time t given survival till
just before t. Thereby, the parameters in the Cox re-
gression model (see Example in that section) are
hazard rate ratios. The interpretation carries over ver-
batim to the cause-specific hazard rate as introduced
in ‘Competing risks’ section: h1(t) is approximately
the ‘instantaneous risk’ per time unit of failure at
time t ‘from cause 1’ given survival till just before t.
Similarly, the parameters in Table 3 are ratios be-
tween cause-specific hazards. Given the close similar-
ity in interpretation, it is perhaps not entirely
surprising that estimation of hazard rate parameters
carries over to estimation of parameters in models for
cause-specific hazards and, indeed, both the Nelson–
Aalen estimator and the Cox regression model may be
applied for cause-specific hazards in a fashion com-
pletely analogously to studies of all-cause mortality by
censoring individuals failing from competing causes.
We used this fact for the analyses in the Example in
the ‘Competing risks’ section. The intuitive explan-
ation is that both types of hazard rates describe
what happens ‘locally in time’ among individuals
still at risk. The formal explanation is that the likeli-
hood factorizes.5

To estimate risks, the results from a rate model may
be plugged into Equation (2). However, as seen in the
Example in the ‘Competing risks’ section, simple

relationships between explanatory variables and
cause-specific hazards do not lead to simple relation-
ships between explanatory variables and cumulative
incidences. Thus, though roughly identical relapse
rates were seen for EBMT risk groups 0/1 and 2, the
risk of relapse was higher for EBMT risk group 0/1
due to a lower rate of NRM for that group.

Such properties have motivated the development of
models that directly link the cumulative incidence to
explanatory variables. The most popular model of this
kind was introduced by Fine and Gray8 and links the
cumulative incidence to explanatory variables as does
the Cox model for all-cause mortality.

Example
Table 4 shows the result of the Fine–Gray regression
model for relapse and NRM.

The most striking aspect is the fact that the regres-
sion coefficient of EBMT risk group 2 for relapse is
less than 0 (though the 95% confidence limits do in-
clude 0). This means that the cumulative incidence of
relapse of EBMT risk group 2 is less than that of
EBMT risk group 0/1. This is in agreement with
Figure 5, although that was derived from a propor-
tional cause-specific hazards model.

Although the ‘relative sizes’ of the regression coeffi-
cients in the Fine–Gray model in a useful way reflect
the ‘ordering’ of the cumulative incidence curves,
their numerical values do not possess a simple inter-
pretation. Thus, the estimates in Table 4 are
‘sub-distribution HRs’ and although this sounds like
a HR, it is not. As noted above, the cause j-specific
hazard gives the rate of cause j failure per time unit
for individuals who are still alive. On the other hand,
the cause j sub-distribution hazard gives the rate of
cause j failure per time unit for individuals who are
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Figure 5 Model-based cumulative incidence estimates for (A) relapse and (B) NRM for each of the five EBMT risk groups
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either ‘still alive’ or ‘have already died from causes
other than j’.8 Thus, a sub-distribution hazard bears
no resemblance to an epidemiological rate, since indi-
viduals who have died from another cause remain in
the risk set, even though they are no longer at risk of
experiencing a cause j failure. This fact does compli-
cate the interpretation of parameters from the Fine–
Gray model.

A final, technical note is that the structure assumed
in a Cox model for the cause-specific hazards (‘pro-
portional hazards’) is incompatible with that of the
Fine–Gray model (‘proportional sub-distribution haz-
ards’).9 This means that careful checking of the model
assumptions is important, both when inference is
based on Cox models for cause-specific hazards and
when it is based on Fine–Gray models.

Model checking may, initially, be performed graph-
ically. Figure 6 shows non-parametric estimates of the
cumulative incidences of relapse and NRM for each of
the five EBMT risk groups. The estimates of the re-
lapse cumulative incidence curves for EBMT risks
groups 0/1 and 2 cross. In the same way, as crossing
survival curves for two groups in all-cause mortality
are an indication that the proportional hazards

assumption may be violated, this suggests that the
proportionality assumption of the sub-distribution
hazards for relapse in the Fine–Gray model may be
violated for EBMT risks groups 0/1 and 2.

A similar graphical way of checking the proportional
hazards assumption of the proportional cause-specific
hazards model is obtained by inspecting the non-
parametric cause-specific hazard estimates of
Figure 4. Also, here the proportional hazards assump-
tion is questionable, although (also for the Fine–Gray
model) it seems that only the EMBT risk group 0/1 for
relapse is causing the non-proportionality. On the
other hand, crossing of the estimated curves could
just signal that the true functions are identical and
the graphical examination can be complemented by
formal significance testing, e.g. via the scaled
Schoenfeld residuals as in a standard Cox model10

or following the lines of Andersen and Pohar Perme11.

‘Independent’ competing risks
Throughout, we have discussed the ‘rate of failure
from cause j’ or the ‘risk of failure from cause j’ but
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Figure 6 Non-parametric cumulative incidence estimates for (A) relapse and (B) NRM for each of the five EBMT risk
groups

Table 4 Estimated regression coefficients (B), associated standard errors (SE), sub-distribution hazard ratios (HR) and
associated 95% CIs of the EBMT risk groups for relapse and non-relapse, for Fine–Gray regression

EBMT
risk group

Relapse NRM

B SE HR (95% CI) B SE HR (95% CI)

0, 1

2 �0.068 0.111 0.93 (0.75–1.16) 0.443 0.116 1.56 (1.24–1.96)

3 0.072 0.108 1.07 (0.87–1.33) 0.661 0.114 1.94 (1.55–2.42)

4 0.161 0.117 1.17 (0.93–1.48) 0.906 0.118 2.48 (1.96–3.12)

5, 6, 7 0.439 0.135 1.55 (1.19–2.02) 1.185 0.131 3.27 (2.53–4.22)
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never the ‘time to failure from cause j’. This is be-
cause for some individuals failure from cause j will
never occur and thereby, formally, allowing ‘time to
failure from cause j’ to be infinite. In contrast, a clas-
sical approach to competing risks is via latent failure
times as briefly summarized by Kalbfleisch and
Prentice12 (see Section 8.2.4). In that approach one
imagines the existence of random variables, L1, L2,
representing time to failure from Cause 1 and time
to failure from Cause 2, respectively. The data then
include the smaller of L1 and L2 (T ¼ time to failure)
and the cause of failure (1 if T¼ L1, 2 if T¼ L2).
(Right-censoring may be accounted for.) This ap-
proach has led to the concept of ‘independent’ com-
peting risks defined by independence between L1 and
L2. Under ‘independence’ the available incomplete ob-
servations of, e.g. L1, are the same as those that
would have been observed in a hypothetical popula-
tion where Cause 2 is not operating. However, the
assumption turns out to be completely unverifiable
based on data from this world where Cause 2 is,
indeed, operating.13,14 Therefore, we believe that the
concept of ‘independent’ competing risks is quite elu-
sive and that analyses relying on ‘independence’, e.g.
estimating the distribution of L1 using one minus the
Kaplan–Meier estimator, censoring for Cause 2,
should be interpreted with great care. However, we
will argue that the concept of ‘independence’ is not
really needed for inference. This is because the cumu-
lative incidence may always be estimated using
Equation (2) and rates of Cause 1 may be analysed
by, formally, treating Cause 2 events as censorings
and vice versa. The latter technique solely relies on
the definition of cause-specific hazards as the
time-local rates of occurrence of events that are mu-
tually exclusive (or, more precisely, on the resulting
likelihood factorization) and not on any independence
assumption.

Discussion
In epidemiology, rates and risks are frequently used
as measures of disease incidence and in this paper we
have reiterated the fact that, in studies of all-cause
mortality, they are equivalent due to their one-to-one
correspondence [Equation (1)]. However, whereas
both concepts generalize quite simply to the compet-
ing risks situation (rates are now cause-specific haz-
ards and risks are cumulative incidences), a
one-to-one correspondence between a single rate
and the corresponding risk no longer exists. Thus,
any given cumulative incidence depends on all
cause-specific hazards [Equation (2)] and vice versa,
and even though a single ‘sub-distribution hazard’
may be derived from a single cumulative incidence,
this is not a rate in any standard epidemiological
sense. Similarly, a ‘risk-type quantity’ may formally
be defined by plugging a cause-specific hazard into
Equation (1). However, the resulting ‘risk’ may only

be interpreted in a completely hypothetical world
where the competing risk does not exist, see
‘Independent competing risks’ section. This is also
illustrated by the fact that the Kaplan–Meier estima-
tor provides a biased estimate of the cumulative inci-
dence in the presence of competing risks as
demonstrated in our example.

Another consequence of the lack of a one-to-one
correspondence between rate and risk in a competing
risks setting is that covariates may affect the cause-j
specific hazard and the cause-j cumulative incidence
differently. This was also illustrated in our example
showing that, when it comes to regression modelling,
there is a choice to be made whether models should
focus on cause-specific hazards or on cumulative in-
cidences. Cox regression models for cause-specific
hazards have the advantage that they are easy to fit
(simply censor for competing events) and they pro-
vide parameter estimates which possess simple rate
ratio interpretations. Such models, however, do not
provide simple relationships between covariates
and the easier interpretable cumulative incidences.
Such simple relationships may be obtained from
Fine–Gray models but the price to be paid is a
set of parameter estimates which are harder to
interpret.

These properties, together with assessment of model
fit, should be kept in mind when deciding on how to
make inference in a competing risks situation. We
believe, as also illustrated by our example, that both
rates and risks for all competing events remain useful
and tend to supplement each other when studying
models for competing risks. Cause-specific hazards
may be more relevant when the disease aetiology is
of interest, since it quantifies the event rate among
the ones at risk of developing the event of interest.
Cumulative incidences are easier to interpret and are
more relevant for the purpose of prediction.
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KEY MESSAGES

� Competing risks are the rule rather than the exception in epidemiological studies.

� In all-cause mortality, there is a one-to-one relation between rate and risk; this one-to-one corres-
pondence is lost in competing risks.

� The naı̈ve Kaplan–Meier that takes competing events as censored is a biased estimate of the cumu-
lative incidence function.

� The way in which covariates are associated with the cause-specific hazards may not coincide with the
way these covariates are associated with the cumulative incidence.

� The concept of independent competing risks is elusive, cannot be checked without additional restrict-
ive assumptions, but is not needed for inference on rates or risks.
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