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The best way to learn R

� The best way to learn R is to use it!

� This is a very short introduction before you sit
down in front of a computer.

� R is a little different from other packages for
statistical analysis.

� These differences make R very powerful, but for
a new user they can sometimes be confusing.

� Our first job is to help you up the initial
learning curve so that you can be comfortable
with R.
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Nothing is lost or hidden

� Statistical software provides“canned”
procedures to address common statistical
problems.

� Canned procedures are useful for routine
analysis, but they are also limiting.

� You can only do what the programmer lets you do.

� In R, the results of statistical calculations are
always accessible.

� You can use them for further calculations.
� You can always see how the calculations were done.
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R Packages

� The capabilities of R can be extended using
“packages”.

� Distributed over the Internet via CRAN:
(the Comprehensive R Archive Network) and
can be downloaded directly from an R session.

� There is an R package developed during the
annual course on“Statistical Practice in
Epidemiology using R, called“Epi”.

� Contains special functions for epidemiologists
and some data sets that .

� There are 5,825 other user contributed
packages on CRAN.
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Objects and functions

R allows you to build powerful procedures from
simple building blocks. These building blocks are
objects and functions.

� All data in R is represented by objects, for
example:

� A dataset (called data frame in R)
� A vector of numbers
� The result of fitting a model to data

� You, the user, call functions
� Functions act on objects to create new
objects:

� Using glm on a dataframe (an object) produces
a fitted model (another object).
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Because all is functions. . .

� You will always (almost) use parentheses:
> res <- FUN( x, y )

� . . . which is pronounced

� res gets (”<-”) FUN of x,y (”(x,y)”)
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Vectors

One of the simplest objects in R is a sequence of
numbers, called a vector.

You can create a vector in R with the collection (c)
function:

> c(1,3,2)

[1] 1 3 2

You can save the results of any calculation using the
left arrow:

> x <- c(1,3,2)

> x

[1] 1 3 2
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The workspace

� Every time you use <-, you create a new object
in the workspace (or overwrite an old one).

� A list of objects in the workspace can be seen
with the objects function (synonym: ls()):
> objects()

[1] "a" "aa" "acz2" "alpha" "b"

[6] "bar" "bb" "bdendo" "beta" "cc"

[11] "Col"
� In Epi is a function lls() that gives a bit
more information on the objects.

� The workspace is held entirely in (volatile)
computer memory and will be lost at the end
of the session unless you explicitly save it.
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Working Directory

Every R session has a current working directory,
which is the location on the hard disk where files are
saved, and the default location from which files are
read into R.

� getwd() Prints the current working directory

� setwd("c:/Users/Martyn/Project") sets
the current working directory.

� You may also use a Graphical User Interface
(GUI) to change directory.
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Ending an R session

� To end an R session, call the quit() function
� Every time you want to do something in R, you call

a function.

� You will be asked“Save workspace image?”
Yes saves the workspace to the file

“.RData” in your current working
directory. It will be automatically
loaded into R the next time you
start an R session.

No does not save the workspace.
Cancel continues the current R session

without saving anything.
� It is recommended you just say“No”.
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Always start with a clean workspace

Keeping objects in your workspace from one session
to another can be dangerous:

� You forget how they were made.

� You cannot easily recreate them if your data
changes.

� They may not even be from the same project

It is almost always best to start with an empty
workspace and use a script file to create the objects
you need from scratch.
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Rectangular Data

Rectangular data sets are common to most
statistical packages

”id” ”visit” ”time” ”status”

1 1 0.0 0
1 2 1.5 0
2 1 0.0 0
2 2 1.1 0
2 3 2.3 1

Columns represent variables.
Rows represent individual records.
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The world is not a rectangle!

� Most statistical packages used by
epidemiologists assume that all data can be
represented as a rectangular data set.

� R allows a much richer set of data structures,
represented by objects of different classes.

� Rectangular data sets are just one type of
object that may be in your workspace. This
class of object is called a data frame.
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Data Frames

Each column of a data frame is a variable.

Variables may be of different types:

� vectors:
� numeric: c(1,2,3)
� character:

c("John","Paul","George","Ringo")
� logical: c(FALSE,FALSE,TRUE)

� factors:
factor(c("low","medium","high","low",
"low"))
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Building your own data frame

Data frames can be constructed from a list of
vectors

> mydata <- data.frame(x=c(3,6,7),f=c("a","b","a"))

> mydata

x f

1 3 a

2 6 b

3 7 a

Character vectors are automatically converted to
factors.
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Inspecting data frames

Most data frames are too large to inspect by
printing them to the screen, so use:

� names returns a vector of variable names.
� You can use sort(names(x)) to get them in

alphabetical order.

� head prints the first few lines, and tail. . .

� str prints a brief overview of the structure of
the data frame. Can be used on any object.

� summary prints a more comprehensive summary

� Quantiles for numeric variables
� Tables for factors
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Extracting values from a data frame

Use square brackets to take subsets of a data
frame

� mydata[1,2]. The value in row 1, column 2.

� mydata[1,]. The whole of the first row.

� mydata[,2]. The whole of the second column.

You can also extract a column from a data frame by
name:

� mydata$age. The column, or variable, named
“age”

� mydata[,"age"]. The same.
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Importing data
� R has good facilities for importing data from
other applications:

� read.dta for reading Stata datasets.
� read.spss for reading SPSS datasets.
� read.xport and read.ssd for reading

SAS-datasets.
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Reading Text Files

The function read.table reads data from a text
file and returns a data frame.

� mydata <- read.table("myfile")
� myfile could be

� A file in the current working directory: fem.dat
� A path to a file: c:/rex/fem.dat
� A URL:

http://BendixCarstensen.com/AdvCoh/Scot-

2014/data/bogus.txt

� Note: myfile must be enclosed in quotes.

write.table does the opposite.

R uses a forward slash / for file paths. If you want
to use backslash, you have to double it:

c:\\rex\\fem.datIntroducing R 19/ 227

Some useful arguments to read.table

� header = TRUE if first line contains variable
names

� sep="," if values are comma-separated instead
of being space-delimited.

� as.is = TRUE to stop strings being converted
to factors

� na.strings = "99" to denote that 99 means
“missing”. Default values are:

� NA“Not Available”
� NaN“Not a Number”

� For comma-separated files there is coderead.csv
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Reading Binary Data

� R can read in data in binary (non-text) format
from other statistical systems using the foreign
extension package.

� R is an open source project, and relies on the
format for binary files to be well-documented.

� Example: SAS XPORT format has been adopted
as a data exchange standard by the US Food
and Drug Administration. SAS CPORT format
remains a proprietary format.
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Some functions in the foreign package

� read.dta for Stata (also write.dta)

� read.xport for SAS XPORT format (not
CPORT)

� read.epiinfo for EPIINFO

� read.mtp for MiniTab Portable Worksheet

� read.spss for SPSS

See the“R Data Import/Export manual” for more
details. RShowDoc("R-data")
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Accessing databases systems
Microsoft Access:
> library(RODBC)

> ch <- odbcConnectAccess("../data/theData.mdb")

> bd <- sqlFetch(ch, "aTable" )

Microsoft Excel:
> library( RODBC )

> cnc <- odbcConnectExcel(paste("../theXel.xls",sep=""))

> sht <- sqlFetch( cnc, "theSheet" )

> close( cnc )

Other databases
> ?odbcConnect
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Summary - data

� You can use a data frame to organize your
variables

� You can extract variables from a data frame
using $.

� You can extract variables and observation using
indecing [,]

� You can read in data using
� read.table
� tailored function from the foreign package
� database interface from the RODBC package
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Summary - when it goes wrong

When somthing is fishy with an object obj, try to
find out what you (accidentally) got, by using:

> lls()

> str( obj )

> dim( obj )

> length( obj )

> names( obj )

> head( obj )

> class( obj )

> mode( obj )
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R language
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Language

� R is a programming language – also on the
command line

� (This means that there are syntax rules)

� Print an object by typing its name

� Evaluate an expression by entering it on the
command line

� Call a function, giving the arguments in
parentheses – possibly empty

� Notice ls vs. ls()
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Objects

� The simplest object type is vector

� Modes: numeric, integer, character, generic
(list)

� Operations are vectorized: you can add entire
vectors with a + b

� Recycling of objects: If the lengths don’t
match, the shorter vector is reused
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R expressions

x <- rnorm(10, mean=20, sd=5)

m <- mean(x)

sum((x - m)^2)

� Object names

� Explicit constants

� Arithmetic operators

� Function calls

� Assignment of results to names
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Function calls

Lots of things you do with R involve calling
functions.
For instance

mean(x, na.rm=TRUE)

The important parts of this are

� The name of the function

� Arguments: input to the function

� Sometimes, we have named arguments
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Function arguments
rnorm(10, mean=m, sd=s)

hist(x, main="My histogram")

mean(log(x + 1))

Items which may appear as arguments:

� Names of an R objects
� Explicit constants
� Return values from another function call or
expression

� Some arguments have their default values.
� Use help(function ) or args(function ) to
see the arguments (and their order and default
values) that can be given to any function.
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Creating simple functions

logit <- function(p) log(p/(1-p))

logit(0.5)

simpsum <-

function(x, dec=5)

{

# produces mean and SD of a variable

# default value for dec is 5

round(c(mean=mean(x),sd=sd(x)),dec)

}

x <- rnorm(100)

simpsum(x)

simpsum(x,2)
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Indexing

� R has several useful indexing mechanisms:

� a[5] single element

� a[5:7] several elements

� a[-6] all except the 6th

� a[c(1,1,2,1,2)] some elements repeated

� a[b>200] logical index

� a[ well ] indexing by name
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Lists

� Lists are vectors where the elements can have
different types

� Functions often return lists
� lst <-

list(A=rnorm(5),B="hello",K=12)
� Special indexing:
� lst$A
� lst[1:2] a list with first two first elements (A
and B — NB: single brackets)

� lst[1] a list of length 1 which is the first
element (codeA — NB: single brackets)

� lst[[1]] first element (NB: double brackets)
— a vector of length 5.
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Classes, generic functions

� R objects have classes

� Functions can behave differently depending on
the class of an object

� E.g. summary(x) or print(x) does different
things if x is numeric, a factor, or a linear
model fit
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The workspace

� The global environment contains R objects
created on the command line.

� There is an additional search path of loaded
packages and attached data frames.

� When you request an object by name, R looks
first in the global environment, and if it doesn’t
find it there, it continues along the search path.

� The search path is maintained by library(),
attach(), and detach()

� List the search path by search()
� Notice that objects in the global environment
may mask objects in packages and attached
data frames
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Data manipulation and with

bmi <- with(stud, weight/(height/100)^2)

uses variables weight and height in the data frame
stud (not the variables with the same name in the
workspace), but creates the variable bmi in the
global environment (not in the data frame).

To create a new variable in the data frame, you can
use:

stud$bmi <- with( stud, weight/(height/100)^2 )
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Constructors

� Matrices and arrays, constructed by the
(surprise) matrix and array functions.

� You can extract and set names with names(x);
for matrices and data frames also
colnames(x) and rownames(x)

� You can also construct a matrix from its
columns using cbind, whereas joining two
matrices with equal no of columns (with the
same column names) can be done using rbind.
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Factors (class variables)

� Factors are used to describe groupings.
� Basically, these are just integer codes plus a set
of names for the levels

� They have class "factor" making them (a)
print nicely and (b) maintain consistency

� A factor can also be ordered (class
"ordered"), signifying that there is a natural
sort order on the levels

� In model specifications, factors play a
fundamental role by indicating that a variable
should be treated as a classification rather than
as a quantitative variable (similar to a CLASS
statement in SAS)
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The factor function

� This is typically used when read.table gets it
wrong,

� e.g. group codes read as numeric
� or read as factors, but with levels in the wrong
order (e.g. c("rare", "medium",

"well-done") sorted alphabetically.)
� Notice that there is a slightly confusing use of
levels and labels arguments:

� levels are the value codes on input
� labels are the value codes on output (and

becomes the levels of the resulting factor)
� The levels of a factor is shown by the levels()

function.
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Working with Dates

� Dates are usually read as character or factor
variables

� Use the as.Date function to convert them to
objects of class "Date"

� If data are not in the default format
(yyyy-mm-dd) you need to supply a format
specification

> as.Date("11/3-1959",format="%d/%m-%Y")

[1] "1959-03-11"
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Working with Dates

� Computing the differences between Date

objects gives an object of class "difftime",
which is number of days between the two dates:
> as.numeric(as.Date("2007-5-25")-

as.Date("1959-3-11"),"days")

[1] 17607

� In the Epi package is a function that converts
dates to calendar years with decimals:
> as.Date("1952-07-14")

[1] "1952-07-14"

> cal.yr( as.Date("1952-07-14") )

[1] 1952.533

attr(,"class")

[1] "cal.yr" "numeric"
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Basic graphics

The plot() function is a generic function,
producing different plots for different types of
arguments. For instance, plot(x) produces:

� a plot of observation index against the
observations, when x is a numeric variable

� a bar plot of category frequencies, when x is a
factor variable

� a time series plot (interconnected observations)
when x is a time series

� a set of diagnostic plots, when x is a fitted
regression model

� . . .
R language 41/ 227

Basic graphics

Similarly, the plot(x,y) produces:

� a scatter plot of x is a numeric variable

� a bar plot of category frequencies, when x is a
factor variable
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Basic graphics
Examples:

x <- c(0,1,2,1,2,2,1,1,3,3)

plot(x)

plot(factor(x))

plot(ts(x)) # ts() defines x as time series

y <- c(0,1,3,1,2,1,0,1,4,3)

plot(x,y)

plot(factor(x),y)

R language 43/ 227

Basic graphics

More simple plots:

� hist(x) produces a histogram

� barplot(x) produces a bar plot (useful when
x contains counts – often one uses
barplot(table(x)))

� boxplot(y x) produces a box plot of y by
levels of a (factor) variable x.
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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)
or

Some time alive (“at least this long”)
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Examples of time-to-event measurements

� Time from diagnosis of cancer to death.

� Time from randomisation to death in a cancer
clinical trial

� Time from HIV infection to AIDS.

� Time from marriage to 1st child birth.

� Time from marriage to divorce.

� Time to re-offending after being released from
jail
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Ordered by
date of entry

Most likely
the order in
your
database.
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Timescale
changed to
“Time since
diagnosis”.
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Patients
ordered by
survival
time.
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Survival
times
grouped into
bands of
survival.
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Patients
ordered by
survival
status within
each band.
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535

Life-table estimator.
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of
diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S (t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

F (t) is the cumulative risk of death before time t .
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Intensity or rate

P {event in (t , t + h] | alive at t} /h

=
F (t + h)− F (t)

S (t)× h

= − S (t + h)− S (t)

S (t)h
−→
h→0

− dlogS (t)

dt

= λ(t)

This is the intensity or hazard function for the
distribution. Characterizes the survival distribution
as does f or F .

Theoretical counterpart of a rate.
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Relationships

− dlogS (t)

dt
= λ(t)

�
S (t) = exp

(
−
∫ t

0

λ(u) du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(s) ds is called the integrated
intensity. Not an intensity, it is dimensionless.

λ(t) = − dlog(S (t))

dt
= −S ′(t)

S (t)
=

F ′(t)
1− F (t)

=
f (t)

S (t)
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Rate and survival

S (t) = exp

(
−
∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)
S (t)

Survival is a cumulative measure, the rate is an
instantaneous measure.

Note: A cumulative measure requires an origin!

Rates and Survival 57/ 227

Observed survival and rate

� Survival studies: Observation of (right
censored) survival time:

X = min(T ,Z ), δ = 1{X = T}
— sometimes conditional on T > t0
(left truncation, delayed entry).

� Epidemiological studies:
Observation of (components of) a rate:

D/Y

D : no. events, Y no of person-years, in a
prespecified time-frame.
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Empirical rates for individuals

� At the individual level we introduce the
empirical rate: (d , y),
— number of events (d ∈ {0, 1}) during y risk
time.

� A person contributes several observations of
(d , y), with associated covariate values.

� Empirical rates are responses in survival
analysis.

� The timescale t is a covariate — varies within
each individual:
t : age, time since diagnosis, calendar time.

� Don’t confuse with y — difference between
two points on any timescale we may choose.
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Empirical
rates by
calendar
time.
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Empirical
rates by
time since
diagnosis.

Time since diagnosis
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Statistical inference: Likelihood

Two things needed:

� Data — what did we actually observe
Follow-up for each person:
Entry time, exit time, exit status, covariates

� Model — how was data generated
Rates as a function of time:
Probability machinery that generated data

Likelihood is the probability of observing the data,
assuming the model is correct.

Maximum likelihood estimation is choosing
parameters of the model that makes the likelihood
maximal.
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Likelihood from one person

The likelihood from several empirical rates from one
individual is a product of conditional probabilities:

P {event at t4|t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (d , y)
— y = ti − ti−1 and mostly d = 0.

ti is the timescale (covariate).
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Likelihood for an empirical rate

Model: the rate is constant in the interval we are
looking at.

The interval should sufficiently small for this
assumption to be reasonable:

P {event in (t , t + h] | alive at t} /h = λ(t)

P {survive a timespan of y} =
P {survive n int’s of length y/n} =

(
1− λ(t)

y

n

)n
now, since: limn→∞(1 + x/n)n = exp(x )

⇒ (1− λ(t)× y/n)n ≈ exp
(
λ(t)y

)
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Likelihood for an empirical rate

Death probability is: π = 1− e−λy , so for d = 0, 1:

L(λ) = P {d events during y time} = πd(1− π)1−d

= (1− e−λy)d(e−λy)1−d

=

(
1− e−λy

e−λy

)d

(e−λy) ≈ (λy)de−λy

since the first term is equal to eλy − 1 ≈ λy .
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Log-likelihood:

�(λ) = d log(λy)− λy = d log(λ) + d log(y)− λy

The term d log(y) does not include λ, so the
relevant part of the log-likelihood is:

�(λ) = d log(λ)− λy

Rates and Survival 66/ 227

Poisson likelihood

The likelihood contributions from follow-up of one
individual:

dt log
(
λ(t)

)− λ(t)yt , t = t1, . . . , tn

is also the log-likelihood from several independent
Poisson observations with mean λ(t)yt , i.e.
log-mean log

(
λ(t)

)
+ log(yt)

Analysis of the rates, (λ) can be based on a Poisson
model with log-link applied to empirical rates where:

� d is the response variable.
� log(λ) is modelled by covariates
� log(y) is the offset variable.
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Likelihood for follow-up of many subjects

Adding empirical rates over the follow-up of persons:

D =
∑

d Y =
∑

y ⇒ D log(λ)− λY

� Persons are assumed independent

� Contribution from the same person are
conditionally independent, hence give
separate contributions to the log-likelihood.

� No need to correct for dependent observations;
the likelihood is a product.
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Likelihood theory

� Likelihood depends on data (X ) and model
parameters (λ):

L(λ,X ) = P {X |λ} , �(λ,X ) = log
(
P {X |λ})

� Choose the value of λ that makes the
(log-)likelihood as large as possible, λ̂:

�(λ̂,X ) ≥ �(λ,X ), ∀λ
� Standard error of λ̂:

s.e.(λ̂) = 1/
√

−�′′(λ,X )|λ=λ̂

� �′′(λ,X )|λ=λ̂: observed information on λ
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Likelihood theory in practise

� Derivatives of the log-likelihood, for a rate λ,
w.r.t. θ = log(λ):

�(θ|D ,Y ) = Dθ−eθY , �′θ = D−eθY , �′′θ = −eθY

� Likelihood maximal if:

�′ = 0 ⇔ λ̂ = eθ̂ = D/Y

� Information about θ = log(λ):

−I (θ̂) = eθ̂Y = λ̂Y = D ⇒ s.e.(θ̂) = 1/
√
D

� Note that this only depends on the no. events,
not on the follow-up time.
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Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, λ, the
probability of observing 7 deaths in the course of
500 person-years:

P {D = 7,Y = 500|λ} = λDeλY ×K

= λ7eλ500 ×K

= L(λ|data)
Best guess of λ is where this function is as large as
possible.

Confidence interval is where it is not too far from
the maximum
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Likelihood function
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Confidence interval for a rate

A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ)± 1.96/

√
D

Take the exponential to get the confidence interval
for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf
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Example

Suppose we have 17 deaths during 843.6 years of
follow-up.

The rate is computed as:

λ̂ = D/Y = 17/843.7 = 0.0201 = 20.1 per 1000 years

The confidence interval is computed as:

λ̂
×
÷ erf = 20.1

×
÷ exp(1.96/

√
D) = (12.5, 32.4)

per 1000 person-years.
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Ratio of two rates

If we have observations two rates λ1 and λ0, based
on (D1,Y1) and (D0,Y0), the variance of the
difference of the log-rates, the log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)
︸ ︷︷ ︸

error factor
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Example

Suppose we in group 0 have 17 deaths during 843.6
years of follow-up in one group, and in group 1 have
28 deaths during 632.3 years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(17/843.7) = 0.0443/0.0201 = 2.19

The 95% confidence interval is computed as:

R̂R
×
÷ erf = 2.198

×
÷ exp

(
1.96

√
1/17 + 1/28

)
= 2.198

×
÷ 1.837 = (1.20, 4.02)
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Example using R

Poisson likelihood, for one rate,
based on 17 events in 843.7 PY:

library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068
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Example using R

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)
ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525

You do it!
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Survival analysis

� Response variable: Time to event, T

� Censoring time, Z

� We observe (min(T ,Z ), δ = 1{T < Z}).
� This gives time a special status, and mixes the
response variable (risk)time with the covariate
time(scale).

� Originates from clinical trials where everyone
enters at time 0, and therefore Y = T −0 = T
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The life table method

The simplest analysis is by the“life-table method”:

interval alive dead cens.
i ni di li pi

1 77 5 2 5/(77− 2/2)= 0.066
2 70 7 4 7/(70− 4/2)= 0.103
3 59 8 1 8/(59− 1/2)= 0.137

pi = P {death in interval i} = 1− di/(ni − li/2)

S (t) = (1− p1)× · · · × (1− pt)
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Population life table, DK 1997–98

Men Women

a S(a) λ(a) E[�res(a)] S(a) λ(a) E[�res(a)]

0 1.00000 567 73.68 1.00000 474 78.65
1 0.99433 67 73.10 0.99526 47 78.02
2 0.99366 38 72.15 0.99479 21 77.06
3 0.99329 25 71.18 0.99458 14 76.08
4 0.99304 25 70.19 0.99444 14 75.09
5 0.99279 21 69.21 0.99430 11 74.10
6 0.99258 17 68.23 0.99419 6 73.11
7 0.99242 14 67.24 0.99413 3 72.11
8 0.99227 15 66.25 0.99410 6 71.11
9 0.99213 14 65.26 0.99404 9 70.12

10 0.99199 17 64.26 0.99395 17 69.12
11 0.99181 19 63.28 0.99378 15 68.14
12 0.99162 16 62.29 0.99363 11 67.15
13 0.99147 18 61.30 0.99352 14 66.15
14 0.99129 25 60.31 0.99338 11 65.16
15 0.99104 45 59.32 0.99327 10 64.17
16 0.99059 50 58.35 0.99317 18 63.18
17 0.99009 52 57.38 0.99299 29 62.19
18 0.98957 85 56.41 0.99270 35 61.21
19 0.98873 79 55.46 0.99235 30 60.23
20 0.98795 70 54.50 0.99205 35 59.24
21 0.98726 71 53.54 0.99170 31 58.27
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Observations for the lifetable
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Life table is based on
person-years and deaths
accumulated in a short period.

Age-specific rates —
cross-sectional!

Survival function:

S (t) = e−
∫ t

0
λ(a) da = e−

∑t
0 λ(a)

— assumes stability of rates to be
interpretable for actual persons.
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Life table approach

The observation of interest is not the survival time
of the individual.

� It is the population experience:
D : Deaths (events).
Y : Person-years (risk time).

� The classical lifetable analysis compiles these
for prespecified intervals of age, and computes
age-specific mortality rates.

� Data are collected crossectionally, but
interpreted longitudinally.

� The rates are the basic building bocks — used
for construction of:

� RRs
� cumulative measures (survival and risk)Rates and Survival 86/ 227



Summary

� Follow-up studies observe time to event
� — in the form of empirical rates, (d , y) for
small interval

� each interval (empirical rate) has covariates
attached

� each interval contribute d log(λ)− λy
� — like a Poisson observation d with mean λy
� identical covariates: pool obervations to
D =

∑
D ,Y =

∑
y

� — like a Poisson obervation D with mean λY
� the result is an estimate of the rate λ
� from a model where rates are constant within
intervals — but varies between intervals.
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Classical estimators

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

km-na

The Kaplan-Meier Method

� The most common method of estimating the
survival function.

� A non-parametric method.

� Divides time into small intervals where the
intervals are defined by the unique times of
failure (death).

� Based on conditional probabilities as we are
interested in the probability a subject surviving
the next time interval given that they have
survived so far.
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Example of KM Survival Curve from BMJ

BMJ 1998;316:1935-1938

Kaplan-Meier curve from an RCT of patients with
pancreatic cancer
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Kaplan–Meier method illustrated

(• = failure and × = censored):

�

Time
× • × ×•

50N = 49 46

�1.0Cumulative
survival

probability

� Steps caused by multiplying by
(1− 1/49) and (1− 1/46) respectively

� Late entry can also be dealt with
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Using R: Surv()

library( survival )
data( lung )
head( lung, 3 )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal
1 3 306 2 74 1 1 90 100 1175
2 3 455 2 68 1 0 90 90 1225
3 3 1010 1 56 1 0 90 90 NA

with( lung, Surv( time, status==2 ) )[1:10]

[1] 306 455 1010+ 210 883 1022+ 310 361 218 16

( s.km <- survfit( Surv( time, status==2 ) ~ 1 , data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lu

records n.max n.start events median 0.95LCL 0.95UCL
228 228 228 165 310 285 363

plot( s.km )
abline( v=310, h=0.5, col="red" )
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The Cox model

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

cox



Proportional Hazards model

Model hazard rate as function of time (t) and
covariates (x)

λi(t ,xi) = λ0(t)exp (β1x1i + β2x2i + . . .)

� λi(t ,xi) is the hazard rate for the i th person.

� xi = (x1i , . . . , xpi) are covariate values for ith
person.

� λ0(t) is the baseline hazard function - a
non-linear effect of the covariate t .

� β1x1i + β2x2i + . . . is the linear predictor.
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The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

� Computationally, because all individuals
contribute to (some of) the range of t .

� Conceptually it is less clear — t is but a
covariate that varies within each individual.
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Cox-likelihood

The partial likelihood for the regression parameters:

�(β) =
∑

death times

log

(
exdeathβ∑
i∈Rt

exiβ

)

� This is David Cox’s invention.

� Extremely efficient from a computational point
of view.

� The baseline hazard is bypassed (profiled out).
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Proportional Hazards model

� The baseline hazard rate, λ0(t), is the hazard
rate when all the covariates are 0.

� The form of the above equation means that
covariates act multiplicatively on the baseline
hazard rate.

� Time is a covariate (albeit with special status).

� The baseline hazard is a function of time and
thus varies with time.

� No assumption about the shape of the
underlying hazard function.

� — but you will never see the shape. . .
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The Cox Proportional Hazards likelihood

� By far the most common model applied to
time-to-event outcomes.

� The proportionality assumption means that the
difference between two groups can be
summarised by one number. This is because
the (relative) effect of a covariate is assumed
to be the same throughout the time-scale.

� However, it does make the assumption that the
hazard rates for patient subgroups are
proportional over time.

� The Cox model models the hazard function,
λi(t ; xi) where xi denotes the covariate vector.
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Proportional Hazards Model

� Parameters are estimated on log scale:

λi(t) = λ0(t)exp (β1x1i + β2x2i + . . .)

log (λi(t)) = log (λ0(t)) + β1x1i + β2x2i + . . .

� The baseline hazard is the hazard rate when all
covariate values are equal to zero.

� Estimates of the parameters, β, are obtained
by maximizing the partial likelihood.
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Interpreting Regression Coefficients

� How do we interpret the parameters of interest?

� In a Cox model the baseline hazard λ0(t) is not
included in the partial likelihood and so we only
obtain estimates of the regression coefficients
associated with each of the covariates.

� Consider a binary covariate x1 which takes the
values 0 and 1.
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Interpreting Regression Coefficients

� The model is

λi(t) = λ0(t)exp (β1x1i)

� The hazard rate when x1 = 0 is λ0(t).

� The hazard rate when x1 = 1 is λ0(t)exp(β1).

� The hazard ratio is therefore

λ0(t)exp(β)

λ0(t)

� The λ0(t) cancels: β1 is the log hazard ratio.

� Exponentiate β1 to get the hazard ratio.
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Interpreting Regression Coefficients

� If xj is binary exp(βj ) is the estimated hazard
ratio for subjects corresponding to xj = 1
compared to those where xj = 0.

� If xj is continuous exp(βj ) is the estimated
increase/decrease in the hazard rate for a unit
change in xj .

� With more than one covariate interpretation is
similar, i.e. exp(βj ) is the hazard ratio for
subjects who only differ with respect to
covariate xj .
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Fitting a Cox- model in R

library( survival )
data(bladder)
bladder <- subset( bladder, enum<2 )
head( bladder)

id rx number size stop event enum
1 1 1 1 3 1 0 1
5 2 1 2 1 4 0 1
9 3 1 1 1 7 0 1
13 4 1 5 1 10 0 1
17 5 1 4 1 6 1 1
21 6 1 1 1 14 0 1
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Fitting a Cox-model in R

c0 <- coxph( Surv(stop,event) ~ number + size, data=bladder )
c0

Call:
coxph(formula = Surv(stop, event) ~ number + size, data = blad

coef exp(coef) se(coef) z p
number 0.2049 1.23 0.0704 2.912 0.0036
size 0.0613 1.06 0.1033 0.594 0.5500

Likelihood ratio test=7.04 on 2 df, p=0.0296 n= 85, number o
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Plotting the base survival in R

plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )

The plot.coxph plots the survival curve for a
person with an average covariate value

— which is not the average survival for the
population considered. . .

— and not necessarily meaningful
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Plotting the base survival in R

You can plot the survival curve for specific values of
the covariates, using the newdata= argument:

plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )
lines( survfit(c0, newdata=data.frame(number=1,size=1)),

lwd=2, col="limegreen" )
text( par("usr")[2]*0.98, 1.00, "number=1,size=1",

col="limegreen", font=2, adj=1 )
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Follow-up data

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

time-split

Follow-up and rates

� Follow-up studies:

� D — events, deaths
� Y — person-years
� λ = D/Y rates

� Rates differ between persons.

� Rates differ within persons:

� By age
� By calendar time
� By disease duration
� . . .

� Multiple timescales.

� Multiple states (little boxes — later)
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Stratification by age

If follow-up is rather short, age at entry is OK for
age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:
No. of events, D , and Risk time, Y .

Age-scale
35 40 45 50

Follow-up
Two �

1 5 3
One �

4 3
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d , y)

Follow-up data for each individual must therefore
have (at least) three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y
�

d = 0

t0 t1 t2 tx

y1 y2 y3
�

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y
�

d = 1

t0 t1 t2 tx

y1 y2 y3
�

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(event at tx|entry t2) + 1 log(λ)− λy3
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Dividing time into bands:

If we want to put D and Y into intervals on the
timescale we must know:

Origin: The date where the time scale is 0:

� Age — 0 at date of birth

� Disease duration — 0 at date of diagnosis

� Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

� 1-year classes? 5-year classes?

� Equal length?

Aim: Separate rate in each interval
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Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

� Age bands: 10-years intervals of current age.

� Split Y for every subject accordingly

� Treat each segment as a separate unit of
observation.

� Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Timescales

� A timescale is a variable that varies
deterministically within each person during
follow-up:

� Age
� Calendar time
� Time since treatment
� Time since relapse

� All timescales advance at the same pace
(1 year per year . . . )

� Note: Cumulative exposure is not a timescale.

Follow-up data 120/ 227

Follow-up on several timescales

� The risk-time is the same on all timescales

� Only need the entry point on each time scale:
� Age at entry.
� Date of entry.
� Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

� Response variable in analysis of rates:

(d , y) (event, duration)

� Covariates in analysis of rates:
� timescales
� other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat ex

1 1 2 1916.61 1 1938.79 22 1976.79

2 640 2 1896.23 1 1945.77 20 1964.37

3 3425 1 1886.97 2 1955.18 0 1956.59

4 4017 2 1936.81 2 1957.61 0 1992.14

...

Timescales of interest:

� Age
� Calendar time
� Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 3 20 23 20 512.59 23
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> plot( thL, lwd=3 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast], grid=T )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )Follow-up data 127/ 227

Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat cont
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birth
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 19
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 19
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 19
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 19
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 19
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 19
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 18
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 18
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 18
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 18
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 18
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 18
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 19
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 19
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 19
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 19
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 19
...
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plot( spl2, c(1,3), col="black", lwd=2 )

age tfi lex.dur
22.2 0.0 1.0
23.2 1.0 4.0
27.2 5.0 12.8
40.0 17.8 2.2
42.2 20.0 17.8
60.0 37.8 0.2
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Likelihood for a constant rate

� This setup is for a situation where it is assumed
that rates are constant in each of the intervals.

� Each observation in the dataset contributes a
term to a“Poisson” likelihood.

� Rates can vary along several timescales
simultaneously.

� Models can include fixed covariates, as well as
the timescales (the left end-points of the
intervals) as continuous variables.
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The Poisson likelihood for split data

� Split records (one per person-interval (p, i)):

D log(λ)− λY =
∑
p,i

(
dpi log(λ)− λypi

)

� Assuming that the death indicator
(dpi ∈ {0, 1}) is Poisson, with log-offset ypi
will give the same result.

� Model assumes that rates are constant.

� But the split data allows models that assume
different rates for different (dpi , ypi), so rates
can vary within a person’s follow-up.
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Where is (dpi , ypi) in the split data?

> round( spl2, 1 )
lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birth

1 1 22.2 1938.8 0.0 1.0 0 0 1 2 19
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 19
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 19
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 19
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 19
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 19
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 18
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 18
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 18
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 18
...

— and what are covariates for the rates?
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Analysis of results

� dpi — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

� ypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

� Covariates are:
� timescales (age, period, time in study)
� other variables for this person (constant or

assumed constant in each interval).

� Model rates using the covariates in glm:
— no difference between time-scales and other
covariates.
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Fitting a simple model

> stat.table( contrast,
+ list( D = sum( lex.Xst ),
+ Y = sum( lex.dur ),
+ Rate = ratio( lex.Xst, lex.dur, 100 )
+ margin = TRUE,
+ data = spl2 )
-----------------------------------
contrast D Y Rate
-----------------------------------
1 19.00 476.67 3.99
2 1.00 35.93 2.78

Total 20.00 512.59 3.90
-----------------------------------
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Fitting a simple model

-----------------------
contrast D Y Rate
-----------------------
1 19.00 476.67 3.99
2 1.00 35.93 2.78

Total 20.00 512.59 3.90
-----------------------

> m0 <- glm( lex.Xst ~ factor(contrast) - 1,
offset=log(lex.dur/100),

+ family=poisson, data=spl2 )
> round( ci.exp( m0 ), 2 )

exp(Est.) 2.5% 97.5%
factor(contrast)1 3.99 2.54 6.25
factor(contrast)2 2.78 0.39 19.74
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Who needs the Cox-model
anyway?
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The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

� Computationally, because all individuals
contribute to (some of) the range of t .

� Conceptually it is less clear — t is but a
covariate that varies within individual.
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Cox-likelihood

The (partial) log-likelihood for the regression
parameters:

�(β) =
∑

death times

log

(
eηdeath∑
i∈Rt

eηi

)

is also a profile likelihood in the model where
observation time has been subdivided in small pieces
(empirical rates) and each small piece provided with
its own parameter:

log
(
λ(t , x )

)
= log

(
λ0(t)

)
+ x ′β = αt + η
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The Cox-likelihood as profile likelihood

� Regression parameters describing the effect of
covariates (other than the chosen underlying
time scale).

� One parameter per death time to describe the
effect of time (i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+β1x1i+· · ·+βpxpi = αt+

� Profile likelihood:
� Derive estimates of αt as function of data and βs
� Insert in likelihood, now only a function of data

and βs
� Turns out to be Cox’s partial likelihood

Who needs the Cox-model anyway? 139/ 227



� Suppose the time scale has been divided into
small intervals with at most one death in each.

� Assume w.l.o.g. the ys in the empirical rates
all are 1.

� Log-likelihood contributions that contain
information on a specific time-scale parameter
αt will be from:

� the (only) empirical rate (1, 1) with the death
at time t .

� all other empirical rates (0, 1) from those who
were at risk at time t .
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Note: There is one contribution from each person
at risk to this part of the log-likelihood:

�t(αt , β) =
∑
i∈Rt

di log(λi(t))− λi(t)yi

=
∑
i∈Rt

{
di(αt + ηi)− eαt+ηi

}

= αt + ηdeath − eαt

∑
i∈Rt

eηi

where ηdeath is the linear predictor for the person
that died.
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The derivative w.r.t. αt is:

Dαt
�(αt , β) = 1−eαt

∑
i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for
αt , we get the profile likelihood (with αt “profiled
out”):

log

(
1∑

i∈Rt
eηi

)
+ηdeath−1 = log

(
eηdeath∑
i∈Rt

eηi

)
−1

which is the same as the contribution from time t
to Cox’s partial likelihood.
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

� dividing time very finely,

� modelling one covariate, the time-scale, with
one parameter per distinct value,

� profiling these parameters out and maximizing
the profile likelihood,

� regression parameters are the same as in the
full model with all the interval-specific
parameters

� Subsequently, one may recover the effect of the
timescale by smoothing an estimate of the
cumulative sum of these.

Who needs the Cox-model anyway? 143/ 227

Sensible modelling

Replace the αts by a parmetric function f (t) with a
limited number of parameters, for example:

� Piecewise constant

� Splines (linear, quadratic or cubic)

� Fractional polynomials

Use Poisson modelling software on a dataset of
empirical rates for small intervals (ys).
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Splitting the dataset

� The Poisson approach needs a dataset of
empirical rates with small values of y .

� Larger than the original: each individual
contributes many empirical rates. From each
empirical rate we get:

� Poisson-response d
� Risk time y
� Covariate value for the timescale

(time since entry, current age, current date, . . . )
� other covariates
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Example: Mayo Clinic lung cancer

> library( survival ) ; library( Epi )
> data( lung )
> head( lung )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal
1 3 306 2 74 1 1 90 100 1175
2 3 455 2 68 1 0 90 90 1225
3 3 1010 1 56 1 0 90 90 NA
4 5 210 2 57 1 1 90 60 1150
5 1 883 2 60 1 0 100 90 NA
6 12 1022 1 74 1 1 50 80 513

> Lx <- Lexis( exit=list( tfd=time), exit.status=(status==2), da

NOTE: entry is assumed to be 0 on the tfd timescale.

> summary( Lx, scale=365.25 )

Transitions:
To

From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 63 165 228 165 190.54 228

> Sx <- splitLexis( Lx, "tfd", breaks=c(0,unique(Lx$time)) )
> summary( Sx scale=365 25 )
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Mayo clinic lung cancer data

Smoothing by natural splines with 5 parameters,
knots at 0, 25, 100, 500, 1000 days:
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Modelling rates

Modern Demographic
Methods in Epidemiology
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Any difference in covariate effects?

Simulation study:
100 survival datasets, 200 individuals in each.
Baseline hazard varying, censoring at time 10.
Two covariates, one standard normal with rate-ratio
of 4 and the other log-normal with rate-ratio of
0.25.

For each dataset three models fitted:
1. standard Cox-model.
2. Poisson model using natural splines, 6 baseline
parameters.
3. Poisson-model using constant baseline, 1
parameter.
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Computational aspects
� Cox model:

� Only one timescale.
� Each person contributes one (or very few) records.
� Computationally simple, because time (risk /

covariate) is profiled out in the estimation.

� Poisson modelling:
� Many records per person.
� Very large datasets.
� Any number of timescales.
� Timeconsuming due to the full modelling of the

rates.
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Historical aspects

Whitehead J: Fitting Cox’s regression model to
survival data using GLIM. Applied Statistics,
29(3):268–275, 1980.1

Set up tables of event counts and person-years,
classified by event times and covariate patterns.

Even with moderate datasets this can be large,
albeit smaller than some 100 separate records per
person.

1Recall Keiding’s law: “Any result was published earlier than you
think, even if you take Keiding’s law into account.”
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Computational practicalities

Early 1980s: Fitting of Poisson models on datasets
with 50,000 records were out of the question.
In particular with 100+ parameters.

Computationally feasible approaches to cohort
studies were:

� Cox modelling — tanks to computational
elegance.

� Time-splitting and tabulation before modelling.
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Time-splitting and tabulation.

Man-years and PYRS programs:

Follow-up of each person was put into a table of
(current) age-class by calendar time: Cut by the
grid in a Lexis diagram. Possibly also classified by
time since entry.

The tables of (D ,Y ) generated directly (disk space
limitations prevented storage of the split dataset).

Used for SMR analysis, by merging with tables of
population mortailty rates. Analyses based on a
manageable number of analytical units.
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The tabulation legacy (curse)

The computational need for tabulation has
influenced thinking in epidemiology / demography:

� Life-tables in 1-year intervals.

� Rates are regarded in 5-year age by period
intervals. Used for analysis of mortality and
incidence rates based on registers.
Age-period-cohort models with one parameter
per level of the age/period factor.

� Yet, survival analysis is largely based on“time
to event”methods (Kaplan-Meier, Cox), even
from cancer registries.
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The period method for survival analysis

H. Brenner, O. Gefeller & T. Hakulinen: Period analysis for

’up-to-date’ cancer survival data: theory, empirical evaluation,

computational realisation and applications European Journal

of Cancer 40, (2004), pp. 326–335

This method of survival analysis is designed to take
interactions between two time-scale into account:

Mortality rates at a given time since entry into the
study (usually diagnosis of cancer) depends on the
current calendar time.

Brenner et al. propose to restrict analysis to the
most recent period and then report results by
survival curves.
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Period
analysis reports
survival curve
based on data
from the blue
rectangle.

Interaction
between current
date and time
since diagnosis.
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Interaction
between current
date and time
since diagnosis.

Separate
survival curves
for each period.

Period
analysis reports
the last set of
parameters,
because it is
clinically the
most relevant.
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Interaction between current
date and time since
diagnosis:

� Separate survival curves
for each period.

� Stratified Cox-model
with time-dependent
strata.

� In practical terms, data
are split by (current)
calendar time (period),
and interactions with
this are introduced
throughout the model.

Calendar time

Ti
m

e 
si

nc
e 

di
ag

no
si

s

1970 1980 1990 2000
0

10

20

30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

● ●

Modelling rates 161/ 227

Using the Lexis diagram today

Rates are observed as little empirical rates (d , y),
several per individual.

These vary by several timescales

� current age
� calendar time
� time since entry

and fixed covariates

� age at entry
� date of entry
� date of birth
� sex
� . . .
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Stratified Cox-model

λ(t , x ) = λs(t)× exp(x ′β)

The key is the“s”— separate baseline for each
stratum.

In plain words:
The effect of time depends on s — an interaction
between time and stratum.

Test of“proportionality” is merely a test of
interaction between time and some (categorical)
covariate.
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Age at entry as covariate

t : time since entry
e: age at entry
a = e + t : current age

log
(
λ(a, t)

)
= f (t) + βe = (f (t)− βt) + βa

Immaterial whether a or e is used as (log)-linear
covariate as long as t is in the model.

In a Cox-model with time since entry as time-scale,
only the baseline hazard will change if age at entry is
replaced by current age (a time-dependent variable).
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Non-linear effects of time-scales

Arbitrary effects of the three variables t , a and e:
=⇒ genuine extension of the model.

log
(
λ(a, t , xi)

)
= f (t) + g(a) + h(e) + ηi

Three quantities can be arbitrarily moved between
the three functions:

f̃ (t)=f (a)−μa−μe+γt

g̃(a)=g(p)+μa −γa

h̃(e)=h(c) +μa+γe

because t − a + e = 0.
This is the age-period-cohort modelling problem
again.
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“Controlling for age”

— is not a well defined statement.

Mostly it means that age at entry is included in the
model.

But ideally one would check whether there were
non-linear effects of age at entry and current age.

This would require modelling of multiple timescales.

Which is best accomplished by splitting time.
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SMR

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

SMR

Cohorts where all are exposed

When there is no comparison group we may ask:
Do mortality rates in cohort differ from those of an
external population, for example:

Rates from:

� Occupational cohorts

� Patient cohorts

compared with reference rates obtained from:

� Population statistics (mortality rates)

� Disease registers (hospital discharge registers)

SMR 167/ 227



Log-likelihood

Cohort rates proportional to reference rates:
λ(a) = θ × λR(a) — the same in all age-bands.

Da deaths during Ya person-years an age-band a
gives the likelihood:

Da log(λ(a))− λ(a)Ya = Da log(θλR(a))− θλR(a)Ya

= Da log(θ) + Da log(λR(a))

−θ(λR(a)Ya)

The constant Da log(λR(a)) does not involve θ, and
so can be dropped.
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The term λR(a)Ya = Ea is the“expected”number
of cases in age a, so the log-likelihood for age a is:

Da log(θ)− θ(λR(a)Ya) = Da log(θ)− θ(Ea)

Note: λR(a) is known for all values of a. The total
log-likelihood is:

D log(θ)− θE

Therefore:

θ̂ =
D

λRY
=

D

E
=

Observed

Expected
= SMR

SMR is the maximum likelihood estimator of the
relative mortality in the cohort.
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Accounting for age composition

� Compare rates in a study group with a
standard set of age–specific rates.

� Reference rates are normally based on large
numbers of cases, — assumed known.

� Calculate“expected”number of cases,
Ea = λR(a)Ya , and compare this with the
observed number of cases, D :

� SMR is based on a log-likelihood similar to that
for a rate — Y is replaced by E :

SMR =
D

E
, s.d.

(
log(SMR)

)
=

1√
D
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Modelling the SMR

� As for the rates, the SMR can be modelled
using individual data.

� Response is di , the event indicator (lex.Xst).

� log-offset is the expected value for each piece
of follow-up, ei = yi × λR.

� λR is the population rate corresponding to the
age, period and sex of the follow-up period yi .
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plot( thap, 2:1, col=c("blue","red")[thap$sex], lwd=2 )

...
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Split the data to fit with population data

> # Split the data for SMR-analysis

> tha <- splitLexis(thL, "age", breaks=seq(0,90,5) )

> thap <- splitLexis(tha, "per", breaks=seq(1938,2038,5) )

> dim( thap )

[1] 41 15

> # Create variables to fit with the population data

> thap$agr <- timeBand( thap, "age", "left" )

> thap$cal <- timeBand( thap, "per", "left" )

> round( thap[,c("lex.id","age","agr","per","cal","lex.dur","lex

lex.id age agr per cal lex.dur lex.Xst sex

1 1 22.18 20 1938.79 1938 2.82 0 2

2 1 25.00 25 1941.61 1938 1.39 0 2

3 1 26.39 25 1943.00 1943 3.61 0 2

4 1 30.00 30 1946.61 1943 1.39 0 2

5 1 31.39 30 1948.00 1948 3.61 0 2

6 1 35.00 35 1951.61 1948 1.39 0 2

7 1 36.39 35 1953.00 1953 3.61 0 2

8 1 40.00 40 1956.61 1953 1.39 0 2

9 1 41.39 40 1958.00 1958 3.61 0 2

10 1 45 00 45 1961 61 1958 1 39 0 2
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Merge with population data

> thapx <- merge( thap, gmortDK[,c("agr","cal","sex","rt")] )

> str( thapx )

Classes ’Lexis’ and ’data.frame’: 41 obs. of 18 variables:

$ sex : num 1 2 2 2 2 2 2 2 2 2 ...

$ agr : num 65 20 20 20 25 25 25 25 30 30 ...

$ cal : num 1953 1938 1953 1958 1938 ...

$ lex.id : int 3 1 4 4 1 1 4 4 1 1 ...

$ age : num 68.2 22.2 20.8 21.2 25.0 ...

$ per : num 1955 1939 1958 1958 1942 ...

$ tfi : num 0.000 0.000 0.000 0.389 2.818 ...

$ lex.dur : num 1.405 2.818 0.389 3.806 1.391 ...

$ lex.Cst : num 0 0 0 0 0 0 0 0 0 0 ...

$ lex.Xst : num 1 0 0 0 0 0 0 0 0 0 ...

$ id : num 3425 1 4017 4017 1 ...

$ birthdat: num 1887 1917 1937 1937 1917 ...

$ contrast: num 2 1 2 2 1 1 2 2 1 1 ...

$ injecdat: num 1955 1939 1958 1958 1939 ...

$ volume : num 0 22 0 0 22 22 0 0 22 22 ...

$ exitdat : num 1957 1977 1992 1992 1977 ...

$ it t t 1 1 2 2 1 1 2 2 1 1
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Calculation of the SMR

> thapx$E <- thapx$lex.dur * thapx$rt / 1000

> stat.table( contrast,

+ list( D = sum( lex.Xst ),

+ Y = sum( lex.dur ),

+ E = sum( E ),

+ SMR = ratio( lex.Xst, E ) ),

+ margin = TRUE,

+ data = thapx )

-------------------------------------------

contrast D Y E SMR

-------------------------------------------

1 2.00 56.59 0.33 6.02

2 1.00 35.93 0.11 8.70

Total 3.00 92.52 0.45 6.71

-------------------------------------------
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Modelling the SMR

> m.SMR <- glm( lex.Xst ~ factor(contrast)-1+offset(log(E)),

+ family=poisson, data=thapx )

> round( ci.lin( m.SMR, Exp=TRUE )[,5:7], 3 )

exp(Est.) 2.5% 97.5%

factor(contrast)1 6.023 1.506 24.082

factor(contrast)2 8.698 1.225 61.745

� Analysis of SMR is like analysis of rates:

� Replace Y with E — that’s all!
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Likelihood for multistate
follow-up

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

ms-lik

Likelihood for transition through states

A −→ B −→ C −→
� given start of observation in A at time t0
� transitions at times tB and tC
� survival in C till (at least) time tx :

L = P{survive t0 → tB in A}
× P{transition A → B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B → C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

� Product of likelihoods for each transition
— each one as for a survival model
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Competing risks

But you may die from more than one cause
(or move to more than one state):

Alive

Cause A

Cause B

Cause C

�
�

�
�

�
���

�

�
�

�
�

�
���

λA

λB

λC
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Cause-specific intensities

λA(t) = limh→0
P {death from cause A in (t , t + h] | alive at t}

h

λB(t) = limh→0
P {death from cause B in (t , t + h] | alive at t}

h

λC (t) = limh→0
P {death from cause C in (t , t + h] | alive at t}

h

Total mortality rate:

λTotal(t) = limh→0
P {death from any cause in (t , t + h] | alive at t}

h
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Cause-specific intensities

For small h, P {2 events in (t , t + h]} ≈ 0, so:

P {death from any cause in (t , t + h] | alive at t}

= P {death from cause A in (t , t + h] | alive at t}+
P {death from cause B in (t , t + h] | alive at t}+
P {death from cause C in (t , t + h] | alive at t}
=⇒ λTotal(t) = λA(t) + λB(t) + λC (t)

Intensities are additive,
if they all refer to the
same risk set, in this case“Alive”.
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Likelihood for competing risks

Data:
Y - person years in“Alive”
DA - deaths from cause A
DB - deaths from cause B
DC - deaths from cause C

Now, assume for a start that transition rates
between states are constant.
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Likelihood for competing risks

A survivor contributes to the log-likelihood:

log(P {Survival for a time of y}) = −(λA+λB+λC )y

A death from cause A contributes an additional
log(λA), from cause B an additional log(λB) etc.

The total log-likelihood is then:

�(λA, λB , λC ) =DAlog(λA) + DB log(λB) + DC log(λC )

− (λA + λB + λC )Y

=[DAlog(λA)− λAY ]+

[DB log(λB)− λBY ]+

[DC log(λC )− λCY ]
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Components of the likelihood

The log-likelihood is made up of three contributions:
� one for cause A,

� one for cause B and

� one for cause C

Deaths are the cause-specific deaths,

but the person-years are the same in all
contributions.
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Likelihood for multiple states

� Product of likelihoods for each transition
— each one as for a survival model

� conditional on being alive at (observed) entry
to current state

� Risk time is the risk time in the current
(“From”, lex.Cst) state

� Events are transitions to the“To”state
(lex.Xst)

� All other transitions out of“From”are treated
as censorings (but they are not)

� Fit models separately for each transition or
jointly for all
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Time varying rates:

� The same type of analysis as with a constant
rates, but data must be

� split in intervals sufficiently small to justify an
assumption of constant rate (intensity),

� the model should allow for a separate rate for
each interval,

� but constrained to follow model with a smooth
effect of the time-scale values allocated to each
interval.
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Practical implications

� Empirical rates ((d , y) from each individual)
will be the same for all analyses except for
those where deaths occur.

� Analysis of cause A:
� Contributions (1, y) only for those intervals where

a cause A death occurs.
� Intervals with cause B or C deaths (or no deaths)

contribute only (0, y)
treated as censorings.
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original expanded
------------------------------- ---------------------
id time cause xx d.A d.B d.C id time dd xx Tr
1 1 B 0.50 0 1 0 1 1 0 0.50 A
2 1 NA 1.00 0 0 0 2 1 0 1.00 A
3 8 B -1.74 0 1 0 3 8 0 -1.74 A
4 3 A -0.55 1 0 0 4 3 1 -0.55 A
5 7 NA -0.58 0 0 0 5 7 0 -0.58 A
6 7 C -0.04 0 0 1 6 7 0 -0.04 A

1 1 1 0.50 B
2 1 0 1.00 B
3 8 1 -1.74 B
4 3 0 -0.55 B
5 7 0 -0.58 B
6 7 0 -0.04 B

1 1 0 0.50 C
2 1 0 1.00 C
3 8 0 -1.74 C
4 3 0 -0.55 C
5 7 0 -0.58 C
6 7 1 -0.04 C

. . . accomplished by stack.Lexis
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Lexis objects (data frame)

� Represents the follow-up

� lex.dur contains the total time at risk for
(any) event

� lex.Cst is the state in which this time is spent

� lex.Xst is the state to which a transition
occurs
— if no transition, the same as lex.Cst.

This is used for modelling of single transitions
between states — and multiple transitions with no
two originating in the same state.
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stacked.Lexis objects (data frame)

� Represents the likelihood contributions

� lex.dur contains the total time at risk for
(any) event

� lex.Tr is the transition to which the record
contributes

� lex.Fail is the event (failure) indicator for
the transition in question.

This is used for joint modelling of all transition in a
multistate set-up.

Particularly with several rates originating in the
same state (competing risks).
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Implemented in the stack.Lexis function:

> library( Epi )
> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> dml <- Lexis( entry = list(Per = dodm,
+ Age = dodm-dobth,
+ DMdur = 0 ),
+ exit = list(Per = dox ),
+ exit.status = factor(!is.na(dodth),
+ labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml, cut = dml$doins,
+ new.state = "Ins",
+ precursor = "DM" )
> summary( dmi )

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996

> boxes( dmi, boxpos = list(x=c(20,20,80),
+ y=c(80,20,50)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.1 )
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DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499

1,694
(36.9)

2,048
(44.6)

451
(53.8)

DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499

DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499
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Implemented in the stack.Lexis function:

> options( digits=3, width=200 )
> st.dmi <- stack( dmi )
> print( st.dmi[1:6,], row.names=F )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.
1999 58.7 0 11.080 DM DM DM->Ins FALSE
2003 64.1 0 6.689 DM DM DM->Ins FALSE
2005 86.3 0 5.446 DM DM DM->Ins FALSE
2009 44.0 0 0.736 DM DM DM->Ins FALSE
2009 75.8 0 1.344 DM DM DM->Ins FALSE
2008 80.0 0 2.037 DM Dead DM->Ins FALSE

> str( st.dmi )

Classes ’stacked.Lexis’ and ’data.frame’: 21589 obs. of 16 va
$ Per : num 1999 2003 2005 2009 2009 ...
$ Age : num 58.7 64.1 86.3 44 75.8 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur : num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1
$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 3
$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM->Dead",..: 1 1 1
$ lex.Fail: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ F t / 2 l l "M" "F" 2 1 2 2 1 2 1 1 2 1
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Implemented in the stack.Lexis function:

> print( subset( dmi, lex.id %in% c(13,15,28) ), row.names=FAL

Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm
1997 59.4 0.0 0.890 DM Dead 13 M 1938 1997
2003 58.1 0.0 2.804 DM Ins 15 M 1944 2003
2005 60.9 2.8 4.643 Ins Ins 15 M 1944 2003
1999 73.7 0.0 8.701 DM Ins 28 F 1925 1999
2007 82.4 8.7 0.977 Ins Dead 28 F 1925 1999

> print( subset( st.dmi, lex.id %in% c(13,15,28) ), row.names=FAL

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail le
1997 59.4 0.0 0.890 DM Dead DM->Ins FALSE
2003 58.1 0.0 2.804 DM Ins DM->Ins TRUE
1999 73.7 0.0 8.701 DM Ins DM->Ins TRUE
1997 59.4 0.0 0.890 DM Dead DM->Dead TRUE
2003 58.1 0.0 2.804 DM Ins DM->Dead FALSE
1999 73.7 0.0 8.701 DM Ins DM->Dead FALSE
2005 60.9 2.8 4.643 Ins Ins Ins->Dead FALSE
2007 82.4 8.7 0.977 Ins Dead Ins->Dead TRUE
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Analysis of rates in multistate models

� Interactions between all covariates (including
time) and state (lex.Cst):
⇒ separate analyses of all transition rates.

� Only interaction between state (lex.Cst) and
time(scales):
⇒ same covariate effects for all causes
transitions, but separate baseline hazards —
“stratified model”.

� Main effect of state only (lex.Cst):
⇒ proportional hazards

� No effect of state:
⇒ identical baseline hazards — hardly ever
relevant.
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Analysis approaches and data
representation

� Lexis objects represents the precise follow-up
in the cohort, in states and along timescales

� — used for analysis of single transition rates.

� stacked.Lexis objects represents
contributions to the total likelihood

� — used for joint analysis of (all) rates in a
multistate setup

� . . . which is the case if you want to specify
common effects between different transitions.
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Assumptions in competing risks

“Classical”way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three
variables:
TA, TB and TC , representing times to death from
each of the three causes.
But at most one of these is observed.

Often it is stated that these must be assumed
independent in order to make the likelihood
machinery work

1. It is not necessary.
2. Independence can never be assessed from data.
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An account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp.
203–215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein
Putter:
Competing risks in epidemiology: possibilities and
pitfalls,

International Journal of Epidemiology ; 2012: pp. 1–10

Contains examples where both dependent and
independent“cause specific survival times”gives rise
to the same set of cause specific rates.
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Lifetime risk

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

DK-lung

Competing risk interpretation

The problems with competing risk models only
comes when estimated intensities (rates) are used to
produce probability statements.

Classical set-up in cancer-registries:

Well Lung cancer�λ

Common statement:

P {Lung cancer before age 75} = 1− e−Λ(75)

This is not quite right.
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How the world really looks

Well

Lung cancer

Dead

�
�

�
�
���

�
�

�
�

�
���

λ

μ

ν

Illness-death model, mortality of lung cancer
patients (ν) not relevant here, we only want to find
out how many pass through“Lung cancer”
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How many get lung cancer before age a?
�

P {Lung cancer before age 75} �= 1− e−Λ(75)

the r.h.s. does not take the possibility of death
prior to lung cancer into account.

� 1− e−Λ(75) often stated as the probability of
lung cancer before age 75, assuming all other
acuses of death absent.

� Lung cancer rates are however observed in a
mortal population.

� If all other causes of death were absent, this
would assume that lung cancer rates remained
the same.
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How it really is:

P {Lung cancer diagnosis before age a}

=

∫ a

0

P {Lung cancer at age u} du

=

∫ a

0

P {Lung cancer in age (u, u + du] | alive at u}
×P {alive at u without lung cancer} du

=

∫ a

0

λ(u)exp

(
−
∫ u

0

μ(s) + λ(s) ds

)
du
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Probability of lungcancer

The rates are easily plotted for inspection in R:

matplot( age, 1000*cbind( D/Y, lung/Y ),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per 1000 person-years" )
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The probablility that a person contracts lung cancer
before age a is:∫ a

0

λ(u) exp

(
−
∫ u

0

μ(s) + λ(s) ds

)
du

=

∫ a

0

λ(u) exp

(
−(

M(u) + Λ(u)
))

du

M(u) is the cumulative mortality rate.

Λ(u) is the cumulative lung cancer incidence rate.
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R-commands needed to do the calculations:

cr.death <- cumsum( D/Y )
cr.lung <- cumsum( lung/Y )
p.simple <- 1 - exp( -cr.lung )
p.lung <- cumsum( lung/Y *

exp( -(cr.death+cr.lung) ) )
matlines( age, 100*cbind( cr.lung, p.simple, p.lung ),

type="l", lty=1, lwd=2*c(2,2,3),
col=c("black","blue","red") )
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Assumptions

� The calculation and the statement“6% of
Danish males will get lung cancer”assumess
that the lung cancer rates and the mortality
rates in the file apply to a cohort of men.

� But they are cross-sectional rates, so the
assumption is one of steady state of:

1. mortality rates (which is dubious)
2. lung cancer incidence rates (which is appalling).

� However, the machinery can be applied to any
set of rates for competing risks, regardless of
how they were estimated.
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Interactions and timescales

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
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Computational aspects of fitting models
� Cox model:

� Only one timescale.
� Each person contributes one (or very few) records.
� Computationally simple, because time (risk /

covariate) is profiled out in the estimation.

� Poisson modelling:
� Many records per person.
� Very large datasets.
� Any number of timescales.
� Timeconsuming due to the full modelling of the

rates.
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Historical aspects

Whitehead J: Fitting Cox’s regression model to
survival data using GLIM. Applied Statistics,
29(3):268–275, 1980.[?]2

Set up tables of event counts and person-years,
classified by event times and covariate patterns.

Even with moderate datasets this can be large,
albeit smaller than some 100 separate records per
person.

2Recall Keiding’s law: “Any result was published earlier than you
think, even if you take Keiding’s law into account.”
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Computational practicalities

Early 1980s: Fitting of Poisson models on datasets
with 50,000 records were out of the question.
In particular with 100+ parameters.

Computationally feasible approaches to cohort
studies were:

� Cox modelling — thanks to computational
elegance.

� Time-splitting and tabulation before modelling.
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The tabulation legacy (curse)

The computational need for tabulation has
influenced thinking in epidemiology / demography:

� Life-tables in 1-year intervals.

� Rates are regarded in 5-year age by period
intervals. Used for analysis of mortality and
incidence rates based on registers.
Age-period-cohort models with one parameter
per level of the age/period factor.

� Yet, survival analysis is largely based on“time
to event”methods (Kaplan-Meier, Cox), even
from cancer registries — only one timescale.
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Representation of follow-up
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Age at entry as covariate

t : time since entry
e: age at entry
a = e + t : current age

log
(
λ(a, t)

)
= f (t) + βe = (f (t)− βt) + βa

Immaterial whether a or e is used as (log)-linear
covariate as long as t is in the model.

In a Cox-model with time since entry as time-scale,
only the baseline hazard will change if age at entry is
replaced by current age (a time-dependent variable).
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“Controlling for age”

Including age at entry:

� Linear effect.

� Grouped variable.

� Parametric function.

— still only controls for the linear effect of current
age.
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Non-linear effects of time-scales

Arbitrary effects of the three variables t , a and e:
Genuine extension of the model.

log
(
λ(a, t , xi)

)
= f (t) + g(a) + h(e) + ηi

Three quantities can be arbitrarily moved between
the three functions:

f̃ (t) = f (a) − μa − μe + γt

g̃(a) = g(p) + μa − γa

h̃(e) = h(c) + μa + γe

because t − a + e = 0.
How many timescales in this model?
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“Controlling for age”

— is not a well defined statement.

Mostly it means that age at entry is included in the
model.

But ideally one would check whether there were
non-linear effects of age at entry and current age.

This would require modelling of multiple timescales.

Which is best accomplished by splitting time and
modelling the timescales explicitly.
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Several timescales: Caveat

As an example, consider:
t : time since entry
e: age at entry
a = e + t : current age

The relation: a = t + e must hold for all units of
analysis.

In general: The difference between two time-scales
must be constant within individuals.

The Boyle-Robertson fallacy from age-period-cohort
models, where units with identical values of
(current) age, a, and (current) period p had varying
values of cohort, date of birth c = p − a! [?].
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Several timescales

NRA Remission

Dead/ESRD

�

�
�	




�

λ

μNRA μrem

Cox-model:
— One dataset per
transition.
— Combine datasets
and make relevant
interactions.
— Timescale must be
the same.

Poisson-model:
— One time-split
dataset per transition.
— Combine datasets
and make relevant
interactions.
— Timescales can be
different, and multiple
timsecales can be
accomodated
simultaneously; duration
of NRA, for example.
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Time dependent variable

How does remission influence the mortality?

λ(t) = λ0(t)exp
(
1{remission}(t)× β

)
i.e. when remission occurs, mortality increase by eβ.

NRA Remission

Dead/ESRD

�

�
��	





�

λ

μNRA μrem

What transitions are modelled here?
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Time-dependent variable

NRA Remission

Dead/ESRD

�

�
�	




�

λ

μNRA μrem

If we take

1{remission}(t)
as time-dependent
variable, we assume that
μNRA and μrem are
proportional on the same
timescale — no disease
duration!.

— and λ is not modelled
at all.
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Stratified model

A popular version of the Cox-model allowing for
non-proportionality is the stratified model:

λ(t , x ) = λs(t)× exp(x ′β)

where s refers to levels of a factor S .

This is but a completely general interaction
between the factor S and the chosen timescale.

A better approach to interactions would be to
specify a clinically founded form of interaction, so
that test for interaction is against a specific (and
sensible) alternative.
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Time varying coefficients

This is a concept introduced by letting (some of)
the parameters depend on time:

λ(t , x ) = λ0 × exp
(
x ′β(t)

)
This is also an interaction, but restricted:
The effect of a covariate is linear for any value of t .

If the covariate is a factor, then we just have a
reparametrization of the stratified model.
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Poisson modelling of interactions

When interactions are needed (or desired):

� use the familiar terminology of interaction as
known from (generalized) linear models.

� use clinical judgement of which interactions are
relevant.

� use clinical judgement of which forms of
interaction are relevant.

� are interactions with time of special interest?
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Poisson model for time-split data

� Clarifies the destinction between (risk) time as
response variable and time(scales) as
covariates.

� Multiple timescales easily handled.

� Hazard rates by standard methods.

� More credible estimates of survival functions.

� Sensible modelling of interactions between
timescales and other variables (and between
timescales).

� Interactions are called interactions.
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Scottish diabetes data

Modern Demographic
Methods in Epidemiology
with R
26–29 August 2014
University of Edinburgh
http://BendixCarstensen/AdvCoh/Scot-2014

Scot-DM

Scottish DM data

� Population data as of 1 July and deaths during
the year, by:

� Year (2005–2012)
� Age (0–90)
� Sex
� Deprivation index (1–10 (11) )
� pop <- read.csv(

"../data/PopulationSIMD2009.csv" )

� Anonymized diabetes records, one per person:
� Date of birth
� Date of diabetes
� Date of death
� Sex
� Deprivation index (1-10)
� DM <- read.csv( "../data/dm-data.csv" )
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Types of analyses

� Prevalence of diabetes

� Incidence rates of diabetes

� Mortality rates among diabetes patients

� SMR

Analyses from the special chapter in the practicals.
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