Multistate models:

Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales in Register Research with R and Epi::Lexis

Bendix Carstensen Steno Diabetes Center Copenhagen Gentofte, Denmark http://BendixCarstensen.com
Lars Diaz Steno Diabetes Center Copenhagen Adam Hulman Steno Diabetes Center Midt

SDCC, October 2021

A multistate model

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
. . . same as:
- sequence of: (state time, next state)
- What are the target parameters:
- Rates (the arrows)
- State probabilities (of being in a state at a given time)
- Survival probability
- Sojourn times (how long time do you spend in a state)
- Probability of ever visiting a state

What is a statistical model

- Specification of a statistical machinery that could have generated data
- ...so when we have a statistical model we can simulate a data set
- The basis for th elikelihood of data is the statistical model \Rightarrow Estimation of parameters in the model
- Parameter estimates needed for prediction of rates (hazards)

Survival data

Persons enter the study at some date.
Persons exit at a later date, either dead or alive.
Observation:
Actual time span to death ("event")
or
Some time alive ("at least this long")

Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- Time from randomisation to death in a cancer clinical trial
- Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- Time to re-offending after being released from jail

Each line a person
Each blob a death

Study ended at 31
Dec. 2003

Ordered by date of entry

Most likely the order in your database.

Timescale changed to
"Time since diagnosis".

Patients ordered by survival time.

Survival times grouped into bands of survival.

Patients ordered by survival status within each band.

Survival after Cervix cancer

	Stage I				Stage II		
Year	N	D	L		N	D	L
1	110	5	5		234	24	3
2	100	7	7		207	27	11
3	86	7	7		169	31	9
4	72	3	8		129	17	7
5	61	0	7		105	7	13
6	54	2	10		85	6	6
7	42	3	6		73	5	6
8	33	0	5		62	3	10
9	28	0	4		49	2	13
10	24	1	8		34	4	6

Life-table estimator of death probability: $D /(N-L / 2)$
Estimated risk of death in year 1 for Stage I women is $5 / 107.5=0.0465$
Estimated 1 year survival is $1-0.0465=0.9535$

Survival after Cervix cancer

	Stage I					Stage II		
Year	N	D	L		N	D	L	
1	110	5	5		234	24	3	
2	100	7	7		207	27	11	
3	86	7	7		169	31	9	

Estimated risk in year 1 for Stage I women is $5 / 107.5=0.0465$
Estimated risk in year 2 for Stage I women is $7 / 96.5=0.0725$
Estimated risk in year 3 for Stage I women is $7 / 82.5=0.0848$
Estimated 1 year survival is $1-0.0465=0.9535$
Estimated 2 year survival is $0.9535 \times(1-0.0725)=0.8843$
Estimated 3 year survival is $0.8843 \times(1-0.0848)=0.8093$
This is the life-table estimator.

- No need to use 1 year intervals
- Very small intervals will leave at most 1 censoring or 1 death in each
- Interval with 1 death and n_{t} persons at risk: $\mathrm{P}\{$ Death $\}=1 / n_{t}$
- corresponding death probability $\left(n_{t}-1\right) / n_{t}$
- if you multiply these over times with event:

$$
S(t)=\prod_{t \text { with event }}\left(n_{t}-1\right) / n_{t}
$$

... you have the Kaplan-Meier estimator

- looks complicated bút just a question of book keeping

Prerequisites

```
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
```


The lung data set

```
> library(survival)
> data(lung)
> lung$sex <- factor(lung$sex,
levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)
> head(lung)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline inst & time & status & ag & & ph.eco & ph.ka & pat.karn & meal.cal & wt.loss \\
\hline 3 & 10.053388 & 2 & 74 & M & 1 & 90 & 100 & 1175 & NA \\
\hline 3 & 14.948665 & 2 & 68 & M & 0 & 90 & 90 & 1225 & 15 \\
\hline 3 & 33.182752 & 1 & 56 & M & 0 & 90 & 90 & NA & 15 \\
\hline 5 & 6.899384 & 2 & 57 & M & 1 & 90 & 60 & 1150 & 11 \\
\hline 1 & 29.010267 & 2 & 60 & M & 0 & 100 & 90 & NA & 0 \\
\hline & 33.577002 & & 74 & M & & 50 & 80 & 513 & 0 \\
\hline
\end{tabular}
```


Survival function

- Use survfit to construct the Kaplan-Meier estimator of overall survival:

```
> ?Surv
> ?survfit
> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km
Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)
n events median 0.95LCL 0.95UCL
228.00 165.00 10.18 9.36 11.93
> # summary(km) # very long output
```

We can plot the survival curve-this is the default plot for a survfit object:

```
> plot(km)
```

What is the median survival? What does it mean? Explore if survival patterns between men and women are different:

```
> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms
Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)
\begin{tabular}{lrrrrr} 
& n & events & median & \(0.95 L C L\) & \(0.95 U C L\) \\
sex \(=\mathrm{M}\) & 138 & 112 & 8.87 & 6.97 & 10.2 \\
sex \(=W\) & 90 & 53 & 14.00 & 11.43 & 18.1
\end{tabular}
```

We see that men have worse survival than women, but they are also a bit older (age is age at diagnosis of lung cancer):

```
> with(lung, tapply(age, sex, mean))
```

M	W
63.34058	61.07778

Formally there is a significant difference in survival between men and women

```
> survdiff(Surv(time, status==2) ~ sex, data = lung)
Call:
survdiff(formula = Surv(time, status == 2) ~ sex, data = lung)
    N Observed Expected (O-E) ^2/E (O-E) ^2/V
\begin{tabular}{lrrrrr} 
& N & Observed & Expected & \((0-E) \wedge 2 / E\) & \((0-E) \wedge 2 / V\) \\
sex \(=M\) & 138 & 112 & 91.6 & 4.55 & 10.3 \\
sex=W & 90 & 53 & 73.4 & 5.68 & 10.3
\end{tabular}
```

 Chisq= 10.3 on 1 degrees of freedom, \(p=0.001\)

Rates and rate-ratios

- Occurrence rate:

$$
\lambda(t)=\lim _{h \rightarrow 0} \mathrm{P}\{\text { event in }(t, t+h] \mid \text { alive at } t\} / h
$$

—measured in probability per time: time $^{-1}$

- observation in a survival study: (exit status, time alive)
- empirical rate $(d, y)=$ (deaths, time)
- the Cox model is a model for rates as function of time (t) and covariates $\left(x_{1}, x_{2}\right)$:

$$
\lambda(t, x)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

-mortality depends on the person's sex and age, say.

- Data looks like data for a K-M analysis plus covariate values

Rates and rate-ratios: Simple Cox model

Now explore how sex and age (at diagnosis) influence the mortality—note that in a Cox-model we are addressing the mortality rate and not the survival:

```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
> ci.exp(c0)
> ci.exp(c1)
```

What variables from lung are we using?

```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
Call:
coxph(formula = Surv(time, status == 2) ~ sex + age, data = lung)
    n= 228, number of events= 165
\begin{tabular}{lrrlrr} 
& coef & \(\exp\) (coef) & se(coef) & z & \(\operatorname{Pr}(>|z|)\) \\
sexW & -0.513219 & 0.598566 & 0.167458 & -3.065 & 0.00218 \\
age & 0.017045 & 1.017191 & 0.009223 & 1.848 & 0.06459
\end{tabular}
    exp(coef) exp(-coef) lower . }95\mathrm{ upper . }9
\begin{tabular}{lllll} 
sexW & 0.5986 & 1.6707 & 0.4311 & 0.8311
\end{tabular}
\begin{tabular}{lllll} 
age & 1.0172 & 0.9831 & 0.9990 & 1.0357
\end{tabular}
Concordance= 0.603 (se = 0.025 )
Likelihood ratio test= 14.12 on 2 df, p=9e-04
Wald test = 13.47 on 2 df, p=0.001
Score (logrank) test = 13.72 on 2 df, p=0.001
```

> ci.exp (c0)
\exp (Est.) $2.5 \% \quad 97.5 \%$
sexW 0.58800280 .42371780 .8159848
> ci.exp(c1)
\exp (Est.) $\quad 2.5 \% \quad 97.5 \%$
sexW 0.5985660 .43109360 .8310985
age 1.0171910 .99896861 .0357467

What do these estimates mean?

$$
\lambda(t, x)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

Where is β_{1} ? Where is β_{2} ? Where is $\lambda_{0}(t)$?
What is the mortality RR for a 10 year age difference?

If mortality is assumed constant $(\lambda(t)=\lambda)$, then the likelihood for the Cox-model is equivalent to a Poisson likelihood, which can be fitted using the poisreg family from the Epi package:

```
> ?poisreg
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # Poisson
    exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
> ci.exp(c1) # Cox
l
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467
```

Sex and age effects are quite close between the Poisson and the Cox models.

Poisson model has an intercept term, the estimate of the (assumed) constant underlying mortality.
The risk time part of the response (second argument in the cbind) was entered in units of months (remember we rescaled in the beginning?), the (Intercept) (taken from the ci.exp) is a rate per 1 person-month.
What age and sex does the (Intercept) refer to?

```
> ci.exp(p1) # Poisson
\begin{tabular}{lrrr} 
& \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 0.03255152 & 0.01029228 & 0.1029511 \\
sexW & 0.61820515 & 0.44555636 & 0.8577537 \\
age & 1.01574132 & 0.99777446 & 1.0340317
\end{tabular}
```

poisreg and poisson

```
poisreg: cbind(d,y) ~ ...
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
poisson: d ~ ... + offset(log(y))
> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
```


Representation of follow-up: Lexis object

```
> Ll <- Lexis(exit = list(tfl = time),
+ exit.status = factor(status,
+ levels = 1:2,
+ labels = c("Alive","Dead")),
+ data = lung)
NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.
> head(LI)
    tfl lex.dur lex.Cst lex.Xst lex.id inst
time status age sex ph.ecog ph.kz
time status age sex ph.ecog ph.ki
1010.053388 Alive
014.948665 Alive Dead \(2 \quad 314.948665\)
033.182752 Alive Alive \(3 \quad 333.182752\)
06.899384 Alive Dead 4 6.899384
029.010267 Alive Dead \(5 \quad 129.010267\)
Alive 61233.577002 meal.cal wt.loss
11175 NA
2122515
3 NA 15 28/97
```

New variables in Lexis object
tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the entry time is 0 from the entry time.
lex.dur: the length of time a person is in state lex.Cst, here measured in months, because time is.
lex.Cst: Current state, the state in which the lex.dur time is spent.
lex.Xst: eXit state, the state to which the person moves after the lex.dur time in lex. Cst.
lex.id: an id of each record in the source dataset. Can be explicitly set by id=.

Overkill?

Lexis object: Overview of FU

```
> summary(Ll)
Transitions:
From Alive Dead 
```

What is the average follow-up time for persons?

Explain the numbers in the graph.

Cox model using the Lexis-specific variables:

```
> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
+ lex.Xst == "Dead") ~ sex + age,
+ data = Ll)
```

Surv(from-time, to-time, event indicator)
Using the Lexis features:

```
> cL <- coxph.Lexis(Ll, tfl ~ sex + age)
survival::coxph analysis of Lexis object Ll:
Rates for the transition Alive->Dead
Baseline timescale: tfl
> round(cbind(ci.exp(cL),
+ ci.exp(cl)), 3)
```



```
age 1.017 0.999 1.036 1.017 0.999 1.036
```

The crude Poisson model:

```
> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = LI)
```

or even simpler, by using the Lexis features:

```
> pL <- glm.Lexis(Ll, ~ sex + age)
stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition: Alive->Dead
> round(cbind(ci.\operatorname{exp}(pL),
+ ci.exp(pc)), 3)
\begin{tabular}{lrrrrrr} 
& \(\exp (\) Est. ) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 0.033 & 0.010 & 0.103 & 0.033 & 0.010 & 0.103 \\
sexW & 0.618 & 0.446 & 0.858 & 0.618 & 0.446 & 0.858 \\
age & 1.016 & 0.998 & 1.034 & 1.016 & 0.998 & 1.034
\end{tabular}
```


Likelihood and records

Suppose a person is alive from t_{e} (entry) to t_{x} (exit) and that the person's status at t_{x} is d, where $d=0$ means alive and $d=1$ means dead. If we choose, say, two time points, t_{1}, t_{2} between t_{e} and t_{x}, standard use of conditional probability (formally, repeated use of Bayes' formula) gives

$$
\begin{aligned}
\mathrm{P}\left\{d \text { at } t_{x} \mid \text { entry at } t_{e}\right\}= & \mathrm{P}\left\{\text { survive }\left(t_{e}, t_{1}\right] \mid \text { alive at } t_{e}\right\} \times \\
& \mathrm{P}\left\{\text { survive }\left(t_{1}, t_{2}\right] \mid \text { alive at } t_{1}\right\} \times \\
& \mathrm{P}\left\{\text { survive }\left(t_{2}, t_{3}\right] \mid \text { alive at } t_{2}\right\} \times \\
& \mathrm{P}\left\{d \text { at } t_{x} \mid \text { alive at } t_{3}\right\}
\end{aligned}
$$

Probability

$$
\begin{array}{ll}
\mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{e}\right) & d \log (\lambda)-\lambda y \\
=\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) & \\
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) & \\
\times \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{2}\right) & +\lambda y_{1}(\lambda)-\lambda y_{2} \\
& \\
\hline d \log (\lambda)-\lambda y_{3}
\end{array}
$$

Probability

$$
\begin{array}{lr}
\text { Probability } & \text { log-Likelihood } \\
\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{\times} \mid \text {entry } t_{e}\right) & 0 \log (\lambda)-\lambda y \\
=\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) & =0 \log (\lambda)-\lambda y_{1} \\
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) & +0 \log (\lambda)-\lambda y_{2} \\
\times \mathrm{P}\left(\text { surv } t_{2} \rightarrow t_{x} \mid \text { entry } t_{2}\right) & +0 \log (\lambda)-\lambda y_{3}
\end{array}
$$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(\text { event at } t_{\times} \mid \text {entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right)
\end{aligned}
$$

log-Likelihood

$1 \log (\lambda)-\lambda y$
$=0 \log (\lambda)-\lambda y_{1}$

$$
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \quad+0 \log (\lambda)-\lambda y_{2}
$$

$$
\times \mathrm{P}\left(\text { event at } t_{x} \mid \text { entry } t_{2}\right) \quad+1 \log (\lambda)-\lambda y_{3}
$$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right)
\end{aligned}
$$

log-Likelihood
$d \log (\lambda)-\lambda y$
$=0 \log (\lambda)-\lambda y_{1}$
$+0 \log (\lambda)-\lambda y_{2}$

$$
\times \mathrm{P}\left(d \text { at } t_{x} \mid \text { entry } t_{2}\right) \quad+d \log (\lambda)-\lambda y_{3}
$$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right)
\end{aligned}
$$

$$
\times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \quad+0 \log \left(\lambda_{2}\right)-\lambda_{2} y_{2}
$$

$$
\times \mathrm{P}\left(d \text { at } t_{x} \mid \text { entry } t_{2}\right) \quad+d \log \left(\lambda_{3}\right)-\lambda_{3} y_{3}
$$

- allows different rates $\left(\lambda_{i}\right)$ in each interval

Baseline hazard: splitting time

```
> Sl <- splitMulti(Ll, tfl = 0:36)
> summary(Ll)
Transitions:
        To
\begin{tabular}{crrrrr} 
From & Alive & Dead & Records: & Events: & Risk time: \\
Alive & 63 & 165 & 228 & 165 & 2286.42
\end{tabular}
> summary(Sl)
Transitions:
        To
From Alive Dead Records: Events: Risk time: Persons:
    Alive 2234 165 2399 165 2286.42 
```

What happended to no. records?
What happended to amount of risk time?
What happended to no. events?

```
> wh <- names(Ll)[1:10] # names of variables in some order
```

> subset(Ll, lex.id == 10)[,wh]

> subset(Sl, lex.id == 10)[,wh]

	l lex.dur	lex.Cst	lex.Xst	lex.	inst	time	status	age	sex
163	01.0000000	Alive	Alive	10	7	5.453799	2	61	M
164	11.0000000	Alive	Alive	10	7	5.453799	2	61	M
165	21.0000000	Alive	Alive	10	7	5.453799	2	61	M
166	31.0000000	Alive	Alive	10	7	5.453799	2	61	M
167	41.0000000	Alive	Alive	10	7	5.453799	2	61	M
168	50.4537988	Alive	Dead	10	7	5.453799	2	61	M

In S1 each record now represents a small interval of follow-up for a person, so each person has many records.

Natural splines for baseline hazard

```
> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)
or even simpler:
```

```
> ps <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age)
stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition: Alive->Dead
> ci.exp(ps)
\begin{tabular}{|c|c|c|c|c|}
\hline & & exp(Est.) & 2.5\% & 97.5\% \\
\hline (Intercept) & & 0.0189837 & 0.005700814 & 0.06321569 \\
\hline Ns (tfl, knots \(=\) seq \((0\) & 36, 12))1 & 2.4038681 & 0.809442081 & 7.13896863 \\
\hline Ns(tfl, knots = seq(0) & 36, 12))2 & 4.1500822 & 0.436273089 & 39.47798357 \\
\hline Ns(tfl, knots \(=\) seq(0 & 36, 12))3 & 0.8398973 & 0.043928614 & 16.05849662 \\
\hline sexW & & 0.5987171 & 0.431232662 & 0.83124998 \\
\hline age & & 1.0165872 & 0.998377104 & 1.03512945 \\
\hline
\end{tabular}
```

Comparing with estimates from the Cox-model and from the model with constant baseline:

```
> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 3
```



```
age 1.017 0.999 1.036 1.017 0.998 1.035 1.016 0.998 1.034
```


But where is the baseline hazard?

ps is a model for the hazard so we can predict the value of it at defined values for the covariates in the model:

```
> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)
```

We can over-plot with the predicted rates from the model where mortality rates are constant, the only change is the model (pc instead of ps):

```
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
```


Here is the baseline hazard!

Survival function and hazard function

$$
S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right)
$$

Simple, but the Cl for $S(t)$ not so simple...
Implemented in the ci.surv function
Arguments: 1:model, 2:prediction data frame, 3:equidistance
Prediction data frame must correspond to a sequence of equidistant time points:

```
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1], col="blue")
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1, col="magenta")
```


Survival functions

Hazard and survival functions

```
> par(mfrow = c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
> # survival
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3, conf.int = FALSE)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 1, lty = 1)
```

Hazard and survival functions

K-M estimator and smooth Poisson model

Kaplan-Meier estimator and compared to survival from corresponding Poisson-model, which is one with time (tfl) as the only covariate:

```
> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
        lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
        family = poisreg,
        data = Sl)
> # hazard
> matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
> # survival from smooth model
> matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)
```


K-M estimator and smooth Poisson model

K-M estimator and smooth Poisson model

We can explore how the tightness of the knots in the smooth model influence the underlying hazard and the resulting survival function:

```
> zz <- function(dk) # distance between knots
+ {
+ par(mfrow=c(1,2))
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),
+ family = poisreg,
    data = Sl)
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=3)
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
+ lines(km, lwd = 2, col = "forestgreen")
+ }
> zz(12)
```


K-M estimator and smooth Poisson model

K-M estimator and smooth Poisson model

K-M estimator and smooth Poisson model

K-M estimator and smooth Poisson model

K-M estimator and smooth Poisson model

K-M estimator and smooth Poisson model

Survival analysis summary

- 1 to 1 correspondence between hazard function and survival function
- K-M and Cox use a very detailed baseline hazard (omits it)
- Smooth parametric hazard function more credible:
- Define Lexis object
- Split along time
- Fit Poisson model
- Prediction data frame
- ci.pred to get baseline rates
- ci.surv to get baseline survival

```
> data(lung)
> lung$sex <- factor(lung$sex, labels=c("M", "F"))
> Lx <- Lexis(exit = list(tfe=time),
+ exit.status = factor(status,labels = c("Alive", "Dead")),
+ data = lung)
> sL <- splitMulti(Lx, tfe=seq(0, 1200, 10))
```

Smooth parametric hazard function
> m0 <- glm.Lexis(sL, ~Ns(tfe, knots $=\operatorname{seq}(0,30,6) * 30)+$ sex + age)
Prediction data frame
$>n d<-$ data.frame (tfe $=\operatorname{seq}(0,900,20)+10$, sex $=" M "$, age = 65)

Predictions

```
> rate <- ci.pred(m0, nd) * 365.25 # per year, not per day
> surv <- ci.surv(m0, nd, int = 20)
```

Plot the rates
> matshade (nd\$tfe, rate, log = "y", plot = TRUE)
Plot the survival function
> matshade (nd\$tfe - 10, surv, ylim $=c(0,1)$, plot $=T R U E)$

```
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()
> data(DMlate)
> # str(DMlate)
> set.seed(1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> str(DMlate)
'data.frame': 2000 obs. of 7 variables:
    $ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 1 1 1 1 1 ...
    $ dobth: num 1964 1944 1957 1952 1952 ...
    $ dodm : num 2003 2006 2008 2007 2003 ...
    $ dodth: num NA ...
    $ dooad: num NA 2006 NA 2007 2006 ...
    $ doins: num NA NA NA 2008 NA ...
    $ dox : num 2010 2010 2010 2010 2010 ...
```


Lexis object from DM to Death

```
> Ldm <- Lexis(entry = list(per = dodm,
+ age = dodm - dobth,
+ tfd = 0),
        exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM","Dead")),
+ data = DMlate)
NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol
> summary(Ldm)
Transitions:
    To
From DM Dead Records: Events: Risk time: Persons:
    DM 1521 478 1999 478 10742.34 1999
```


Cut follow-up at the date of OAD

```
> Cdm <- cutLexis(Ldm,
+ cut = Ldm$dooad,
timescale = "per",
    new.state = "OAD")
> summary (Cdm)
Transitions:
            To
From DM OAD Dead Records: Events: Risk time: Persons:
    DM 685 634 226 
    OAD 
    Sum 685 1470 478 2633 1112 10742.3 1999
```


Cut follow-up at the date of OAD, dooad

> subset(Ldm, lex.id \%in\% c(2:3,20))[,c(1:7,12)]

	per	age	tfd	lex.dur	lex. Cst	lex. Xst	lex.id	dooad
235221	2005.6	61.517	0	4.3532	DM	DM	2	2005.8
230872	2007.9	51.097	0	2.1109	DM	DM	3	NA
114618	2006.0	73.183	0	3.7919	DM	Dead	20	2007.0

> subset (Cdm, lex.id \%in\% c(2:3,20)) [, c(1:7,12)]

	per	age	tfd lex.dur	lex. Cst	lex. Xst	lex.id	dooad	
2	2005.6	61.517	0.00000	0.13415	DM	OAD	2	2005.8
2001	2005.8	61.651	0.13415	4.21903	OAD	OAD	2	2005.8
3	2007.9	51.097	0.00000	2.11088	DM	DM	3	NA
20	2006.0	73.183	0.00000	1.01848	DM	OAD	20	2007.0
2019	2007.0	74.201	1.01848	2.77344	OAD	Dead	20	2007.0

Restrict to those alive in DM

```
> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)
Transitions:
            To
From DM OAD Dead Records: Events: Risk time: Persons:
    DM 685 634 226 1545 860 5414.3 1545
> par(mfrow=c(1,2))
> boxes(Cdm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
```


Transitions in Cdm and Adm

Survival function?

$$
\begin{aligned}
& S(t)=\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
& S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right) \\
& S(t)=\exp \left(-\int_{0}^{t} \mu(u) \mathrm{d} u\right)
\end{aligned}
$$

Survival function?

- Regarding either Dead or OAD as censorings - or neither?
- Simple survival: what is the probability of being in each of the states Alive and Dead
-depends on one rate, Alive \rightarrow Dead
- Competing risks: what is the probability of being in each of the states DM, OAD and Dead
-depends on two rates, DM \rightarrow OAD and DM \rightarrow Dead

Survival function and Cumulative risk function

survfit does the trick; the requirements are:

1. (start, stop, event) arguments to Surv
2. the third argument to the Surv function is a factor
3. an id argument is given, pointing to an id variable that links together records belonging to the same person.
4. the initial state (DM) must be the first level of the factor lex.Xst

Survival function and Cumulative risk function

> levels(Adm\$lex.Xst)
[1] "DM" "OAD" "Dead"

```
> m3 <- survfit(Surv(tfd, tfd + lex.dur, lex.Xst) ~ 1,
```

$+\quad i d=1 e x . i d$,
$+\quad$ data $=$ Adm $)$
> \# names (m3)
> m3\$states
[1] "(s0)" "OAD" "Dead"
> head(cbind(time $=$ m3\$time, m3\$pstate))
time
[1,] 0.00273790 .998710 .00129450 .00000000
$[2] \quad$,
[3,] 0.00821360 .989000 .00906150 .00194175
[4,] 0.01095140 .987700 .00970870 .00258900
[5,] 0.01368930 .983820 .01359220 .00258900
$[6] \quad$,

Survival function and cumulative risks-formulae

$$
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{\mathrm{OAD}}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
S(t) & +R_{\text {0AD }}(t)+R_{\text {Dead }}(t)=1, \quad \forall t
\end{aligned}
$$

Survival function and cumulative risks

```
> par( mfrow=c(1,2) )
> matplot(m3$time, m3$pstate,
+ type="s", lty=1, lwd=4,
+ col=c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim=c(0,1), yaxs="i" )
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text(rep(12,3), c(0.9,0.3,0.6), levels(Cdm))
> box(bty="o")
> par( mfrow = c(1,2) )
> matshade(m3$time, cbind(m3$pstate,
+ m3$lower,
    m3$upper) [,c(1,4,7,2,5,8,3,6,9)],
    plot = TRUE, lty = 1, lwd = 4,
    col = c("ForestGreen","red","black"),
    xlim=c(0,15), xaxs="i",
    ylim = c(0,1), yaxs = "i")
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text(rep(12,3), c(0.9,0.3,0.6), levels(Cdm))
> box(bty="o")
```


Survival and cumulative risk functions

73/97

Survival function and cumulative risks-don't

$$
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{0 \mathrm{AD}}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
& \neq \int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s) \mathrm{d} s\right) \mathrm{d} u \\
& =1-\exp \left(-\int_{0}^{t} \lambda(s) \mathrm{d} s\right)-\text { nice formula, but wrong! }
\end{aligned}
$$

Probability of OAD assuming Dead does not exist and rate of OAD unchanged!

Survival function and cumulative risks-don't

```
> m2 <- survfit(Surv(tfd,
    tfd + lex.dur,
    lex.Xst == "OAD" ) ~ 1,
    data = Adm)
M2 <- survfit(Surv(tfd,
    tfd + lex.dur,
    lex.Xst == "Dead") ~ 1,
    data = Adm)
par(mfrow = c(1,2))
mat2pol(m3$pstate, c(2,3,1), x = m3$time,
    col = c("red", "black", "transparent"),
    xlim=c(0,15), xaxs="i",
    yaxs = "i", xlab = "time since DM", ylab = "" )
    lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
    col = c("black","red","transparent"),
    xlim=c(0,15), xaxs="i",
    yaxs = "i", xlab = "time since DM", ylab = "" )
    lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )
```


Cause-specific rates

- There is nothing wrong with modeling the cause-specific event-rates, the problem lies in how you transform them into probabilities.
- The relevant model for a competing risks situation normally consists of separate models for each of the cause-specific rates.
- . . . not for technical or statistical reasons, but for substantial reasons:
it is unlikely that rates of different types of event (OAD initiation and death, say) depend on time in the same way.

Cause-specific rates

```
> Sdm <- splitMulti(Adm, tfd = seq(0, 20, 0.1))
> summary(Adm)
Transitions:
            To
From DM OAD Dead Records: Events: Risk time: Persons:
    DM 685 634 226 1545 860 5414.3 1545
> summary(Sdm)
Transitions:
            To
From DM OAD Dead Records: Events: Risk time: Persons:
    DM 54064 634 226 54924 860 5414.3 1545
```


Cause-specific rates

```
> round(cbind(
+ with(subset(Sdm, lex.Xst == "OAD" ), quantile(tfd + lex.dur, 0:5/5)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:5/5))), 2)
\begin{tabular}{lrr} 
& {\([, 1]\)} & {\([, 2]\)} \\
\(0 \%\) & 0.00 & 0.01 \\
\(20 \%\) & 0.09 & 0.51 \\
\(40 \%\) & 0.24 & 1.73 \\
\(60 \%\) & 1.27 & 3.58 \\
\(80 \%\) & 3.37 & 6.20 \\
\(100 \%\) & 14.31 & 11.86
\end{tabular}
>okn <-c(0, 0.5, 3, 10)
> dkn <- c(0, 2.0, 5, 9)
> OAD.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = okn), to = "OAD" )
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->OAD
> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), to = "Dead")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead
```


Cause-specific rates

```
int <- 0.01
nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( OAD.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
plot = TRUE,
    yaxs="i", ylim = c(0, 20),
    # log = "y", ylim = c(2, 20),
        col = rep(c("red","black"), 2), lwd = 3)
```


Survival and cumulative risk functions

Survival and cumulative risk functions

Integrals with R

- Integrals look scary to many people, but they are really just areas under curves.
- The key is to understand how a curve is represented in R .
- A curve of the function $\mu(t)$ is a set of two vectors: one vector of t s and one vector $y=\mu(t)$ s.
- When we have a model such as the glm above that estimates the mortality as a function of time (tfd), we can get the mortality as a funtion of time by first choosing the timepoints, say from 0 to 15 years in steps of 0.01 year (≈ 4 days), using ci.pred
- Then use the formuale with all the integrals to get the state probabilities.

Integrals with R

```
> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd) [,1]
> head(cbind(t, mu))
\begin{tabular}{lrr} 
& t & mu \\
1 & 0.00 & 0.069190 \\
2 & 0.01 & 0.068853 \\
3 & 0.02 & 0.068517 \\
4 & 0.03 & 0.068183 \\
5 & 0.04 & 0.067851 \\
6 & 0.05 & 0.067520
\end{tabular}
> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, 0.1), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
> abline(v=0:50/10, col="white")
```


Integrals with R

Numerical integration with R

```
> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10))
[1] 1
mid(x)
```

[1] 1.52 .53 .54 .56 .08 .5
$\operatorname{mid}(x)$ is a vector that is 1 shorter than the vector x, just as $\operatorname{diff}(x)$ is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first 500 intervals, corresponding to the first 501 interval endpoints:

```
> cbind(diff(t), mid(mu))[1:5,]
    [,1] [,2]
20.01 0.069022
30.01 0.068685
40.01 0.068350
50.01 0.068017
& \cap \cap1 \cap กด7ด&ん
```


Numerical integration with R

In practice we will want the integral function of μ, so for every t we want $M(t)=\int_{0}^{t} \mu(s) \mathrm{d}(s)$. This is easily accomplished by the function cumsum:
> Mu <- c(0, cumsum(diff(t) * mid(mu)))
> head (cbind (t, Mu))

```
tr
```

20.010 .00069022
30.020 .00137707
40.030 .00206057
50.040 .00274074
60.050 .00341760

Note the first value which is the integral from 0 to 0 , so by definition 0 .

Cumulative risks from parametric models

If we have estimates of λ and μ as functions of time, we can derive the cumulative risks.

In practice this will be by numerical integration; compute the rates at closely spaced intervals and evaluate the integrals as sums. This is easy.
but what is not so easy is to come up with confidence intervals for the cumulative risks.

Simulation of cumulative risks: ci.Crisk

1. generate a random vector from the multivariate normal distribution with mean equal to the parameters of the model, and variance-covariance equal to the estimated variance-covariance of the parameter estimates
2. use this to generate a simulated set of rates $(\lambda(t), \mu(t))$, evaluated a closely spaced times
3. use these in numerical integration to derive state probabilities at these times
4. repeat 1000 times, say, to obtain 1000 sets of state probabilities at these times
5. use these to derive confidence intervals for the state probabilities as the 2.5 and 97.5 percentiles of the state probabilities at each time

Cumulative risks from parametric models

```
> cR <- ci.Crisk(mods = list(OAD = OAD.glm,
+ Dead = Dead.glm),
+ nd = nd)
```

NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
> $\operatorname{str}(c R)$
List of 4
\$ Crisk: num [1:1501, 1:3, 1:3] $10.9920 .9840 .9760 .969 \ldots$
..- attr(*, "dimnames")=List of 3
.. . . \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. .. \$ cause: chr [1:3] "Surv" "OAD" "Dead"
.. .. \$: chr [1:3] "50\%" "2.5\%" "97.5\%"
\$ Srisk: num [1:1501, 1:2, 1:3] $00.0006920 .0013750 .0020490 .002715 \ldots$
..- attr(*, "dimnames")=List of 3
.. . .\$ tfd' : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. .. \$ cause: chr [1:2] "Dead" "Dead+OAD"
.. .. \$: chr [1:3] "50\%" "2.5\%" "97.5\%"
\$ Stime: num [1:1501, 1:3, 1:3] 0 $0.009960 .019840 .029640 .03937 \ldots$
..- attr(*, "dimnames")=List of 3
.. .. \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...

Cumulative risks from parametric models

So now plot the cumulative risks of being in each of the states (the Crisk component):

```
> matshade(cR$time, cbind(cR$Crisk[,1,],
+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))
```


Survival and cumulative risk functions

Stacked probabilities: (matrix 2 polygons)

```
> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
```

1st argument to mat2pol must be a 2-dimensional matrix, with rows representing the x-axis of the plot, and columns states.
The component Srisk has the confidence limits of the stacked probabilities:

```
> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
> matlines(as.numeric(dimnames(cR$Srisk)[["tfd"]]),
+ cbind(cR$Srisk[,"Dead" ,2:3],
cR$Srisk[,"Dead+OAD",2:3])
    lty = 3, lwd = 2, col = gray(0.7))
```


Survival and cumulative risk functions

Expected life time: using simulated objects

The areas between the lines (up to say 10 years) are expected sojourn times, that is:

- expected years alive without OAD
- expected years lost to death without OAD
- expected years after OAD, including years dead after OAD

Not all of these are of direct relevance; actually only the first may be so.

They are available (with simulation-based confidence intervals) in the component of $c R$, Stime (Sojourn time).

Expected life time: using simulated objects

A relevant quantity would be the expected time alive without OAD during the first 5,10 and 15 years:

```
>str(cR$Stime)
    num [1:1501, 1:3, 1:3] 0 0.00996 0.01984 0.02964 0.03937 ...
    - attr(*, "dimnames")=List of 3
    ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
    ..$ cause: chr [1:3] "Surv" "OAD" "Dead"
    ..$ : chr [1:3] "50%" "2.5%" "97.5%"
> round(cR$Stime[c("5","10","15"),"Surv",], 1)
tfd 50% 2.5% 97.5%
    5
```



```
    15 6.4 6.0
```

