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Interpretability and importance of
functionals in competing risks and
multistate models

Per Kragh Andersen*’ and Niels Keiding

The basic parameters in both survival analysis and more general multistate models, including the competing
risks model and the illness—death model, are the transition hazards. It is often necessary to supplement the
analysis of such models with other model parameters, which are all functionals of the transition hazards. Unfor-
tunately, not all such functionals are equally meaningful in practical contexts, even though they may be mathe-
matically well defined. We have found it useful to check whether the functionals satisfy three simple principles,
which may be used as criteria for practical interpretability. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

The theory of competing risks has a long history with somewhat independent developments in math-
ematical theory as motivated by applications to actuarial science, biostatistics and epidemiology, and
reliability theory, and this diversity has not always benefited each of the applications. In particular,
mechanistic interpretations from reliability are not always useful for epidemiological applications, and
the important distinction between competing risks on one side and disability models (actuarial)/illness—
death models (epidemiological) on the other is sometimes forgotten. In this paper, our aim is to give
priority to the biostatistical and epidemiological applications and to critically evaluate a number of old
and new ideas in the theory and practice of competing risks and illness—death models in our area from
the three following principles that we have found helpful:

(1) Do not condition on the future;
(2) Do not regard individuals at risk after they have died; and
(3) Stick to this world.

The general exposition will be based on elementary multistate Markov and semi-Markov models, which
will be recapitulated in Section 3 after a brief survey of basic survival analysis in Section 2. The basic
competing risks model is a (k + 1) state model with transitions only possible from state O to each of the
k-absorbing states; we only need k = 2 to make our principal points. This model is to be contrasted to
the three-state illness—death model with transitions possible 0 — 1 — 2 and 0 — 2. For simple survival
analysis, it is by now general knowledge that a distribution can be equivalently characterized through
its hazard rate, probability density, or survival function, and the concept and interpretation of indepen-
dent right censoring are also well understood: among those who are still alive, additional information
of being uncensored should provide no further insight into the future failure risk. Our focus, which we
will present in Section 4, is on how meaningful and how identifiable various functionals and parame-
terizations remain when generalized from the simple survival situation to the aforementioned two more
general models. Topics include latent survival times and their independence properties, interpretation of
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subdistribution hazards, conditional probability of being ill given alive, pattern—mixture representations,
and age at disease occurrence in a world where one cannot die.

2. Survival analysis

Survival analysis is about drawing inference about a positive random variable 7" denoted survival time.
Much focus in survival analysis is on the various obstacles to observing 7" when data are collected in
real time so that some values are incompletely observed. However, this should not detract attention from
the target of the effort: the distribution of a well-defined, positive, and finite survival time 7 if there were
no obstacles to observation. The generic example is time 7" to death from any cause, either considered
alone or in combination with some relevant event in the life history of the individual. An example of
such an event is disease relapse in which case 7 is the relapse-free survival time.

The most common form of incomplete observation is right censoring, where the value of 7' is only
known if 7 < C, the time of right censoring. If 7 > C, then this is the only available information. In
addition, T is sometimes observed with delayed entry, that is, conditionally on 7" > L, the time of left
truncation. If 7 < L, then nothing is observed.

For valid inference on the distribution of 7', (L, C') must, in some suitable sense, be independent of
T. Our preferred definition [1, chapter III] amounts to stating that given that we know that a person is
alive at time ¢ (i.e., T > t), the further information that the person is uncensored may not change this
person’s instantaneous probability of dying. It is important to notice, however, that even though incom-
plete observation of 7" is most often inevitable, this assumption of independent censoring may rarely be
checked on the basis of the data that are typically available. We return to that point in Section 4.1.

The distribution of 7" may be characterized by its survival function S(t) given by

S)=P(T>t)y=1-P(T<t)=1-F(1) (1)
where F(t) is the distribution function. When T is a proper random variable,
lim F(t)=1.
1—>00

For an absolutely continuous distribution, the hazard rate function, h(t) is defined as
dlog(1— F(t))
dr '

It follows that a useful interpretation is that, for a small dr > 0, the hazard is approximately the
conditional probability per time unit of failure before time ¢ + dt given survival till ¢:

h(r) = 2

h(ty~ P(T <t+dt|T >t)/de. 3)

From Equation (2), it follows that

Fit)y=1- exp(—/0 h(u)du), 4)

that is, there is a one-to-one correspondence between the rate h(-) and the risk F(-). This has the con-
sequence that a statistical model (e.g., a regression model) specified for the rate immediately implies a
model for the risk. This is useful because hazard-based models are frequent in survival analysis: log(/(z))
is unbounded and well suited for a description via a linear predictor. Thus, the Cox regression model
[2]is

log(h(t | Z)) =log(ho(1)) + BT Z )

where Z is a vector of explanatory variables and %¢(?), the baseline hazard, is the hazard rate function
when Z = 0. In Equation (5), the interpretation of the vector, 8 of regression coefficients, is that for the
kth component, exp(Bx ) is the hazard ratio associated with a one-unit change in Z. From Equations (4)
and (5), it then follows that

log(~log(1 = F(t | Z))) = log(Ho (1) + BT Z
with Hy(¢) = fé ho(u)du the cumulative baseline hazard.
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2.1. Inference

On the basis of independently right-censored data (Ti,Di;i =1,...,n) with Ti =T, ANC; and
D; = I(T; < C;) and where the complete but only partially observed 77, ..., 7, are assumed to be
independent and identically distributed, the common survival function may be estimated using the
well-known Kaplan—Meier estimator

S0 = 1_[ (1 N Yol()%i)) ©

T; <t

with Yo(t) =, 1 (T; = 1) being the number at risk at time t.
In general, the likelihood function based on observations (7';, D;, Z;;i = 1,...,n) can be expressed
in terms of the hazard function

L=[0Ti|z)P ST | 2.

This fact provides another motivation for modeling survival data using the hazard function. How-
ever, although nonparametric estimation of the hazard function requires some sort of smoothing, the
cumulative hazard

H(t) = /Ot h(u)du

may, in an independent and identically distributed situation, be estimated by the Nelson—Aalen estimator

~ D;
'izst Yo(T'i)

In contrast to the hazard function, the cumulative hazard does not have a simple probabilistic interpreta-
tion. The following interpretation does, however, apply: Put a single subject on test at time 0 and follow
it over time; when this first subject fails, say at time 7, replace it by a similar subject that has sur-
vived until that time and follow the second subject over time; when the second subject fails, say at time
T® > T replace it by a third one that has survived until time 7 and so on. The cumulative hazard
H (t) is then the expected number of ‘renewals’ in that experiment by time ¢. Despite this indirect inter-
pretation, estimation of H (¢) may still be useful because, on a plot of H () versus ¢, the local slope will
approximate the hazard function, which in particular implies that the cumulative hazard is often useful
for model checking purposes.

3. Multistate models

It is seen from Equation (3) that the interpretation of the hazard function involves conditioning on the
past, which is a fundamental concept in the study of survival data and invites basing the theory on
stochastic processes [1]. Another example of such a conditioning is the conditional survival function
P(T >t | T > s) given survival till some time s with # > s > 0. This function is particulary useful
for left-truncated data, where the unconditional survival function S(¢) may be ill determined because of
little or no information for small values of 7.

3.1. The two-state model for survival data

In the stochastic process approach, survival data are described via the two-state model depicted in
Figure 1. In this model, S(¢) and F(t) are the state occupation probabilities for states ‘Alive’ X(¢) =0
and ‘Dead’ X(¢) = 1, respectively, that is,

S()=PX(@)=0), F@)=PX@1)=1),
whereas the hazard function is the 0 — 1 transition intensity with the interpretation (cf. Equation (3))
h(t)dt ~ P(X(t+dt)=1]|X()=0)
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0 1
Alive h(®) Dead

Figure 1. The two-state stochastic process X (¢) = 0 or 1 for survival data.

for small dr > 0. State O is transient
lim P(X(t)=0)=0
1—>00
whereas state 1 is absorbing. This is a consequence of the random variable

T = inf(X() #0).

the sojourn time spent in state 0, being proper. Because every individual begins in state 0 (S(0) = 1),
S(t) and F(t) are also the transition probabilities

S(t) = Poo(0.1) = P(X(r) = 0| X(0) = 0),

F(t) = Po1(0.1) = P(X(1) = 1| X(0) = 0)
whereas the conditional survival function is the transition probability
Poo(s, 1) = P(X(t) =0 X(s) = 0).

A description of survival data as a stochastic process may, at a first glance, seem more complicated
than necessary. However, the benefits of this approach become apparent in studies where more than a
single event (death) is of interest. Such studies could deal with death from a number of different causes,
or they could deal with both disease occurrence and death with or without the disease. In such studies,
the occurrence of an event may be modeled as a transition into a state in a multistate model.

3.2. Competing risks

The situation with death from a number of separate causes (e.g., 2) can be depicted as the competing
risks model, Figure 2, where compared with Figure 1, the final state is split into two.

In Figure 2, every one is in the transient state 0 ‘Alive’ at time 0 (P(X(0) = 0) = 1) and makes a
transition out of state O at the time 7 of death. The random variable,

T = inf(X(t) # 0)

is proper and represents the sojourn time spent in state 0. The transition is either to the absorbing state 1
‘Dead from cause 1’ or to the absorbing state 2 ‘Dead from cause 2’, and the cause of death is the random
variable D = X(oc0) = X(T). As for survival data, right censoring (at C) may prevent observation of

0 hi(t) 1

Alive Dead, cause 1

ha(1) 5

Dead, cause 2

Figure 2. The three-state stochastic process X(¢) = 0, 1, or 2 for competing risks (with two causes of death).
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T an(}v of the cause of death, and tbve right-censored competing risks data are then (T,-, D;ii=1,...,n)
with T; = T; A C; and D; = X(T;) (i.e, D; = 0 when T; > C;). Also, left truncation may be present
though we shall skip the details.

Analysis of independently right-censored competing risks data amounts to studying the joint distri-
bution of (7, D), that is, the distribution of what would have been observed in a population without
censoring. The basic parameters for this distribution are the cause-specific hazards hy(t), ho(t) with

hj(0) = lim P(X(t +d0) = j | X(1) = 0)/dr. 8)

These are the transition intensities for X (¢). Alternatively, the joint distribution may be described by the
so-called cumulative incidence functions

Fi(t)=P(T' <t,D=j), j=12, &)
from which the marginal distribution of T can be found. Thus, the marginal survival function is
S@)=1-F1(t) — F2(2).
Note that although
lim S() =0
t—>00
(T is proper), we have for j = 1, 2 that
lim F;t)=P(D=j)<1.
t—>00
This has the consequence that the random variables
To; =inf(X()=j), j=12, (10)
t>0
are improper because, for example, Ty; = oo for an individual ; with D; = 2.
The survival function S(¢) is the state occupation probability for state 0 and also the ‘0 — 0 transition
probability’ (because P(X(0) =0) = 1):
S(t) = P(X(t) =0) = Pyo(0,1) = P(X(t) = 0] X(0) = 0).
Similarly,
Fj(t)=P(X(t)=j) = Po(0.1) = P(X(1) = j | X(0)=0), j =12

These probabilities are simple functionals of the cause-specific hazards
t
) =exp (= [0+ o)
0
and
t
Fji(t) =/ Sw)hj(u)du, j =1,2. (11
0

Note also that transition probabilities given X (s) = 0 may be derived:

Poo (s, 1) = exp (—/ (h1(u) + hz(“))du)
and
t t u
Pyj(s,t) =/ S(u)/S(s)h; (u)du =/ exp (—/ (h1(x) —i—hz(x))dx) hju)du,j =1,2

(while, obviously, Pji(s,t) =0for j #0and k # j).
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3.2.1. Inference. These probabilities may be estimated nonparametrically using the Aalen—Johansen
estimators [1, 3] that are obtained by plugging-in the Nelson—Aalen estimators for the cumulative
cause-specific hazards. Thus,

t
Hj([)z/(; hj(w)ydu, j=1,2

is estimated by

fTvl <t YO(TL)
leading to
I(Di =)
Fj@t)= S(Ti—) I~
’ ~Z Yo(Ts)

where S is the Kaplan—Meier estimator for the distribution of 7', that is, on the basis of failures from any
cause.
The likelihood based on independently right-censored competing risks data

L =[]0 (T )" Pi=D (ha(T1)' P =2 S(T) (12)

i=1

can be expressed in terms of the cause-specific hazards. Models may, therefore, be formulated as a model
for the cause-specific hazards. A common choice is a Cox model (5) yielding parameter estimates, which
are ratios between cause-specific hazards.

At this stage, it is important to notice a crucial difference between the simple two-state model for sur-
vival data and the competing risks model. Although in survival analysis, see Equations (2) and (4), there
is a one-to-one correspondence between the rate /2 and the risk F, this is no longer the case for compet-
ing risks. In evaluating a single ‘risk’, that is, a cumulative incidence F;(t), both rates (cause-specific
hazards) hy(t), ho(t) are required. This means, first of all, that even though interest may focus on a single
cause of death (e.g., cause 1) to estimate the corresponding risk Fj(¢), it is necessary to estimate both
hq(t) and h;(t). Second, following Equation (11), the relationship between the risk and the covariates
will not be simple even if simple models are fitted to the cause-specific hazards. As an example, one may
study a single covariate Z affecting /11 (¢) via a Cox model, 41(t | Z) = h1o(t) exp(BZ), whereas h;(t)
does not depend on Z. In that case, the cumulative cause 1 incidence is

Fi(t|Z) = /0 exp(~ /0 (h10(x) exp(BZ) + ha(x))dx)h 10 (u) exp(BZ)du

which is not a simple function of Z.
This fact has led to the development of models that directly link the cumulative incidence to covariates.
The most frequently used such model, which Fine and Gray [4] introduced, specifies

log(—log(1 — F;(t | 2))) =log(H ; (1)) + B Z (13)

where H j(¢) is an increasing but otherwise unspecified function. The Fine-Gray model thus provides
parameters, which describe the relationship between the covariates and the cause j risk. For example,
for a binary covariate Z; with an estimated regression coefficient Bl > (), it follows that for all values,
Z g, for the other covariates in the model, we have that

Fi(t|Z1=1,2%>F;(t|Z =0,29).

Thus, the positive regression coefficient has the qualitative meaning that individuals with Z; = 1 have
a uniformly increased cause 1 cumulative incidence compared with those with Z; = 0. However, as
we shall see in later sections, the interpretation of the value of exp(fB;) is not at all obvious, so the
quantitative meaning of the regression coefficient is not simple, though Equation (13) may be useful for
prediction.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1074-1088
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3.2.2. Examples. Practical examples of studies involving competing risks questions are numerous.
Kalbfleisch and Prentice [5, Section 8.2.3] exemplified the classical case with different causes of death
using the animal carcinogenesis data of [6]. In that study, the authors followed-up radiated mice until
failure in either a germ-free or in a conventional laboratory environment, and three different causes of
death were all of potential interest. Analysis of these data thus typically involves comparison of both
cause-specific hazards and cumulative incidences between the two environments for all causes of death.

In other studies, one failure cause may be of primary interest, and focus is then on the analysis of
that cause in the presence of competing risks. As such an example, Thomsen et al. [7] have studied the
occurrence of affective disorders in patients with obesity (compared with patients with osteoarthritis).
The authors presented an analysis not only focused on explanatory variables for the cause-specific hazard
of affective disorders but also predicted cumulative incidence curves for that event for various covariate
patterns taking the competing risk of death into account.

Another classical application of competing risks methodology is taken from studies of bone marrow
transplantation as a treatment in leukaemia [8, 9]. Here, the competing endpoints are relapse of the dis-
ease and nonrelapse-related deaths (death in remission). Thus, relapse is taken to be a final (absorbing)
state, though obviously, patients experiencing a relapse are still at risk of dying. The argument is that
relapse as well as death in remission signal a failure of the treatment with bone marrow, and patients who
relapse are in need of alternative treatment. Sometimes, the two endpoints are combined into a single
one, thus analyzing ‘relapse-free survival’. However, because risk factors for relapse and death in remis-
sion often differ (e.g., the effect of graft-versus-host disease tends to differ between the two endpoints)
such a combined end-point may not always be useful. Therefore, analysis of such data typically includes
both models for the rates (cause-specific hazards) of both relapse and death in remission and for the
corresponding risks (cumulative incidences), for example, [10].

It is a general feature of all these examples that the central parameters are the cause-specific hazards
and also that suitably chosen functionals are necessary to complete the interpretation of the analyses.

3.3. The illness—death model

Taking the simple two-state model for survival data as the starting point, we obtain the illness—death
model (Figure 3) by splitting the initial ‘Alive’ state into two.

This model is useful when, in the same individuals, both the occurrence of a (chronic) disease and
death are studied. Everyone begins in the initial state ‘Alive and disease free’ (X(0) = 0). From this
initial state, an individual who develops the disease makes a transition to the state ‘Alive and diseased’
(X(t) = 1), whereas an individual who dies without getting the disease makes a transition to the state
‘Dead’ (X(¢) = 2). A diseased individual (X(¢) = 1) will eventually die and make a transition to the
state ‘Dead’ (X(¢) = 2). Thus, states 0 and 1 are transient, whereas state 2 is absorbing. The more com-
plicated situation, where a diseased individual may get ‘cured’ and move back to the disease-free state
0, is also of interest, and that model is the basis for the study of recurrent events [11], but we will not
study that situation further here.

The illness—death model may be defined via two proper random variables. These are the sojourn time,
To, spent in state 0

To = inf(X(t) # 0).

0 hoi(1) 1

Disease-free Diseased

hoao(1)

2(t, to1)

Dead

Figure 3. The three-state illness—death stochastic process X(¢) = 0, 1, or 2 for occurrence of a (chronic) disease
and death.
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and the time, T, to death
T = inf(X(t) =2),
t>0

where, obviously, 79 < T. Thus, Tp = T corresponds to a 0 — 2 transition at 7 and 7y < T to a
0 — 1 transition at Ty and a 1 — 2 transition at 7. Right censoring (at C) may, as in the previous
sections, prevent complete observation of 7Tp and 7'. Thus, an individual with C < Ty is censored while
in state O and an individual with Ty < C < T is censored while in state 1. If C > T, then (T, T) is
completely observed. Left truncation (at L) may also be present. We will skip the details, which turn out
to be somewhat more complicated than in the previous sections, because a closer discussion of what is
observed at L is needed. Thus, for Ty < L < T, separate situations occur whether or not the value of Ty
is observed at L.
The right-censored observations may be summarized as

(To, T, X(To), X(T))

where Tg = ToAC and T = T AC. The target of the analysis is the distribution of (7, Tp) in a popula-
tion without censoring. This distribution may be derived from the three transition intensities. These are
the disease rate

ho1(1) = dltiino P(X(t+dt)=1]| X(t) =0)/dt, (14)

the mortality rate without disease

hoa(t) = lim P(X(t +dr) = 2| X(1) = 0)/dr, (15)

and the mortality rate among the diseased, that is, the 1 — 2 transition rate. Here, the situation is more
complicated if this also depends on the time,

To1 = tig(f)(X(t) =1) (16)

of disease occurrence. Note that Tp; may be infinite (namely, for individuals moving directly from state
0 to state 2, i.e., for those in whom 7, = T'). However, when conditioning on the past (at 7) in the
definition of

hia(t, to1) = dltigl0 P(X(t+dt)=2|X(t) =1,To1 =to1)/dt, (17)

attention is restricted to those in state 1 at time ¢ (for whom To; <t < 00). Note that if 415 (-) = O then,
formally, the illness—death model is the competing risks model. We return to a discussion of this in the
later sections.

When h15(t, t91) is independent of the time 797 of disease occurrence, the illness—death process X(-)
is Markov, if not, then it is semi-Markov. The simplest semi-Markov model arises when h15(z, 291) is
only a function of the duration t — ty1 in state 1 at time .

The state occupation probabilities, P(X(¢) = j),j = 0,1,2 and the transition probabilities
P(Xt)=j|X(s)=k),s <t,j,k=0,1,2 are explicit functions of the three transition rates (both in
the Markovian and the non-Markovian situation). Thus, Poo(s,?) is given by the same expression as in
the competing risks model, whereas P11(s,7 | to1) = P(X() = 1| X(s) = 1,To1 =t01), 701 <8 <t is
given by

t
Pii(s,t | 191) = exp (—/ hiz(u, 101)du)
S

and P(X(t) =1]| X(s) =0) by

t
Po1(s,1) =/ Poo (s, u)ho1 (u) Pry(u,t | u)du.

These expressions simplify in the case of a Markov illness—death model.
A functional of these probabilities (and thereby of the transition rates) with important epidemiological
applications is the disease prevalence

P(X(t)=1|X()=0o0r X(t) = 1), (18)

that is, the fraction of the individuals alive with the disease.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 1074-1088
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3.3.1. Inference. Inference for the illness—death model will depend on whether the Markov assumption
is made. For the transition rates out of state 0, standard hazard models may be applied. However, to
apply, for example, a Cox model for the 1 — 2 transition rate, a choice of ‘baseline’ time variable must
be made (usually 7 or duration ¢ — #y1). Furthermore, if both time variables affect the rate, then the other
one must be suitably accounted for, for example, using time-dependent covariates [12]. Alternatively, if
t is the baseline time variable, then functions of 7p; may be taken into account as time-fixed covariates.

State occupation probabilities may be estimated nonparametrically using the Aalen—Johansen esti-
mator [3, 13], or P(X(¢) = 1) may be estimated by the difference between the Kaplan—Meier
estimators for the distributions of 7" and Ty [14]. For the Markov illness—death model, cumulative
transition intensities may be estimated nonparametrically by the Nelson—Aalen estimator and transi-
tion probabilities by the Aalen—Johansen estimator. Meira-Machado et al. [15] introduced estimators for
P(X(t)=k| X(s)=j),s <t,j,k=0,1,2, which do not rely on the Markov assumption. The latter
estimator also builds on observed survival distributions: S for 7' and §0 for Ty. Thus, /1500 (s, ) is simply
§0 (t)/ :S:o (s) as in the Markovian case, whereas

Poi(s,1) = %Z;o)ﬂ)
0

and
R%mm»
E(¢ss(To, T))

Here, ¢g;(u,v) = I(s < u < t,v > t) and ast(u,v) = I(u < s,v >t)and E(q&s,(To,T)) is the
‘Kaplan—-Meier integral’

ﬁll(S,t)z

E(¢5t(To, T) = Y wichs:(Toi, T1)

with w; equal to minus the jump at T for S. Without censoring, the estimator for any Py; (s, ) reduces
to the relative frequency of processes in state j at time ¢ among those in state / at time s < £.

3.3.2. Examples. A classical example of an illness—death model (in fact, allowing for recovery) is the
disability insurance example [16], where focus is on estimation on the (assumed constant) transition
intensities.

In other examples, state 1 is an intermediate event in the disease process and focus may be on the
way in which occurrence of this event affects the mortality and whether accounting for the interme-
diate event improves the precision of mortality predictions. Thus, Andersen et al. [17] have studied
data from a clinical trial in liver cirrhosis patients with esophageal varices where the intermediate event
is variceal bleeding. The authors studied treatment effects on the three transition rates and compared
survival predictions with or without accounting for bleeding episodes.

The prevalence is a classical epidemiological measure of disease frequency in a population, and the
concept has been discussed within a stochastic process framework [18]. Estimation of the prevalence
has also been discussed as ‘the probability of being in response function’ [19] and later, as mentioned
earlier, on the basis of the difference between two Kaplan—Meier estimators [14].

As a final example, we can mention the disease course after bone marrow transplantation discussed in
Section 3.2 as a competing risks situation. If the target also includes studying the mortality of patients
after relapse, the relevant model is now the illness—death model. It has been demonstrated for this
example how various functionals derived from the basic transition intensities were necessary to fully
appreciate the net effect of the various transitions on the final course of events [20,21]. This process was
tentatively termed ‘survival synthesis’.

3.4. Summary

In Sections 3.2 and 3.3, we have studied extensions of the simple survival data situation using multistate
processes. We exemplified by the competing risks model and the illness—death model and refrained from
looking at more complicated models, though the considerations in what follows would be equally rele-
vant for such situations. In both models, the basic parameters were the transition intensities, and other
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probabilistic aspects of the models were functionals of these. The practical examples from the literature
showed the usefulness of these functionals and illustrated that even in cases where a single event is of
primary scientific interest (e.g., a specific cause of death), analysis of the entire process is often justified.

The substantive context made conditioning on the past (or the present, e.g., when defining the preva-
lence) natural, whereas we never conditioned on the future because we do not find it justified to explain
what happens tomorrow based on knowledge to be collected in a more distant future. We saw that a
number of random variables, both proper and improper, could be defined, though focus was everywhere
on the proper random variables and we never speculated what might happen in a hypothetical population
where the variables, which may be infinite in this world, exist and are finite for everyone. Finally, we
only conditioned on being in a transient state and not on having reached one of the absorbing states,
for example, having died from a particular cause. This is because we do not find further follow-up of
deceased individuals justified.

We believe that these three principles

(1) Do not condition on the future;
(2) Do not condition on having reached an absorbing state; and
(3) Stick to this world

are universal and make the functionals under consideration interpretable. This then means that we do
believe that functionals violating one or more of these principles have questionable interpretations and
thereby have a limited usefulness.

In the next section, we will discuss various functionals, which do not obey our three principles and for
which we therefore question their usefulness.

4. Functionals violating our three principles

4.1. Competing risks

4.1.1. The subdistribution hazard. For survival data, we noted in Section 2 that there is a one-to-one
correspondence between the rate (2) and the risk (4). We further noted that the hazard rate has a con-
venient probabilistic interpretation (Equation (3)). Applying the mapping (2) to a cumulative incidence
for the competing risks model leads to the so-called subdistribution hazard [22]. The subdistribution
hazard for cause j,

~ dlog(l1—F;(t))
hi(t)=——"—"—-—"-
(1) -
is the hazard for the improper random variable To; = inf;(X(#) = j) and has the probabilistic
‘interpretation’

() ~ P(X(t +de) = j | X(1) # j)/dt,

that is, the instantaneous rate of failure per time unit from cause j among those who are either alive or
have died from causes other than j at time t. This quantity violates our principle 2, and we therefore
question the usefulness of the subdistribution hazard. We find the interpretation of regression coefficients
in the Fine—Gray model difficult, as these are log(subdistribution hazard ratios), see also Section 3. This
difficulty was also stated directly in [4], but nonetheless, users of the model often seem to be unaware
of this fact and quote subdistribution hazard ratios more or less as if they were equally interpretable as
ordinary hazard ratios [23].

However, as also discussed in Section 3, models that directly link the cumulative incidence to covari-
ates are, indeed, useful as long as it is kept in mind that for the Fine—Gray model, the scale on which
cumulative incidence curves are parallel does not have a simple probabilistic interpretation. Therefore,
models with other link functions than the ‘cloglog’ link have been investigated [10,24,25].

4.1.2. Latent failure time distributions. We noted in Section 3.2 that the random variables Ty; =
inf,(X(t) = j),j = 1,2 are improper with a distribution given by the cumulative incidence. In the
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absence of competing risks, the distribution function would have been obtained by applying the mapping
(4) to the cause-specific hazard, for example, for cause j

_ t
Fi(t)y=1 —exp(—/o hj(u)du). (19)

This function is the distribution function for a latent but proper random variable, say L j» the time
to failure from cause j under independence of the competing risks, that is, equal to what would
have been the distribution function for 7y, in a population where this is the only cause operating [5].
Here, independence of competing risks is often taken to mean independence of Ly, Ly, though weaker
assumptions exist. The assumption is unidentifiable on the basis of the available data as summarized
in Section 3.2 [5,26,27], and therefore, a study of latent failure times relates to a hypothetical world
where some causes are not operating, and it violates our principle 3. In the latent failure time approach
to competing risks, one imagines the existence of failure times L1 Lz with joint survival function
o1, ) = P(L1 > 11, Ly > 1), where L j is the time to failure from cause j. Observations then
include 7T = mm(Ll, L2) and the corresponding cause D (i.e.,, D = j if T = L, 7). However, as
indicated earlier, Q(-,-) is unidentifiable on the basis of the available data. What may be identified are
S(t) = O(t,t) and other functionals of the cause-specific hazards. This is because the likelihood (12) is
defined via the cause-specific hazards, and although the cause-specific hazards are uniquely given from

O(ty.12) as

dlog Q(t1,12)

hj(t)=— 9,

Jt 1=tr=t>

the converse is not true. In fact, an example of two different joint survival functions with the same cause-
specific hazards has been given, where one corresponds to independent latent failure times and the other
to dependent latent failure times [5].

Various attempts to circumvent this problem have been put forward, for example, showing that by
assuming the joint distribution to belong to a class generated by a given copula, the marginal distributions
are identifiable [28]. However, such an assumption cannot be evaluated against the data.

The literature on elimination of causes of death has a long history and is still very much alive. It is
worth briefly recapitulating the famous discussion on how to model the possible effect of elimination of
smallpox.

Daniel Bernoulli presented a model for the infection dynamics of smallpox at a meeting in the
Académie des Sciences in Paris in 1760 [29], illustrated with numerical calculations based on Halley’s
life table from 1693 and assumptions on (age-independent) incidence of smallpox and (age-independent)
mortality for smallpox-infected individuals. (Bernoulli’s paper has now been put into a contemporary
infectious disease epidemiology perspective [30].)

A few months later d’ Alembert presented an alternative approach, very close to our present-day non-
parametric calculations of mortality ‘in a world with no smallpox’ [31]. Karn [32] gave a comprehensive
account of both approaches, as well as a sketch of the prehistory of smallpox inoculation. She carefully
added the following:

It is necessary to warn the reader that the theory of the life-table with a given disease eliminated as devel-
oped by Bernoulli, D’ Alembert, Tremblay and Duvillard supposes that the mortality from the given disease
is non-selective, i.e. that the population after removal of disease A is as susceptible to diseases B, C, D, etc.
as it was before the elimination of that disease. This may possibly be true of certain diseases, but if a disease
like phthisis or small-pox were eliminated the surviving population might be more subject to death from
other diseases.

We find Karn’s wise and cautious advice as important today and hope that ‘what if’ questions are
explicitly put into the context of sensitivity analysis. Thus, one may speculate how much the distribution
of causes of death may change if, by some intervention, one were able to modify the rate of one cause
of death by a certain amount without changing the remaining cause-specific hazards. In the spirit of
that, multistate models for bone marrow transplantation have been studied calculating the consequences
on, for example, the risk of relapse under a number of hypothetical scenarios concerning changes in
the rate of developing graft-versus-host disease [21,33]. Obviously, one may see calculations based on
an assumption of ‘independent’ competing risks as an extreme case of such an activity, and although
this may provide some bounds for what might happen under various interventions, we would like to
emphasize that such calculations remain hypothetical and without support in the data at hand.
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Greenland [34] took a slightly different approach, recommending to handle the complexity of com-
peting risks in biological contexts by always respecting the multivariate nature of the problem, that is,
avoid singling out one isolated feature.

The likelihood (12) factorizes as L. = L L,, where

n

Ly =[]0 @) Pi=Dexp(~H;(T)).j =1.2.

i=1

Note that, for example, L is the likelihood that would be obtained for /() if cause 1 were the only
one operating and where individuals failing from cause 2 are censored at their time of failure. That is,
if no parameters are common for the two cause-specific hazards, inference for /2 (¢) may be performed
by, formally, censoring individuals at the time of a cause 2 failure and vice versa. Also note that this has
nothing to do with an assumption of ‘independent competing risks’; it is solely a consequence of the like-
lihood factorization. This fact may at a first glance seem surprising because why is a Cox model for the
rate 11 (¢) censoring for cause 2 failures valid, whereas ‘one minus the Kaplan—-Meier estimator based on
cause 1 failures’ is not a valid estimator for the risk F7(¢)? The answer has to do with the lack of a one-
to-one correspondence between the rate and the risk as we emphasized in Section 3.2. As explained in
Section 2, when we, in survival analysis, estimate the risk as 1—§(r) in the presence of censored observa-
tions, we make inference for the risk parameter in a population without censoring under the assumption
of independent censoring. That is, we assume the population without censoring to be potentially observ-
able. If censoring is due to failures from competing risks, then the population without censoring is quite
hypothetical, and in the presence of competing risks, the risk F;(¢) of failure from cause j is given by
the cumulative incidence (11) and should be estimated accordingly by the Aalen—Johansen estimator.
However, inference for the ‘local’ parameter / j (1) may be carried out by, technically, censoring for fail-
ures from competing causes as a consequence of the likelihood factorization. This includes not only the
Cox model but also techniques like the logrank test and the Nelson—Aalen estimator.
Only when the rate of competing causes is low, that is, &, (t) &~ 0, do we have

t t u
1— exp(—/o hy(u)du) =~ /0 exp (—/0 (h1(x) + hz(x))dx) ho(u)du. (20)

However, this merely tells us that if competing risks are negligible, then they may be neglected!

We conclude this subsection by emphasizing that the Kaplan—Meier estimator should be used only for
estimation of the distribution function for a proper random variable 7. This is because if 7 is not proper,
then there will be competing risks ‘censoring the observation of 7, and in that the case, the population
without censoring is not a useful one to make inference for. An exception would be when Equation (20)
holds, that is, when the competing risks are negligible. We are then faced with the problem of ascertain-
ing whether censoring is independent, and as mentioned in Section 2, this typically cannot be carried out
on the basis of the available data. The question of independent censoring is, therefore, usually a topic
for discussion. Administrative censoring, that is, the situation when individuals are alive but still in the
study at the date of study closure may often be taken as ‘independent’. However, reasons for individuals
dropping out of the study before the date of study closure should always be scrutinized carefully to
ascertain whether the mechanisms leading to dropout can safely be taken to be independent of the
failure process.

4.1.3. The conditional probability curve. As discussed in Section 3.2, a classical application of compet-
ing risks methodology is taken from studies of bone marrow transplantation as a treatment in leukaemia
where the competing endpoints are relapse of the disease and death in remission. Motivated by this exam-
ple, a conditional probability curve has been suggested as a summary measure [9, 35]. In this context,
the suggested summary curve is the conditional probability of relapse by 7 given no nonrelapse-related
death by ¢, that is,

P(X(t)=1|X(t)#2)=PX(t)=1]|X(t)=0or X(t) = 1).

If computed as a prediction at time 0, it conditions on the future and violates our principle 1, and if
computed at time ¢, it conditions on possibly having reached the absorbing state 1 and violates our prin-
ciple 2. We will argue that this is a perfectly reasonable functional in the illness—death model (where
it is simply the prevalence (18)). In this latter model, referring still to the bone marrow transplantation
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example, the prevalence is the fraction of the patients alive who have experienced a relapse. Regarded
in the framework of a competing risks model, it is the fraction of the patients who are either alive with
a relapse or who have died after a relapse out of those patients who are either alive or have died after a
relapse. The problem is that the classical example from bone marrow transplantation may not always be
regarded as a bona fide competing risks situation because the state ‘relapse’, as mentioned previously, is
not really absorbing. When applying competing risks methodology to this situation, one should therefore
consider carefully whether this is, in fact, justified or whether inference using the illness—death model
would be more appropriate.

4.1.4. Pattern—mixture parametrization. As discussed in Section 3.2, the object of competing risks is
the joint distribution of time to failure 7" and cause of failure D. Technically, this joint distribution can
of course be factorized as the conditional distribution of 7" given D and the marginal distribution of
D. Such a pattern—mixture parametrization has been studied [36,37]. Considering the conditional dis-
tribution of failure time given failure cause, it conditions on the future and violates our principle 1, and
we therefore question the usefulness of this parametrization. Clearly, for purposes of individual patient
predictions, it is completely useless. Thus, knowing the results from an analysis of that model, the doc-
tor may say to the patient that ‘if you die from lung cancer then you should stop smoking’ or ‘among
those who will die from heart disease, men have a hazard which is twice that for women’! Note that
the ‘selection’” parametrization of the distribution of (7', D), that is, the marginal distribution of 7" times
the conditional distribution of D given T [38] does not violate our principles as neither conditioning
on the future nor follow-up of deceased subjects is involved.

4.2. The illness—death model

4.2.1. Pattern—mixture parametrization. Just as in the competing risks model, pattern—mixture parame-
terizations have been studied in the illness—death model for the distribution of 7§, the sojourn time spent
in state 0. Thus, the so-called ‘flow graph models’ [39] use this formulation throughout. In fact, this is
a standard parametrization for semi-Markov models [40], and although it is mathematically feasible, it
does condition on the future and violates our principle 1.

4.2.2. Semicompeting risks. The situation where a terminal event censors a nonterminal event but not
vice versa has been studied [41-43] under the name of ’semicompeting risks’. This is seen to be exactly
the situation for the illness—death model where death without the disease (0 — 2 transition) prevents the
disease occurrence (0 — 1 transition), whereas subjects experiencing the disease (0 — 1 transition) are
still at risk of death (1 — 2 transition). The authors argue that although the primary concern for clinicians
is patient survival, ‘there is often scientific interest in the distribution of a non-terminal event, uncondi-
tionally on censoring’ and though ‘the quantity is controversial it is meaningful to many researchers.’
However, because it relates to a hypothetical world where patients cannot die, it violates our principle 3
and we question its usefulness.

5. Discussion

We have looked at analysis of multistate models as ‘generalized survival analysis’. For simple survival
analysis, only a single transition hazard is present, a fact that limits the amount of functionals to be
studied. On the other hand, multistate models allow several possible transitions and, therefore, include
several transition hazards, and we have seen that the added generality also allows more functionals of
these transition hazards to be studied. Although all the functionals discussed are mathematically well
defined, we have argued that they do not all possess a useful interpretation from an applied point of
view. What is interpretable in a practical context, and what is not, is of course, to some extent, a mat-
ter of taste and a matter of which applications one has in mind. We have put forward three principles
(Section 3.4), which we believe enhance both the interpretation and the practical applicability of a given
functional:

(1) Do not condition on the future;
(2) Do not condition on having reached an absorbing state; and
(3) Stick to this world.
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We emphasize that we do not regard these principles as inherently obvious axioms. On the contrary,
we have come to them inductively, as a convenient summary from a broad experience of what makes
sense in practice.
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