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This paper deals with the competing risks model as a special case of a multi-state model. The properties of
the model are reviewed and contrasted to the so-called latent failure time approach. The relation between
the competing risks model and right-censoring is discussed and regression analysis of the cumulative
incidence function brie�y reviewed. Two real data examples are presented and a guide to the practitioner is
given.

1 Introduction: the multi-state model

Competing risks is the sub-discipline of survival analysis where, in addition to the
survival time X, the ‘cause of death’ D 2 f1; . . . ; kg is observed. Interest then focuses on
the joint distribution of …X; D†. There exists a vast literature on competing risks analysis
(see, for example Tsiatis, 19981 and the references therein) but the purpose of the
present paper is not to review that literature. Rather, we shall discuss competing risks
within the framework of multi-state models much in the spirit of Prentice and
colleagues.2

The structure of the paper is as follows: the remainder of this section deals with the
competing risks multi-state model, which is discussed as a special case of the models
reviewed by Andersen and Keiding.3 In particular, models for the transition intensities
(cause-speci�c hazards) and estimation of transition probabilities are discussed. Section
2 deals with the so-called ‘latent failure time approach’ to competing risks analysis,
which is contrasted with the multi-state approach. Also, hypothetical calculations
within the competing risks model are discussed. Section 3 deals with the relationship
between censoring and competing risks while, in Section 4, regression analysis of
competing risks data is discussed. Finally, Section 5 contains a guide to the practitioner.

The competing risks multi-state model (Figure 1) has one transient state ‘0: alive’ and
k absorbing states, h ˆ 1; . . . ; k corresponding to ‘death from cause h’. The process is
Markovian, the transition intensities ah…t† from state 0 to state h; h ˆ 1; . . . ; k are the
cause-speci�c hazards and have the interpretation:

ah…t†D º Prob…X µ t ‡ D; D ˆ h j X ¶ t†
These are the basic model parameters from which transition probabilities

Phj…s; t† ˆ Prob…state j at t j state h at s†; s < t
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may be derived. Thus,

P00…0; t† ˆ exp ¡
Xk

hˆ1

…t

0
ah…u†du

Á !

…1†

is the marginal survival probability,

P00…0; t† ˆ S…t† ˆ Prob…X > t†

and

P0h…0; t† ˆ
… t

0
S…u¡†ah…u†du; h ˆ 1; . . . ; k …2†

are the ‘cumulative incidence functions’

P0h…0; t† ˆ Prob…X µ t; D ˆ h†

This is, in fact, a rather unfortunate name for this quantity as it may give the incorrect
impression that it is a cumulative intensity. Alternative names for P0h…0; t† are marginal
or crude failure probabilities. The expression (2) for P0h…0; t† has the interpretation that
the probability of the event ‘failure from cause h before t’ is the sum of the probabilities
of the (disjoint) events ‘failure from cause h between u and u ‡ D’ for u between 0 and t.
This is the probability of surviving past u¡; S…u¡†, times the conditional probability
…º ah…u†D† of failing from cause h between u and u ‡ D given survival past u¡. Note
that the cumulative incidence for cause h depends (through S…u¡† ˆ exp…¡

Pk
hˆ1„ t

0 ah…u†du†) on the cause-speci�c hazards for all k causes.

Figure 1 The competing risks multi-state model.
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Let ~XXi be the (possibly right-censored) survival time and Di the cause of death; Di ˆ 0
if eXXi is right-censored, Di ˆ h if i is observed to die from cause h ˆ 1; . . . ; k. The
likelihood based on independent observations …eXXi; Di; i ˆ 1; . . . ; n† is:3

L ˆ
Yn

iˆ1

S…eXXi†
Yk

hˆ1

ah…eXXi†I…Diˆh† …3†

It is seen that L is a function of the cause-speci�c hazards and, thus, models for
competing risks data may be speci�ed by these. This means that all the hazard models
and estimators reviewed by Andersen and Keiding3 also apply for the competing risks
model including the Nelson–Aalen non-parametric estimator for the cumulative cause-
speci�c hazard Ah…t† ˆ

„ t
0 ah…u†du, the occurrence–exposure rate estimators in models

with piecewise constant ah…t†, and estimators from Cox4 proportional hazards models
for the cause-speci�c hazards. Also tests including the non-parametric log-rank test for
comparison of cause-speci�c hazards are applicable.

From estimates of the cause-speci�c hazards (or cumulative cause-speci�c hazards)
the transition probabilities P0h…0; t†; h ˆ 0; 1; . . . ; k, may be estimated as plug-in
estimates using equations (1) and (2). Thus, for piecewise constant ah…t† explicit
formulae are available.5 Using the Nelson–Aalen estimators for Ah…t†, the plug-in
estimators using equations (1) and (2) are the so-called Aalen–Johansen6 estimators (for
a review, see 7 ). Inserting ÂAh…t† in (1) and (2), the exponential function is replaced by the
product integral and the estimator for (1) becomes the Kaplan–Meier8 estimator based
on failures from all causes. If the cause-speci�c hazards are estimated in a Cox
regression model4 then a similar product integral representation of the transition
probability estimates is available.9

Example 1
To illustra te this, consider the following example concerning mortality after acute

myocardial infarction. Such patients may survive or they may die from either cardio-
vascular causes (CVD) or non-cardiovascular causes (non-CVD). Cardiovascular death
can be further divided into sudden cardiovascular death (sudden CVD, occurring within
one hour of symptoms and believed to be predominantly caused by arrhythmias) and
non-sudden cardiovascular death (non-sudden CVD). We followed 5983 patients who
had experienced an acute myocardial infarction and who were discharged from hospital
alive. The data were ascertained from 6676 patients screened during the period
1990–1992 at 27 Danish coronary care units for entry into the TRACE trial.10 Patients
were followed for two to four years from infarction. Of the patients, 69% were males
and the median age at the time of infarction was 67.7 years. During follow-up a total of
1659 patients died, of which 1261 were cardiovascular deaths and 398 were non-CVD.
The CVD was further classi�ed into 536 sudden and 725 non-sudden CVD. In Figure 2
the Aalen–Johansen estimates for the cumulative incidences for each of these three
speci�c causes are shown. The estimates were corrected for delayed entry since only
patients discharged alive were included. Increasing age and male gender were associated
with an increased all-cause mortality risk. The estimated hazard ratios associated with a
ten-year increase in age and male gender for each of the three causes of death are shown
in Table 1. These estimates were obtained from separate Cox regression models for the
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three cause-speci�c hazards. Increasing age increased the risk of all three causes of
death, but the increase in non-sudden CVD was highest. Male gender was associated
with an increased risk of sudden CVD but did not affect the risk of non-sudden CVD
independently of age. The increase in non-CVD associated with male gender only
reached borderline signi�cance. The table also shows the estimated hazard ratios for
age and gender assuming these to be the same for all three causes. However, a
likelihood ratio test statistic (based on the Cox,11 partial likelihood) of 39.2 with 4
degrees of freedom (d.f.) showed that the effects of age and gender on the three causes
of death were signi�cantly different …p < 0:0001†:

Figure 2 Estimated cumulative incidence functions for three causes of death after acute myocardial
infarction. Full line, sudden CVD; upper dashed line, non-sudden CVD; lower dashed line, non CVD.

Table 1 Estimated hazard ratios (with 95% con� dence limits) for age and gender for three causes of death
after acute myocardial infarction

Cause of death

Non-CVD Sudden CVD Non-sudden CVD All causes

Age per 10 years 2.06 (1.84, 2.29) 1.56 (1.43, 1.70) 2.13 (1.96, 2.31) 1.90 (1.80, 2.00)
Male gender 1.24 (1.00, 1.53) 1.34 (1.11, 1.63) 1.05 (0.90, 1.23) 1.18 (1.06, 1.31)
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2 Latent failure times

In the latent failure time approach to competing risks one imagines the existence of k
potential failure times XL

1 ; . . . ; XL
k for each individual and the observations are then, in

the uncensored case, the smallest latent failure time …X† and the corresponding ‘cause’
(D), formally

X ˆ min
hˆ1;...;k

XL
h ; D ˆ arg min

hˆ1;...;k
XL

h

In the case of a right-censored observation it is only known that all XL
h are larger than

the observation time and nothing is known about the cause (for example, one may let
D ˆ 0 in that case). Interest then focuses on the joint survival distribution

Q…t1; . . . ; tk† ˆ Prob…XL
1 > t1 ; . . . ; XL

k > tk†

Thus, the marginal survival distribution of the minimum, X, is

S…t† ˆ Q…t; . . . ; t†

and the cause-speci�c hazards are given by

ah…t† ˆ ¡ q log Q…t1; . . . ; tk†
qth

¸

t1ˆ¢¢¢ˆtkˆt

It turns out, however, that what can be identi�ed from the likelihood …3† based on the
observations …eXXi; Di; i ˆ 1; . . . ; n† are the cause-speci�c hazards ah…t† whereas the joint
distribution Q…¢† cannot be identi�ed.2;12;13 Nor can the marginal survival distributions

Prob…XL
h > th† ˆ Q…0; . . . ; 0; th; 0; . . . ; 0† ˆ Sh…th†

say, and their corresponding hazards

aL
h…t† ˆ ¡ q log Sh…t†

qt
This has the consequence that the concept of ‘independent competing risks’ de�ned by
independence of the latent failure times XL

1 ; . . . ; XL
k (i.e., Q…t1 ; . . . ; tk† ˆ

Q
h Sh…th†† is

quite elusive and unveri�able based on the competing risks data ( ~xx i; Di; i ˆ 1; . . . ; n†,
as is the weaker condition of equality between the marginal (or ‘net’) hazards aL

h…t† and
the corresponding cause-speci�c (or ‘crude’) hazards ah…t†. In fact, the following
‘counter-example’14 can be given where the likelihood (3) is the same for two different
joint distributions Q…t1 ; t2†, Q¤…t1 ; t2†, one corresponding to independence, the other
not.

Thus, we may let

Q…t1 ; t2† ˆ exp…1 ¡ a1 t1 ¡ a2 t2 ¡ exp…a12…a1t1 ‡ a2t2†††

This distribution has cause-speci�c hazards:

ah…t† ˆ ah…1 ‡ a12 exp…a12…a1 ‡ a2†t††
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and if a12 ˆ 0 the two competing risks 1 and 2 are ‘independent’. However, the
likelihood would be the same if the model was

Q¤…t1; t2† ˆ exp…1 ¡ a1t1 ¡ a2 t2† exp ¡ a1ea12 …a1 ‡a2 †t1 ‡ a2ea12 …a1 ‡a2†t2

a1 ‡ a2

³ ´

(because the cause-speci�c hazards are the same). Here, however, the risks are
independent also for a12 6ˆ 0, but the marginal hazards are different.

Note that the basic identi�able parameters, the cause-speci�c hazards ah…t†, refer to
the population where all k causes are operating. A question that has been debated in the
competing risks literature (ever since Bernoulli in 176015 ) is what would happen if
certain causes of death were ‘removed’. This interesting question, however, cannot be
assessed from data from a population where all causes are present without making
further, unveri�able assumptions.

It also has the consequence that ‘probabilities’ for certain causes estimated by
assuming other cause-speci�c hazards to be zero have no interpretation within the
population from which the observations were taken. Unfortunately, such estimates have
been used extensively in the medical literature. In particular, letting Y…t† ˆ #feXXi ¶ tg be
the observed number at risk at t, the estimator

1 ¡ bShSh…t† ˆ 1 ¡
Y

~XXiµt

1 ¡ I…Di ˆ h†
Y…eXXi†

Á !

which is one minus the Kaplan–Meier estimator based only on failures from cause h
and treating failures from other causes as censored observations, has been used as an
estimate for P0h…0; t†. This estimate (sometimes denoted the ‘partial’ or ‘net failure
probability for cause h’) has, however, no probability interpretation. However, the
corresponding Nelson–Aalen estimator

cAhAh…t† ˆ
X

~XXiµt

I…Di ˆ h†
Y…eXXi†

is a consistent estimator for the cumulative cause-speci�c hazard Ah…t†, a quantity that
is well de�ned, albeit somewhat more dif�cult to interpret. This is in spite of the fact
that the likelihood (3) splits into a product

L ˆ
Yk

hˆ1

Yn

iˆ1

exp…¡Ah…eXXi††ah…eXXi†I…Diˆh†

showing that (unless certain parameters are common in the models for the different
ah…¢†† each cause-speci�c hazard may be analysed separately, formally treating deaths
from other causes as censorings. Obviously, the degree to which 1 ¡ bShSh…t† is an
inconsistent estimator for the probability of dying from cause h before time t depends
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on the magnitude of the other cause-speci�c hazards aj…t†, j 6ˆ h. If these are small, then
1 ¡ bShSh…t† º dP0hP0h…0; t†.16 It should be noted that the inequality 1 ¡ bShSh…t† ¶ dP0hP0h…0; t†
always holds.

What may be of interest as a kind of sensitivity analysis is to study how quantities like
the cause h lifetime risk P0h…0; 1† and the expected life length m…1† ˆ

„ 1
0 S…t†dt

(or similar quantities where 1 is replaced by a suitably large value t) change under
different hypothetical scenarios of cause-speci�c hazards. For example, what would the
expected life length be if cardiovascular mortality among individuals aged 40–60 years
were halved (and other cause-speci�c mortalities were the same)? In such hypothetical
calculations, various models for the dependence between cause-speci�c hazards, for
example, frailty models,17 may be useful.

3 Competing risks and right-censoring

There is a close connection between the competing risks model and right-censoring.
Thus, in a survival model with failure intensity af …t† (Figure 3), one could model right-
censoring by a hazard function ac…t† leading to a competing risks model. Inference on
af …t† can then be performed in the usual way under the assumption of ‘independent
censoring’, an assumption that is formally identical to the independent competing risks
assumption.7;18 An important difference between the two situations is, however, that
for some right-censoring mechanisms, including censoring caused by being alive at the
closure of the study or by emigration, the population where the competing risk
(censoring) is not operating is not entirely hypothetical; in fact the dynamics in this
population is exactly the one shown in Figure 3. Here, the failure probability depends
on af …t†, only, in the usual way P0f …0; t† ˆ 1 ¡ exp…¡

„ t
0 af …u†du†. For censoring solely

due to survival beyond the closing date of the study, the (potential) censoring time for
individuals observed to fail will be known and the independent censoring assumption
may actually be tested.

However, if some censoring is due to ‘failure from causes other than f’ (with hazard
ao…t†) then it should be realised that the dynamics in the underlying population is given
by a competing risks model where the ‘partial cause f probability’ 1 ¡ exp…¡

„ t
0 af …u†du†

has no probability interpretation. In that case a standard analysis of the cause-speci�c
failure rate af …t† can be performed, but survival and failure probabilities will also depend
on ao…t†. However, when ao…t† is small the partial cause f probability may provide an
acceptable approximation to the cumulative incidence as discussed above.

Figure 3 The two-state model for survival data.
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4 Regression analysis of competing risks data

As mentioned in Section 1, regression analysis of the cause-speci�c hazards is
straightforward. However, from a simple regression model like the Cox model for
the cause-speci�c hazards, the cumulative incidence functions are fairly complicated
non-linear functions of the covariates and, in particular, the effects on the cumulative
incidence functions of the covariates are not described by simple parameters. It may still
be useful to estimate the cumulative incidence functions for given covariate patterns
based on such a model. Con�dence intervals may also be obtained as described by
Andersen et al.9 or by Cheng et al.19

Direct regression analysis of the cumulative incidence functions has been
discussed.20¡22 Thus, Fine and Gray20 and Gray23 de�ned the ‘hazard’.

eahah…t† ˆ ¡ q
qt

log…1 ¡ P0h…0; t††

for the defective distribution function P0h…0; t† and studied Cox type models
eahah…tjZ† ˆ fah0ah0…t†exp…bT

hZ† for this. For uncensored competing risks data estimation in
this model is straightforward; one simply performs a standard Cox regression analysis
of a modi�ed data set where individuals failing from causes other than h are given a
censored observation time of ‡1 (that is, a censored time larger than the largest
observed cause h failure time). For censored competing risks data an inverse probability
weighting of the censored observations was used in the estimation procedure. Fine
extended this approach to more general transformation models.21

Andersen et al.22 on the other hand, used pseudo-observations to obtain a regression
model for P0h…0; t†. Thus, they de�ned

P̂Pi
0h…0; t† ˆ ndP0hP0h…0; t† ¡ …n ¡ 1†dP¡i

0hP¡i
0h…0; t†

where dP0hP0h…0; t† is the Aalen–Johansen estimator6 based on the entire sample
and dP¡i

0hP¡i
0h…0; t† is that based on the subsample obtained by deleting observation i. They

then studied a generalized linear model

g…EP̂Pi
0h…0; t†† ˆ aht ‡ bT

h Z i

with a link function g, for example, g…x† ˆ c log log…x† ˆ log…¡ log…1 ¡ x†† or
g…x† ˆ logit…x† ˆ log…x=…1 ¡ x††, and obtained estimates for …aht; bh† using generalized
estimating equation techniques.

Example 2
As an example we will study the classical animal carcinogenesis experiment intro-

duced by Hoel and Walburg,24 see also Andersen et al.9 In brief, 177 mice were given a
certain radiation dose at age 5–6 weeks, after which 95 mice were placed in a
conventional laboratory environment and 82 in a germ-free environment. The mice
were then followed until death from either of the cancer types thymic lymphoma (TL)
or reticulum cell sarcoma (RCS) or from other causes (OC). A standard competing
risks analysis could include a study of the effect of the covariate ‘environment’
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(conventional versus germ-free) on the cause-speci�c hazards for the three competing
causes of death.

We shall here consider c log log-regression models for the three cumulative incidence
functions P0h…0; t†, h ˆ TL, RCS, OC. Both an analysis of the kind suggested by
Fine and Gray20 and one based on pseudo-observations are presented. The pseudo-
observations were computed at the four time points t1 ˆ 200, t2 ˆ 400, t3 ˆ 600, and
t4 ˆ 800 (days). Table 2 shows the estimated values of bh while Figures 4–6 show the

Table 2 Estimates of effect of environment (conventional versus germ-free) on cumulative
incidence function for each of the three competing causes of death for 177 radiated mice

Cause of death (h)

TL RCS OC

bbhbh (SE) bbhbh (SE) bbhbh (SE)

Fine and Gray ¡0.487 (0.283) 0.975 (0.305) ¡0.090 (0.236)
Pseudo-observations ¡0.401 (0.286) 1.151 (0.321) 0.659 (0.276)

TL, Thymic lymphoma; RCS, reticulum cell sarcoma; OC, other causes.

Figure 4 Estimated cumulative incidence functions for the cause of death thymic lymphoma (TL) in the
animal carcinogenesis experiment. Full line, Aalen–Johansen estimator for germ-free environment; dashed
line, Aalen–Johansen estimator for conventional environment; crosses and dots are estimates based on
pseudo-observations for time points 200, 400, 600, and 800 days and for conventional and germ-free
environments, respectively.
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Aalen–Johansen estimates dP0hP0h…0; t† together with the estimates âahtl
‡ b̂bhZ; l ˆ 1; 2; 3; 4,

and Z ˆ 0; 1 based on the pseudo-observations.
It is seen from Table 2 that for the two cancer types TL and RCS the estimates based

on the method of Fine and Gray20 and those based on pseudo-observations are quite
close, as are their estimated standard errors. For ‘other causes’, however, the estimated
effects from the two methods are rather different. This is probably because the model
does not �t very well in this case and, thus, the method based on pseudo-observations
may be quite sensitive to the choice of time points. That the model �ts badly may be
seen on Figure 6, where the estimates assuming a constant difference between the curves
on the log minus log scale does not �t very well with the Aalen–Johansen estimates.

It should be noted that the analysis based on pseudo-observations also provides
estimates of correlations between the three parameter estimates. These are ¡0.34,
¡0.40, and ¡0.35 for the pairs (TL, RCS), (TL, OC), and (RCS, OC), respectively.

Figure 5 Estimated cumulative incidence functions for the cause of death reticulum cell sarcoma (RCS) in the
animal carcinogenesis experiment. Full line, Aalen–Johansen estimator for germ-free environment; dashed
line, Aalen–Johansen estimator for conventional environment; crosses and dots are estimates based on
pseudo-observations for time points 200, 400, 600, and 800 days and for conventional and germ-free
environments, respectively.

212 PK Andersen et al.



5 Guide to the practitioner

Since the basic parameters are the cause-speci�c hazards, modelling of competing risks
data should take these as their starting point. Simple models for cause-speci�c hazards
may be analysed by a series of standard survival analyses, one cause at a time, treating
failures from other causes as censored observations. In such an approach, the hazard
functions may be compared between groups using standard tests for survival data, and
regression models for the hazards may be analysed in the usual way. By simple models
we here mean models where no parameters are common for two or more hazard
functions, for example, there are no covariates for which the effect is assumed to be the
same on several cause-speci�c hazards. More parsimonious models where some
parameters may be common for several causes, for example, Cox regression models

Figure 6 Estimated cumulative incidence functions for the cause of death other causes (OC) in the animal
carcinogenesis experiment. Full line, Aalen–Johansen estimator for germ-free environment; dashed line,
Aalen–Johansen estimator for conventional environment; crosses and dots are estimates based on pseudo-
observations for time points 200, 400, 600, and 800 days and for conventional and germ-free environments,
respectively.
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with common regression coef�cients, may be analysed using standard software by
applying the methods described by Andersen and Keiding.3 This was, in fact, what was
carried out in the example in Section 1 for the model with common age and gender
effects on all three causes of death.

The major difference between such an analysis of cause-speci�c hazards and a
standard survival analysis is that the simple relation ‘failure probability ˆ
1 ¡ exp…¡cumulative hazard†’ no longer holds. Thus, presenting results for cause-
speci�c hazards in the failure probability scale ‘1 ¡ exp…¡cumulative hazard†’ will be
misleading since this transformation of the cause-speci�c hazard does not have a
probability interpretation in the population where both the cause under study and other
causes are operating. One may argue that under an assumption of independent
competing risks these transformations do posess probability interpretations, but since
this assumption is unveri�able from the available data the argument is not very useful.
The only situation where such plots are justi�ed is when failures from competing causes
are rare, in which case ‘1 ¡ exp…¡cumulative cause ¡ specific hazard†’ is close to the
cumulative incidence function, which is always interpretable and well de�ned. But in
such a situation, there are few compelling arguments to conduct a competing risks
analysis anyway.

So, what will be useful as a way of presenting the results from a competing risks
analysis is to compute estimated cumulative incidence functions based on the models for
the cause-speci�c hazards. A SAS MACRO for this purpose (using Cox models for the
cause-speci�c hazards) is available from the authors. A drawback to this approach is
that the cumulative incidence functions do not depend on the covariates in a simple way
(Section 4) and thus it may be desirable also to analyse models where the cumulative
incidences are directly regressed on the covariates. Such models were brie�y discussed in
Section 4.
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