Modern Demographic Methods in Epidemiology

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark http://staff.pubhealth.ku.dk/~bxc/

University of St. Andrews, Scotland
Longitudinal Studies Centre
1-3 June 2010
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Rates and Survival

Tuesday 1 June 2010, morning

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Survival data

Persons enter the study at some date.
Persons exit at a later date, either dead or alive.
Observation:
Actual time span to death ("event")
or
Some time alive ("at least this long")

Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- Time from randomisation to death in a cancer clinical trial
- Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- Time to re-offending after being released from jail

Each line a person

Each blob a death

Study ended at 31 Dec. 2003

Rates and Survival (surn-rate)

Ordered by date of entry

Most likely the order in your database.

Rates and Survival (surv-rate)

Timescale changed to "Time since diagnosis".

Rates and Survival (sur-rate) 5/ 182

Patients ordered by survival time.

Rates and Survival (surv-rate)

Patients ordered by survival status within each band.

Rates and Survival (surv-rate)

Survival after Cervix cancer

	Stage I				Stage II		
Year	N	D	L		N	D	L
1	110	5	5		234	24	3
2	100	7	7		207	27	11
3	86	7	7		169	31	9
4	72	3	8		129	17	7
5	61	0	7		105	7	13
6	54	2	10		85	6	6
7	42	3	6		73	5	6
8	33	0	5		62	3	10
9	28	0	4		49	2	13
10	24	1	8		34	4	6

Estimated risk in year 1 for Stage I women is $5 / 107.5=0.0465$
Estimated 1 year survival is $1-0.0465=0.9535$
Life-table estimator.
Rates and Survival (surv-rate)

Survival function

Persons enter at time 0 :
Date of birth, date of randomization, date of diagnosis.
How long do they survive?
Survival time T - a stochastic variable.
Distribution is characterized by the survival function:

$$
\begin{aligned}
S(t) & =\mathrm{P}\{\text { survival at least till } t\} \\
& =\mathrm{P}\{T>t\}=1-\mathrm{P}\{T \leq t\}=1-F(t)
\end{aligned}
$$

Intensity or rate

$\mathrm{P}\{$ event in $(t, t+h] \mid$ alive at $t\} / h$

$$
\begin{aligned}
& =\frac{F(t+h)-F(t)}{S(t) \times h} \\
& =-\frac{S(t+h)-S(t)}{S(t) h} \underset{h \rightarrow 0}{\longrightarrow}-\frac{\mathrm{d} \log S(t)}{\mathrm{d} t} \\
& =\lambda(t)
\end{aligned}
$$

This is the intensity or hazard function for the distribution. Characterizes the survival distribution as does f or F.

Theoretical counterpart of a rate.
Rates and Survival (surv-rate)

Relationships

$$
\begin{aligned}
-\frac{\mathrm{d} \log S(t)}{\mathrm{d} t} & =\lambda(t) \\
& \Uparrow \\
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right)=\exp (-\Lambda(t))
\end{aligned}
$$

$\Lambda(t)=\int_{0}^{t} \lambda(s) \mathrm{d} s$ is called the integrated
intensity. Not an intensity, it is dimensionless.
$\lambda(t)=-\frac{\mathrm{d} \log (S(t))}{\mathrm{d} t}=-\frac{S^{\prime}(t)}{S(t)}=\frac{F^{\prime}(t)}{1-F(t)}=\frac{f(t)}{S(t)}$

Rates and Survival (surv-rate)

Rate and survival

$$
S(t)=\exp \left(-\int_{0}^{t} \lambda(s) \mathrm{d} s\right) \quad \lambda(t)=\frac{S^{\prime}(t)}{S(t)}
$$

Survival is a cumulative measure, the rate is an instantaneous measure.

Note: A cumulative measure requires an origin!

Rates and Survival (surv-rate)

Observed survival and rate

- Survival studies: Observation of (right censored) survival time:

$$
X=\min (T, Z), \quad \delta=1\{X=T\}
$$

- sometimes conditional on $T>t_{0}$ (left truncated).
- Epidemiological studies:

Observation of (components of) a rate:

$$
D / Y
$$

D : no. events, Y no of person-years, in a prespecified time-frame.

Empirical rates for individuals

At the individual level we introduce the
empirical rate: (d, y),

- number of events $(d \in\{0,1\})$ during y risk time.

A person contributes several observations of (d, y).
Empirical rates are responses in survival analysis.
The timescale is a covariate - varies across empirical rates from one individual: Age, calendar time, time since diagnosis.
Don't confuse with y - difference between two points on any timescale we may choose.

Rates and Survival (surv-rate)

Empirical rates by calendar time.

Rates and Survival (surv-rate) 16/ 182

Empirical rates by time since diagnosis.

Likelihood from one person

The likelihood from several empirical rates from one individual is a product of conditional probabilities:
$\mathrm{P}\left\{\right.$ event at $\left.t_{4} \mid t_{0}\right\}=\mathrm{P}\left\{\right.$ event in $\left(t_{3}, t_{4}\right) \mid$ alive at $\left.t_{3}\right\} \times$ $\mathrm{P}\left\{\right.$ survive $\left(t_{2}, t_{3}\right) \mid$ alive at $\left.t_{2}\right\} \times$ $\mathrm{P}\left\{\right.$ survive $\left(t_{1}, t_{2}\right) \mid$ alive at $\left.t_{1}\right\} \times$ $\mathrm{P}\left\{\right.$ survive $\left(t_{0}, t_{1}\right) \mid$ alive at $\left.t_{0}\right\}$

Log-likelihood from one individual is a sum of terms.
Each term refers to one empirical rate (d, y)
$-y=t_{i}-t_{i-1}$ and mostly $d=0$.
t_{i} is the timescale (covariate).

Likelihood for an empirical rate

Model: the rate is constant in the interval we are looking at. The interval should sufficiently small for this assumption to be reasonable.
If $\pi=1-\mathrm{e}^{-\lambda y}$ is the death probability:

$$
\begin{aligned}
L(\lambda) & =\mathrm{P}\{d \text { events during } y \text { time }\}=\pi^{d}(1-\pi)^{1-d} \\
& =\left(1-\mathrm{e}^{-\lambda y}\right)^{d}\left(\mathrm{e}^{-\lambda y}\right)^{1-d} \\
& =\left(\frac{1-\mathrm{e}^{-\lambda y}}{\mathrm{e}^{-\lambda y}}\right)^{d}\left(\mathrm{e}^{-\lambda y}\right) \approx(\lambda y)^{d} \mathrm{e}^{-\lambda y}
\end{aligned}
$$

since the first term is equal to $\mathrm{e}^{-\lambda y}-1 \approx \lambda y$.

Rates and Survival (surv-rate)

Log-likelihood:

$$
l(\lambda)=d \log (\lambda y)-\lambda y=d \log (\lambda)+d \log (y)-\lambda y
$$

The term $d \log (y)$ does not include λ, so the relevant part of the log-likelihood is:

$$
l(\lambda)=d \log (\lambda)-\lambda y
$$

Rates and Survival (surv-rate)

Poisson likelihood

The contributions from one individual $d_{t} \log (\lambda(t))-\lambda(t) y_{t}$, is like the log-likelihood from several independent Poisson observations with mean $\lambda(t) y_{t}$, i.e. \log-mean $\log (\lambda(t))+\log \left(y_{t}\right)$
Analysis of the rates, (λ) can be based on a Poisson model with log-link applied to empirical rates where:

- d is the response variable.
- $\log (y)$ is the offset variable.

Likelihood for follow-up of many subjects

Adding empirical rates over the follow-up of persons:

$$
D=\sum d \quad Y=\sum y \quad \Rightarrow \quad D \log (\lambda)-\lambda Y
$$

- Persons are assumed independent
- Contribution from the same person are conditionally independent, hence give separate contributions to the log-likelihood.

The log-likelihood is maximal for:

$$
\frac{\mathrm{d} l(\lambda)}{\mathrm{d} \lambda}=\frac{D}{\lambda}-Y=0 \quad \Leftrightarrow \quad \hat{\lambda}=\frac{D}{Y}
$$

Information about $\theta=\log (\lambda)$:
$l(\theta \mid D, Y)=D \theta-\mathrm{e}^{\theta} Y, \quad l_{\theta}^{\prime}=D-\mathrm{e}^{\theta} Y, \quad l_{\theta}^{\prime \prime}=-\mathrm{e}^{\theta} Y$
so $I(\hat{\theta})=\mathrm{e}^{\hat{\theta}} Y=\hat{\lambda} Y=D$, hence $\operatorname{var}(\hat{\theta})=1 / D$
Standard error of log-rate: $1 / \sqrt{D}$.
Note that this only depends on the no. events, not on the follow-up time.

Confidence interval for a rate

A 95\% confidence interval for the log of a rate is:

$$
\hat{\theta} \pm 1.96 / \sqrt{D}=\log (\lambda) \pm 1.96 / \sqrt{D}
$$

Take the exponential to get the confidence interval for the rate:

$$
\lambda \stackrel{\times}{\div} \underbrace{\exp (1.96 / \sqrt{D})}_{\text {error factor,erf }}
$$

Exercise

Suppose we have 17 deaths during 843.6 years of follow-up.
Calculate the mortality rate with a 95% c.i.

Ratio of two rates

If we have observations two rates λ_{1} and λ_{0}, based on $\left(D_{1}, Y_{1}\right)$ and $\left(D_{0}, Y_{0}\right)$ the variance of the difference of the ratio of the rates, RR , is:

$$
\begin{aligned}
\operatorname{var}(\log (\mathrm{RR})) & =\operatorname{var}\left(\log \left(\lambda_{1} / \lambda_{0}\right)\right) \\
& =\operatorname{var}\left(\log \left(\lambda_{1}\right)\right)+\operatorname{var}\left(\log \left(\lambda_{0}\right)\right) \\
& =1 / D_{1}+1 / D_{0}
\end{aligned}
$$

As before a 95% c.i. for the $R R$ is then:

$$
\mathrm{RR} \stackrel{\times}{\stackrel{\exp \left(1.96 \sqrt{\frac{1}{D_{1}}+\frac{1}{D_{0}}}\right)}{\text { error factor }} \text {. }}
$$

Exercise

Suppose we in group 0 have 17 deaths during 843.6 years of follow-up in one group, and in group 1 have 28 deaths during 632.3 years.
Calculate the rate-ratio between group 1 and 0 with a 95% c.i.

Survival analysis

Response variable: Time to event, T
Censoring: We observe $(\min (T, Z), \delta=1\{T<Z\})$.
This gives time a special status, and mixes the response variable (risk)time with the covariate time(scale).
Originates from clinical trials where everyone enters at time 0 .

The life table method

The simplest analysis is by the "life-table method":

interval	alive	dead	cens.	
i	n_{i}	d_{i}	l_{i}	p_{i}
1	77	5	2	$5 /(77-2 / 2)=0.066$
2	70	7	4	$7 /(70-4 / 2)=0.103$
3	59	8	1	$8 /(59-1 / 2)=0.137$

$p_{i}=\mathrm{P}\{$ death in interval $i\}=1-d_{i} /\left(n_{i}-l_{i} / 2\right)$
$S(t)=\left(1-p_{1}\right) \times \cdots \times\left(1-p_{t}\right)$

Population life table, DK 1997-98

	Men			Women		
a	$S(a)$	$\lambda(a)$	$\mathrm{E}\left[\ell_{\text {res }}(a)\right]$	$S(a)$	$\lambda(a)$	$\mathrm{E}\left[\ell_{\text {res }}(a)\right]$
0	1.00000	567	73.68	1.00000	474	78.65
1	0.99433	67	73.10	0.99526	47	78.02
2	0.99366	38	72.15	0.99479	21	77.06
3	0.99329	25	71.18	0.99458	14	76.08
4	0.99304	25	70.19	0.99444	14	75.09
5	0.99279	21	69.21	0.99430	11	74.10
6	0.99258	17	68.23	0.99419	6	73.11
7	0.99242	14	67.24	0.99413	3	72.11
8	0.99227	15	66.25	0.99410	6	71.11
9	0.99213	14	65.26	0.99404	9	70.12
10	0.99199	17	64.26	0.99395	17	69.12
11	0.99181	19	63.28	0.99378	15	68.14
12	0.99162	16	62.29	0.99363	11	67.15
13	0.99147	18	61.30	0.99352	14	66.15
14	0.99129	25	60.31	0.99338	11	65.16
15	0.99104	45	59.32	0.99327	10	64.17
16	0.99059	50	58.35	0.99317	18	63.18
17	0.99009	52	57.38	0.99299	29	62.19
18	0.98957	85	56.41	0.99270	35	61.21
19	0.98873	79	55.46	0.99235	30	60.23
20	0.98795	70	54.50	0.99205	35	59.24
21	0.98726	71	53.54	0.99170	31	58.27

Rates and Survival (surv-rate)

Practical

Based on the previous slides answer the following for both Danish and Swedish lifetables:
-What is the doubling time for mortality?

- What is the rate-ratio between males and females?
- How much older should a woman be in order to have the same mortality as a man?

Observations for the lifetable

Life table is based on person-years and deaths accumulated in a short period.

Age-specific rates -cross-sectional!

Survival function:

$$
S(t)=\mathrm{e}^{-\int_{0}^{t} \lambda(a) \mathrm{d} a}=\mathrm{e}^{-\sum_{0}^{t} \lambda(a)}
$$

— assumes stability of rates to be interpretable for actual persons.

Observations for the lifetable

This is a Lexis diagram.

Rates and Survival (surv-rate)

Observations for the lifetable

This is a Lexis diagram.

Rates and Survival (surv-rate)
, літ.

Life table approach

The observation of interest is not the survival time of the individual.

It is the population experience:
D : Deaths (events).
Y: Person-years (risk time).
The classical lifetable analysis compiles these for prespecified intervals of age, and computes age-specific mortality rates.

Data are collected crossectionally, but interpreted longitudinally.

Classical estimators

Tuesday 1 June 2010, afternoon

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

The Kaplan-Meier Method 1

- The most common method of estimating the survival function.
- A non-parametric method.
- Divides time into small xintervals where the intervals are defined by the unique time points.
- Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.

Example of KM Survival Curve from BMJ

1998;316:1935-1938 Kaplan-Meier curve from an RCT of patients with pancreatic cancer

Calculating the Kaplan-Meier estimator

An estimate of $S\left(t_{k}\right)$ is:

$$
\widehat{S}\left(t_{k}\right)=\left(1-\frac{d_{1}}{n_{1}}\right)\left(1-\frac{d_{2}}{n_{2}}\right) \ldots\left(1-\frac{d_{k}}{n_{k}}\right)
$$

or more simply:

$$
\begin{gathered}
\widehat{S}\left(t_{k}\right)=\prod_{i=1}^{k} 1-\frac{d_{i}}{n_{i}} \\
\widehat{S}\left(t_{k}\right)=\widehat{S}\left(t_{k-1}\right)\left(1-\frac{d_{k}}{n_{k}}\right)
\end{gathered}
$$

Kaplan-Meier method illustrated

$(\bullet=$ failure and $\times=$ censored):

Cumulative 1.0
survival probability

- Steps caused by multiplying by ($1-1 / 49$) and ($1-1 / 46$) respectively
- Late entry can also be dealt with

Using R: Surv ()
> with(lung, Surv(time, status==2))

[1]	306	455	$1010+$	210	883	$1022+$	310	361	218	16
$[12]$	654	728	71	567	144	613	707	61	88	30
$[23]$	624	371								

> (s.km <- survfit(Surv(time, status==2), data=lung)) Call: survfit (formula $=$ Surv(time, status $==2$), data $=$ lung)
$\begin{array}{rrrrr}n & \text { events } & \text { median } & 0.95 L C L & 0.95 U C L \\ 228 & 165 & 310 & 285 & 363\end{array}$
$>\operatorname{plot}(\mathrm{s} . \mathrm{km})$

Classical estimators (km-na)
45/ 182

Classical estimators (km-na)

Classical estimators (km-na)
47/ 182

The Cox model

Tuesday 1 June 2010, afternoon

Bendix Carstensen

Modern Demographic Methods in Epidemiology 1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Modelling Survival Data

- As with other types of data we are interested in fitting a statistical model to survival data.
- Most modelling principles are the same.
- In epidemiology it is customary to model on the hazard scale. For example, by how much does being exposed to factor X increase/decrease the hazard rate.

The Cox model (cox)

Proportional Hazards model

Consider the following model:

$$
\lambda_{i}\left(t, \mathbf{x}_{i}\right)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots\right)
$$

- $\lambda_{i}\left(t, \mathbf{x}_{i}\right)$ is the hazard rate for the $i^{t h}$ subject.
- $\lambda_{0}(t)$ is the baseline hazard function - a non-linear effect of the covariate t.
- $\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots$ is the linear predictor.

The proportional hazards model

$$
\lambda(t, x)=\lambda_{0}(t) \times \exp \left(x^{\prime} \beta\right)
$$

A model for the rate as a function of t and x.
The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- Conceptually it is less clear - t is but a covariate that varies within each individual.

Cox-likelihood

The partial likelihood for the regression parameters:

$$
\ell(\beta)=\sum_{\text {death times }} \log \left(\frac{\mathrm{e}^{x_{\text {death }} \beta}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{x_{i} \beta}}\right)
$$

- This is David Cox's invention.
- Extremely efficient from a computaionel point of view.
- The baseline hazard is bypassed.

Proportional Hazards model

- The baseline hazard rate, $\lambda_{0}(t)$, is the hazard rate when all the covariates are 0 .
- The form of the above equation means that covariates act multiplicatively on the baseline hazard rate.
- The baseline hazard is a function of time and thus varies with time.
Time is a covariate (albeit with special status).
- The proportionality assumption means that the difference between two groups can be summarised by one number. This is because the (relative) effect of a covariate is assumed to be the same throughout the time-scale.

The Cox Proportional Hazards likelihood

- By far the most common model applied to time-to-event outcomes.
- The Cox PH model does not make any assumption about the shape of the underlying hazard function.
- However, it does make the assumption that the hazard rates for patient subgroups are proportional over time.
- The Cox model models the hazard function, $\lambda_{i}\left(t ; x_{i}\right)$ where x_{i} denotes the covariate vector.

Proportional Hazards Model

- Parameters are estimated on log scale:

$$
\lambda_{i}(t)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots\right)
$$

$\log \left(\lambda_{i}(t)\right)=\log \left(\lambda_{0}(t)\right)+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots$

- The baseline hazard is the hazard rate when all covariate values are equal to zero.
- Estimates of the parameters, β, are obtained by maximizing the partial likelihood.

Interpreting Regression Coefficients

- How do we interpret the parameters of interest?
- In a Cox model the baseline hazard $\lambda_{0}(t)$ is not included in the partial likelihood and so we only obtain estimates of the regression coefficients associated with each of the covariates.
- Consider a binary covariate x_{1} which takes the values 0 and 1 .

Interpreting Regression Coefficients

- The model is

$$
\lambda_{i}(t)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1 i}\right)
$$

- The hazard rate when $x_{1}=0$ is $\lambda_{0}(t)$.
- The hazard rate when $x_{1}=1$ is $\lambda_{0}(t) \exp \left(\beta_{1}\right)$.
- The hazard ratio is therefore

$$
\frac{\lambda_{0}(t) \exp (\beta)}{\lambda_{0}(t)}
$$

- The $\lambda_{0}(t)$ cancels: β_{1} is the log hazard ratio.
- Exponentiate β_{1} to get the hazard ratio.

Interpreting Regression Coefficients

- If x_{j} is binary $\exp \left(\beta_{j}\right)$ is the estimated hazard ratio for subjects corresponding to $x_{j}=1$ compared to those where $x_{j}=0$.
- If x_{j} is continuous $\exp \left(\beta_{j}\right)$ is the estimated increase/decrease in the hazard rate for a unit change in x_{j}.
- With more than one covariate interpretation is similar, i.e. $\exp \left(\beta_{j}\right)$ is the hazard ratio for subjects who only differ with respect to covariate x_{j}.

Fitting a Cox- model in R

```
> data(bladder
> bladder <- subset( bladder, enum<2 )
> head( bladder)
id rx number size stop event enum
\begin{tabular}{rrrrrrr}
1 & 1 & 1 & 1 & 3 & 1 & 0 \\
5 & 2 & 1 & 2 & 1 & 4 & 0
\end{tabular}
\begin{tabular}{lllllrll}
5 & 2 & 1 & 2 & 1 & 4 & 0 & 1 \\
9 & 3 & 1 & 1 & 1 & 7 & 0 & 1 \\
13 & 4 & 1 & 5 & 1 & 10 & 0 & 1 \\
17 & 5 & 1 & 4 & 1 & 6 & 1 & 1
\end{tabular}
```


Fitting a Cox- model in R

```
> c0 <- coxph( Surv(stop,event) ~ number + size, data=bladder )
>c0
coxph(formula = Surv(stop, event) ~ number + size, data = bladde
    coef exp(coef) se(coef) z p p
number 0.2049 1.23 0.0704 2.912 0.0036
size 0.0613 1.06 0.1033 0.594 0.5500
Likelihood ratio test=7.04 on 2 df, p=0.0296 n= 85
```


Plotting the base survival in R

```
plot( survfit(c0))
> lines( survfit(c0), conf.int=F, lwd=3 )
```

The plot. coxph plots the survival curve for a person with an average covarite value.

- which is not the average survival for the population considered...

Plotting the base survival in R

> plot(survfit(c0))

$>$ lines(survfit(c0), conf.int=F, lwd=3)
> lines(survfit(c0,newdata=data.frame(number=1,size=1)), lwd=2
> text(par("usr")[2]*0.98, 1.00, "number=1,size=1", col="green"

You can plot the survival curve for specific values of the covariates, using the newdata= argument.

The Cox model (cox)
62/ 182

Follow-up data

Tuesday 1 June 2010, afternoon

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Follow-up and rates

- Follow-up studies:
- D - events, deaths
- Y - person-years
- $\lambda=D / Y$ rates
- Rates differ between persons.
- Rates differ within persons:
- Along age
- Along calendar time
- Multiple timescales.

Representation of follow-up data

In a cohort study we have records of:
Events and Risk time.
Follow-up data for each individual must have (at least) three variables:

- Date of entry - date variable.
- Date of exit - date variable
- Status at exit — indicator-variable ($0 / 1$)

Specific for each type of outcome.

Aim of dividing time into bands:

Put $\begin{aligned} & D \text { - events } \\ & Y \text { - risk time }\end{aligned}$ in intervals on the timescale:
Origin: The date where the time scale is 0 :

- Age - 0 at date of birth
- Disease duration - 0 at date of diagnosis
- Occupation exposure - 0 at date of hire

Intervals: How should it be subdivided:

- 1-year classes? 5-year classes?
- Equal length?

Cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

- Define strata: 10-years intervals of current age.
- Split Y for every subject accordingly
- Treat each segment as a separate unit of observation.
- Keep track of exit status in each interval.

Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry:	13.06	18.44	4.54
Age at eXit:	44.95	41.14	11.12
Status at exit:	Dead	Alive	Dead
Y	31.89	22.70	6.58
D	1	0	1

Follow-up data (FU-rep-Lexis)
67/ 182
67/ 182

	subj. 1			subj. 2			subj. 3		\sum_{n}	
Age	Y	D	Y	D	Y	D	Y	D		
$0-$	0.00	0	0.00	0	5.46	0	5.46	0		
$10-$	6.94	0	1.56	0	1.12	1	8.62	1		
$20-$	10.00	0	10.00	0	0.00	0	20.00	0		
$30-$	10.00	0	10.00	0	0.00	0	20.00	0		
$40-$	4.95	1	1.14	0	0.00	0	6.09	1		
\sum	31.89	1	22.70	0	6.58	1	60.17	2		

Follow-up data (FU-rep-Lexis)

Splitting the follow-up

id	Bdate	Entry	Exit	St	risk	int
1	14/07/1952	03/08/1965	14/07/1972	0	6.9432	10
1	14/07/1952	14/07/1972	14/07/1982	0	10.0000	20
1	14/07/1952	14/07/1982	14/07/1992	0	10.0000	30
1	14/07/1952	14/07/1992	27/06/1997	1	4.9528	40
2	01/04/1954	08/09/1972	01/04/1974	0	1.5606	10
2	01/04/1954	01/04/1974	31/03/1984	0	10.0000	20
2	01/04/1954	31/03/1984	01/04/1994	0	10.0000	30
2	01/04/1954	01/04/1994	23/05/1995	0	1.1417	40
3	10/06/1987	23/12/1991	09/06/1997	0	5.4634	0
3	10/06/1987	09/06/1997	24/07/1998	1	1.1211	10

- but what if we want to keep track of calendar time too?

Follow-up data (FU-rep-Lexis)
69/ 182

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:
- Age
- Calendar time
- Time since treatment
- Time since relapse
- All timescales advance at the same pace (1 year per year ...)
- Note: Cumulative exposure is not a timescale.

Representation of follow-up

on several timescales

- The time followed is the same on all timescales.
- Only use the entry point on each time scale:
- Age at entry.
- Date of entry.
- Time since treatment at entry.
- if time of treatment is the entry, this is 0 for all.

Follow-up data in Epi: Lexis objects

A follow-up study:
$>$ round (th, 2)
id sex birthdat contrast injecdat volume exitdat exitstat

1	1	2	1916.61	1	1938.79	22	1976.79
2	640	2	1896.23	1	1945.77	20	1964.37
3	3425	1	1886.97	2	1955.18	0	1956.59
4	4017	2	1936.81	2	1957.61	0	1992.14

Timescales of interest:

- Age
- Calendar time
- Time since injection

Definition of Lexis object

```
> thL <- Lexis( entry = list( age=injecdat-birthdat,
                                    per=injecdat,
                                    tfi=0 ),
        exit = list( per=exitdat ),
    exit.status = (exitstat==1)*1,
                        data = th )
```

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales.

The looks of a Lexis object

> round $(\operatorname{thL}[, c(1: 8,14,15)], 2)$
age per tfi lex.dur lex.Cst lex.Xst lex.id
$\begin{array}{lllllll}1 & 22.18 & 1938.79 & 0 & 38.00 & 0 & 1\end{array}$
$\begin{array}{llllllll}2 & 49.55 & 1945.77 & 0 & 18.60 & 0 & 1 & 2 \\ 64\end{array}$
$\begin{array}{llllllll}3 & 68.21 & 1955.18 & 0 & 1.40 & 0 & 1 & 3 \\ 342\end{array}$
$420.801957 .610 \quad 34.52 \quad 0 \quad 0 \quad 4401$

> plot(thL, lwd=3)

75/ 182

plot(thL, 2:1, lwd=5, col=c("red","blue")[thL\$contrast], grid=T)
$>$ points (thL, 2:1, pch=c(NA,3)[thL\$lex.Xst+1],lwd=3, cex=1.5)

Follow-up data (FU-rep-Lexis)

> plot(thL, 2:1, lwd=5, col=c("red","blue")[thL\$contrast],
$+\quad$ grid=TRUE, lty.grid=1, col.grid=gray (0.7),
$+\quad x \lim =1930+c(0,70)$, xaxs="i", ylim= $10+c(0,70)$, yaxs="i", las=1)
> points(thL, 2:1, pch=c(NA,3)[thL\$lex.Xst+1],1wd=3, cex=1.5)
Follow-up data (FU-rep-Lexis)
77/ 182

Splitting follow-up time

Split on another timescale

> \# Split further on tfi:
> spl2 <- splitLexis(spl1, "tfi", breaks=c ($0,1,5,20,100$))
$>$ round (spl2, 2)
lex.id age per tfi lex.dur lex.Cst lex.Xst id sex $122.18 \quad 1938.79 \quad 0.00 \quad 1.00 \quad 0$

12 $1 \quad 23.18 \quad 1939.79 \quad 1.00 \quad 4.00$ $127.181943 .79 \quad 5.00$ $140.00 \quad 1956.61 \quad 17.82$ $142.18 \quad 1958.79 \quad 20.00$ 160.001976 .6137 .82 $249.55 \quad 1945.77 \quad 0.00$ $250.55 \quad 1946.77 \quad 1.00$ $254.551950 .77 \quad 5.00$ $260.00 \quad 1956.23 \quad 10.45$ $\begin{array}{lll}3 & 68.21 & 1955.18 \\ 0.00\end{array}$ 369.211956 .181 .00 $4 \quad 20.80 \quad 1957.61 \quad 0.00$ $421.80 \quad 1958.61 \quad 1.00 \quad 4.00$

| | 145 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The Poisson likelihood for time-split data

Split records (one per person-interval (i, t)):

$$
D \ln (\lambda)-\lambda Y=\sum_{i, t}\left(d_{i t} \ln (\lambda)-\lambda y_{i t}\right)
$$

Assume that the death indicator $\left(d_{i} \in\{0,1\}\right)$ is Poisson, with log-offset y_{i} will give the same result.
Model assumes that rates are constant.
But the split data allows models that assume different rates for different $\left(d_{i t}, y_{i t}\right)$.
Where are the $\left(d_{i t}, y_{i t}\right)$ in the split data?

plot(spl2, c(1,3), col="black", lwd=2)

Where is $\left(d_{i t}, y_{i t}\right)$ in the split data?
> round (spl2, 2)

	lex.id	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	
1	1	22.18	1938.79	0.00	1.00	0	0	1	2
2	1	23.18	1939.79	1.00	4.00	0	0	1	2
3	1	27.18	1943.79	5.00	12.82	0	0	1	2
4	1	40.00	1956.61	17.82	2.18	0	0	1	2
5	1	42.18	1958.79	20.00	17.82	0	0	1	2
6	1	60.00	1976.61	37.82	0.18	0	1	1	2
7	2	49.55	1945.77	0.00	1.00	0	0	640	2
8	2	50.55	1946.77	1.00	4.00	0	0	640	2
9	2	54.55	1950.77	5.00	5.45	0	0	640	2
10	2	60.00	1956.23	10.45	8.14	0	1	640	2
11	3	68.21	1955.18	0.00	1.00	0	0	3425	1
12	3	69.21	1956.18	1.00	0.40	0	1	3425	1
13	4	20.80	1957.61	0.00	1.00	0	0	4017	2
14	4	21.80	1958.61	1.00	4.00	0	0	4017	2
15	4	25.80	1962.61	5.00	14.20	0	0	4017	2
16	4	40.00	1976.81	19.20	0.80	0	0	4017	2
	a (FU-rep 4 星	ext ${ }^{4} 0.80$	1977.61	20.00	14.52	0	0	401780	0/182

Analysis of results

- d_{i} - events in the variable: lex.Xst.
- y_{i} - risk time: lex.dur $\left(\Delta_{t}\right.$!).

Enters in the model via $\log (y)$ as offset.

- Covariates are:
- timescales (age, period, time in study)
- other variables for this person (constant or assumed constant in each interval).
- Model rates using the covariates in glm - no difference between time-scales and other covariates.

Follow-up data (FU-rep-Lexis)
81/182

Poisson model for split data

- Each interval contribute λY to the log-likelihood.
- All intervals with the same set of covariate values (age,exposure,...) have the same λ.
- The log-likelihood contribution from these is $\lambda \sum Y$ - the same as from aggregated data.
- The event intervals contribute each $D \log \lambda$.
- The log-likelihood contribution from those with the same lambda is $\sum D \log \lambda$ - the same as from aggregated data.
- The log-likelihood is the same for split data and aggregated data - no need to tabulate first.

Who needs the Cox-model anyway?
 Wednesday 2 June 2010, morning

Bendix Carstensen

Modern Demographic Methods in Epidemiology 1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

The proportional hazards model

$$
\lambda(t, x)=\lambda_{0}(t) \times \exp \left(x^{\prime} \beta\right)
$$

A model for the rate as a function of t and x.
The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- Conceptually it is less clear - t is but a covariate that varies within individual.

Cox-likelihood

The partial likelihood for the regression parameters:

$$
\ell(\beta)=\sum_{\text {death times }} \log \left(\frac{\mathrm{e}^{\eta_{\text {death }}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)
$$

is also a profile likelihood in the model where observation time has been subdivided in small pieces (empirical rates) and each small piece provided with its own parameter:

$$
\log (\lambda(t, x))=\log \left(\lambda_{0}(t)\right)+x^{\prime} \beta=\alpha_{t}+\eta
$$

Who needs the Cox-model anyway? (WntCma)

The Cox-likelihood as profile likelihood

Regression parameters describing the effect of covariates (other than the chosen underlying time scale).
One parameter per death time to describe the effect of time (i.e. the chosen timescale).
$\log \left(\lambda\left(t, x_{i}\right)\right)=\log \left(\lambda_{0}(t)\right)+\beta_{1} x_{1 i}+\cdots+\beta_{p} x_{p i}=\alpha_{t}+\eta_{i}$
Suppose the time scale has been divided into small intervals with at most one death in each.
Assume w.l.o.g. the $y s$ in the empirical rates all are 1.

Who needs the Cox-model anyway? (WntCma)

Log-likelihood contributions that contain information on a specific time-scale parameter α_{t} will be from:

- the (only) empirical rate $(1,1)$ with the death at time t.
- all other empirical rates $(0,1)$ from those who were at risk at time t.

Note: There is one contribution from each person at risk to this part of the log-likelihood:

$$
\begin{aligned}
\ell_{t}\left(\alpha_{t}, \beta\right) & =\sum_{i \in \mathcal{R}_{t}} d_{i} \log \left(\lambda_{i}(t)\right)-\lambda_{i}(t) y_{i} \\
& =\sum_{i \in \mathcal{R}_{t}}\left\{d_{i}\left(\alpha_{t}+\eta_{i}\right)-\mathrm{e}^{\alpha_{t}+\eta_{i}}\right\} \\
& =\alpha_{t}+\eta_{\text {death }}-\mathrm{e}^{\alpha_{t}} \sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}
\end{aligned}
$$

where $\eta_{\text {death }}$ is the linear predictor for the person that died.

The derivative w.r.t. α_{t} is:
$\mathrm{D}_{\alpha_{t}} \ell\left(\alpha_{t}, \beta\right)=1-\mathrm{e}_{t}^{\alpha} \sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}=0 \quad \Leftrightarrow \quad \mathrm{e}_{t}^{\alpha}=\frac{1}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}$
If this estimate is fed back into the log-likelihood for α_{t}, we get the profile likelihood (with α_{t} "profiled out"):
$\log \left(\frac{1}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)+\eta_{\text {death }}-1=\log \left(\frac{\mathrm{e}^{\eta_{\text {death }}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)-1$
which is the same as the contribution from time t to Cox's partial likelihood.

Who needs the Cox-model anyway? (WntCma)
88/ 182

What the Cox-model really is

Taking the life-table approach ad absurdum by:

- dividing time as finely as possible,
- modelling one covariate, the time-scale, with one parameter per distinct value,
- profiling these parameters out by maximizing the profile likelihood

Subsequently, one may recover the effect of the timescale by smoothing an estimate of the cumulative sum of these.

Sensible modelling

Replace the $\alpha_{t} s$ by a parmetric function $f(t)$ with a limited number of parameters, for example:

- Piecewise constant
- Splines (linear, quadratic or cubic)
- Fractional polynomials

Use Poisson modelling software on a dataset of empirical rates for small intervals (ys).

Splitting the dataset

The Poisson approach needs a dataset of empirical rates with small values of y.
Larger than the original: each individual contributes many empirical rates. From each empirical rate we get:

- Poisson-response d
- Risk time y
- Covariate value for the timescale (time since entry, current age, current date, ...)
- other covariates

Example: Mayo Clinic lung cancer

	time	status	age
1	306	2	74
2	455	2	68

> Lx <- Lexis(exit=list(tfd=time), exit.status=(status==2), da NOTE: entry is assumed to be 0 on the tfd timescale.
$>\operatorname{tab}(L x$, scale $=365.25)$
States:
\#records:
From FALSE TRUE Sum \#events: \#risk time: Rate (95
$\begin{array}{llllllllll} & 63 & 165 & 228 & 165 & 190.5352 & 0.8659815 & 0.743432\end{array}$
> dx <- splitLexis(Lx, "tfd", breaks=c(0,unique(Lx\$time)))
$>\operatorname{tab}(\mathrm{dx}$, scale=365.25)
States:
\#records:
To FALSE TRUE Sum \#events: \#risk time: Rate
$\begin{array}{lrrrrrr} \\ \text { FALSE } 19857 & 165 & 20022 & 165 & 190.5352 & 0.8659815 & 0.7434\end{array}$

Who needs the Cox-model anyway? (W nt Cma)

The baseline hazard and survival functions

Using a parametric function to model the baseline hazard gives the possibility to plot this with confidence intervals for a given set of covariate values, x_{0}
The survival function in a multiplicative Poisson model has the form:

$$
S(t)=\exp \left(-\sum_{\tau<t} \exp \left(g(\tau)+x_{0}^{\prime} \gamma\right)\right)
$$

This is just a non-linear function of the parameters in the model, g and γ. So the variance can be computed using the δ-method.

δ-method for survival function

1. Select timepoints t_{i} (fairly close).
2. Get estimates of log-rates $f\left(t_{i}\right)=g\left(t_{i}\right)+x_{0}^{\prime} \gamma$ for these points:

$$
\hat{f}\left(t_{i}\right)=\mathbf{B} \hat{\beta}
$$

where β is the total parameter vector in the model.
3. Variance-covariance matrix of $\hat{\beta}: \hat{\Sigma}$.
4. Variance-covariance of $\hat{f}\left(t_{i}\right): \mathbf{B} \Sigma \mathbf{B}^{\prime}$.
5. Transformation to the rates is the coordinate-wise exponential function, with derivative $\operatorname{diag}\left[\exp \left(\hat{f}\left(t_{i}\right)\right)\right]$
6. Variance-covariance matrix of the rates at the points t_{i} :

$$
\operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right) \mathbf{B} \hat{\Sigma} \mathbf{B}^{\prime} \operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right)^{\prime}
$$

7. Transformation to cumulative hazard (ℓ is interval length):
$\ell \times\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{c}\mathrm{e}^{\left.\hat{f}\left(t_{1}\right)\right)} \\ \mathrm{e}^{\left.\hat{f}\left(t_{2}\right)\right)} \\ \mathrm{e}^{\left.\hat{f}\left(t_{3}\right)\right)} \\ \mathrm{e}^{\left.\hat{f}\left(t_{4}\right)\right)}\end{array}\right]=\mathbf{L}\left[\begin{array}{c}\mathrm{e}^{\left.\hat{f}\left(t_{1}\right)\right)} \\ \mathrm{e}^{\left.\hat{f}\left(t_{2}\right)\right)} \\ \mathrm{e}^{\left.\hat{f}\left(t_{3}\right)\right)} \\ \mathrm{e}^{\left.\hat{f}\left(t_{4}\right)\right)}\end{array}\right]$
8. Variance-covariance matrix for the cumulative hazard is:

$$
\mathbf{L} \operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right) \mathbf{B} \hat{\Sigma} \mathbf{B}^{\prime} \operatorname{diag}\left(\mathrm{e}^{\hat{f}\left(t_{i}\right)}\right)^{\prime} \mathbf{L}^{\prime}
$$

This is all implemented in the ci.cum() function in Epi.

Mayo clinic lung cancer data

Smoothing by natural splines with 7 parameters; knots at $0,25,75,150,250,500,1000$ days

Who needs the Cox-model anyway? ($W_{n t}$ Cma)

Computational tools for time-splitting

R: A function splitLexis, written by Martyn Plummer, included in the package Epi available at http://wwww.biostat.ku.dk/~bxc/Epi or CRAN.
Stata: The function stsplit (part of standard Stata).
Descendant of stlexis written by Michael Hills \& David Clayton.
SAS: A macro \%Lexis, available at http://wwww.biostat.ku.dk/~bxc/Lexis

Modelling rates

Wednesday 2 June 2010, morning

Bendix Carstensen

Modern Demographic Methods in Epidemiology

1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Any difference in covariate effects?

Simulation study:
100 survival datasets, 200 individuals in each.
Baseline hazard varying, censoring at time 10.
Two covariates, one standard normal with rate-ratio of 4 and the other log-normal with rate-ratio of 0.25 .

For each dataset three models fitted:

1. standard Cox-model.
2. Poisson model using natural splines, 6 baseline parameters.
3. Poisson-model using constant baseline, 1 parameter.

Modelling rates (rate-model)
103/ 182

Computational aspects

- Cox model:
- Only one timescale.
- Each person contributes one (or very few) records.
- Computationally simple, because time (risk / covariate) is profiled out in the estimation.
- Poisson modelling:
- Many records per person.
- Very large datasets.
- Any number of timescales.
- Timeconsuming due to the full modelling of the rates.

Modelling rates (rate-model)

Historical aspects

Whitehead J: Fitting Cox's regression model to survival data using GLIM. Applied Statistics, 29(3):268-275, 1980. ${ }^{1}$
Set up tables of event counts and person-years, classified by event times and covariate patterns.
Even with moderate datasets this can be large, albeit smaller than some 100 separate records per person.

[^0]Modelling rates (rate-model)

Computational practicalities

Early 1980s: Fitting of Poisson models on datasets with 50,000 records were out of the question.
In particular with 100+ parameters.
Computationally feasible approaches to cohort studies were:

- Cox modelling - tanks to computational elegance.
- Time-splitting and tabulation before modelling.

Time-splitting and tabulation.

Man-years and PYRS programs:
Follow-up of each person was put into a table of (current) age-class by calendar time: Cut by the grid in a Lexis diagram. Possibly also classified by time since entry.

The tables of (D, Y) generated directly (disk space limitations prevented storage of the split dataset).
Used for SMR analysis, by merging with tables of population mortailty rates. Analyses based on a manageable number of analytical units.

The tabulation legacy (curse)

The computational need for tabulation has influenced thinking in epidemiology / demography:

- Life-tables in 1-year intervals.
- Rates are regarded in 5-year age by period intervals. Used for analysis of mortality and incidence rates based on registers.
Age-period-cohort models with one parameter per level of the age/period factor.
- Yet, survival analysis is largely based on "time to event" methods (Kaplan-Meier, Cox), even from cancer registries.

Modelling rates (rate-model)

The period method for survival analysis

H. Brenner, O. Gefeller \& T. Hakulinen: Period analysis for 'up-to-date' cancer survival data: theory, empirical evaluation, computational realisation and applications European Journal of Cancer 40, (2004), pp. 326-335

This method of survival analysis is designed to take interactions between two time-scale into account:

Mortality rates at a given time since entry into the study (usually diagnosis of cancer) depends on the current calendar time.

Brenner et al. propose to restrict analysis to the most recent period and then report results by survival curves.

Period

 analysis reports survival curve based on data from the blue rectangle.Interaction between current date and time since diagnosis.

Interaction between current date and time since diagnosis.

Separate
survival curves for each period.

Period
analysis reports the last set of parameters, because it is clinically the most relevant.
 111/ 182
Modelling rates (rate-model)

Interaction between current date and time since diagnosis:

- Separate survival curves for each period.
- Stratified Cox-model with time-dependent strata.

- In practical terms, data are split by (current) calendar time (period), and interactions with this are introduced throughout the model.
Modelling rates (rate-model)

Using the Lexis diagram today

Rates are observed as little empirical rates (d, y), several per individual.

These vary by several timescales

- current age
- calendar time
- time since entry
and fixed covariates
- age at entry
- date of entry
- date of birth
- sex
- . .

Modelling rates (rate-model)

Stratified Cox-model

$$
\lambda(t, x)=\lambda_{s}(t) \times \exp \left(x^{\prime} \beta\right)
$$

The key is the " s " - separate baseline for each stratum.
In plain words:
The effect of time depends on s - an interaction between time and stratum.

Test of "proportionality" is merely a test of interaction between time and some (categorical) covariate.

Age at entry as covariate

t : time since entry
e : age at entry
$a=e+t$: current age

$$
\log (\lambda(a, t))=f(t)+\beta e=(f(t)-\beta t)+\beta a
$$

Immaterial whether a or e is used as (log)-linear covariate as long as t is in the model.
In a Cox-model with time since entry as time-scale, only the baseline hazard will change if age at entry is replaced by current age (a time-dependent variable).

Modelling rates (rate-model)

Non-linear effects of time-scales

Arbitrary effects of the three variables t, a and e :
\Longrightarrow genuine extension of the model.

$$
\log \left(\lambda\left(a, t, x_{i}\right)\right)=f(t)+g(a)+h(e)+\eta_{i}
$$

Three quantities can be arbitrarily moved between the three functions:

$$
\begin{aligned}
& \tilde{f}(t)=f(a)-\mu_{a}-\mu_{e}+\gamma t \\
& \tilde{g}(a)=g(p)+\mu_{a} \quad-\gamma a \\
& \tilde{h}(e)=h(c) \quad+\mu_{a}+\gamma e
\end{aligned}
$$

because $t-a+e=0$.
This is the age-period-cohort modelling problem again.
Modelling rates (rate-model)

"Controlling for age"

- is not a well defined statement.

Mostly it means that age at entry is included in the model.
But ideally one would check whether there were non-linear effects of age at entry and current age.
This would require modelling of multiple timescales. Which is best accomplished by splitting time.

SMR

Wednesday 2 June 2010, afternoon

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Cohorts where all are exposed

When there is no comparison group we may ask: Do mortality rates in cohort differ from those of an external population, for example:
Rates from:

- Occupational cohorts
- Patient cohorts
compared with reference rates obtained from:
- Population statistics (mortality rates)
- Disease registers (hospital discharge registers)

Log-likelihood

Cohort rates proportional to reference rates:
$\lambda(a)=\theta \times \lambda_{R}(a)$ - the same in all age-bands.
D_{a} deaths during Y_{a} person-years an age-band a gives the likelihood:

$$
\begin{aligned}
D_{a} \log (\lambda(a))-\lambda(a) Y_{a}= & D_{a} \log \left(\theta \lambda_{R}(a)\right)-\theta \lambda_{R}(a) Y_{a} \\
= & D_{a} \log (\theta)+D_{a} \log \left(\lambda_{R}(a)\right) \\
& -\theta\left(\lambda_{R}(a) Y_{a}\right)
\end{aligned}
$$

The constant $D_{a} \log \left(\lambda_{R}(a)\right)$ does not involve θ, and so can be dropped.

The term $\lambda_{R}(a) Y_{a}=E_{a}$ is the "expected" number of cases in age a, so the log-likelihood for age a is:

$$
D_{a} \log (\theta)-\theta\left(\lambda_{R}(a) Y_{a}\right)=D_{a} \log (\theta)-\theta\left(E_{a}\right)
$$

Note: $\lambda_{R}(a)$ is known for all values of a. The total log-likelihood is:

$$
D \log (\theta)-\theta E
$$

Therefore:

$$
\hat{\theta}=\frac{D}{\lambda_{R} Y}=\frac{D}{E}=\frac{\text { Observed }}{\text { Expected }}=\mathrm{SMR}
$$

SMR is the maximum likelihood estimator of the relative mortality in the cohort.
SMR (SMR)

Accounting for age composition

- Compare rates in a study group with a standard set of age-specific rates.
- Reference rates are normally based on large numbers of cases, - assumed known.
- Calculate "expected" number of cases, $E_{a}=\lambda_{R}(a) Y_{a}$, and compare this with the observed number of cases, D :
- SMR is based on a log-likelihood similar to that for a rate $-Y$ is replaced by E :

$$
\mathrm{SMR}=\frac{D}{E}, \quad \text { s.d. }(\log (\mathrm{SMR}))=\frac{1}{\sqrt{D}}
$$

Modelling the SMR

- As for the rates, the SMR can be modelled using individual data.
- Response is d_{i}, the event indicator (lex.Xst).
- log-offset is the expected value for each piece of follow-up, $e_{i}=y_{i} \times \lambda_{R}$
- λ_{R} is the population rate corresponding to the age, period and sex of the follow-up period y_{i}.

plot(thap, 2:1, col=c("blue","red") [thap\$sex], lwd=2)

SMR (SMR)

plot(thap, 2:1, col=c("blue","red")[thap\$sex], lwd=2)

SMR (SMR)

Split the data to fit with population data

> \# Split the data for SMR-analysis
> tha <- splitLexis(thL, "age", breaks=seq $(0,90,5)$)
> thap <- splitLexis(tha, "per", breaks=seq(1938,2038,5))
> dim (thap)
[1] $41 \quad 15$
> \# Create variables to fit with the population data
> thap\$agr <- timeBand (thap, "age", "left")
> thap\$cal <- timeBand (thap, "per", "left")
> round(thap[,c("lex.id","age","agr","per","cal","lex.dur","lex lex.id age agr per cal lex.dur lex.Xst sex

$\begin{array}{lllllll}1 & 22.18 & 20 & 1938.79 & 1938 & 2.82 & 0\end{array}$

$125.00 \quad 251941.611938 \quad 1.39 \quad 0 \quad 2$
$\begin{array}{llllll}126.39 & 25 & 1943.00 & 1943 & 3.61 & 0\end{array}$
$\begin{array}{lllllll}1 & 30.00 & 30 & 1946.61 & 1943 & 1.39 & 0\end{array}$
$\begin{array}{lllllllllll}1 & 31.39 & 30 & 1948.00 & 1948 & 3.61 & 0 & 2\end{array}$
$1 \begin{array}{llllll}35.00 & 35 & 1951.61 & 1948 & 1.39 & 0\end{array}$
$\begin{array}{llllllll}1 & 36.39 & 35 & 1953.00 & 1953 & 3.61 & 0 & 2\end{array}$
$140.00401956 .611953-1.39 \quad 0 \quad 2$
$141.39 \quad 401958.00 \quad 1958 \quad 3.61 \quad 0 \quad 2$

Merge with population data

```
    thapx <- merge( thap, gmortDK[,c("agr","cal","sex","rt")])
    \(>\operatorname{str}(\) thapx \()\)
    Classes 'Lexis' and 'data.frame': 41 obs. of 18 variables
    \$ sex : num 1222222222 ..
    \$ agr : num \(\begin{array}{lllllllll}65 & 20 & 20 & 20 & 25 & 25 & 25 & 25 & 30 \\ 30 & \ldots\end{array}\)
    \$ cal : num \(19531938195319581938 \ldots\)
    \$ lex.id : int 3144114411 ..
    \$ age : num 68.222 .220 .821 .2 25.0 ...
    \$ per : num \(19551939195819581942 \ldots\)
    \$ tfi : num \(0.0000 .0000 .0000 .3892 .818 \ldots\)
    \$ lex.dur : num 1.4052 .8180 .3893 .8061 .391 .
    \$ lex.Cst : num \(0000000000 \ldots\)
    \$ lex.Xst : num \(1000000000 \ldots\)
    \$ id : num \(3425 \quad 140174017 \quad 1\)...
    \$ birthdat: num \(18871917193719371917 \ldots\)
    \$ contrast: num 2122112211 ...
    \$ injecdat: num 19551939195819581939
    \$ volume : num \(022002222002222 \ldots\)
SMR(SM\$) exitdat : num 19571977199219921977 ...

\section*{Calculation of the SMR}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{list ( D = sum( lex.Xst ),} \\
\hline & \multicolumn{4}{|c|}{\(Y=\operatorname{sum}(\mathrm{lex} . \mathrm{dur})\),} \\
\hline & \multicolumn{4}{|c|}{\(\mathrm{E}=\operatorname{sum}(\mathrm{E})\),} \\
\hline & \multicolumn{4}{|r|}{SMR = ratio ( lex.Xst, E )} \\
\hline & \multicolumn{4}{|l|}{margin = TRUE} \\
\hline & \multicolumn{3}{|c|}{data \(=\) thapx )} & \\
\hline contrast & D & Y & E & SMR \\
\hline 1 & 2.00 & 56.59 & 0.33 & 6.02 \\
\hline 2 & 1.00 & 35.93 & 0.11 & 8.70 \\
\hline Total & 3.00 & 92.52 & 0.45 & 6.71 \\
\hline
\end{tabular}

SMR (SMR)

\section*{Modelling the SMR}
> m. SMR <- glm( lex.Xst ~ factor(contrast)-1+offset(log(E)),
\(+\quad\) family=poisson, data=thapx )
> round ( ci.lin( m.SMR, Exp=TRUE ) [,5:7], 3 )
\(\exp (\) Est.) 2.5\% 97.5\%
factor (contrast) \(1 \quad 6.0231 .506 \quad 24.082\)
factor(contrast)2 \(8.6981 .225 \quad 61.745\)
- Analysis of SMR is like analysis of rates:
- Replace \(Y\) with \(E\) - that's all!

\section*{Interactions and timescales}

Thursday 3 June 2010, morning

\section*{Bendix Carstensen}

\section*{Modern Demographic Methods in Epidemiology}

1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

\section*{Computational aspects of fitting models}
- Cox model:
- Only one timescale.
- Each person contributes one (or very few) records.
- Computationally simple, because time (risk / covariate) is profiled out in the estimation.
- Poisson modelling:
- Many records per person.
- Very large datasets.
- Any number of timescales.
- Timeconsuming due to the full modelling of the rates.

\section*{Historical aspects}

Whitehead J: Fitting Cox's regression model to survival data using GLIM. Applied Statistics, 29(3):268-275, 1980.[?] \({ }^{2}\)
Set up tables of event counts and person-years, classified by event times and covariate patterns.
Even with moderate datasets this can be large, albeit smaller than some 100 separate records per person.
\({ }^{2}\) Recall Keiding's law: "Any result was published earlier than you think, even if you take Keiding's law into account."
Interactions and timescales (timescales)

\section*{Computational practicalities}

Early 1980s: Fitting of Poisson models on datasets with 50,000 records were out of the question.
In particular with \(100+\) parameters.
Computationally feasible approaches to cohort studies were:
- Cox modelling - thanks to computational elegance.
- Time-splitting and tabulation before modelling.

\section*{The tabulation legacy (curse)}

The computational need for tabulation has influenced thinking in epidemiology / demography:
- Life-tables in 1-year intervals.
- Rates are regarded in 5-year age by period intervals. Used for analysis of mortality and incidence rates based on registers.
Age-period-cohort models with one parameter per level of the age/period factor.
- Yet, survival analysis is largely based on "time to event" methods (Kaplan-Meier, Cox), even from cancer registries - only one timescale.

Representation of follow-up




Interactions and timescales (timescales)
131/ 182

\section*{Age at entry as covariate}
\(t\) : time since entry
\(e\) : age at entry
\(a=e+t\) : current age
\[
\log (\lambda(a, t))=f(t)+\beta e=(f(t)-\beta t)+\beta a
\]

Immaterial whether \(a\) or \(e\) is used as (log)-linear covariate as long as \(t\) is in the model.
In a Cox-model with time since entry as time-scale, only the baseline hazard will change if age at entry is replaced by current age (a time-dependent variable).

Interactions and timescales (timescales)

\section*{"Controlling for age"}

Including age at entry:
- Linear effect.
- Grouped variable.
- Parametric function.
— still only controls for the linear effect of current age.


Current age as covariate
Age at entry as covariate

\section*{Non-linear effects of time-scales}

Arbitrary effects of the three variables \(t, a\) and \(e\) : Genuine extension of the model.
\[
\log \left(\lambda\left(a, t, x_{i}\right)\right)=f(t)+g(a)+h(e)+\eta_{i}
\]

Three quantities can be arbitrarily moved between the three functions:
\[
\begin{aligned}
& \tilde{f}(t)=f(a)-\mu_{a}-\mu_{e}+\gamma t \\
& \tilde{g}(a)=g(p)+\mu_{a} \quad-\gamma a \\
& \tilde{h}(e)=h(c) \quad+\mu_{a}+\gamma e
\end{aligned}
\]
because \(t-a+e=0\).
How many timescales in this model?

\section*{"Controlling for age"}
— is not a well defined statement.
Mostly it means that age at entry is included in the model.
But ideally one would check whether there were non-linear effects of age at entry and current age.
This would require modelling of multiple timescales.
Which is best accomplished by splitting time and modelling the timescales explicitly.

\section*{Several timescales: Caveat}

As an example, consider:
\(t\) : time since entry
\(e\) : age at entry
\(a=e+t\) : current age
The relation: \(a=t+e\) must hold for all units of analysis.

In general: The difference between two time-scales must be constant within individuals.
The Boyle-Robertson fallacy from age-period-cohort models, where units with identical values of (current) age, \(a\), and (current) period \(p\) had varying values of cohort, date of birth \(c=p-a\) ! [?].

\section*{Several timescales}


\section*{Cox-model:}
- One dataset per transition.
- Combine datasets
and make relevant interactions.
- Timescale must be the same.

\section*{Poisson-model:}
- One time-split dataset per transition. - Combine datasets and make relevant interactions.
- Timescales can be different, and multiple timsecales can be accomodated simultaneously; duration of NRA, for example.

\section*{Time dependent variable}

How does remission influence the mortality?
\[
\lambda(t)=\lambda_{0}(t) \exp (1\{\text { remission }\}(t) \times \beta)
\]
i.e. when remission occurs, mortality increase by \(\mathrm{e}^{\beta}\).


What transitions are modelled here?
Interactions and timescales (timescales)
139/ 182

\section*{Time-dependent variable}


If we take
\[
1\{\text { remission }\}(t)
\]
as time-dependent variable, we assume that \(\mu_{\text {NRA }}\) and \(\mu_{\text {rem }}\) are proportional on the same timescale - no disease duration!.
- and \(\lambda\) is not modelled at all.

\section*{Stratified model}

A popular version of the Cox-model allowing for non-proportionality is the stratified model:
\[
\lambda(t, x)=\lambda_{s}(t) \times \exp \left(x^{\prime} \beta\right)
\]
where \(s\) refers to levels of a factor \(S\).
This is but a completely general interaction between the factor \(S\) and the chosen timescale.

A better approach to interactions would be to specify a clinically founded form of interaction, so that test for interaction is against a specific (and sensible) alternative.

\section*{Time varying coefficients}

This is a concept introduced by letting (some of) the parameters depend on time:
\[
\lambda(t, x)=\lambda_{0} \times \exp \left(x^{\prime} \beta(t)\right)
\]

This is also an interaction, but restricted:
The effect of a covariate is linear for any value of \(t\).
If the covariate is a factor, then we just have a reparametrization of the stratified model.

\section*{Poisson modelling of interactions}

When interactions are needed (or desired):
- use the familiar terminology of interaction as known from (generalized) linear models.
- use clinical judgement of which interactions are relevant.
- use clinical judgement of which forms of interaction are relevant.
- are interactions with time of special interest?

\section*{Poisson model for time-split data}
- Clarifies the destinction between (risk) time as response variable and time(scales) as covariates.
- Multiple timescales easily handled.
- Hazard rates by standard methods.
- More credible estimates of survival functions.
- Sensible modelling of interactions between timescales and other variables (and between timescales).
- Interactions are called interactions.

\section*{Multistate models}

\section*{Thursday 3 June 2010, afternoon}

\section*{Bendix Carstensen}

Modern Demographic Methods in Epidemiology
1-3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre
http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

\section*{Competing risks}

You may die from more than one cause:


\section*{Cause-specific intensities}
\(\lambda_{A}(t)=\lim _{h \rightarrow 0} \frac{\mathrm{P}\{\text { death from cause } \mathrm{A} \text { in }(t, t+h] \mid \text { alive at } t\}}{h}\)
\(\lambda_{B}(t)=\lim _{h \rightarrow 0} \frac{\mathrm{P}\{\text { death from cause } \mathrm{B} \text { in }(t, t+h] \mid \text { alive at } t\}}{h}\)
\(\lambda_{C}(t)=\lim _{h \rightarrow 0} \frac{\mathrm{P}\{\text { death from cause } \mathrm{C} \text { in }(t, t+h] \mid \text { alive at } t\}}{h}\)
Total mortality rate:
\(\lambda_{\text {Total }}(t)=\lim _{h \rightarrow 0} \frac{\mathrm{P}\{\text { death from any cause in }(t, t+h] \mid \text { alive at } t\}}{h}\)
\(\mathrm{P}\{\) death from any cause in \((t, t+h] \mid\) alive at \(t\}\)
\(=\mathrm{P}\{\) death from cause A in \((t, t+h] \mid\) alive at \(t\}+\) \(\mathrm{P}\{\) death from cause B in \((t, t+h] \mid\) alive at \(t\}+\) \(\mathrm{P}\{\) death from cause C in \((t, t+h] \mid\) alive at \(t\}\)
\[
\Longrightarrow \quad \lambda_{\text {Total }}(t)=\lambda_{A}(t)+\lambda_{B}(t)+\lambda_{C}(t)
\]

Intensities are additive, if they all refer to the same risk set, in this case "Alive".

\section*{Likelihood for competing risks}

Data:
\(Y\) person years in "Alive"
\(D_{A}\) deaths from cause A
\(D_{B}\) deaths from cause B .
\(D_{C}\) deaths from cause C.

Assume for simplicity that rates are constant.

A survivor contributes to the log-likelohood:
\(\log (\mathrm{P}\{\) Survival for a time of \(y\})=-\left(\lambda_{A}+\lambda_{B}+\lambda_{C}\right) y\)
A death from cause \(A\) contributes an additional \(\log \left(\lambda_{A}\right)\), etc.

The total log-likelihood is then:
\[
\begin{aligned}
\ell\left(\lambda_{A}, \lambda_{B}, \lambda_{C}\right)= & D_{A} \log \left(\lambda_{A}\right)+D_{B} \log \left(\lambda_{B}\right)+D_{C} \log \left(\lambda_{C}\right. \\
& -\left(\lambda_{A}+\lambda_{B}+\lambda_{C}\right) Y \\
= & {\left[D_{A} \log \left(\lambda_{A}\right)-\lambda_{A} Y\right]+} \\
& {\left[D_{B} \log \left(\lambda_{B}\right)-\lambda_{B} Y\right]+} \\
& {\left[D_{C} \log \left(\lambda_{C}\right)-\lambda_{C} Y\right] }
\end{aligned}
\]

The log－likelihood is made up of three contributions：
One for cause A，
one for cause \(B\) and
one for cause \(C\) ．
Deaths are the cause－specific deaths，but the person－years are the same in all contributions．

\section*{Time varying rates：}

This is the same business as with one rate；use time intervals sufficiently small to justify an assumption of constant rate（intensity）．

\section*{Practical implications}

Analysis of the individual cause－specific rates effectively uses the same dataset for all causes， because the person－years are the same．
Thus the little＂atoms＂of data（the empirical rates （ \(d, y\) ）from each individual）will be the same for all analyses except for those where deaths occur．

Analysis of cause A：Contributions \((1, y)\) only for those intervals where a cause \(A\) death occurs．
Intervals with cause B or C deaths（or no deaths） contribute only \((0, y)\)
－for the analysis of cause A treated as censorings．

Multistate models（multistate）

\section*{Analysis of competing risks}

Competing risks are analysed by considering the cause specific rates separately．

Joint modelling：Take the datasets for analysis of each of the causes，stack them including an indicator．

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { d } \\
& 0 \\
& \text { d } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & \[
\underset{\dagger}{\infty}
\] & ص๓๓ロロロ & บขขలขて \\
\hline &  &  &  \\
\hline & oriciopo & oricioio & -ioioo \\
\hline & Toooroo & －10－1000 & 000 \\
\hline &  & －1 & \(\cdots \rightarrow \infty\) MN \\
\hline & すூNMザロ & 「Nのザに &  \\
\hline
\end{tabular}


Multistate models（multistate）
156／ 182
Implemented in the stack．Lexis function：
```

> ls.dmi <- stack(dmi)
>str(ls.dmi)
Classes 'stacked.Lexis' and 'data.frame': 21539 obs. of 15 vari
\$ Per : num 2006 2001 1996 1996 2002 ...
\$ Age : num 53.3 50.6 70 72.5 87.7 ...
\$ DMdur : num 0000000000
\$ lex.dur : num 2.4586 4.7036 0.063 12.4709 0.0219 ...
\$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1 1 1
\$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 2 3 1 1 3 1
\$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM ->Dead",...: 1 1 1
\$ lex.Fail: logi FALSE TRUE FALSE FALSE FALSE FALSE ...
\$ lex.id : int 1 2 3 4 5 6 7 8 9 10. .
\$ sex : Factor w/ 2 levels "M","F": 1 1 2 1 1 1 1 1 1 1 2 ...
\$ dobth : num 1952 1951 1926 1923 1914 ...
\$ dodm : num 1952 1951 1926 1923 1914 ...
\$ dodth : num NA NA 1996 NA 2002 ...
\$ doins : num NA 2006 NA NA NA ...
\$ dox : num 2008 2008 1996 2008 2002 ...

```

Implemented in the stack. Lexis function:
> options(digits=2)
> subset (dmi,lex.id==2)
Per Age DMdur lex.dur lex.Cst lex. Xst lex.id sex dobth
\(\begin{array}{rrrrrrrrr}2001 & 51 & 0.0 & 4.7 & \text { DM } & \text { Ins } & 2 & \text { M } & 1951 \\ 2006 & 55 & 4.7 & 2.2 & \text { Ins } & \text { Ins } & 2 & \text { M } & 1951\end{array}\)
> subset(ls.dmi,lex.id==2)
Per Age DMdur lex.dur lex.Cst lex. Xst lex.Tr lex.Fail lex.id
\(\begin{array}{rrrrrrrr}\text { Per Age DMdur lex.dur lex. Cst lex. } & \text { lest } & \text { lex.Tr lex. Fail } \\ 2001 & 51 & 0.0 & 4.7 & \text { DM } & \text { Ins } & \text { DM }->\text { Ins } & \text { TRUE }\end{array}\)
\(\begin{array}{llllrlrr}2001 & 51 & 0.0 & 4.7 & \text { DM } & \text { Ins DM }->\text { Dead } & \text { FALSE } \\ 2006 & 55 & 4.7 & 2.2 & \text { Ins } & \text { Ins Ins }->\text { Dead } & \text { FALSE }\end{array}\)

Multistate models (multistate)

\section*{Analysis}
- Interactions between all covariates (including time) and type:
The same as separate analyses of the rates \(\lambda_{A}\),
\(\lambda_{B}\) and \(\lambda_{C}\).
- No interaction with time:

Same underlying baseline hazard.
- Only interaction with time: Same covariate effects for all causes of death.

Multistate models (multistate)

\section*{Assumptions in competing risks}
"Classical" way of looking at survival data: description of the distribution of time to death.

For competing risks that would require three variables:
\(T_{A}, T_{B}\) and \(T_{C}\), representing times to death from each of the three causes.
But at most one of these is observed.
Often it is stated that these must be assumed independent in order to make the likelihoods machinery work.
1: It is not necessary.
2: Independence can never be assessed from data.
Multistate models (multistate)
An excellent account of these problems is given in:
PK Andersen, SZ Abildstrøm \& S Rosthøj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp.
203-215
The paper includes a guide for the practitioner.
Also contains en example where both dependent and independent "cause specific survival times" gives rise to the same set of cause specific rates.

\section*{Competing risk problems}

The problems with competing risk models comes when estimated intensities (rates) are used to produce probability statements.
Classical set-up in cancer-registries:

\(\mathrm{P}\{\) Lung cancer before age 75\(\}=1-\mathrm{e}^{-\Lambda(75)}\)
This is not quite right.
Multistate models (multistate)
162/ 182

\section*{How the world really looks}


Illness-death model. Little boxes with arrows.
(The mortality of lung cancer patients ( \(\nu\) ) not relevant here).
Multistate models (multistate)

\section*{How many get lung cancer before age \(a\) ?}
\(\mathrm{P}\{\) Lung cancer before age 75\(\} \neq 1-\mathrm{e}^{-\Lambda(75)}\)
does not take the possibility of death prior to lung cancer into account.
\(1-\mathrm{e}^{-\Lambda(75)}\) often stated as the probability of lung cancer before age 75, assuming all other acuses of death absent.
Lung cancer rates are however observed in a mortal population.
If all other causes of death were absent, this would assume that lung cancer rates remained the same.
\(\mathrm{P}\{\) Lung cancer before age \(a\}\)
\(=\int_{0}^{a} \mathrm{P}\{\) Lung cancer at age \(u\} \mathrm{d} u\)
\(=\int_{0}^{a} \mathrm{P}\{\) Lung cancer in age \((u, u+\mathrm{d} u] \mid\) alive at \(u\}\)
\(\times \mathrm{P}\{\) alive at \(u\) without lung cancer \(\} \mathrm{d} u\)
\(=\int_{0}^{a} \lambda(u) \exp \left(-\int_{0}^{u} \mu(s)+\lambda(s) \mathrm{d} s\right) \mathrm{d} u\)

\section*{Probability of lungcancer}

The rates are easily plotted for inspection in R :
```

matplot(age, 1000*cbind(D/Y, lung/Y),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per }1000\mathrm{ person-years")

```


The probablility that a person contracts lung cancer before age \(a\) is (cf. the lecture notes):
\[
\begin{aligned}
& \int_{0}^{a} \lambda(u) \exp \left(-\int_{0}^{u} \mu(s)+\lambda(s) \mathrm{d} s\right) \mathrm{d} u \\
& =\int_{0}^{a} \lambda(u) \exp (-(\mathrm{M}(u)+\Lambda(u))) \mathrm{d} u
\end{aligned}
\]
\(\mathrm{M}(u)\) is the cumulative mortality rate.
\(\Lambda(u)\) is the cumulative lung cancer incidence rate.

R-commands needed to do the calculations:
```

cr.death <- cumsum(D/Y)
cr.lung <- cumsum(lung/Y)
p.simple <- 1 - exp(-cr.lung)
p.lung <- cumsum(lung/Y *
exp(-(cr.death+cr.lung)))
matlines(age, 100*cbind(cr.lung, p.simple, p.lung),
type="l", lty=1, lwd=2*c(2,2,3),
col=c("black","blue","red"))

```


170/ 182

\section*{Assumptions}

The assumption behind the calculation and the statement " \(6 \%\) of Danish males will get lung cancer" is that the lung cancer rates and the mortality rates in the file applies to a cohort of men.
But they are cross-sectional rates, so the assumption is one of steady state of
1: mortality rates (which is dubious)
and
2: lung cancer incidence rates (which is appaling).
However the machinery can be applied to any set of rates for competing risks, regardless of how they were estimated.

Multistate models (multistate)

\section*{Example: Renal failure data from Steno}

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving \(\mathrm{H}-\mathrm{H}\) : Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. Kidney Int., 66(3):1180-1186, 2004.
96 patients entering at nephrotic range albuminuria (NRA), i.e. U-alb> \(300 \mathrm{mg} /\) day.

Is remission from this condition (i.e return to \(\mathrm{U}-\mathrm{alb}<300 \mathrm{mg} /\) day) predictive of the prognosis?
Endpoint of interest: Death or end stage renal disease (ESRD), i.e. dialysis or kidney transplant.



Cutting follow-up at remission: cutLexis
\(\begin{array}{lrl}\text { > Lc }<- \text { cutLexis }(\mathrm{Lr}, \text { cut } & =\text { Lr\$dor } \\ + & \text { timescale } & =\text { "per", } \\ + & \text { new.state } & =\text { "Rem", } \\ + & \text { precursor.states }= & \text { "NRA" })\end{array}\)
> subset \((\operatorname{Lr}[,-(8: 11)]\), lex.id<3 \()\)
\(\begin{array}{rrrrrr}\text { per } & \text { age tfi } & \text { lex.dur lex.Cst lex.Xst lex.id } \\ 1 & 1996.013 & 28.06879 & 0 & 1.081109 & \text { NRA } \\ \text { ESRD } & 1\end{array}\)
21989.535 30.22895 0 \(\quad 6.600616\) NRA ESRD
\(>\) subset ( Lc[,-(8:11)], lex.id<3)
\begin{tabular}{lrrrrrrr} 
& per & age & tfi & lex.dur & lex. Cst & lex. Xst & lex.i \\
1 & 1996.013 & 28.06879 & 0.0000000 & 1.0811088 & NRA & ESRD & \\
2 & 1989.535 & 30.22895 & 0.0000000 & 0.2789185 & NRA & Rem & 2 \\
123 & 1989.814 & 30.50787 & 0.2789185 & 6.3216975 & Rem & ESRD & 2
\end{tabular}
> round ( tab( Lc, scale=100), 2 )
States:
\#records:
To
From NRA ESRD Rem Sum \#events: \#risk time: Rate (95\% c.i.) \(\begin{array}{lrrrr}\text { NRA } & 24 & 69 & 29 & 122\end{array}\) \begin{tabular}{llllrr} 
Rem & 0 & 8 & 24 & 32 & 88 \\
\hline
\end{tabular} \(\begin{array}{llllrr}\text { Sum } & 24 & 77 & 53 & 154 & 106\end{array}\)


Cox-analysis with remission as time-dependent covariate:
- Ignores \(\lambda\), the remission rate.
- Assumes \(\mu_{\text {NRA }}\) and \(\mu_{\text {rem }}\) use the same timescale.
- Duration, and timing of NRA modelled as covariates.
Multistate models (multistate)
179/ 182

\section*{Model for all transitions}


\section*{Cox-model:}

One dataset per transition.

Combine datasets and make relevant interactions.

Same timescale.

Poisson-model:
One time-split dataset per transition.
Combine datasets and make relevant interactions.

Timescales can be different.

Multiple timescales can be accomodated simultaneously.

Multistate models (multistate)

\section*{Calculus of probabilities}

P \(\{\) Remission before time \(t\}\)
\(=\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu_{\text {NRA }} \mathrm{d} s\right) \mathrm{d} u\)
\(\mathrm{P}\{\) Being in remission at time \(t\}\)
\[
\begin{array}{r}
=\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu_{\mathrm{NRA}}(s) \mathrm{d} s\right) \times \\
\exp \left(-\int_{u}^{t} \mu_{\mathrm{rem}}(s) \mathrm{d} s\right) \mathrm{d} u
\end{array}
\]

Note \(\mu_{\text {rem }}\) could also depend on \(u\), time since obtained remission.

Sketch of programming:
c.rem <- cumsum( lambda)
c.mort.nra <- cumsum( mu.nra)
c.mort.rem <- cumsum ( mu.rem )
pr1 <- cumsum( lambda * exp ( \(-(\mathrm{c} . \mathrm{rem}+\mathrm{c} . \mathrm{mort.nra})\) ) )
intgr (t,s) <- function (t,s) \{
lambda[s] * \(\exp (-(\mathrm{c} . \mathrm{rem}[\mathrm{s}]+\mathrm{c} . \mathrm{mort.nra[s]})\) ) *
\(\exp (-\) ( c.mort.rem[t]-c.mort.rem[s] ) ) \}
for ( t in 1:100) p2[t] <- sum(intgr (t,1:t))
If \(\mu_{\text {rem }}\) depends on time of remission, then
c.mort.rem should have an extra argument.

More complicated models: Simulation of probabilities.
(Outside the scope of this course).```


[^0]:    ${ }^{1}$ Recall Keiding's law: "Any result was published earlier than you think, even if you take Keiding's law into account."

