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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)
or

Some time alive (“at least this long”)
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Examples of time-to-event measurements

I Time from diagnosis of cancer to death.

I Time from randomisation to death in a cancer
clinical trial

I Time from HIV infection to AIDS.

I Time from marriage to 1st child birth.

I Time from marriage to divorce.

I Time to re-offending after being released from
jail
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Each line a
person

Each blob a
death

Study ended
at 31 Dec.
2003
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Ordered by
date of entry

Most likely
the order in
your
database.
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Timescale
changed to
“Time since
diagnosis”.

Time since diagnosis
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Patients
ordered by
survival
time.

Time since diagnosis
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Survival
times
grouped into
bands of
survival.

Year of follow−up
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Patients
ordered by
survival
status within
each band.

Year of follow−up
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535

Life-table estimator.
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of
diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S(t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)
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Intensity or rate

P {event in (t, t+ h] | alive at t} /h

=
F (t+ h)− F (t)

S(t)× h

= − S(t+ h)− S(t)

S(t)h
−→
h→0

− dlogS(t)

dt

= λ(t)

This is the intensity or hazard function for the
distribution. Characterizes the survival distribution
as does f or F .

Theoretical counterpart of a rate.
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Relationships

− dlogS(t)

dt
= λ(t)

m

S(t) = exp

(
−

∫ t

0

λ(u) du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(s) ds is called the integrated
intensity. Not an intensity, it is dimensionless.

λ(t) = − dlog(S(t))

dt
= −S ′(t)

S(t)
=

F ′(t)

1− F (t)
=

f(t)

S(t)
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Rate and survival

S(t) = exp

(
−

∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)

S(t)

Survival is a cumulative measure, the rate is an
instantaneous measure.

Note: A cumulative measure requires an origin!
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Observed survival and rate

I Survival studies: Observation of (right
censored) survival time:

X = min(T, Z), δ = 1{X = T}

— sometimes conditional on T > t0 (left
truncated).

I Epidemiological studies:
Observation of (components of) a rate:

D/Y

D: no. events, Y no of person-years, in a
prespecified time-frame.
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Empirical rates for individuals

At the individual level we introduce the
empirical rate: (d, y),
— number of events (d ∈ {0, 1}) during y risk time.

A person contributes several observations of (d, y).

Empirical rates are responses in survival analysis.

The timescale is a covariate — varies across
empirical rates from one individual: Age, calendar
time, time since diagnosis.

Don’t confuse with y — difference between two
points on any timescale we may choose.
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Empirical
rates by
calendar
time.

Calendar time
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Empirical
rates by
time since
diagnosis.

Time since diagnosis
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Likelihood from one person

The likelihood from several empirical rates from one
individual is a product of conditional probabilities:

P {event at t4|t0} = P {event in (t3, t4)| alive at t3} ×
P {survive (t2, t3)| alive at t2} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t0, t1)| alive at t0}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (d, y)
— y = ti − ti−1 and mostly d = 0.

ti is the timescale (covariate).
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Likelihood for an empirical rate

Model: the rate is constant in the interval we are
looking at. The interval should sufficiently small for
this assumption to be reasonable.

If π = 1− e−λy is the death probability:

L(λ) = P {d events during y time } = πd(1− π)1−d

= (1− e−λy)d(e−λy)1−d

=

(
1− e−λy

e−λy

)d

(e−λy) ≈ (λy)de−λy

since the first term is equal to e−λy − 1 ≈ λy.
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Log-likelihood:

l(λ) = d log(λy)− λy = d log(λ) + d log(y)− λy

The term d log(y) does not include λ, so the
relevant part of the log-likelihood is:

l(λ) = d log(λ)− λy
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Poisson likelihood

The contributions from one individual
dtlog(λ(t))− λ(t)yt, is like the log-likelihood from
several independent Poisson observations with mean
λ(t)yt, i.e. log-mean log(λ(t)) + log(yt)

Analysis of the rates, (λ) can be based on a Poisson
model with log-link applied to empirical rates where:

I d is the response variable.

I log(y) is the offset variable.
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Likelihood for follow-up of many subjects

Adding empirical rates over the follow-up of persons:

D =
∑

d Y =
∑

y ⇒ Dlog(λ)− λY

I Persons are assumed independent

I Contribution from the same person are
conditionally independent, hence give separate
contributions to the log-likelihood.
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The log-likelihood is maximal for:

dl(λ)

dλ
=

D

λ
− Y = 0 ⇔ λ̂ =

D

Y

Information about θ = log(λ):

l(θ|D, Y ) = Dθ−eθY, l′θ = D−eθY, l′′θ = −eθY

so I(θ̂) = eθ̂Y = λ̂Y = D, hence var(θ̂) = 1/D

Standard error of log-rate: 1/
√
D.

Note that this only depends on the no. events, not
on the follow-up time.
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Confidence interval for a rate

A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ)± 1.96/

√
D

Take the exponential to get the confidence interval
for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf
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Exercise

Suppose we have 17 deaths during 843.6 years of
follow-up.

Calculate the mortality rate with a 95% c.i.
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Ratio of two rates

If we have observations two rates λ1 and λ0, based
on (D1, Y1) and (D0, Y0) the variance of the
difference of the ratio of the rates, RR, is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)

︸ ︷︷ ︸
error factor
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Exercise

Suppose we in group 0 have 17 deaths during 843.6
years of follow-up in one group, and in group 1 have
28 deaths during 632.3 years.

Calculate the rate-ratio between group 1 and 0 with
a 95% c.i.
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Survival analysis

Response variable: Time to event, T

Censoring: We observe (min(T, Z), δ = 1{T < Z}).
This gives time a special status, and mixes the
response variable (risk)time with the covariate
time(scale).

Originates from clinical trials where everyone enters
at time 0.
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The life table method

The simplest analysis is by the “life-table method”:

interval alive dead cens.
i ni di li pi

1 77 5 2 5/(77− 2/2)= 0.066
2 70 7 4 7/(70− 4/2)= 0.103
3 59 8 1 8/(59− 1/2)= 0.137

pi = P {death in interval i} = 1− di/(ni − li/2)

S(t) = (1− p1)× · · · × (1− pt)
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Population life table, DK 1997–98

Men Women

a S(a) λ(a) E[`res(a)] S(a) λ(a) E[`res(a)]

0 1.00000 567 73.68 1.00000 474 78.65
1 0.99433 67 73.10 0.99526 47 78.02
2 0.99366 38 72.15 0.99479 21 77.06
3 0.99329 25 71.18 0.99458 14 76.08
4 0.99304 25 70.19 0.99444 14 75.09
5 0.99279 21 69.21 0.99430 11 74.10
6 0.99258 17 68.23 0.99419 6 73.11
7 0.99242 14 67.24 0.99413 3 72.11
8 0.99227 15 66.25 0.99410 6 71.11
9 0.99213 14 65.26 0.99404 9 70.12

10 0.99199 17 64.26 0.99395 17 69.12
11 0.99181 19 63.28 0.99378 15 68.14
12 0.99162 16 62.29 0.99363 11 67.15
13 0.99147 18 61.30 0.99352 14 66.15
14 0.99129 25 60.31 0.99338 11 65.16
15 0.99104 45 59.32 0.99327 10 64.17
16 0.99059 50 58.35 0.99317 18 63.18
17 0.99009 52 57.38 0.99299 29 62.19
18 0.98957 85 56.41 0.99270 35 61.21
19 0.98873 79 55.46 0.99235 30 60.23
20 0.98795 70 54.50 0.99205 35 59.24
21 0.98726 71 53.54 0.99170 31 58.27
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Men: −14.289 + 0.135 age

Women: −14.923 + 0.135 age
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Swedish life tables 1997−99

log2[mortality per 10
5
 (40−85 years)]

Men: −15.418 + 0.145 age

Women: −16.152 + 0.145 age
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Practical

Based on the previous slides answer the following
for both Danish and Swedish lifetables:

I What is the doubling time for mortality?

I What is the rate-ratio between males and
females?

I How much older should a woman be in order to
have the same mortality as a man?
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Observations for the lifetable
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Life table is based on
person-years and deaths
accumulated in a short period.

Age-specific rates —
cross-sectional!

Survival function:

S(t) = e−
∫
t

0
λ(a) da = e−

∑
t

0
λ(a)

— assumes stability of rates to be
interpretable for actual persons.
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Observations for the lifetable
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Life table approach

The observation of interest is not the survival time
of the individual.

It is the population experience:

D: Deaths (events).

Y : Person-years (risk time).

The classical lifetable analysis compiles these for
prespecified intervals of age, and computes
age-specific mortality rates.

Data are collected crossectionally, but interpreted
longitudinally.
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The Kaplan-Meier Method 1

I The most common method of estimating the
survival function.

I A non-parametric method.

I Divides time into small xintervals where the
intervals are defined by the unique time points.

I Based on conditional probabilities as we are
interested in the probability a subject surviving
the next time interval given that they have
survived so far.
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Example of KM Survival Curve from BMJ

BMJ

1998;316:1935-1938 Kaplan-Meier curve from an RCT of
patients with pancreatic cancer
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Calculating the Kaplan-Meier estimator

An estimate of S(tk) is:

Ŝ(tk) =

(
1− d1

n1

)(
1− d2

n2

)
. . .

(
1− dk

nk

)

or more simply:

Ŝ(tk) =
k∏

i=1

1− di
ni

Ŝ(tk) = Ŝ(tk−1)

(
1− dk

nk

)

Classical estimators (km-na) 43/ 182

Kaplan–Meier method illustrated

(• = failure and × = censored):

-

Time
× • × ×•

50N = 49 46

61.0Cumulative
survival

probability

I Steps caused by multiplying by
(1− 1/49) and (1− 1/46) respectively

I Late entry can also be dealt with
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Using R: Surv()

> with( lung, Surv( time, status==2 ) )
[1] 306 455 1010+ 210 883 1022+ 310 361 218 166 170

[12] 654 728 71 567 144 613 707 61 88 301 81
[23] 624 371

> ( s.km <- survfit( Surv( time, status==2 ), data=lung ) )
Call: survfit(formula = Surv(time, status == 2), data = lung)

n events median 0.95LCL 0.95UCL
228 165 310 285 363

> plot( s.km )
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Modelling Survival Data

I As with other types of data we are interested in
fitting a statistical model to survival data.

I Most modelling principles are the same.

I In epidemiology it is customary to model on
the hazard scale. For example, by how much
does being exposed to factor X
increase/decrease the hazard rate.
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Proportional Hazards model

Consider the following model:

λi(t,xi) = λ0(t)exp (β1x1i + β2x2i + . . .)

I λi(t,xi) is the hazard rate for the ith subject.

I λ0(t) is the baseline hazard function - a
non-linear effect of the covariate t.

I β1x1i + β2x2i + . . . is the linear predictor.
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The proportional hazards model

λ(t, x) = λ0(t)× exp(x′β)

A model for the rate as a function of t and x.

The covariate t has a special status:

I Computationally, because all individuals
contribute to (some of) the range of t.

I Conceptually it is less clear — t is but a
covariate that varies within each individual.
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Cox-likelihood

The partial likelihood for the regression parameters:

`(β) =
∑

death times

log

(
exdeathβ

∑
i∈Rt

exiβ

)

I This is David Cox’s invention.

I Extremely efficient from a computaionel point
of view.

I The baseline hazard is bypassed.
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Proportional Hazards model

I The baseline hazard rate, λ0(t), is the hazard
rate when all the covariates are 0.

I The form of the above equation means that
covariates act multiplicatively on the baseline
hazard rate.

I The baseline hazard is a function of time and
thus varies with time.
Time is a covariate (albeit with special status).

I The proportionality assumption means that the
difference between two groups can be
summarised by one number. This is because
the (relative) effect of a covariate is assumed
to be the same throughout the time-scale.
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The Cox Proportional Hazards likelihood

I By far the most common model applied to
time-to-event outcomes.

I The Cox PH model does not make any
assumption about the shape of the underlying
hazard function.

I However, it does make the assumption that the
hazard rates for patient subgroups are
proportional over time.

I The Cox model models the hazard function,
λi(t; xi) where xi denotes the covariate vector.
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Proportional Hazards Model

I Parameters are estimated on log scale:

λi(t) = λ0(t)exp (β1x1i + β2x2i + . . .)

log (λi(t)) = log (λ0(t)) + β1x1i + β2x2i + . . .

I The baseline hazard is the hazard rate when all
covariate values are equal to zero.

I Estimates of the parameters, β, are obtained
by maximizing the partial likelihood.
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Interpreting Regression Coefficients

I How do we interpret the parameters of interest?

I In a Cox model the baseline hazard λ0(t) is not
included in the partial likelihood and so we only
obtain estimates of the regression coefficients
associated with each of the covariates.

I Consider a binary covariate x1 which takes the
values 0 and 1.
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Interpreting Regression Coefficients

I The model is

λi(t) = λ0(t)exp (β1x1i)

I The hazard rate when x1 = 0 is λ0(t).

I The hazard rate when x1 = 1 is λ0(t)exp(β1).

I The hazard ratio is therefore

λ0(t)exp(β)

λ0(t)

I The λ0(t) cancels: β1 is the log hazard ratio.

I Exponentiate β1 to get the hazard ratio.
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Interpreting Regression Coefficients

I If xj is binary exp(βj) is the estimated hazard
ratio for subjects corresponding to xj = 1
compared to those where xj = 0.

I If xj is continuous exp(βj) is the estimated
increase/decrease in the hazard rate for a unit
change in xj.

I With more than one covariate interpretation is
similar, i.e. exp(βj) is the hazard ratio for
subjects who only differ with respect to
covariate xj.
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Fitting a Cox- model in R

> data(bladder)
> bladder <- subset( bladder, enum<2 )
> head( bladder)

id rx number size stop event enum
1 1 1 1 3 1 0 1
5 2 1 2 1 4 0 1
9 3 1 1 1 7 0 1
13 4 1 5 1 10 0 1
17 5 1 4 1 6 1 1
21 6 1 1 1 14 0 1
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Fitting a Cox- model in R

> c0 <- coxph( Surv(stop,event) ~ number + size, data=bladder )
> c0
Call:
coxph(formula = Surv(stop, event) ~ number + size, data = bladder)

coef exp(coef) se(coef) z p
number 0.2049 1.23 0.0704 2.912 0.0036
size 0.0613 1.06 0.1033 0.594 0.5500

Likelihood ratio test=7.04 on 2 df, p=0.0296 n= 85
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Plotting the base survival in R

> plot( survfit(c0) )
> lines( survfit(c0), conf.int=F, lwd=3 )

The plot.coxph plots the survival curve for a
person with an average covarite value.

— which is not the average survival for the
population considered. . .
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Plotting the base survival in R

> plot( survfit(c0) )
> lines( survfit(c0), conf.int=F, lwd=3 )
> lines( survfit(c0,newdata=data.frame(number=1,size=1)), lwd=2, col="green" )
> text( par("usr")[2]*0.98, 1.00, "number=1,size=1", col="green", font=2, adj=1 )

You can plot the survival curve for specific values of
the covariates, using the newdata= argument.
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Follow-up and rates
I Follow-up studies:

I D — events, deaths
I Y — person-years
I λ = D/Y rates

I Rates differ between persons.
I Rates differ within persons:

I Along age
I Along calendar time

I Multiple timescales.
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Representation of follow-up data

In a cohort study we have records of:
Events and Risk time.

Follow-up data for each individual must have
(at least) three variables:

I Date of entry — date variable.

I Date of exit — date variable

I Status at exit — indicator-variable (0/1)

Specific for each type of outcome.

Follow-up data (FU-rep-Lexis) 64/ 182

Aim of dividing time into bands:

Put
D — events
Y — risk time

in intervals on the timescale:

Origin: The date where the time scale is 0:

I Age — 0 at date of birth

I Disease duration — 0 at date of diagnosis

I Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

I 1-year classes? 5-year classes?

I Equal length?
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Cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

I Define strata: 10-years intervals of current age.

I Split Y for every subject accordingly

I Treat each segment as a separate unit of
observation.

I Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

- but what if we want to keep track of calendar time
too?
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Timescales

I A timescale is a variable that varies
deterministically within each person during
follow-up:

I Age
I Calendar time
I Time since treatment
I Time since relapse

I All timescales advance at the same pace
(1 year per year . . . )

I Note: Cumulative exposure is not a timescale.
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Representation of follow-up

on several timescales

I The time followed is the same on all timescales.
I Only use the entry point on each time scale:

I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.
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Follow-up data in Epi: Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1

2 640 2 1896.23 1 1945.77 20 1964.37 1

3 3425 1 1886.97 2 1955.18 0 1956.59 1

4 4017 2 1936.81 2 1957.61 0 1992.14 2

Timescales of interest:

I Age

I Calendar time

I Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age=injecdat-birthdat,

+ per=injecdat,

+ tfi=0 ),

+ exit = list( per=exitdat ),

+ exit.status = (exitstat==1)*1,

+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales.
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The looks of a Lexis object

> round( thL[,c(1:8,14,15)], 2 )

age per tfi lex.dur lex.Cst lex.Xst lex.id id exitdat exitstat

1 22.18 1938.79 0 38.00 0 1 1 1 1976.79 1

2 49.55 1945.77 0 18.60 0 1 2 640 1964.37 1

3 68.21 1955.18 0 1.40 0 1 3 3425 1956.59 1

4 20.80 1957.61 0 34.52 0 0 4 4017 1992.14 2
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> plot( thL, lwd=3 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast], grid=T )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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Splitting follow-up time

> spl1 <- splitLexis( thL, "age", breaks=seq(0,100,20) )

> round( spl1, 2 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast

1 1 22.18 1938.79 0.00 17.82 0 0 1 2 1916.61 1

2 1 40.00 1956.61 17.82 20.00 0 0 1 2 1916.61 1

3 1 60.00 1976.61 37.82 0.18 0 1 1 2 1916.61 1

4 2 49.55 1945.77 0.00 10.45 0 0 640 2 1896.23 1

5 2 60.00 1956.23 10.45 8.14 0 1 640 2 1896.23 1

6 3 68.21 1955.18 0.00 1.40 0 1 3425 1 1886.97 2

7 4 20.80 1957.61 0.00 19.20 0 0 4017 2 1936.81 2

8 4 40.00 1976.81 19.20 15.33 0 0 4017 2 1936.81 2
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Split on another timescale

> # Split further on tfi:

> spl2 <- splitLexis( spl1, "tfi", breaks=c(0,1,5,20,100) )

> round( spl2, 2 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat

1 1 22.18 1938.79 0.00 1.00 0 0 1 2 1916.61

2 1 23.18 1939.79 1.00 4.00 0 0 1 2 1916.61

3 1 27.18 1943.79 5.00 12.82 0 0 1 2 1916.61

4 1 40.00 1956.61 17.82 2.18 0 0 1 2 1916.61

5 1 42.18 1958.79 20.00 17.82 0 0 1 2 1916.61

6 1 60.00 1976.61 37.82 0.18 0 1 1 2 1916.61

7 2 49.55 1945.77 0.00 1.00 0 0 640 2 1896.23

8 2 50.55 1946.77 1.00 4.00 0 0 640 2 1896.23

9 2 54.55 1950.77 5.00 5.45 0 0 640 2 1896.23

10 2 60.00 1956.23 10.45 8.14 0 1 640 2 1896.23

11 3 68.21 1955.18 0.00 1.00 0 0 3425 1 1886.97

12 3 69.21 1956.18 1.00 0.40 0 1 3425 1 1886.97

13 4 20.80 1957.61 0.00 1.00 0 0 4017 2 1936.81

14 4 21.80 1958.61 1.00 4.00 0 0 4017 2 1936.81

15 4 25.80 1962.61 5.00 14.20 0 0 4017 2 1936.81

16 4 40.00 1976.81 19.20 0.80 0 0 4017 2 1936.81
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The Poisson likelihood for time-split data

Split records (one per person-interval (i, t)):

Dln(λ)− λY =
∑

i,t

(
ditln(λ)− λyit

)

Assume that the death indicator (di ∈ {0, 1}) is
Poisson, with log-offset yi will give the same result.

Model assumes that rates are constant.

But the split data allows models that assume
different rates for different (dit, yit).

Where are the (dit, yit) in the split data?
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plot( spl2, c(1,3), col="black", lwd=2 )
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Where is (dit, yit) in the split data?

> round( spl2, 2 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat

1 1 22.18 1938.79 0.00 1.00 0 0 1 2 1916.61

2 1 23.18 1939.79 1.00 4.00 0 0 1 2 1916.61

3 1 27.18 1943.79 5.00 12.82 0 0 1 2 1916.61

4 1 40.00 1956.61 17.82 2.18 0 0 1 2 1916.61

5 1 42.18 1958.79 20.00 17.82 0 0 1 2 1916.61

6 1 60.00 1976.61 37.82 0.18 0 1 1 2 1916.61

7 2 49.55 1945.77 0.00 1.00 0 0 640 2 1896.23

8 2 50.55 1946.77 1.00 4.00 0 0 640 2 1896.23

9 2 54.55 1950.77 5.00 5.45 0 0 640 2 1896.23

10 2 60.00 1956.23 10.45 8.14 0 1 640 2 1896.23

11 3 68.21 1955.18 0.00 1.00 0 0 3425 1 1886.97

12 3 69.21 1956.18 1.00 0.40 0 1 3425 1 1886.97

13 4 20.80 1957.61 0.00 1.00 0 0 4017 2 1936.81

14 4 21.80 1958.61 1.00 4.00 0 0 4017 2 1936.81

15 4 25.80 1962.61 5.00 14.20 0 0 4017 2 1936.81

16 4 40.00 1976.81 19.20 0.80 0 0 4017 2 1936.81

17 4 40.80 1977.61 20.00 14.52 0 0 4017 2 1936.81Follow-up data (FU-rep-Lexis) 80/ 182

Analysis of results

I di — events in the variable: lex.Xst.

I yi — risk time: lex.dur (∆t!).
Enters in the model via log(y) as offset.

I Covariates are:
I timescales (age, period, time in study)
I other variables for this person (constant or

assumed constant in each interval).

I Model rates using the covariates in glm — no
difference between time-scales and other
covariates.
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Poisson model for split data

I Each interval contribute λY to the
log-likelihood.

I All intervals with the same set of covariate
values (age,exposure,. . . ) have the same λ.

I The log-likelihood contribution from these is
λ
∑

Y — the same as from aggregated data.

I The event intervals contribute each Dlogλ.

I The log-likelihood contribution from those with
the same lambda is

∑
Dlogλ — the same as

from aggregated data.

I The log-likelihood is the same for split data and
aggregated data — no need to tabulate first.
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Who needs the Cox-model
anyway?
Wednesday 2 June 2010, morning

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1–3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre

http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

The proportional hazards model

λ(t, x) = λ0(t)× exp(x′β)

A model for the rate as a function of t and x.

The covariate t has a special status:

I Computationally, because all individuals
contribute to (some of) the range of t.

I Conceptually it is less clear — t is but a
covariate that varies within individual.

Who needs the Cox-model anyway? (WntCma) 83/ 182



Cox-likelihood

The partial likelihood for the regression parameters:

`(β) =
∑

death times

log

(
eηdeath∑
i∈Rt

eηi

)

is also a profile likelihood in the model where
observation time has been subdivided in small pieces
(empirical rates) and each small piece provided with
its own parameter:

log
(
λ(t, x)

)
= log

(
λ0(t)

)
+ x′β = αt + η
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The Cox-likelihood as profile likelihood

Regression parameters describing the effect of
covariates (other than the chosen underlying time
scale).
One parameter per death time to describe the effect
of time (i.e. the chosen timescale).

log
(
λ(t, xi)

)
= log

(
λ0(t)

)
+β1x1i+· · ·+βpxpi = αt+ηi

Suppose the time scale has been divided into small
intervals with at most one death in each.

Assume w.l.o.g. the ys in the empirical rates all are
1.
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Log-likelihood contributions that contain
information on a specific time-scale parameter αt

will be from:

I the (only) empirical rate (1, 1) with the death
at time t.

I all other empirical rates (0, 1) from those who
were at risk at time t.
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Note: There is one contribution from each person
at risk to this part of the log-likelihood:

`t(αt, β) =
∑

i∈Rt

di log(λi(t))− λi(t)yi

=
∑

i∈Rt

{
di(αt + ηi)− eαt+ηi

}

= αt + ηdeath − eαt

∑

i∈Rt

eηi

where ηdeath is the linear predictor for the person
that died.
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The derivative w.r.t. αt is:

Dαt
`(αt, β) = 1−eαt

∑

i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for
αt, we get the profile likelihood (with αt “profiled
out”):

log

(
1∑

i∈Rt
eηi

)
+ηdeath−1 = log

(
eηdeath∑
i∈Rt

eηi

)
−1

which is the same as the contribution from time t to
Cox’s partial likelihood.
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time as finely as possible,

I modelling one covariate, the time-scale, with
one parameter per distinct value,

I profiling these parameters out by maximizing
the profile likelihood

Subsequently, one may recover the effect of the
timescale by smoothing an estimate of the
cumulative sum of these.
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Sensible modelling

Replace the αts by a parmetric function f(t) with a
limited number of parameters, for example:

I Piecewise constant

I Splines (linear, quadratic or cubic)

I Fractional polynomials

Use Poisson modelling software on a dataset of
empirical rates for small intervals (ys).
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Splitting the dataset

The Poisson approach needs a dataset of empirical
rates with small values of y.

Larger than the original: each individual contributes
many empirical rates. From each empirical rate we
get:

I Poisson-response d

I Risk time y

I Covariate value for the timescale (time since
entry, current age, current date, . . . )

I other covariates
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Example: Mayo Clinic lung cancer

time status age sex
1 306 2 74 1
2 455 2 68 1

> Lx <- Lexis( exit=list( tfd=time), exit.status=(status==2), data=lung )
NOTE: entry is assumed to be 0 on the tfd timescale.

> tab(Lx,scale=365.25)
States:

#records:
To

From FALSE TRUE Sum #events: #risk time: Rate (95% c.i.)
FALSE 63 165 228 165 190.5352 0.8659815 0.7434323 1.008732

> dx <- splitLexis( Lx, "tfd", breaks=c(0,unique(Lx$time)) )
> tab( dx, scale=365.25 )
States:

#records:
To

From FALSE TRUE Sum #events: #risk time: Rate (95% c.i.)
FALSE 19857 165 20022 165 190.5352 0.8659815 0.7434323 1.008732
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The baseline hazard and survival functions

Using a parametric function to model the baseline
hazard gives the possibility to plot this with
confidence intervals for a given set of covariate
values, x0

The survival function in a multiplicative Poisson
model has the form:

S(t) = exp
(
−

∑

τ<t

exp(g(τ) + x′0γ)
)

This is just a non-linear function of the parameters
in the model, g and γ. So the variance can be
computed using the δ-method.
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δ-method for survival function

1. Select timepoints ti (fairly close).

2. Get estimates of log-rates f(ti) = g(ti) + x′0γ
for these points:

f̂(ti) = B β̂

where β is the total parameter vector in the
model.

3. Variance-covariance matrix of β̂: Σ̂.

4. Variance-covariance of f̂(ti): BΣB′.
5. Transformation to the rates is the

coordinate-wise exponential function, with
derivative diag

[
exp

(
f̂(ti)

)]
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6. Variance-covariance matrix of the rates at the
points ti:

diag(ef̂(ti))B Σ̂B
′ diag(ef̂(ti))′

7. Transformation to cumulative hazard (` is
interval length):

`×




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0







ef̂(t1))

ef̂(t2))

ef̂(t3))

ef̂(t4))


 = L




ef̂(t1))

ef̂(t2))

ef̂(t3))

ef̂(t4))
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8. Variance-covariance matrix for the cumulative
hazard is:

L diag(ef̂(ti))B Σ̂B
′ diag(ef̂(ti))′L′

This is all implemented in the ci.cum() function in
Epi.
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Mayo clinic lung cancer data

Smoothing by natural splines with 7 parameters;
knots at 0, 25, 75, 150, 250, 500, 1000 days
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Computational tools for time-splitting

R: A function splitLexis, written by
Martyn Plummer, included in the
package Epi available at
http://wwww.biostat.ku.dk/~bxc/Epi

or CRAN.

Stata: The function stsplit (part of standard
Stata).
Descendant of stlexis written by
Michael Hills & David Clayton.

SAS: A macro %Lexis, available at
http://wwww.biostat.ku.dk/~bxc/Lexis.
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Modelling rates
Wednesday 2 June 2010, morning

Bendix Carstensen

Modern Demographic Methods in Epidemiology
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Any difference in covariate effects?

Simulation study:
100 survival datasets, 200 individuals in each.
Baseline hazard varying, censoring at time 10.
Two covariates, one standard normal with rate-ratio
of 4 and the other log-normal with rate-ratio of
0.25.

For each dataset three models fitted:
1. standard Cox-model.
2. Poisson model using natural splines, 6 baseline
parameters.
3. Poisson-model using constant baseline, 1
parameter.
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Computational aspects
I Cox model:

I Only one timescale.
I Each person contributes one (or very few) records.
I Computationally simple, because time (risk /

covariate) is profiled out in the estimation.

I Poisson modelling:
I Many records per person.
I Very large datasets.
I Any number of timescales.
I Timeconsuming due to the full modelling of the

rates.
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Historical aspects

Whitehead J: Fitting Cox’s regression model to
survival data using GLIM. Applied Statistics,
29(3):268–275, 1980.1

Set up tables of event counts and person-years,
classified by event times and covariate patterns.

Even with moderate datasets this can be large,
albeit smaller than some 100 separate records per
person.

1Recall Keiding’s law: “Any result was published earlier than you
think, even if you take Keiding’s law into account.”
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Computational practicalities

Early 1980s: Fitting of Poisson models on datasets
with 50,000 records were out of the question.
In particular with 100+ parameters.

Computationally feasible approaches to cohort
studies were:

I Cox modelling — tanks to computational
elegance.

I Time-splitting and tabulation before modelling.
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Time-splitting and tabulation.

Man-years and PYRS programs:

Follow-up of each person was put into a table of
(current) age-class by calendar time: Cut by the
grid in a Lexis diagram. Possibly also classified by
time since entry.

The tables of (D, Y ) generated directly (disk space
limitations prevented storage of the split dataset).

Used for SMR analysis, by merging with tables of
population mortailty rates. Analyses based on a
manageable number of analytical units.
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The tabulation legacy (curse)

The computational need for tabulation has
influenced thinking in epidemiology / demography:

I Life-tables in 1-year intervals.

I Rates are regarded in 5-year age by period
intervals. Used for analysis of mortality and
incidence rates based on registers.
Age-period-cohort models with one parameter
per level of the age/period factor.

I Yet, survival analysis is largely based on “time
to event” methods (Kaplan-Meier, Cox), even
from cancer registries.
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The period method for survival analysis

H. Brenner, O. Gefeller & T. Hakulinen: Period analysis for

’up-to-date’ cancer survival data: theory, empirical evaluation,

computational realisation and applications European Journal

of Cancer 40, (2004), pp. 326–335

This method of survival analysis is designed to take
interactions between two time-scale into account:

Mortality rates at a given time since entry into the
study (usually diagnosis of cancer) depends on the
current calendar time.

Brenner et al. propose to restrict analysis to the
most recent period and then report results by
survival curves.
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Period
analysis reports
survival curve
based on data
from the blue
rectangle.

Interaction
between current
date and time
since diagnosis.

Calendar time
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Interaction
between current
date and time
since diagnosis.

Separate
survival curves
for each period.

Period
analysis reports
the last set of
parameters,
because it is
clinically the
most relevant.
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Interaction between current
date and time since
diagnosis:

I Separate survival curves
for each period.

I Stratified Cox-model
with time-dependent
strata.

I In practical terms, data
are split by (current)
calendar time (period),
and interactions with
this are introduced
throughout the model.
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Using the Lexis diagram today

Rates are observed as little empirical rates (d, y),
several per individual.

These vary by several timescales

I current age
I calendar time
I time since entry

and fixed covariates

I age at entry
I date of entry
I date of birth
I sex
I . . .
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Stratified Cox-model

λ(t, x) = λs(t)× exp(x′β)

The key is the “s” — separate baseline for each
stratum.

In plain words:
The effect of time depends on s — an interaction
between time and stratum.

Test of “proportionality” is merely a test of
interaction between time and some (categorical)
covariate.
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Age at entry as covariate

t: time since entry
e: age at entry
a = e+ t: current age

log
(
λ(a, t)

)
= f(t) + βe = (f(t)− βt) + βa

Immaterial whether a or e is used as (log)-linear
covariate as long as t is in the model.

In a Cox-model with time since entry as time-scale,
only the baseline hazard will change if age at entry is
replaced by current age (a time-dependent variable).
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Non-linear effects of time-scales

Arbitrary effects of the three variables t, a and e:
=⇒ genuine extension of the model.

log
(
λ(a, t, xi)

)
= f(t) + g(a) + h(e) + ηi

Three quantities can be arbitrarily moved between
the three functions:

f̃(t)=f(a)−µa−µe+γt

g̃(a)=g(p)+µa −γa
h̃(e)=h(c) +µa+γe

because t− a+ e = 0.
This is the age-period-cohort modelling problem
again.
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“Controlling for age”

— is not a well defined statement.

Mostly it means that age at entry is included in the
model.

But ideally one would check whether there were
non-linear effects of age at entry and current age.

This would require modelling of multiple timescales.

Which is best accomplished by splitting time.
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SMR
Wednesday 2 June 2010, afternoon

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1–3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre

http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Cohorts where all are exposed

When there is no comparison group we may ask:
Do mortality rates in cohort differ from those of an
external population, for example:

Rates from:

I Occupational cohorts

I Patient cohorts

compared with reference rates obtained from:

I Population statistics (mortality rates)

I Disease registers (hospital discharge registers)
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Log-likelihood

Cohort rates proportional to reference rates:
λ(a) = θ × λR(a) — the same in all age-bands.

Da deaths during Ya person-years an age-band a
gives the likelihood:

Dalog(λ(a))− λ(a)Ya = Dalog(θλR(a))− θλR(a)Ya

= Dalog(θ) +Dalog(λR(a))

−θ(λR(a)Ya)

The constant Dalog(λR(a)) does not involve θ, and
so can be dropped.
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The term λR(a)Ya = Ea is the “expected” number
of cases in age a, so the log-likelihood for age a is:

Dalog(θ)− θ(λR(a)Ya) = Dalog(θ)− θ(Ea)

Note: λR(a) is known for all values of a. The total
log-likelihood is:

Dlog(θ)− θE

Therefore:

θ̂ =
D

λRY
=

D

E
=

Observed

Expected
= SMR

SMR is the maximum likelihood estimator of the
relative mortality in the cohort.
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Accounting for age composition

I Compare rates in a study group with a
standard set of age–specific rates.

I Reference rates are normally based on large
numbers of cases, — assumed known.

I Calculate “expected” number of cases,
Ea = λR(a)Ya, and compare this with the
observed number of cases, D:

I SMR is based on a log-likelihood similar to that
for a rate — Y is replaced by E:

SMR =
D

E
, s.d.

(
log(SMR)

)
=

1√
D
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Modelling the SMR

I As for the rates, the SMR can be modelled
using individual data.

I Response is di, the event indicator (lex.Xst).

I log-offset is the expected value for each piece
of follow-up, ei = yi × λR.

I λR is the population rate corresponding to the
age, period and sex of the follow-up period yi.
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plot( thap, 2:1, col=c("blue","red")[thap$sex], lwd=2 )
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plot( thap, 2:1, col=c("blue","red")[thap$sex], lwd=2 )

...
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Split the data to fit with population data

> # Split the data for SMR-analysis

> tha <- splitLexis(thL, "age", breaks=seq(0,90,5) )

> thap <- splitLexis(tha, "per", breaks=seq(1938,2038,5) )

> dim( thap )

[1] 41 15

> # Create variables to fit with the population data

> thap$agr <- timeBand( thap, "age", "left" )

> thap$cal <- timeBand( thap, "per", "left" )

> round( thap[,c("lex.id","age","agr","per","cal","lex.dur","lex.Xst","sex")], 2 )

lex.id age agr per cal lex.dur lex.Xst sex

1 1 22.18 20 1938.79 1938 2.82 0 2

2 1 25.00 25 1941.61 1938 1.39 0 2

3 1 26.39 25 1943.00 1943 3.61 0 2

4 1 30.00 30 1946.61 1943 1.39 0 2

5 1 31.39 30 1948.00 1948 3.61 0 2

6 1 35.00 35 1951.61 1948 1.39 0 2

7 1 36.39 35 1953.00 1953 3.61 0 2

8 1 40.00 40 1956.61 1953 1.39 0 2

9 1 41.39 40 1958.00 1958 3.61 0 2

10 1 45.00 45 1961.61 1958 1.39 0 2
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Merge with population data

> thapx <- merge( thap, gmortDK[,c("agr","cal","sex","rt")] )

> str( thapx )

Classes ’Lexis’ and ’data.frame’: 41 obs. of 18 variables:

$ sex : num 1 2 2 2 2 2 2 2 2 2 ...

$ agr : num 65 20 20 20 25 25 25 25 30 30 ...

$ cal : num 1953 1938 1953 1958 1938 ...

$ lex.id : int 3 1 4 4 1 1 4 4 1 1 ...

$ age : num 68.2 22.2 20.8 21.2 25.0 ...

$ per : num 1955 1939 1958 1958 1942 ...

$ tfi : num 0.000 0.000 0.000 0.389 2.818 ...

$ lex.dur : num 1.405 2.818 0.389 3.806 1.391 ...

$ lex.Cst : num 0 0 0 0 0 0 0 0 0 0 ...

$ lex.Xst : num 1 0 0 0 0 0 0 0 0 0 ...

$ id : num 3425 1 4017 4017 1 ...

$ birthdat: num 1887 1917 1937 1937 1917 ...

$ contrast: num 2 1 2 2 1 1 2 2 1 1 ...

$ injecdat: num 1955 1939 1958 1958 1939 ...

$ volume : num 0 22 0 0 22 22 0 0 22 22 ...

$ exitdat : num 1957 1977 1992 1992 1977 ...

$ exitstat: num 1 1 2 2 1 1 2 2 1 1 ...
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Calculation of the SMR

> thapx$E <- thapx$lex.dur * thapx$rt / 1000

> stat.table( contrast,

+ list( D = sum( lex.Xst ),

+ Y = sum( lex.dur ),

+ E = sum( E ),

+ SMR = ratio( lex.Xst, E ) ),

+ margin = TRUE,

+ data = thapx )

-------------------------------------------

contrast D Y E SMR

-------------------------------------------

1 2.00 56.59 0.33 6.02

2 1.00 35.93 0.11 8.70

Total 3.00 92.52 0.45 6.71

-------------------------------------------
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Modelling the SMR

> m.SMR <- glm( lex.Xst ~ factor(contrast)-1+offset(log(E)),

+ family=poisson, data=thapx )

> round( ci.lin( m.SMR, Exp=TRUE )[,5:7], 3 )

exp(Est.) 2.5% 97.5%

factor(contrast)1 6.023 1.506 24.082

factor(contrast)2 8.698 1.225 61.745

I Analysis of SMR is like analysis of rates:

I Replace Y with E — that’s all!
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Interactions and timescales
Thursday 3 June 2010, morning

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1–3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre

http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010



Computational aspects of fitting models
I Cox model:

I Only one timescale.
I Each person contributes one (or very few) records.
I Computationally simple, because time (risk /

covariate) is profiled out in the estimation.

I Poisson modelling:
I Many records per person.
I Very large datasets.
I Any number of timescales.
I Timeconsuming due to the full modelling of the

rates.
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Historical aspects

Whitehead J: Fitting Cox’s regression model to
survival data using GLIM. Applied Statistics,
29(3):268–275, 1980.[?]2

Set up tables of event counts and person-years,
classified by event times and covariate patterns.

Even with moderate datasets this can be large,
albeit smaller than some 100 separate records per
person.

2Recall Keiding’s law: “Any result was published earlier than you
think, even if you take Keiding’s law into account.”
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Computational practicalities

Early 1980s: Fitting of Poisson models on datasets
with 50,000 records were out of the question.
In particular with 100+ parameters.

Computationally feasible approaches to cohort
studies were:

I Cox modelling — thanks to computational
elegance.

I Time-splitting and tabulation before modelling.
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The tabulation legacy (curse)

The computational need for tabulation has
influenced thinking in epidemiology / demography:

I Life-tables in 1-year intervals.

I Rates are regarded in 5-year age by period
intervals. Used for analysis of mortality and
incidence rates based on registers.
Age-period-cohort models with one parameter
per level of the age/period factor.

I Yet, survival analysis is largely based on “time
to event” methods (Kaplan-Meier, Cox), even
from cancer registries — only one timescale.
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Representation of follow-up
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Age at entry as covariate

t: time since entry
e: age at entry
a = e+ t: current age

log
(
λ(a, t)

)
= f(t) + βe = (f(t)− βt) + βa

Immaterial whether a or e is used as (log)-linear
covariate as long as t is in the model.

In a Cox-model with time since entry as time-scale,
only the baseline hazard will change if age at entry is
replaced by current age (a time-dependent variable).
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“Controlling for age”

Including age at entry:

I Linear effect.

I Grouped variable.

I Parametric function.

— still only controls for the linear effect of current
age.
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Non-linear effects of time-scales

Arbitrary effects of the three variables t, a and e:
Genuine extension of the model.

log
(
λ(a, t, xi)

)
= f(t) + g(a) + h(e) + ηi

Three quantities can be arbitrarily moved between
the three functions:

f̃(t) = f(a) − µa − µe + γt

g̃(a) = g(p) + µa − γa

h̃(e) = h(c) + µa + γe

because t− a+ e = 0.
How many timescales in this model?
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“Controlling for age”

— is not a well defined statement.

Mostly it means that age at entry is included in the
model.

But ideally one would check whether there were
non-linear effects of age at entry and current age.

This would require modelling of multiple timescales.

Which is best accomplished by splitting time and
modelling the timescales explicitly.
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Several timescales: Caveat

As an example, consider:
t: time since entry
e: age at entry
a = e+ t: current age

The relation: a = t+ e must hold for all units of
analysis.

In general: The difference between two time-scales
must be constant within individuals.

The Boyle-Robertson fallacy from age-period-cohort
models, where units with identical values of
(current) age, a, and (current) period p had varying
values of cohort, date of birth c = p− a! [?].
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Several timescales
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µNRA µrem

Cox-model:
— One dataset per
transition.
— Combine datasets
and make relevant
interactions.
— Timescale must be
the same.

Poisson-model:
— One time-split
dataset per transition.
— Combine datasets
and make relevant
interactions.
— Timescales can be
different, and multiple
timsecales can be
accomodated
simultaneously; duration
of NRA, for example.
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Time dependent variable

How does remission influence the mortality?

λ(t) = λ0(t)exp
(
1{remission}(t)× β

)

i.e. when remission occurs, mortality increase by eβ.

NRA Remission

Dead/ESRD

-

@
@@R

 
  	

λ

µNRA µrem

What transitions are modelled here?
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Time-dependent variable

NRA Remission
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µNRA µrem

If we take

1{remission}(t)

as time-dependent
variable, we assume that
µNRA and µrem are
proportional on the same
timescale — no disease
duration!.

— and λ is not modelled
at all.
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Stratified model

A popular version of the Cox-model allowing for
non-proportionality is the stratified model:

λ(t, x) = λs(t)× exp(x′β)

where s refers to levels of a factor S.

This is but a completely general interaction
between the factor S and the chosen timescale.

A better approach to interactions would be to
specify a clinically founded form of interaction, so
that test for interaction is against a specific (and
sensible) alternative.
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Time varying coefficients

This is a concept introduced by letting (some of)
the parameters depend on time:

λ(t, x) = λ0 × exp
(
x′β(t)

)

This is also an interaction, but restricted:
The effect of a covariate is linear for any value of t.

If the covariate is a factor, then we just have a
reparametrization of the stratified model.
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Poisson modelling of interactions

When interactions are needed (or desired):

I use the familiar terminology of interaction as
known from (generalized) linear models.

I use clinical judgement of which interactions are
relevant.

I use clinical judgement of which forms of
interaction are relevant.

I are interactions with time of special interest?
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Poisson model for time-split data

I Clarifies the destinction between (risk) time as
response variable and time(scales) as
covariates.

I Multiple timescales easily handled.

I Hazard rates by standard methods.

I More credible estimates of survival functions.

I Sensible modelling of interactions between
timescales and other variables (and between
timescales).

I Interactions are called interactions.
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Multistate models
Thursday 3 June 2010, afternoon

Bendix Carstensen

Modern Demographic Methods in Epidemiology
1–3 June 2010
University of St. Andrews, Scotland
Longitudinal Studies Centre

http://www.biostat.ku.dk/~bxc/AdvCoh/StAn-2010

Competing risks

You may die from more than one cause:

Alive

Cause A

Cause B

Cause C
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λA

λB

λC
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Cause-specific intensities

λA(t) = limh→0
P {death from cause A in (t, t+ h] | alive at t}

h

λB(t) = limh→0
P {death from cause B in (t, t+ h] | alive at t}

h

λC(t) = limh→0
P {death from cause C in (t, t+ h] | alive at t}

h

Total mortality rate:

λTotal(t) = limh→0
P {death from any cause in (t, t+ h] | alive at t}

h
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P {death from any cause in (t, t+ h] | alive at t}

= P {death from cause A in (t, t+ h] | alive at t}+
P {death from cause B in (t, t+ h] | alive at t}+
P {death from cause C in (t, t+ h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC(t)

Intensities are additive, if they all refer to the same
risk set, in this case “Alive”.
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Likelihood for competing risks

Data:

Y person years in “Alive”

DA deaths from cause A

DB deaths from cause B.

DC deaths from cause C.

Assume for simplicity that rates are constant.
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A survivor contributes to the log-likelohood:

log(P {Survival for a time of y}) = −(λA+λB+λC)y

A death from cause A contributes an additional
log(λA), etc.

The total log-likelihood is then:

`(λA, λB, λC) = DAlog(λA) +DBlog(λB) +DC log(λC)

−(λA + λB + λC)Y

= [DAlog(λA)− λAY ] +

[DBlog(λB)− λBY ] +

[DC log(λC)− λCY ]

Multistate models (multistate) 149/ 182



The log-likelihood is made up of three contributions:
One for cause A,
one for cause B and
one for cause C.

Deaths are the cause-specific deaths, but the
person-years are the same in all contributions.

Time varying rates:

This is the same business as with one rate; use time
intervals sufficiently small to justify an assumption
of constant rate (intensity).
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Practical implications

Analysis of the individual cause-specific rates
effectively uses the same dataset for all causes,
because the person-years are the same.

Thus the little “atoms” of data (the empirical rates
(d, y) from each individual) will be the same for all
analyses except for those where deaths occur.

Analysis of cause A: Contributions (1, y) only for
those intervals where a cause A death occurs.
Intervals with cause B or C deaths (or no deaths)
contribute only (0, y)
— for the analysis of cause A treated as censorings.
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Analysis of competing risks

Competing risks are analysed by considering the
cause specific rates separately.

Joint modelling: Take the datasets for analysis of
each of the causes, stack them including an
indicator.
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original expanded
------------------------------- ---------------------
id time cause xx d.A d.B d.C id time dd xx type
1 1 B 0.50 0 1 0 1 1 0 0.50 A
2 1 NA 1.00 0 0 0 2 1 0 1.00 A
3 8 B -1.74 0 1 0 3 8 0 -1.74 A
4 3 A -0.55 1 0 0 4 3 1 -0.55 A
5 7 NA -0.58 0 0 0 5 7 0 -0.58 A
6 7 C -0.04 0 0 1 6 7 0 -0.04 A

1 1 1 0.50 B
2 1 0 1.00 B
3 8 1 -1.74 B
4 3 0 -0.55 B
5 7 0 -0.58 B
6 7 0 -0.04 B

1 1 0 0.50 C
2 1 0 1.00 C
3 8 0 -1.74 C
4 3 0 -0.55 C
5 7 0 -0.58 C
6 7 1 -0.04 C

Multistate models (multistate) 153/ 182

Implemented in the stack.Lexis function:

> data(DMlate)
> str(DMlate)
’data.frame’: 10000 obs. of 6 variables:
$ sex : Factor w/ 2 levels "M","F": 1 1 2 1 1 1 1 1 1 2 ...
$ dobth: num 1952 1951 1926 1923 1914 ...
$ dodm : num 2006 2001 1996 1996 2002 ...
$ dodth: num NA NA 1996 NA 2002 ...
$ doins: num NA 2006 NA NA NA ...
$ dox : num 2008 2008 1996 2008 2002 ...
> dml <- Lexis( entry=list(Per=dodm, Age=dodm-dobth, DMdur=0 ),
+ exit=list(Per=dox),
+ exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),
+ data=DMlate )
NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml, cut=dml$doins,
new.state="Ins",
pre="DM" )

> summary( dmi )

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6319 1647 1928 9894 3575 41817.98 9894
Ins 0 1399 352 1751 352 7566.72 1751
Sum 6319 3046 2280 11645 3927 49384.71 9998

boxes( dmi, boxpos=list(x=c(20,20,80),y=c(80,20,50)) )
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Implemented in the stack.Lexis function:

> ls.dmi <- stack( dmi )

> str( ls.dmi )
Classes ’stacked.Lexis’ and ’data.frame’: 21539 obs. of 15 variables:
$ Per : num 2006 2001 1996 1996 2002 ...
$ Age : num 53.3 50.6 70 72.5 87.7 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur : num 2.4586 4.7036 0.063 12.4709 0.0219 ...
$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 2 3 1 3 1 2 3 1 1 ...
$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM->Dead",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi FALSE TRUE FALSE FALSE FALSE FALSE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "M","F": 1 1 2 1 1 1 1 1 1 2 ...
$ dobth : num 1952 1951 1926 1923 1914 ...
$ dodm : num 2006 2001 1996 1996 2002 ...
$ dodth : num NA NA 1996 NA 2002 ...
$ doins : num NA 2006 NA NA NA ...
$ dox : num 2008 2008 1996 2008 2002 ...

Multistate models (multistate) 157/ 182



Implemented in the stack.Lexis function:

> options(digits=2)

> subset(dmi,lex.id==2)
Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth

2001 51 0.0 4.7 DM Ins 2 M 1951
2006 55 4.7 2.2 Ins Ins 2 M 1951

> subset(ls.dmi,lex.id==2)
Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex

2001 51 0.0 4.7 DM Ins DM->Ins TRUE 2 M
2001 51 0.0 4.7 DM Ins DM->Dead FALSE 2 M
2006 55 4.7 2.2 Ins Ins Ins->Dead FALSE 2 M
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Analysis

I Interactions between all covariates (including
time) and type:
The same as separate analyses of the rates λA,
λB and λC .

I No interaction with time:
Same underlying baseline hazard.

I Only interaction with time:
Same covariate effects for all causes of death.
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Assumptions in competing risks

“Classical” way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three
variables:
TA, TB and TC , representing times to death from
each of the three causes.
But at most one of these is observed.

Often it is stated that these must be assumed
independent in order to make the likelihoods
machinery work.

1: It is not necessary.
2: Independence can never be assessed from data.
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An excellent account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:
Competing risks as a multistate model,

Statistical Methods in Medical Research; 11, 2002: pp.

203–215

The paper includes a guide for the practitioner.

Also contains en example where both dependent
and independent “cause specific survival times”
gives rise to the same set of cause specific rates.
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Competing risk problems

The problems with competing risk models comes
when estimated intensities (rates) are used to
produce probability statements.

Classical set-up in cancer-registries:

Well Lung cancer-λ

P {Lung cancer before age 75} = 1− e−Λ(75)

This is not quite right.
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How the world really looks

Well

Lung cancer

Dead
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λ

µ

ν

Illness-death model. Little boxes with arrows.
(The mortality of lung cancer patients (ν) not
relevant here).
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How many get lung cancer before age a?

P {Lung cancer before age 75} 6= 1− e−Λ(75)

does not take the possibility of death prior to lung
cancer into account.

1− e−Λ(75) often stated as the probability of lung
cancer before age 75, assuming all other acuses of
death absent.

Lung cancer rates are however observed in a mortal
population.

If all other causes of death were absent, this would
assume that lung cancer rates remained the same.
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P {Lung cancer before age a}

=

∫ a

0

P {Lung cancer at age u} du

=

∫ a

0

P {Lung cancer in age (u, u+ du] | alive at u}
×P {alive at u without lung cancer} du

=

∫ a

0

λ(u)exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du
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Probability of lungcancer

The rates are easily plotted for inspection in R:

matplot( age, 1000*cbind( D/Y, lung/Y ),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per 1000 person-years" )
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The probablility that a person contracts lung cancer
before age a is (cf. the lecture notes):

∫ a

0

λ(u)exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du

=

∫ a

0

λ(u)exp

(
−
(
M(u) + Λ(u)

))
du

M(u) is the cumulative mortality rate.

Λ(u) is the cumulative lung cancer incidence rate.
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R-commands needed to do the calculations:

cr.death <- cumsum( D/Y )
cr.lung <- cumsum( lung/Y )
p.simple <- 1 - exp( -cr.lung )
p.lung <- cumsum( lung/Y *

exp( -(cr.death+cr.lung) ) )
matlines( age, 100*cbind( cr.lung, p.simple, p.lung ),

type="l", lty=1, lwd=2*c(2,2,3),
col=c("black","blue","red") )
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Assumptions

The assumption behind the calculation and the
statement “6% of Danish males will get lung
cancer” is that the lung cancer rates and the
mortality rates in the file applies to a cohort of men.

But they are cross-sectional rates, so the
assumption is one of steady state of
1: mortality rates (which is dubious)
and
2: lung cancer incidence rates (which is appaling).

However the machinery can be applied to any set of
rates for competing risks, regardless of how they
were estimated.
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Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving

H-H: Improved survival in patients obtaining remission of

nephrotic range albuminuria in diabetic nephropathy. Kidney

Int., 66(3):1180–1186, 2004.

96 patients entering at nephrotic range albuminuria
(NRA), i.e. U-alb> 300mg/day.

Is remission from this condition (i.e return to
U-alb< 300mg/day) predictive of the prognosis?

Endpoint of interest: Death or end stage renal
disease (ESRD), i.e. dialysis or kidney transplant.
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Remission

Total Yes No

No. patients 125 32 93
No. events 77 8 69

Follow-up time (years) 1084.7 259.9 824.8

Cox-model:
Timescale: Time since nephrotic range albuminuria (NRA)

Entry: 2.5 years of GFR-measurements after NRA
Outcome: ESRD or Death
Estimates: RR 95% c.i. p

Fixed covariates:
Sex (F vs. M): 0.92 (0.53,1.57) 0.740

Age at NRA (per 10 years): 1.42 (1.08,1.87) 0.011

Time-dependent covariate:
Obtained remission: 0.28 (0.13,0.59) 0.001
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Features of the analysis

I Remission is included a a time-dependent
variable.

I Age at entry is included as a fixed variable.

renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0

Note patient 26, 33 and 42 obtain remission.
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renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0

> Lr <- Lexis( entry = list( per=doe,
+ age=doe-dob,
+ tfi=0 ),
+ exit = list( per=dox ),
+ exit.status = factor( event>0,

labels=c("NRA","ESRD") ),
+ data = renal )
NOTE: entry.status has been set to "NRA" for all.
> round( tab( Lr, scale=100 ), 2 )

States:
#records:
To

From NRA ESRD Sum #events: #risk time: Rate (95% c.i.)
NRA 48 77 125 77 10.85 7.1 5.68 8.88
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Illness-death model
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µNRA µrem

λ: remission rate.
µNRA: mortality/ESRD rate before remission.
µrem: mortality/ESRD rate after remission.
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Cutting follow-up at remission: cutLexis

> Lc <- cutLexis( Lr, cut = Lr$dor,
+ timescale = "per",
+ new.state = "Rem",
+ precursor.states = "NRA" )

> subset( Lr[,-(8:11)], lex.id<3 )
per age tfi lex.dur lex.Cst lex.Xst lex.id dor dox event

1 1996.013 28.06879 0 1.081109 NRA ESRD 1 NA 1997.094 2
2 1989.535 30.22895 0 6.600616 NRA ESRD 2 1989.814 1996.136 1
> subset( Lc[,-(8:11)], lex.id<3 )

per age tfi lex.dur lex.Cst lex.Xst lex.id dor dox event
1 1996.013 28.06879 0.0000000 1.0811088 NRA ESRD 1 NA 1997.094 2
2 1989.535 30.22895 0.0000000 0.2789185 NRA Rem 2 1989.814 1996.136 1
123 1989.814 30.50787 0.2789185 6.3216975 Rem ESRD 2 1989.814 1996.136 1

> round( tab( Lc, scale=100), 2 )
States:

#records:
To

From NRA ESRD Rem Sum #events: #risk time: Rate (95% c.i.)
NRA 24 69 29 122 98 8.25 11.88 9.75 14.48
Rem 0 8 24 32 8 2.60 3.08 1.54 6.16
Sum 24 77 53 154 106 10.85 9.77 8.08 11.82
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Cox-analysis with remission as time-dependent
covariate:

— Ignores λ, the remission rate.

— Assumes µNRA and µrem use the same timescale.

— Duration, and timing of NRA modelled as
covariates.
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Model for all transitions

NRA Remission

Dead/ESRD

-

@@R   	

λ

µNRA µrem

Cox-model:

One dataset per
transition.

Combine datasets and
make relevant
interactions.

Same timescale.

Poisson-model:

One time-split dataset
per transition.

Combine datasets and
make relevant
interactions.

Timescales can be
different.

Multiple timescales can
be accomodated
simultaneously.
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Calculus of probabilities

P {Remission before time t}

=

∫ t

0

λ(u)exp

(
−
∫ u

0

λ(s) + µNRA ds

)
du

P {Being in remission at time t}

=

∫ t

0

λ(u)exp

(
−
∫ u

0

λ(s) + µNRA(s) ds

)
×

exp

(
−
∫ t

u

µrem(s) ds

)
du

Note µrem could also depend on u, time since
obtained remission.
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Sketch of programming:

c.rem <- cumsum( lambda )
c.mort.nra <- cumsum( mu.nra )
c.mort.rem <- cumsum( mu.rem )
pr1 <- cumsum( lambda * exp( -( c.rem + c.mort.nra ) ) )

intgr(t,s) <- function(t,s){
lambda[s] * exp( -( c.rem[s] + c.mort.nra[s] ) ) *

exp( -( c.mort.rem[t]-c.mort.rem[s] ) ) }
for( t in 1:100 ) p2[t] <- sum( intgr(t,1:t) )

If µrem depends on time of remission, then
c.mort.rem should have an extra argument.

More complicated models: Simulation of
probabilities.
(Outside the scope of this course).
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