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Course program

Course program

Tuesday 1st June 2010

09:00 — 09:15
09:15 — 10:15
10:15 — 10:45
10:45 — 12:00
12:00 — 13:00
13:00 — 14:15
14:15 — 16:00

Welcome

L: Introduction to time-to-event data.

Relationships between rates and probabilities.

Life-tables and likelihood for rates.

Estimating rates / Estimating the survivor function.

Morning Tea

P: Calculation of rates, RR and RD.

Lunch

L: Classical estimation of survival curve.

The Cox model.

The Lexis diagram: Representation of follow-up on multiple timesacles
Representation of follow-up data using Lexis in the Epi package.
P: Simple analysis of Estonian stroke data

Estonian stroke study using the Cox model.

Wednesday 2nd June 2010

09:00 — 09:30
09:30 — 10:15
10:15 — 10:45
10:45 — 12:00
12:00 — 13:00
13:00 — 13:45
13:45 — 14:15
14:15 — 16:00

Recap of Tuesday’s practicals.

L: Modelling the baseline hazard — it’s just another variable.
Who need the Cox model anyway?

Coffee

P: Cox model and time-splitting using Estonian stroke data
Estonian stroke study using with Poisson, comparing with Cox.
Lunch

L: SMR and Poisson-modelling.

Afternoon Tea

P: Time-splitting and SMR: Thorotrast

Thursday 3rd June 2010

09:00 — 09:30
09:30 — 10:15
10:15 — 10:45
10:45 — 12:00
12:00 — 13:00
13:00 — 13:45
13:45 — 14:15
14:15 — 16:00
16:00 — 16:30
16:30 — 16:45

Recap of Wednesday’s practicals.

L: Interaction and timescales.

Coffee

P: Renal complications.

Lunch

L: Multi-state models and competing risks (little boxes).
Afternoon Tea

P: Competing risks: The thorotrast study.

Recap of the day’s practicals.

Evaluation, feedback, closing remarks and farewell.




Chapter 1

Fundamental relations in survival

1.1 Concepts in survival studies

This section briefly summarizes relations between various quantities used in analysis of follow-up
studies. They are used all the time in the analysis and reporting of results. Hence it is important
to be familiar with all of them.

Survival function:

S(t) = P {survival at least till ¢}
= P{T>t}=1-P{T' <t} =1-F(t)

Conditional survival function:
S(tltentry) = P {survival at least till ¢| alive at tentry }
= S(t)/S(tentry)
Cumulative distribution function of death times:
F(t) = P{death before t}
= P{T <t}=1-5()

Density function of death times:

f(t) = P{deathin (¢t,t+ dt)}/d¢

Intensity:

At) = }LiI%P {event in (¢,t + h] | alive at t} /h
%

F(t+h)—F(@t) f(t)

= lim

o S(Hh 0]
_ oy S(t+h)—S(t)  dlogS(t)
a0 Sk &t

The intensity is also known as the hazard function, hazard rate, rate, mortality /morbidity
rate.
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Relationships between terms:

~ dlog S(t)

dt = A®)

S() = exp<—lAtA@Odu>:=exp(—A@D

The quantity A(t) = fg A(s) ds is called the integrated intensity or the cumulative rate. It is
not an intensity, it is dimensionless.
Cdlog(S(t)) _ S(H) . F(t)  _ f(b)

Al) = & S 1-F@  S@

The cumulative risk of an event (to time t) is:
t
F(t) = P {Event before time t} = / Mu)S(u)du=1—8(t) =1—e 20
0

For small |z| (< 0.05), we have that 1 — e~ = x, so for small values of the integrated
intensity:
Cumulative risk to time ¢t ~ A(t) = Cumulative rate

Likelihood from one person:
The likelihood from a number of small pieces of follow-up from one individual is a product
of conditional probabilities:

P {event at t4]entry at to} = P {event at 4] alive at t3} x
P {survive (to,t3)| alive at to} x
P {survive (t1,t2)| alive at t1} x
P {survive (o, 1)| alive at ¢y}
Each term in this expression corresponds to one empirical rate!
(d,y) = (#deaths, #risk time), i.e. the data obtained from the follow-up of one person in

the interval of length y. Each person can contribute many empirical rates, most with d = 0;
d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):
() = dlog(N\) — Ay

This is under the assumption that the underlying rate (\) is constant over the interval that
the empirical rates refers to.

Log-likelihood for several perons. Adding log-likelihoods from a group of persons (assuming
identical and constant rates) gives:

Dlog(\) — Y,

where Y is the total follow-up time, and D is the total number of failures.

!This is a concept coined by BxC, and so is not necessarily generally recognized.
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Note: The Poisson log-likelihood for an observation D with mean AY is:
Dlog(A\Y) — A\Y = Dlog(\) + Dlog(Y) — \Y

The term D log(Y') does not involve the parameter A, so the likelihood for an observed rate
can be maximized by pretending that the no. of cases D is Poisson with mean AY. But this
does not imply that D follows a Poisson-distribution. It is entirely a likelihood based
computational convenience. Anything that is not likelihood based is not justified.

A linear model for the log-rate, log(\) = X/ implies that
AY = exp(log()\) + log(Y)) = exp (Xﬁ + log(Y)). Therefore, in order to get a linear model
we must require that log(Y’) appear as a variable in the model for the log-rate with the
regression coefficient fixed to 1, a so-called offset-term in the linear predictor.

Competing risks: If there is more than one cause of death, occurring with (cause-specific) rates
A1, A2, Ag, the survival function is:

t
5(0) = exp (= [ M(w) + afu) + Aafu) au)
0
The probability of dying from cause 1 before time ¢ is:

/0 A (0)S() du £ 1 — exp (- /0 M) du>

The second part of the term on the right hand side (sometimes referred to as the
“cause-specific survival”) does not have any probabilistic interpretation.
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Chapter 2

Introduction to computing

2.1 Getting the R software

You can obtain a copy of R from the R-homepage, http://www.r-project.org/, use the link to
CRAN (pronounced: see-ran), the Comprehensive R Archive Network,
http://cran.r-project.org/mirrors.html where you choose a mirror (i.e. a server somewhere
in the world. After this you do:

’Download and Install R‘ — ’Windows‘ — ’base‘ — ’Download R 2.11.0 for Windows‘

This gives you an executable file (self-extracting zip) which you can run or download and run.
Anyway, this will install R for you. You can decide which folder, so if you have trouble installing
R in the default place c:\Program Files\R because of restrictions on your computer, just choose
another folder where you do have access rights — R will work anyway.

Once this is completed, you should fire up R by clicking on the icon. You then must install the
Epi package: click on “Packages” — “Install paksage(s)” and you will be asked to choose a mirror
(a server somewhere in the world where R is available) and the to choose “Epi” among the some
2300 other packages.

You can also install the Epi-package by writing:

> install.packages("Epi")

It is important that the first letter in “Epi” is capitalized, and also that the name is in quotes.
This will cause R to locate the package and download and install it for you.

2.2 What is where in the R installation?

When you have installed R on your computer, you will have a folder called R, where some of the
subfolders are:

R-2.11.0
- bin
- doc
- etc

- rgb.txt

- Rdevga
repositories
Makeconf
Rconsole

- Rprofile.site
- include
- library

- base

- boot


http://www.r-project.org/
http://cran.r-project.org/mirrors.html

2.3 Software versions

-
o

class
cluster
codetools
datasets
foreign
graphics
grDevices
grid
KernSmooth
lattice

modules
share
src

Tcl

In the folder etc you will be particularly interested in the file Rconsole. If you open this file in
Tinn, Notepad or some similar editor you will see that it specifies how your R-console looks:
Fonts colors etc. By changing this you can customize how R looks when you start it.

The file Rprofile contains R-commands that are executed whenever you start R, so here you
can insert various commands that loads packages that you always use, e.g. a command like
library(Epi).

2.2.1 Non-official packages

Some R-packages are not on CRAN, but available as a .zip-file. If you want to install such
packages you should get the .zip-file and unpack it in the folder
c:\Program Files\R\R-2.11.0\1library — remember to tick the box “Use folder names”. If you
take a look in the folder c:\Program Files\R\R-2.11.0\1library you will see that there is a
sub-folder for each installed package. This is the general idea behnd how R installs packages: The
program code and the help files are just stuffed into a special folder structure.

A simple and safe approach is to use the menu in R:“Packages” — “Install paksage(s) from local
zip files...”.

2.3 Software versions

For this course you should have the latest version of R installed, i.e. 2.11.0.
The exercises require that you have access to the Epi package, version 1.1.14.
Once you installed it, you should check that you have the right version by starting R and say:

library(Epi)
library (help=Epi)
installed.packages() ["Epi","Version"]

2.4 The script editor

The practicals are fairly detailed w.r.t. the R-commands that will produce parts of the solutions.
You are strongly encouraged to write your R commands in a script file using either Tinn-R

(fancy, with syntax highlighting) or the built-in script editor in R — | File |»{ New script | (or

Open script |) (basic, primitive and no-nonsense). You can submit part of a script by selecting
the relevant lines of code and pressing —R.
If noting is selected the current line is submitted and the cursor moved to the next line. This

way you can aubmit muliple lines of R-code by repeatedly pressing —R.
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2.5 Help on R-commands you need

To benefit maximally from the practicals you should consult the help pages for the R functions
that you use. All of them!. You can use the help.search() function. For example try:

?plot
help.search("Cox model")

Alternatively you may start the html-help pages which have links between functions, try:
help.start()

This has nice links between functions so you can surf around and get wiser. Keep it open all the
time.

Finally you can run the examples from the help-page for a function by typing (e.g for the
function stat.table from the Epi package):

example(stat.table)

These are the ways you will have to get help once the course is over, so you better get used to
it. It will have the side effect that you will read a lot of things irrelevant to your task, but also
that you occasionally will learn something useful you never anticipated!

2.6 Data sets

Data sets for the practials are either accessible as files on the website
www.biotsta.ku.dk/ bxc/AdvCoh/data, or as built-in datasets in the Epi package. The latter
loaded into the workspace by:

data( thoro )

The former are read according to the instructions in the pracaticals, mostly using
read.table().

If you want to read in your own datasets you may need the package foreign, which has
functions to read from SAS, Stata and SPSS. You do not need to install foreign, because it is a
part of the default R installation, but you need to attach it by library(foreign) before you can
use it.

2.7 Solutions

The last chapter of this document contains a complete set of R-scripts and the results of running
these, including the graphs. The R-files will also be available on the course web-site.
http://staff.pubhealth.ku.dk/ bxc/AdvCoh/StAn-2010. They may be useful for you to
consult, but you will get more out of the course if you try on your own first.

There is no guarantee that you will not be able to find a smarter solutions than the ones
provided.


www.biotsta.ku.dk/~bxc/AdvCoh/data
http://staff.pubhealth.ku.dk/~bxc/AdvCoh/StAn-2010
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2.7 Solutions




Chapter 3

Practical exercises

3.1 Calculation of rates, RR and RD

Recall that the standard error of log-rate: 1/v/D, so that a 95% confidence interval for the log of
a rate is:

0 +1.96/vV'D = log()\) = 1.96/vVD
If we take the exponential, we get the confidence interval for the rate:
A% exp(1.96/V/D)
N————
error factor,erf

1. Suppose you have 15 events during 5532 person-years. Now use R as a simple desk
calculator to derive the rate and a confidence interval:

v

library( Epi )

> D <- 15

> Y <- 5532

>rate<-D /Y

> erf <- exp( 1.96 / sqrt(D) )
> c¢( rate, rate/erf, ratexerf )

[1] 0.002711497 0.001634654 0.004497720
> exp( c( log(D/Y), 1/sqrt(D) ) }*% ci.mat() )

Estimate 2.5% 97.5%
[1,] 0.002711497 0.001634669 0.004497678

2. Try to achieved this using a Poisson model. Use the number of events as the respoins and
the log-person-years as offset:

>mm <- glm( D ~ 1, offset=1log(Y), family=poisson )
> summary( mm )

Call:
glm(formula = D ~ 1, family = poisson, offset = log(Y))

Deviance Residuals:

[11 o
Coefficients:

Estimate Std. Error z value Pr(>lzl|)
(Intercept) -5.9103 0.2582 -22.89 <2e-16

13
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3.1 Calculation of rates, RR and RD

(Dispersion parameter for poisson family taken to be 1)

Null deviance: -8.8818e-16 on O degrees of freedom
Residual deviance: -8.8818e-16 on 0 degrees of freedom
AIC: 6.557

Number of Fisher Scoring iterations: 3

What does the parameters of this model mean?

. You can extract a confidence interval directly from the model with the ci.lin()-function

from Epi:
> ci.lin( mm, E=T)

Estimate StdErr z P exp(Est.) 2.5% 97.5%
(Intercept) -5.910254 0.2581989 -22.89032 0 0.002711497 0.001634669 0.004497678

> ci.lin( mm, E=T)[,5:7]

exp(Est.) 2.5% 97.5%
0.002711497 0.001634669 0.004497678

. There is an alternative way to fit a Poisson model, using the rates a the Poisson response,

and the person-years as weights instead:

> mmx <- glm( D/Y ~ 1, weight=Y, family=poisson )
> ci.lin( mmx, E=T )[,5:7]

exp(Est.) 2.5% 97.5%
0.002711497 0.001634669 0.004497678

Verify that this give the same results as above.

. The advantage of this approach is that it will also make sense to use an identity link — the

response is the same but the paramter estimated is now the rate, not the log-rate:

> ma <- glm( D/Y ~ 1, weight=Y, family=poisson(link=identity) )

What is the meaning of the intercept in this model?

Verify that you actually get the same rate estimate as before.

. Now use ci.lin to produce the estimate and the confidence intervals from this model:

> ci.lin( ma )

Estimate StdErr z P 2.5%
(Intercept) 0.002711497 0.0007001054 3.872983 0.0001075112 0.001339315
97.5Y%

(Intercept) 0.004083678
> ci.lin( ma )[,c(1,5,6)]

Estimate 2.5% 97.5%
0.002711497 0.001339315 0.004083678

Why are the confidence limits not the same as from the multiplicative model?

. Now, suppose the events and person years are collected over three periods:

> Dx <- ¢(3,7,5)
> Yx <- c(1412,2783,1337)
> Px <- 1:3
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10.

11.

Try to fit the same model as before to the data from the separate periods.

. Now test wheter the are rates the same in the three periods: Try to fit a model with the

period as a factor in the model:

> mx <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )

. Suppose instead that we had single observations of each year of follow-up, so that we for

each of the 5532 years had an observation of (d,y) where d was either 1 (15 times) or 0
(5517 times), and all the intervals were of length 1.:

> Dx <- rep(0:1,c(5517,15))
> Yx <- rep(1,5532)

If we have observations of two rates A\; and Ao, based on (D1,Y7) and (Dy, Yy) the variance

of the difference of the ratio of the rates, RR, is:

(log(RR)) = (log(A1/Xo))
(log(A1)) + (log(Xo))
= 1/Dy+1/Dy

As before a 95% c.i. for the RR is then:

X 1 1
+ 1. — + —
RR = exp < 96 ) + D0>

error factor

Suppose you have 15 events during 5532 person-years in the un-exposed group and 28
events during 4783 person-years in the the exposed group:

Compute the the rate-ratio and c.i. by:

DO <- 15 ; D1 <- 28

YO <- 5532 ; Y1 <- 4783

RR <- (D1/Y1)/(D0/YO0)

erf <- exp( 1.96 * sqrt(1/D0+1/D1) )
c( RR, RR/erf, RR*erf )

vV VVVvyVv

[1] 2.158980 1.153146 4.042153
> exp( c( log(RR), sqrt(1/DO+1/D1) ) 7*} ci.mat() )

Estimate 2.5% 97.5%
[1,] 2.158980 1.153160 4.042106

This can also be achieved in a Poisson model:

> D <- ¢(D0,D1) ; Y <= c(Y0,Y1); xpos <- 0:1
> mm <- glm( D ~ factor(xpos), offset=log(Y), family=poisson )

What does the parameters mean in this model?
> ci.lin( mm, E=T)[,5:7]

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678
factor(xpos)1 2.158979720 1.153159560 4.042106222
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12. If we instead want the rate-difference, we just subtract the rates, and the variance of the
diference is (since the rates are based on independent samples) just the sum of the variances:
(log(RD)) = (A1) + (Ao)
2 2
= Di/Y +Dy/Y;
Use thsi formual to compute the rate difference and a 95% confidence interval for it.
13. Veryfy that this is the confidence interval you get when you fit an additive model with
exposure as factor:
> ma <- glm( D/Y ~ factor(xpos), weight=Y,
+ family=poisson(link=identity) )
> ci.lin( ma )[,c(1,5,6)]
Estimate 2.5% 97.5%
(Intercept) 0.002711497 0.0013393153 0.004083678
factor(xpos)1 0.003142570 0.0005765288 0.005708611
14. Normally one would like to get both the rates and the difference between them. This can be
achieved in one go using the ctr.mat argument to ci.lin. Try:
> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM
[,11 [,2]
rate O 1 0
rate 1 1 1
RR 1 vs. O 0 1
> mm <- glm( D ~ factor(xpos),
+ offset=log(Y), family=poisson )
> ci.lin( mm, ctr.mat=CM, E=T)[,5:7]
exp(Est.) 2.5% 97.5%
rate 0O 0.002711497 0.001634669 0.004497678
rate 1 0.005854066 0.004041994 0.008478512
RR 1 vs. 0 2.158979720 1.153159560 4.042106222
> round( ci.lin( mm, ctr.mat=CM, E=T), 3 )
Estimate StdErr z P exp(Est.) 2.5% 97.5J
rate 0 -5.910 0.258 -22.890 0.000 0.003 0.002 0.004
rate 1 -5.141 0.189 -27.202 0.000 0.006 0.004 0.008
RR 1 vs. O 0.770 0.320 2.405 0.016 2.159 1.153 4.042
15. Use the same machinery to the additive model to get the rates and the rate-difference in one

go. Note that the annotation of the resulting estiamtes are via the column-names of the
contrast matrix.

> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/Y ~ factor(xpos), weight=Y,

+ family=poisson(link=identity) )

> c¢i.lin( ma, ctr.mat=CM )[,c(1,5,6)]

Estimate 2.5% 97.5%
rate 0 0.002711497 0.0013393153 0.004083678
rate 1 0.005854066 0.0036857298 0.008022403

RD 1 vs. 0 0.003142570 0.0005765288 0.005708611

> round( ci.lin( ma, ctr.mat=CM ), 3 )

Estimate StdErr z P 2.5% 97.5%
rate 0 0.003 0.001 3.873 0.000 0.001 0.004
rate 1 0.006 0.001 5.292 0.000 0.004 0.008

RD 1 vs. O 0.003 0.001 2.400 0.016 0.001 0.006
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3.2 Simple analysis of Estonian stroke data

> library(Epi)

The file stroke.csv contains information on all registered cases of stroke in Tartu, Estonia
during 1991-1993. The data consists of the following variables:

age
sex
dstr
died
dgn
coma
minf
diab
han

age in years (at entry)

sex (1 = male, 0 = female)

date of stroke

date of death

specific diagnosis, type of stroke (ID - unidentified)
indicator, whether patient was in a coma after the stroke
history of myocardial infarction of the patient

history of diabetes

history of hypertension

The follow-up was stopped at 01/01/1996. Subjects with missing value of the variable died is
missing were alive on this date (but not vice versal).

1. First, read in the data using the read.table() or read.csv() command. Do not forget to
look into the file before to see, what the field separator is.

Calculate an id variable in the dataframe.

stroke <- read.table( url("http://www.biostat.ku.dk/"bxc/AdvCoh/data/stroke.csv"),

sep=";", header=TRUE, na.strings="." )

str( stroke )
head( stroke )

>
+
> stroke$id <- 1:nrow(stroke)
>
>

2. Convert the dates read in as character (and converted to factors) to proper dates (and
subsequently to fractions of calendar years — note that applying cal.yr to a data frame
converts all date variables in the dataframe):

> stroke <- transform( stroke, dstr=as.Date(dstr,format="}d./m.%Y"),

+

died=as.Date(died, format="}d.m.Y") )

> str( stroke )
> stroke <- cal.yr(stroke)

. Calculate the last day of follow-up as the smaller of the date of death (died) and 1 January
1996.

Explain why death dates after 1 January 1996 cannot be used as endpoints in the analysis.

How many deaths occurred after 1 January 19967

. Compute the failure indicator (indicator of death) as the existence of a death date prior to 1
January 1996. Note the use of a logical statement to generate a variable with values FALSE
or TRUE:

stroke <- transform( stroke, dox = pmin( died, 1996, na.rm=TRUE ) )
subset ( stroke, died>1996 )

with( stroke, table( died>1996 ) )

stroke <- transform( stroke, D = ( dox < 1996 ) )

vV VVvyvVv

You have been using transform, subset and with. Look at the help pages for these
functions so that you are familiar with what they do.
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5. Plot the Kaplan-Meier estimates of overall survival. You will need to attach the survival
library in order to have access to the function you need:
> library( survival )
> sst <- with( stroke, Surv( dox-dstr, D ) ~ 1)
> survfit( sst )
> plot( survfit( sst ) )

6. Some persons have died on the same as they had their stroke. Discuss what it means to
include them in the study. Try to plot the Kaplan-Meier estimator after excluding these
from the data.
> plot( survfit( sst ) )
> sst0 <- with( subset(stroke,dox>dstr), Surv( dox-dstr, D ) ~ 1)
> lines( survfit( sst0 ), col="red" )

The focus in this study is the survival of patients who actually pull through the stroke (i.e.
more than the first day), so we would exclude the patients who die on the same day as the
stroke:

> stroke <- subset( stroke, dox>dstr )

7. Compute the survival function for each of the 4 diagnoses (as in the variable dgn). Also find
the median survival for each of the diagnoses? Do the medians exist? Why (not)?
> with( stroke, table( dgn, D ) )
> ( sdiag <- survfit( Surv( dox-dstr, D ) ~ dgn, data=stroke ) )

8. Plot the result as 4 curves.
> plot( sdiag, col=1:4, lwd=3, mark.time=F )
> legend( "bottomleft", legend=levels(stroke$dgn),

+ col=1:4, 1wd=3, bty="n", text.col=1:4 )

9. Plot the log-cumulative hazards for different diagnoses. You will need to use the

fun="cloglog" argument to plot.survfit.

Do the hazards look proportional?

Do the same for diabetes history (diab) and sex.

> par( mfrow=c(1,3), mar=c(3,3,1,1) )

> plot( survfit( Surv(dox-dstr,D) ~ dgn , data=stroke ), col=1:4, fun="cloglog",

+ x1im=c(0.002,5.5) ,ylim=c(-3.5,0.5) ,1ud=2)

> legend("bottomright", legend=levels(stroke$dgn), col=1:4, 1ty=1, lwd=3, bty="n" )

> plot( survfit( Surv(dox-dstr,D) ~ diab, data=stroke ), col=1:2, fun="cloglog",

+ x1im=c(0.002,5.5),ylim=c(-3.5,0.5) ,1wd=2)

> legend("bottomright", legend=levels(factor(stroke$diab)),col=1:2,1ty=1,1lwd=3,bty="n" )

> plot( survfit( Surv(dox-dstr,D) ~ sex, data=stroke), col=c("red","blue"), fun="cloglog",

+ x1im=c(0.002,5.5), ylim=c(-3.5,0.5), lwd=2 )

> legend("bottomright", legend=c("F","M"), col=c("red","blue"), lty=1, lwd=3, bty="n" )
10. Plot the Kaplan-Meier estimates of survival function separately for men and woman. Also

test the difference using the logrank test:

> plot(survfit( Surv(dox-dstr,D) ~ sex, data=stroke),

+ col=c("red","blue") )

> survdiff( Surv(dox-dstr,D) ~ sex, data=stroke)

What do you conclude?
11. Now use Lexis to define the survival information, i.e. create a Lexis object.

To do this you must specify date of entry, date of exit on one time scale and entry (or exit)
on other timescales that you may be interested in:
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12.

13.

14.

15.

> Lst <- Lexis( data=stroke, entry=list(Per=dstr,Age=age,Tfs=dstr-dstr),
+ exit=list (Per=dox),

+ exit.status=as.numeric(stroke$D) )

> head( Lst )

Explain the variables that have been generated by Lexis.
Once you have set this up, you can get a compact overview using summary on the object:

> summary( Lst )

Get an overview of how the number of deaths and person years is distributed by time:

> plot( Lst )

Try to enhance the Lexis diagram by using the graphical arguments to plot.Lexis and
points.Lexis. By default, plot.Lexis makes a plot using the first two timescales of the
Lexis object. So it matters in which order the timescales are defined.

Below you see the necessary graphical formatting necessary to get squares in the Lexis
diagram, i.e. the same physical scale on both axes: mai= gives the margins on the four sides
of the plot in inches, a total of 1 inch in each direction. Thus, the height=10+1,width=3+1
gives a plot area of 3 by 10 inches, accommodating a 30 year period (horizoantal) and a 100
year age-span (vertical). You probably want to use another path name for the file, though.

> pdf( "../graph/strokel-LexisX.pdf", height=10+1, width=3+1 )

> par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )

> plot(Lst,x1im=1980+c(0,30),ylim=c(0,100),

+ col=c("red", "blue") [Lst$sex+1],grid=0:20*5,xaxs="1i",yaxs="1")
> points( subset (Lst,lex.Xst==TRUE),pch=16,cex=0.6,

+ col=c("red", "blue") [Lst$sex+1] [Lst$lex.Xst==TRUE])

> dev.off ()

Clearly, from the enhanced figure with colouring of life-lines by sex, it is immediately
apparent that women are much older than men. This may be one explanation of the higher
mortality among women as seen in figure ?77.

Since the relevant time-scale is time since stroke, and since all patients are represented by
exactly one record, we can do the survival analysis (Kaplan-Meier estimator) particularly
simple based on the Lexis object, try:

> with( stroke, survfit( Surv( dox-dstr, D ) ~ sex ) )
> with( Lst, survfit( Surv( lex.dur, lex.Xst ) ~ sex ) )

What is the time-scale we are using here?

Finally, save the datasets stroke and Lst for use in the next exercise (otherwise you are
facing the the data processing one again):

> save( stroke, Lst, file="../data/from-exc-strokel.Rdata" )

3.3 Cox model and time-splitting using Estonian stroke data

> library(Epi)

Reload the Estonian stroke data as you saved them from the first exercise, and make sure that
they are still of class Lexis:

> load( file="../data/from-exc-strokel.Rdata" )
> str( Lst )
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3.3 Cox model and time-splitting using Estonian stroke data

Alternatively you must read the data afresh, transform etc.

1.

Fit a Cox model with sex as a covariate. Interpret the hazard ratio and its confidence
interval. Fit the model using both the stroke data and the data stored as a Lexis object
(Lst).

> library( survival )

> mc <- coxph( Surv(dox-dstr,D) ~ sex, data=stroke )

>  summary( mc )
>
>

mL <- coxph( Surv(lex.dur,lex.Xst==1) ~ sex, data=Lst )
summary( mL )

Are there any differences?

What is the underlying time scale used here?

. Fit a Cox model with sex and age as covariates.

> mLa <- coxph( Surv(lex.dur,lex.Xst==1) ~ sex + age, data=Lst )
>  summary( mLa )

What is the most likely reason for change in the effect of sex?

. Plot the Kaplan-Meier estimate of the survival function for males and females under 75 and

those over 75 — i.e. 4 curves. Try it first simple, then more elaborate:

> plot( survfit( Surv(dox-dstr,as.numeric(D)) ~ interaction(sex,age<75), data=stroke ) )

> plot( survfit( Surv(lex.dur,lex.Xst==1) ~ interaction(sex,age<75),
+ data=Lst ),
+ col=c("red", "blue"), 1lwd=3 )

How can you be sure the coloring of curves is correct? (Hint: Try to write
levels(interaction(sex,age<75)), and remember the recycling rule. Alternatively you
can can do:

> with( Lst, table( interaction(sex,age<75) ) )

. Use the splitLexis command to split the time-scale every 0.05 years, which is almost at all

follow-up times.

length( unique (Lst$lex.dur[Lst$lex.Xst==1]) )

sLst <- splitLexis( Lst, breaks=seq(0,10,0.05), "Tfs" )
str( sLst )

summary( Lst )

summary ( sLst )

vV VVVvVyVv

. Try to list the data for the persons with lex.id in the range 54:55 from the two datasets to

see how the time-splitting has expanded the data:

> subset( Lst, lex.id %in), 54:55 )
> subset( sLst, lex.id Yin} 54:55 )

. Fit a Cox model with age and sex as covariates to the split dataset. Check that the

parameter estimate are identical to the previous Cox model.

mCs <- coxph( Surv(lex.dur,lex.Xst==1) ~ sex + age, data=Lst )

ci.lin( mLa )

mC <- coxph( Surv(Tfs,Tfs+lex.dur,lex.Xst==1) ~ sex + age, data=sLst )
ci.lin( mC )

vV VVvyv

. Now use Poisson regression with an indicator variable for each interval. Enclose the call in a

system. time (), which will tell you how long it took on your computer.
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10.

11.

12.

13.

> system.time(
+ mP <- glm( lex.Xst ~ factor( Tfs ) + sex + age + offset(log(lex.dur)),
+ family=poisson, data=sLst )

+ )

. Now take a look at the estimated coefficients:

> coef( mP )

So you may be interested in extracting only the relevant subset of them, and compare with
the estimates from the Cox-model:

> ci.lin( mP, subset=c("sex","age"), Exp=TRUE )
> ci.lin( mC, Exp=TRUE )

Are there any major differences?

. If time permits (this takes rather long computing time):

Split time since stroke in intervals of length 0.01 years instead of 0.05 years and repeat the
analysis.

Now use a parametric function for the baseline hazard. We will use restricted cubic splines
(natural splines) with knots at 0.05, 0.2, 0.7, 1.5, 3 and 4.8 years, but we also need a
quantitative variable giving the midpoint of the interval, which is achieved by the function
timeBand:

sLst$Tfs.m <- timeBand( sLst, "Tfs", "middle" )

library( splines )

kn <- ¢(0.05,0.2,0.7,1.5,3)

Bk <- ¢(0,4.8)

mS <- glm( lex.Xst ~
ns( Tfs.m, knots=kn, Bo=Bk ) + sex + age + offset(log(lex.dur)),
family=poisson, data=sLst )

+ +VvVVvVVvVvyvVvy

Compare the parameter estimates with the previous models.

> ci.lin( mC )
> ci.lin( mP, subset=c("sex","age") )
> ci.lin( mS, subset=c("sex","age") )

Obtain an estimate of the baseline hazard function for a female aged 60. You will need to
generate a sequence of times where you compute it:

> t.pt <- seq(0,5,0.01)

> CM <- cbind( 1, ns( t.pt, knots=kn, Bo=Bk ), 0, 60 )

> hz <- ci.lin( mS, ctr.mat=CM, Exp=TRUE )[,5:7] * 1000
> matplot( t.pt, hz, type="1", lwd=c(3,1,1), ylim=c(0,1), 1lty=1, col="black" )

Alternatively, you can obtain the hazard by predict using the newdata= argument. Note
taht you also need to specify values of lex.dur which is in the offset of the model:

> nd <- data.frame( Tfs.m=t.pt, sex=0, age=60, lex.dur=1000 )

> prhz <- predict( mS, newdata=nd, type="link", se.fit=T )

> str( prhz )
> prhz <- exp( cbind( prhz$fit, prhz$se.fit ) J*J), ci.mat() )

Verify that you get the same estimates:
> matplot( hz, prhz )

Obtain an estimate of the survival function for a female aged 60. You can reuse the
sequence of times from before with the modification that you should not use 0. Consult the
help page for ci.cum first.
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t.pt <- t.pt[-1]
CM <- cbind( 1, ns( t.pt-0.005, knots=kn, Bo=Bk ), 0, 60 )
Hz <- ci.cum( mS, ctr.mat=CM, intl=0.01 )
matplot( t.pt, exp(-Hz)[,-4],
type="1", lwd=c(3,1,1), ylim=c(0,1), 1lty=1, col="black" )

+ VVvVvVvy

14. Compute the estimated survival function for a similar person from the Cox-model and plot
in the same frame.

> matplot( t.pt, exp(-Hz)[,-4],

+ type="1", lwd=c(3,1,1), ylim=c(0,1), lty=1, col="black" )
> lines( survfit(mC,newdata=data.frame (sex=0,age=60)),

+ conf.int=TRUE, col="red" )

> # overplot the estimate with a thicker line:

> lines( survfit(mC,newdata=data.frame (sex=0,age=60)),

+ conf.int=FALSE, col="red", 1wd=3 )

One morale of this exercise is that it is immaterial wheter a Cox-model or a Poisson-model
is used for estimation of covariate effects. But the assumptions behind the Poisson-model
(continuous effect of time) seems more reasonable.

The other morale is that it requires some care to model the hazard correctly in the
beginning (or rather in parts of the timescale where mortality is changing rapidly), if it has
to be used for survival function construction.

The following things should be taken care of where hazards is changing rapidly:

e Time should be split finely.
e The effect of time should be modelled detailed.

e Compute the hazards at the mipoint of the intervals, but plot the cumulative hazard
(or equivalently, the survival function) at the upper end of the intervals.

3.4 Time-splitting and SMR: Thorotrast

In the period 1935-50 a contrast medium called Thorotrast was used for cerebral angiography
(X-ray imaging of the brain). This contrast medium contained ?3?Th, thorium. It turns out that
thorium is not excreted from the body, it is permanently deposited, some 60% in the liver, 20% in
the spleen and some 10% in the bone marrow, and a very small fraction in other organs.

Thorium is an a-emitting radionuclide, i.e. it emits a-rays (i.e. He-nuclei) which is ionizing,
but not particularly penetrating; it only penetrates 2-3 cell-layers. The half-life of 232Th is
1.4x10'0 years, so the patients that have been injected with Thorotrast exposed are exposed to a
constant, small a-radiation for life.

In the study is 990 Thorotrast patients who had a cerebral angiography in the period 1935-50
and 1480 controls who have had a cerebral angiography in the period 1946—63, on similar
indications as the Thorotrast patients, but with another contrast medium.

Persons undergoing cerebral angiography are in may cases seriously ill, they are suspected of
cerebral malformations or tumors, so both the Thorotrast group and the control group have very
high mortality rates, and a pattern of causes of death that differ substantially from the general
population. Especially during the first year after diagnosis there is a very high mortality among
the patients, which is entirely associated to the conditions that have lead to to the cerebral
angiography. Therefore, follow-up of both Thorotrast patients and control patients is only
relevant from one year after angiography.
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3.4.1 The data sets

There are two sources of data for this exercise, the cohort data and the mortality rates from
Denmark. Both are available as internal datasets in the Epi package. The dataset with the cohort
is loaded by data(thoro); and you can get an explanation by typing ?thoro. The relevant
cause-specific mortality figures for Denmark are loaded by data(gmortDK). As well as overall
mortality (rt), the file also contains the mortality for all cancers, etc. For a complete explanation,
use ?gmortDK.

1. First load the Thorotrast dataset from the Epi package:

> library( Epi )
> data( thoro )

Then take a look at the cohort data by e.g. head (thoro) and/or summary (thoro).

Note that the date variables are of class “Date”, i.e. they are stored as days since 1 January

1970, you may want to try for example:
> bd <- thoro$birthdat[1:5]

> bd

> as.numeric(bd)

>

>

cal.yr(bd)
(cal.yr(bd)-1970)*365.25

Don’t forget to use ?cal.yr.

The most convenient is to use cal.yr on the dataset, which will convert all date variables in
the dataset to cal.yr:

> thoro <- cal.yr( thoro )
> str( thoro )

You would also want a decent annotation of the primary effect variable contrast, so define
it as a factor with appropriate labels:

> thoro$contrast <- factor( thoro$contrast, labels=c("Thoro","Contr") )

2. Declare the follow-up timescales for the dataset, using the Lexis command, e.g.:

> thL <- Lexis( entry = list(per=injecdat,

+ age=injecdat-birthdat,
+ tfi=0),

+ exit = list(per=exitdat),

+ exit.status = (exitstat==1),

+ id = id,

+ data = thoro )

> str( thL )

> head( thL )

Explain the meaning of the variables added by Lexis, and how they relate to the data
variables.

Get an overview of the Lexis object (the dataset) using summary:

> summary( thL )

3. Note that thL has got class “Lexis”. Now make a Lexis diagram using the defined object
thL:

> plot( thL )
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3.4 Time-splitting and SMR: Thorotrast

This really uses the function plot.Lexis to make the plot. Use ?plot.Lexis to find the
available options for this command, and try to improve the plots with indications of the
exit-status of the persons in the cohort.

. Try to make the life-lines of Thorotrast patients and controls different color. Hint: use the

indexing facility for a character vector with color names: col=c("red","blue") [contrast].

3.4.2 Rates

D.

The first analytical task is to look at overall mortality by contrast medium (contrast).

Tabulate the number of deaths and person-years from the study by group using
stat.table():

> stat.table( contrast,
list( D=sum(lex.Xst),
Y=sum(lex.dur),
rate=ratio(lex.Xst,lex.dur,1000) ),
data=thL )

+ + + +

. However, we want to to start follow-up one year after angiography (injecdat) and exclude

persons without follow-up beyond one year. Note you need to redefine the entry date to the
study on all three timescales:

> thL <- Lexis( entry = list(per=injecdat+1,

+ age=injecdat+1-birthdat,

+ tfi=1),

+ exit = list(per=exitdat),

+ exit.status = exitstat==1,

+ id = id,

+ data = subset( thoro, (injecdat+1) < exitdat ) )
> summary( thL )

Use the new dataframe to produce the same table by stat.table.

. Compute 95% confidence intervals for the overall rates and for the rate-ratio between the

two groups.

Try to do this also by fitting a Poisson-model with glm and subsequently use ci.lin to
compute the rates and the RR.

(Optional) Tt is well known that Thorotrast causes liver cancer; try to tabulate the number
of liver cancers by patient group.

One may argue that the deaths caused by liver cancer should not be counted, so repeat the
mortality calculations above after censoring patients at date of liver cancer diagnosis.

. An important question is how the mortality rates in the two groups varies with time since

injection.
In order to see if the mortality changes the same way in the two groups, split the follow-up
time by time since injection using splitLexis. Split follow-up in intervals of 1 year during

the first years say 5 years from time since angiography and subsequently every 5 years, e.g.
by:

> thx <- splitLexis(thL, "tfi", breaks=c(0:4,seq(5,55,5)) )
Take a look at the split data for example by listing the observations with id==1, (use for

example subset (thx,id==1)). Make sure that you understand how they relate to the
original record.
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10.

11.

12.

13.

14.

15.

Compute mortality rates in each interval separately for the two groups, using stat.table.
How do the rates in the two groups of patients behave by time since injection?

Try to show it in a graph. Hint: Assign the result of stat.table() to an object and take a
look at the dimnames () of this object. Then use matplot () to plot the two sets of rates by
taking appropriate subsets of the object.

The next step is to model the mortality and the rate-ratio in the two groups by a smooth
function. Therefore, we split the follow-up in small intervals, and fit a model using natural
splines for the mortality as a function of time.

> thxx <- splitLexis(thL, "tfi", breaks=c(0,seq(1,100,0.5)) )

> dim( thxx )
> summary( thxx )

In order to do so we need a quantitative variable for each of the intervals, giving the
midpoints of the intervals, as well as a failure indicator:

> thxx$m.tfi <- timeBand( thxx, "tfi", "middle" )
Remember to consult the help page for timeBand.

A Poisson model can now be used to fit a model for the mortality as a function of time since
injection using natural splines. The point is to fit a separate mortality curve for each
contrast group as a function of time since injection:

e Splines are available in the splines package, which is loaded by library(splines).

e The definition of splines requires the definition of internal knots (knots) and boundary
knots (Boundary.knots, abbreviated Bo). These are most conveniently defined before
the splines.

[T}

e If you want separate splines for each level of contrast, use the interaction operator

e To get the parametrization as log-rates in each of the groups we remove the overall
intercept from the model by “~1”, and include an intercept with the splines by
intercept=TRUE (or i=T).

e Finally we scale the person-years by 1000, in order to get results in rates per 1000
person-years.

Now, put these points together in the model specification:

> library( splines )

> kn <- c(4,8,seq(10,40,10))
> bk <- ¢(1,50)
>
+
+

ml <- glm( lex.Xst -1 + contrast:ns( m.tfi, knots=kn, Bo=bk, i=T ) +

offset ( log(lex.dur/1000) ),
family=poisson, data=thxx )

Note that we use the midpoint m.tfi as defined above as the regression variable in the
model, and we deliberately omit the intercept (-1), because we want the two spline terms
(one for controls and one for Thorotrast) to carry the rate dimension.

How would you include (current) age in the model?

Construct a contrast matrix to multiply with (some of) the coefficients of the model, so that
you get the estimated mortality rates at a set of points between 1 and 40 years, say.
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3.4 Time-splitting and SMR: Thorotrast

16.

You can extract the parameters and multiply them with the contrast matrix in one go by
using the facilities of ci.lin — remember ?ci.lin. This will give you estimated
mortalities at each of the time-points in tpt.

First try to see what the parameters are called using ci.lin, then see which ones you
extract (and in which order!) when using the subset parameter:

ci.lin( m1 )[,1:2]

ci.lin( m1, subset="Thoro:ns" )[,1:2]

ci.lin( m1, subset="Contr:ns" )[,1:2]

ci.lin( m1, subset=c(":ns") )[,1:2]

ci.lin( m1, subset=c("Thoro:ns","Contr:ns") )[,1:2]

vV VVVyV

This can be used by pre-multiplying a matrix to the parameters to get estimates of the rates
at a number of points, using the ctr.mat= argument (contrast matrix):

tpt <- seq(1,40,0.5)

CM <- ns( tpt, knots=kn, Bo=bk, i=T )

mortl <- ci.lin( ml, ctr.mat=CM, subset="Thoro:ns", Exp=TRUE )
mort2 <- ci.lin( ml, ctr.mat=CM, subset="Contr:ns", Exp=TRUE )

vV VVvyVv

Because the contrast matrix CM is constructed using the ns with tpt as argument, the result
ci.lin will be log-rates estimated at each of the time points in tpt, and transformed to
rates by the argument Exp=TRUE. Now, plot the two sets of estimated mortality rates as nice
curves with confidence intervals, as a function of tpt.

Use the contrast matrix to construct estimates of the rate-ratio between the groups at the
same time points. You can use the relevant contrast matrix to multiply on these parameters
to get the rate-ratio between the two patient groups:

> RR <- ci.lin( ml, ctr.mat=cbind(CM,-CM), subset=c("Thoro:ns","Contr:ns"), Exp=TRUE )

3.4.3 SMR

The follow-up of the two groups of patients are in very different time periods and they have
differing age-distributions. Therefore it is desirable to control for age and calendar time. This
could be done by making an internal comparison of the two contrast groups controlled for age,
sex, and calendar period. However, because of the different calendar periods of follow-up, some
information would be lost; the effect of calendar time would be almost perfectly confounded with
group. Instead, the comparison can be partly standardized for age, sex, and period, using SMR,
i.e. by modelling the mortality relative to the population mortality, and assuming that this does
not depend on calendar time.

17.

18.

19.

Explain why the latter assumption is crucial.

The Danish mortality figures are in the dataframe gmortDK. Load it by data(gmortDK) and
inspect it using ?gmortDK. In order to be able to match up the Danish population mortality
rates to the follow-up data these must first be split by current age and calendar time. The
names and coding of the age and period variables must be chosen so that they are the same
in gmortDK and in the split cohort data.

Split the dataset, now also along current age and period using cutpoints that correspond to
those from the population data; note the splitting is successive; each split is taking the
previously split dataset as input:

> tha <- splitLexis(thL , "age", breaks=seq(0,90,5) )

> thap <- splitLexis(tha , "per", breaks=seq(1938,2038,5) )
>  thapt <- splitLexis(thap, "tfi", breaks=seq(0,55,0.5) )
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20. Unlike other packages there is no need in R to sort the dataframe by variables we merge on,
or to name them explicitly — R will merge on all variables common to the two dataframes,
and only include records in the result that have contributions from both dataframes.

But you must make sure that variables have common names, so define agr and pgr in the
cohort data:

data( gmortDK )
names ( gmortDK )
thapt$agr <- timeBand(thapt, "age", "left")
thapt$pgr <- timeBand(thapt, "per", "left")

vV VVvyv

It is important to make this exercise, because the time-scale variables age and per will not
be equal to the left endpoint of the age/period interval for all units in the dataset. (Why?).

21. Then make pgr in the population mortality data match the coding in the cohort data:

>  gmortDK$pgr <- gmortDK$per + 1900

Now you can merge the the population data with the follow-up data on the variables agr,
pgr and sex (only taking the relevant columns from gmortDK):

>  thlap <- merge(thapt, gmortDK[,c("agr",'pgr","sex",'"rt")],
+ by=c("agrl" llpgrll’ HseXH))

22. The variable rt from gmortDK has the population mortality rate in cases per 1000
person-years. Multiply this with the person-years (lex.dur) to form the expected number
of cases, E, say.

23. Compute the observed and expected number of cases as well as the ratio (SMR) by group
using stat.table. Further tabulate this by time since injection.

24. Now use the log of E as offset-variable to estimate in a model where the SMR in each of the
two groups of patients are assumed to depend smoothly on time since injection. Plot the
SMR for each of the groups, and the ratio of SMRs as a function of time since injection.
(This is parallel to what you did with the rates).

25. Do the ratios of SMRs differ substantially from the rate ratios obtained without using the

reference rates?

3.5 Renal complications:
Time-dependent variables and multiple states

The following practical exercise is based on the data from paper:
P Hovind, L Tarnow, P Rossing, B Carstensen, and HH Parving: Improved survival in patients
obtaining remission of nephrotic range albuminuria in diabetic nephropathy. Kidney Int,

66(3):1180-1186, Sept 2004.

You can find a .pdf-version of the paper on the course homepage.
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3.5 Renal complications:
Time-dependent variables and multiple states

Table 3.1: Variables in renal.dta.

id  Patient id
sex l=male, 2=female
dob  Date of birth
doe  Date of entry into the study (2.5 years after NRA)
dor Date of remission. Missing if no remission has occurred
dox  Date of exit from study
event  Exit status: 1,2,3=event (end stage renal disease, ESRD), 0=censored

3.5.1 The renal failure dataset

The dataset renal.dta contains data on follow up of 125 patients from Steno Diabetes Center.
They enter the study when they are diagnosed with nephrotic range albuminuria (NRA). This is a
condition where the levels of albumin in the urine is exceeds a certain level as a sign of kidney
disease. The levels may however drop as a consequence of treatment, this is called remission.
Patients exit the study at death or kidney failure (dialysis or transplant).

1. The dataset is in Stata-format. Read the dataset using read.dta from the foreign

package, and take a look at the first 20 records:

> library( foreign )
> renal <- read.dta( "../data/renal.dta" )
> head( renal )

. First do a simple survival curve for the cohort. The event we are interested in is given by

codes 1,2 or 3 in the variable event

The function Surv() defines a survival object, used as the response variable in a survival
analysis. If called with two arguments the first is the survival time and the second the event
indicator. If called with three arguments, the first is the time of entry, the second is the
time of exit and the third the event indicator.

> library( survival )

> sf <- survfit( Surv( dox-doe, event>0 ) ~ 1, data=renal )
> plot( sf )

. Use Lexis to declare the data as survival data with age, calendar time and time since entry

into the study as timescales. Note that any coding of event > 0 will be labeled “ESRD”, i.e.
renal death (death of kidney (transplant or dialysis), or person).

> library( Epi )
> Lr <- Lexis( entry = list( per=doe,

+ age=doe—-dob,

+ tfi=0 ),

+ exit = list( per=dox ),

+ exit.status = factor( event>0, labels=c("NRA","ESRD") ),
+ data = renal )

> str( Lr )

> summary( Lr, scale=1000 )

. Visualize the data in a Lexis-diagram, using the plot method for Lexis objects. What do

you see?

> plot( Lr, col="black", 1lwd=3 )
> subset( Lr, age<0 )
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5.

10.

11.

Correct the data, e.g. by:
> Lr <- transform( Lr, age=age+100*(dob>2000), dob=dob-100%*(dob>2000) )

> str( Lr )
> subset( Lr, id==586 )

> plot( Lr, col="black", 1lwd=3 )

. Now try to produce a slightly more fancy Lexis diagram:

> par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
> plot( Lr, 1:2, col=c("blue","red") [Lr$sex], 1lwd=3, grid=0:20%5,
+ x1im=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

. Make a Cox-regression analysis with the variables sex and age at entry into the study. Give

the hazard ratio between males and females and between two persons who differ 10 years in
age at entry. Give the 95% confidence intervals for this as well.

> library( survival )

> mc <- coxph( Surv( tfi, tfi+lex.dur, lex.Xst=="ESRD" ) ~
+ I(age/10) + sex, data=Lr )

> summary( mc )

. Show the estimated survival function for a male aged 50.

> plot( survfit( mc, newdata=data.frame(age=50,sex=1) ), col="black", lwd=3 )

. The main focus of the paper is however to assess whether occurrence of remission (return to

a lower level of albumin excretion, an indication of kidney recovery) influences mortality.

“Remission” is a time-dependent variable which is initially 0, but takes the value when
remission occurs. In order to handle this, each person who gets remission must have two
records:

e One record for the time before remission, where entry is doe, exit is dor, remission is 0,
and event is 0.

e One record for the time after remission, where entry is dor, exit is dox, remission is 1,
and event is 0 or 1 according to whether the person had an event at dox.

This is accomplished using the cutLexis function on the just defined Lexis object.
Remember to declare the “NRA” state as a precursor state, i.e. a state that is less severe
than “Remission” in the sense that a person will stay in the “Remission” state unless he goes
to the “ESRD?” state.

> Lc <- cutLexis( Lr, cut=Lr$dor, timescale="per",
+ new.state="Rem", precursor.states="NRA" )
> summary( Lc )

Show how the states are connected and the number of transitions between them by using
boxes. This is an interactive command the requires you to click in the graph window:
meval=FALSE>= boxes( Lc )

Now make a Lexis diagram where different colouring is used for different segments of the
follow-up:

par( mai=c(3,3,1,1)/4 )
plot( Lc, col=c("red","green")[(Lc$lex.Cst=="Rem")+1],
1wd=3, grid=0:20%5, xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )
points( Lc, pch=c(NA,16)[(Lc$lex.Xst=="ESRD")+1],
col=c("red", "green") [(Lc$lex.Cst=="Rem")+1])
points( Lc, pch=c(NA,1) [(Lc$lex.Xst=="ESRD")+1],
col="black", 1wd=2 )

+V+V+yVvy
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12. List the first records of the dataframe Lc (using head()) and make sure that you
understand how persons and follow-up time is represented in this dataset.

13. Make a Cox-regression of mortality (i.e. endpoint “ESRD”) with sex, age at entry and
remission as explanatory variables, and using time since entry as timescale. Note how the
variable lex.Cst is used as a time-dependent variable:
> m1 <- coxph( Surv( tfi, tfi+lex.dur, lex.Xst=="ESRD" ) ~
+ sex + I((doe-dob-50)/10) + (lex.Cst=="Rem"), data=Lc )
> summary( m1 )

14. What is the assumptions about the rate of ESRD/death between persons in remission and
persons not?

15. What is the assumption about the incidence rates of remission? (cf. figure 3.1).

3.5.2 Splitting follow-up time

In order to explore the effect of remission on the ESRD/death rate, we will split the data further
into small pieces of follow-up. To this end we use the function Lexis. The rates can then be
modeled using a multiplicative Poisson-model, and the shape of the rates be explored.
Furthermore, we can allow effects of both time since NRA and current age. To allow this we will
use splines, so we need the splines package, too.

16.

17.

18.

19.

Split the follow-up time every 0.5 years after entry, and make sure that the number of
events and risk time is the same as before:

> sLc <- splitlLexis( Lc, "tfi", breaks=seq(0,30,0.5) )
> summary( Lc, scale=1000 )
> summary(sLc, scale=1000 )

Now try to fit the Poisson-model corresponding to the Cox-model we fitted previously. The
function ns () produces a model matrix corresponding to a piecewise cubic function.

> library( splines )
> mp <- glm( as.numeric(lex.Xst=="ESRD") ~
ns( tfi, df=8 ) +
+ factor(sex) + I((doe-dob-40)/10) + (lex.Cst=="Rem") +
+ offset( log(lex.dur) ),
+ family = poisson, data=sLc )
> summary( mp )

+

Another possibility, which is formally more correct is to use the midpoint of the intervals in
which the time is split. These are accessed by the function timeBand:

> mx <- glm( as.numeric(lex.Xst=="ESRD") ~

+ ns( timeBand(sLc, "tfi","mid"), df=8 ) +

+ factor(sex) + I((doe-dob-40)/10) + (lex.Cst=="Rem") +
+ offset( log(lex.dur) ),

+ family = poisson, data=sLc )

> summary( mx )

Note the similarity of the results.

What kind of assumptions are made in this model about the transition rates in the figure
3.17

You can extract the parameters from the models using ci.lin, try:
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Figure 3.1: Iliness-death model for the renal data.

ci.lin( mp )

ci.lin( mp, subset=10:12 )

ci.lin( mp, subset=10:12, Exp=TRUE )

ci.lin( mp, subset=c("sex","dob","Cst"), Exp=TRUE )
ci.lin( mp, subset=10:12, Exp=TRUE )[,5:7]

vV VVVvVyVv

Compare with the estimates from the Cox-model. Use:

> ci.lin( m1, Exp=TRUE )

3.5.3 Splines and predictions

In the model we have used splines to model the effect of the covariate tfi, time since NRA. The
model assumes that the rates are constant in 6-month intervals (the units we split into). The
spline models how the rates in each of these intervals relate to each other. Spline functions are
functions that are cubic between a set of knots and constrained to have the same Oth, 1st and 2nd
derivative at the knots. The natural splines generated by ns() further have the property that
they are linear beyond the outermost, so called boundary, knots. Splines are linear combinations
of polynomials, and so the models are just usual linear models. The only requirement to generate
the columns of the model matrix is fixing the knots. Even if we have 40+ intervals on this
time-scale, we only used 8 parameters to model the effect.

To see the effect of time, the estimated coefficients for the time effect must be multiplied with a
matrix where each row represents a particular time. This can be done explicitly for chosen values
of time by using the ns function.

However, the function ns chooses the knots based on the data. So if we want to have the same
parametrization for a new set of points, we must first extract the knots and boundary knots used
in the model. They are stored in the attributes of the ns object, and can be found using the
function attr (). These are then used to generate a model matrix with rows corresponding to a
prespecified set of time-points. This matrix is then multiplied with the estimated parameters to
get the estimated effects. This is simplest achieved by using ci.lin, which also has the facility to
select subsets of parameters from a function and to extract standard errors too.

20. Plot the survival function for a male aged 40 at entry (NRA), based on the model mp, using
the function ci.cum.
Get the knots

> #
> t.kn <- attr( ns( sLc$tfi, df=8 ), "knots" )
> t.Bo <- attr( ns( sLc$tfi, df=8 ), "Boundary.knots" )
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21.
22.

23.

24.

25.

26.

> # Then decide the points of prediction

> t.pt <- seq( 0,20,0.1 )

> nt <- length( t.pt )

> # Then make the contrast matrix to generate log-rates

> MT <- ns( t.pt, knots=t.kn, Bo=t.Bo )

> cmat <- cbind( 1, MT, 1, 0, O )

> cinc <- ci.cum( mx, ctr.mat=cmat, intl=0.1 )

> # Note that there is no guarantee that the lower limit of the c.i. for
> # the cumulative incidence is positive:

> cinc[1:20,]

> matplot( t.pt, exp( -cinc )[,-4], type="1", lwd=c(3,1,1), 1ty=1, col="black" )

What is the problem with the previous question?

Use the extracted knots to generate the relevant model matrix, and use this for plotting
effect of time since NRA:

MT <- ns( t.pt , knots=t.kn, Bo=t.Bo ) -
ns( rep(0,length(t.pt)), knots=t.kn, Bo=t.Bo )
# The extract, multiply and exponentiate:
t.eff <- ci.lin( mp, subset="ns", ctr.mat=MT, Exp=T )[,5:7]
# Then plot the effects
matplot( t.pt, t.eff, log="y", type="1", 1ty=1, col="black", lwd=c(3,1,1),
xlab="Time since NRA", ylab="Rate ratio" )

+ VVVV+yV

What is shown in this plot?
How relevant is that?

The next step is to include a spline effect of current age in the model too. Try:

> ma <- glm( as.numeric(lex.Xst=="ESRD")
+ ns( tfi, df=8 ) +

+ ns( age, df=8 ) +

+ sex + I((doe-dob)/10) + as.numeric( lex.Cst=="Rem" ) +
+ offset( log(lex.dur) ),

+ family = poisson, data=sLc )

> summary( ma )

Why is the effect of age at entry (I((doe-dob)/10)) set to NA in the output from the model?

(Esoteric, hard, but quite important) Try to replace the ns( tfi, df=8 ) with the term
ns( timeBand(sLc,"tfi","mid"), df=8 ) in the model. Why is the age at entry effect
not NA in this case?

In this model (i.e. ma) we can show the effect of time since NRA as before, as well as the
effect of current age. Try:

> # First get the knots in order to generate the splines

> a.kn <- attr( ns( sLc$age, df=8 ), "knots")

> a.Bo <- attr( ns( sLc$age, df=8 ), "Boundary.knots")

> # Now we can make the matrix to multiply with the coefficients:
> a.pt <- seq( 40,70,0.2)

> Ma <- ns( a.pt , knots=a.kn, Bo=a.Bo ) -

+ ns( rep(60,length(a.pt)), knots=a.kn, Bo=a.Bo )

> a.eff <- ci.lin( ma, subset="age", ctr.mat=Ma, Exp=T )[,5:7]

> matplot( a.pt, a.eff, log="y", type="1", 1lty=1, col="black", lwd=c(3,1,1),
+ xlab="Current age", ylab="Rate ratio" )

> abline( h=1)

How is the rate (as a function of age) behaving relative to what you would expect for the
general population?

We are however also interested in knowing the absolute magnitude of the rates of
ESRD/death for patients without remission. This would include the intercept as well as the
rate-ratio function.
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27.

28.

29.

30.

31.

32.

The times where we want the rates should be the same as before, but now we must specify
an intercept (just a column of 1s) the sex (for males just a column of 1s) and the age. The

latter is a matrix of identical rows, each corresponding to the age-effect at 60 years, say. Try:
> MTa <- ns( rep(60,length(t.pt)), knots=a.kn, Bo=a.Bo )

> T.inc <- ci.lin( ma, subset=c("Int","tfi", "age","sex"),

+ ctr.mat=cbind (1,MT,MTa, 1), Exp=TRUE )[,5:7]

>

+

matplot( t.pt, T.inc, log="y", type="1l", 1ty=1, col="black", lwd=c(5,2,2), las=1,
xlab="Time since NRA", ylab="Rate per year", ylim=c(0.01,5) )

What is the current age at each time point of this curve?

Now try to make the same prediction of rates, but this time for a person that is 50 years at
entry. Then the rows of the age-effects matrix should correspond to age at entry plus time
since entry (i.e. current age):

> MTa <- ns( 50+t.pt, knots=a.kn, Bo=a.Bo )

> T.inc <- ci.lin( ma, subset=c("Int","tfi", "age","sex"),
+ ctr.mat=cbind(1,MT,MTa,1), Exp=TRUE )[,5:7]

Now plot these estimated rates on top of the other:
> matplot( t.pt, T.inc, log="y", type="1", lty=1, col="black", lwd=c(5,2,2), las=1,
+ xlab="Time since NRA", ylab="Rate per year", ylim=c(0.01,5) )

> matlines( t.pt, T.inc, type="1", 1lty=1, col="red", lwd=c(5,2,2) )
> abline( v=10 )

What is the meaning of the latter set of rates as opposed to the former?
How would you accomplish this analysis with a Cox-model?

Apart from the two timescales, time since NRA and current age, a third timescale may be of
interest, namely time since remission. However this is only relevant for persons who actually
have a remission, so start by checking how many events there are in this group:

> summary( sLc )
How many go in remission, and how many deaths are in this group?

With this rather limited number of events we can certainly not expect to be able to model
anything more complicated than a linear trend with time since remission.

The variable we want to have in the model is current date (per) minus date of remission
(dor): per-dor), but only positive values of it. This can be fixed by using pmax (), but we
must also deal with all those who have missing values, so we use:

> pmax( per-dor, 0, na.rm=TRUE )
Make sure that you understand what goes on here.

We can now expand the model with this variable. We need not write the entire model
statement again, we can just say:

> mx <- update( ma, . ~ . + pmax( (per-dor)/10, 0, na.rm=TRUE ) )
> summary( mx )

Is the effect significant? Can a substantial effect of time since remission be ruled out?

What is your overall conclusion — is it consonant with the conclusion in the paper?
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3.6 Competing risks: The Danish Thorotrast study

In the period 1935-50 a contrast medium called Thorotrast was used for cerebral angiography
(X-ray imaging of the brain). This contrast medium contained 232Th, thorium. It turns out that
thorium is not excreted from the body, it is permanently deposited, some 60% in the liver, 20% in
the spleen and some 10% in the bone marrow, and a very small fraction in other organs.

Thorium is an a-emitting radionuclide, i.e. it emits a-rays (i.e. He-nuclei) which is ionizing,
but not partcularly penetrating; it only penetrates 2-3 cell-layers. The half-life of 232Th is
1.4x10'0 years, so the patients that have been injected with Thorotrast exposed are to a
constant, small a-radiation for life.

A number of studies of persons subjected to Thorotrast have been conducted (Japan, Germany,
Protugal, Sweden and Denmark). The data used in this workshop comes from one of the largest
studies, the Danish, which incorporates 999 exposed patients injected with Thorotrast between
1935 and 1947, and 1480 controls who have had a cerebral angiography in the period 1946-63, on
similar indications as the Thorotrast patients.

Persons undergoing cerebral angiography are in may cases seriously ill, they are suspected of
cerebral malformations or tumors, so both the Thorotrast group and the control group have very
high mortality rates, and a pattern of causes of death that differ much from the general
population. Especially during the first year after diagnosis, there is a very high mortality among
the patients, which is entirely associated to the conditions that have lead to to the cerebral
angiography. Therefore, the follow-up of both Thorotrast patients and control patients started
one year after the angiograpy, at which time 811 Thorotrast patients and 1236 control patients
were alive.

Since the Thorotrast patients recieve a continuous dose to the liver they have very high rates of
liver cancer. All 127 liver cancers except 8 have been classified as one of three different subtypes:
hepatocellular carcinoma, cholangiocellular carcinoma and haemagiosarcoma.

3.6.1 Cumulative dose

Thorium in the form of Thorotrast has a tendency to form small “lumps” when it deposits in the
liver. Because of the limited range of the a-rays this causes the radiation dose per time to be less
than proportional to the injected dose, because some of the emitted particles never reach beyond
the “lump”. It has been estimated that this give rise to the following conversion factors between
injected volume and liver dose:

Inj. volume Liver dose rate The relationship between injected volume v (mea-

(ml)  (Gy/year/dl) sured in dl) and effective radiation dose rate p (in
19 1.40 Gray/ year/dl) can be quite well approximated by the

10-19 1.95 function:

20-29 1.10 p=1.502 — 1.937 x v + 1.109 x v*

30-39 0.95

40-49 0.85 so the annual dose ¢ (in Gray/per year) is approxi-

50-59 0.76 mately:

60-69 0.72

70-79 0.69 § = (1.502 — 1.937 x v + 1.109 x v?) x v

80-99 0.65
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3.6.2 The data sets

The dataset is available in the Epi package, so you can load the data and inspect it by:

> library(Epi)
> data(thoro)
> head (thoro)
> str(thoro)

This will load the dataframe thoro with information about 2470 cases of cerebral angiography.
See the details and variable description on the help page using ?thoro.

3.6.3 Competing risks: Tumour histology

1. Now, we will look at the incidence rates of the three different histological subtypes of liver
cancer. There are no cases of liver cancer in the control group, so this analysis is only of
interest for the Thorotrast group, so start by defining a dataset only containing the
Thorotrast group (contrast==1, for example by:

> tht <- thoro[thoro$contrast==1,]
> with( tht, ftable( liver, hepcc, chola, hmang, col.vars=1 ) )

Note that there are some liver cancer cases that it has not been possible to type, hence the
number events for hepcc, chola and hmang do not add up to that for liver.

You would want to change the date-variables to numerical calendar-year variables, with the
dates as fractions of a year:

> tht <- cal.yr(tht)
> str(tht)

2. Tabulate the event indicators for these three types of events against the existence of a date
of livercancer diagnosis is.na(liverdat). Then define a date of exit, dox, for the analysis
of these three types of event, using date of death or unknown type of liver cancer as
censoring date:

> tht$dox <- pmin( tht$liverdat, tht$exitdat, na.rm=T )
> tht <- subset( tht, dox > injecdat )

3. Then define the cumulative dose per year:

> tht <- transform( tht, dl1 = volume / 100 )
> tht <- transform( tht, gpy = (1.502-1.937%d1+1.109*d172)*d1 )

4. Now create the dataset needed for analysis of the three competing risks of the three types of
liver cancer.
Set up a Lexis object with three different possible event types, that is 4 states: “No
cancer”, “hepcc”, “chola” and “hmang”, according to whether an event of the given type has
occurred. Note we use the default for Lexis to assign the entry state for eveyone as the firts
levels of the state factor defined in exit.stae. We also set up two timescales of interest,

calendar time and time from injection:

> tht.L <- Lexis( entry = list( per = injecdat,

+ tfi =0 ),

+ exit = list( per = dox ),

+ exit.status = factor( 1*hepcc+2*chola+3*hmang,

+ labels=c("No cancer", "hepcc","chola", "hmang") ),
+ data = tht )

> summary( tht.L )

You can visualize the model with number of events and amount of risk time using;:
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10.

11.

12.

> boxes( tht.L )

. Now do a stratified Cox-analysis of the three rates, using time since injection as time and

injected dose as covariate.
To this end you need a stacked object, which you create by stack.Lexis:

> tht.S <- stack.Lexis( tht.L )
> str( tht.S )

. Now fit two Cox models:

> library( survival )

> mi <- coxph( Surv( tfi, tfi+lex.dur, lex.Fail ) ~ volume:lex.Tr + strata( lex.Tr ),
+ data = tht.S )

> ml1 <- coxph( Surv( tfi, tfi+lex.dur, lex.Fail ) ~ volume + strata( lex.Tr ),

+ data = tht.S )

> anova( mi, ml, test="Chisq" )

What is the difference between the two models, i.e. what is being tested by anova?

. Why is the strata(lex.Tr) term in the model? What would the models mean if we

omitted it?

. What is the differences between the volume effects? (Use a contrats matrix for the ci.lin

function).

. Is there any effect of age at entry? Fit the relevant model to answer this question.

If we want to assess the effcet of (deterministically) time varying variables we must split
time into intervals of length say 1 year. Note that it is immaterial whether we split time
before or after we duplicate the dataset for competing risk analysis.

Then we can split the data along the time since injection and compute the midpoint of the
intervals.

> thsplit <- splitLexis( tht.L, breaks=0:100, time.scale="tfi" )
> thsplit$m.tfi <- timeBand( thsplit, "tfi", "middle" )

If we want to do a competing risk analysis, we must stack the dataset first:

> tht.X <- stack.Lexis(thsplit)

Now make a table that shows when in the follow-up the evenst of the different types of
transitions occur, for example:

> with( tht.X, tapply( lex.Fail, list(lex.Tr,floor(m.tfi/5)*5), sum ) )

Now make an analysis equivalent to the Cox-analysis, using splines to model the underlying
hazard — be careful where you put the knots, and how many:

> Pi <- glm( lex.Fail ~

+ ns( m.tfi, kn=c(15,30), Bo=c(1,50), intercept=T ):lex.Tr +

+ volume:lex.Tr + offset( log(lex.dur) ),

+ family=poisson, data=tht.X )

> P1 <- update( Pi, . ~ . - volume:lex.Tr + volume )
> anova( Pi, P1, test="Chisq" )

How do the conclusions differ from those from the Cox-model?

Now, compute the cumulative dose at the beginning of each interval:

> tht.X$cdos <- tht.X$m.tfi * tht.X$gpy
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13.

You may want to also generate the lagged versions, that is variables which at any one time
of follow-up give the cumulative dose as it was, say 10 or 20 years earlier:

> tht.X$110dos <- pmax( tht.X$m.tfi-10, 0 ) * tht.X$gpy

Fit models that allows you to test whether the cumulative dose has different effects on the
three types of liver cancer.

In particular, address the question of whether the effect of cumulative dose is proportional
between the three types of liver cancer.

3.6.4 Competing risks: Probability of liver cancer.

It may be of interest to estimate how large a fraction of the thorotrast patients actually gets a
liver cancer.

. Set up a Lexis object with states “no liver cancer”, “liver cancer” and “death” as states.

. Estimate this proportion by taking the fraction of the patients that actually acquire a liver

cancer (look at the variable liver).

. Work out the Nelson-Aalen estimators for the cumulative incidence of liver cancer and the

mortality wihtout liver cancer, as a function of time since injection.

. Use these two to compute the probability of getting liver cancer before time t = 1,2,...,50

years after injection. (Use the lung cancer example from the lectures).

Make a plot of it.

. Use the machinery you applied before to fit a spline model for the rates as function of time

since injection.

. Use the estimated rates to compute the probability of getting liver cancer within ¢ after

injection for ¢ between 0 and 50 years.
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