Multistate models:

Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales in Register Research with R and Epi::Lexis

Bendix Carstensen Steno Diabetes Center Copenhagen Herlev, Denmark http://BendixCarstensen.com Dorte Vistisen Steno Diabetes Center Copenhagen

SDCG, Nuuk, 1-3 March 2022

R installed

We will be using the Epi package
> library(Epi)
> library(tidyverse)
and sometimes also fundtions from the tidyverse package - but beware some conflicts exist

R is a calculator-use the console

```
> 3+2
[1] 5
> x <- 3 * 7
> X
[1] 21
> 5 / 12 -> z
>
[1] 0.4166667
```

\mathbf{R} operates on objects - vectors, data frames, models etc.

Everyting is a function

Fit a regression model
$>m 1<-\operatorname{lm}\left(y^{\sim} x, \operatorname{data}=d d\right)$
uses the variables y and x from the data frame dd and saves the result in $\mathrm{m} 1, \mathrm{~m} 1$ is an object of class 1 m

But it prints nothing.
You get the result printed by typing the name of the object:
> $m 1$
Call:
$\operatorname{lm}\left(f o r m u l a=y{ }^{\sim} x\right.$, data $=$ dd)
Coefficients:
(Intercept)
-2.6360

A summary method exists for some objects

```
> summary(m1)
Call:
lm(formula = y ~ x, data = dd)
```

Residuals:

Min	1Q	Median	3Q	Max
-0.83379	-0.31168	-0.06909	0.30041	0.87754

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -2.63598 $0.21710 \quad-12.143 .05 \mathrm{e}-16$

Residual standard error: 0.4394 on 48 degrees of freedom Multiple R-squared: 0.7954, Adjusted R-squared: 0.7911 F-statistic: 186.6 on 1 and 48 DF, p-value: < $2.2 \mathrm{e}-16$

A str method exists for all objects

```
    > str(m1)
    List of 12
    $ coefficients : Named num [1:2] -2.636 0.389
        ..- attr(*, "names")= chr [1:2] "(Intercept)" "x"
    $ residuals : Named num [1:50] 0.597 0.878 0.499 0.112 0.142 ...
    ..- attr(*, "names")= chr [1:50] "1" "2" "3" "4"
    $ effects : Named num [1:50] -1.4519 6.0016 0.49 -0.0472 0.1142 ...
        ..- attr(*, "names")= chr [1:50] "(Intercept)" "x" "" "" ...
    $ rank : int 2
    $ fitted.values: Named num [1:50] -0.5893 0.0796 0.5955 -0.5328 0.4572 ...
        ..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
    $ assign : int [1:2] 0 1
    $ qr :List of 5
        ..$ qr : num [1:50, 1:2] -7.071 0.141 0.141 0.141 0.141 ...
        .. ..- attr(*, "dimnames")=List of 2
        .. .. ..$ : chr [1:50] "1" "2" "3" "4" ...
        .. .. ..$ : chr [1:2] "(Intercept)" "x"
        .. ..- attr(*, "assign")= int [1:2] 0 1
        ..$ qraux: num [1:2] 1.14 1
        $ pivot: int [1:2] 1 2
```

Rintro

When something goes wrong

... you want to see how your data looks - is it as you expected?
Use these functions to see what you have:

```
> summary(dd)
> str(dd)
> dim(dd)
> length(dd)
> names(dd)
> class(dd)
> mode(dd)
```


You can create your own functions

Calculate logit (log-odds) from probability:

```
> p2l <- function(pr)
+ \{
\(+\quad\) odds <- log(pr / (1 - pr))
\(+\quad\) odds
\(+\quad\}\)
```

function name is p21 (probability 2 logit) argument name is pr
function value is the value of the last expression in the function body (which is what is between the $\} \mathrm{s}$):
> $p 21(p=0.37)$
[1] -0.5322168
argument value is 0.37

Your turn - practicals chapter 1!

A multistate model

A multistate model

- Not really a model

A multistate model

- Not really a model
- What is the data:

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
. . . same as:

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)
- What are the target parameters:

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)
- What are the target parameters:
- Rates (the arrows)

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)
- What are the target parameters:
- Rates (the arrows)
- State probabilities (of being in a state at a given time)

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)
- What are the target parameters:
- Rates (the arrows)
- State probabilities (of being in a state at a given time)
- Survival probability

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)
- What are the target parameters:
- Rates (the arrows)
- State probabilities (of being in a state at a given time)
- Survival probability
- Sojourn times (how long time do you spend in a state)

A multistate model

- Not really a model
- What is the data:
- Sequence of transitions: (when, from, to)
...same as:
- sequence of: (state time, next state)
- What are the target parameters:
- Rates (the arrows)
- State probabilities (of being in a state at a given time)
- Survival probability
- Sojourn times (how long time do you spend in a state)
- Probability of ever visiting a state

What is a statistical model

- Specification of a statistical machinery that could have generated data

What is a statistical model

- Specification of a statistical machinery that could have generated data
- ...so when we have a statistical model we can simulate a data set

What is a statistical model

- Specification of a statistical machinery that could have generated data
- ...so when we have a statistical model we can simulate a data set
- The basis for th elikelihood of data is the statistical model \Rightarrow Estimation of parameters in the model

What is a statistical model

- Specification of a statistical machinery that could have generated data
- ...so when we have a statistical model we can simulate a data set
- The basis for th elikelihood of data is the statistical model \Rightarrow Estimation of parameters in the model
- Parameter estimates needed for prediction of rates (hazards)

Survival data

Persons enter the study at some date.
Persons exit at a later date, either dead or alive.
Observation:
Actual time span to death ("event")
or
Some time alive ("at least this long")

Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- Time from randomisation to death in a cancer clinical trial
- Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- Time to re-offending after being released from jail

Each line a person
Each blob a death
Study ended at 31 Dec. 2003

Ordered by date of entry

Most likely the order in your database.

Timescale changed

 to"Time since diagnosis".

Patients ordered by survival time.

Survival times grouped into bands of survival.

Patients ordered by survival status within each band.

Survival after Cervix cancer

	Stage I				Stage II		
Year	N	D	L		N	D	L
1	110	5	5		234	24	3
2	100	7	7		207	27	11
3	86	7	7		169	31	9
4	72	3	8		129	17	7
5	61	0	7		105	7	13
6	54	2	10		85	6	6
7	42	3	6		73	5	6
8	33	0	5		62	3	10
9	28	0	4		49	2	13
10	24	1	8		34	4	6

Life-table estimator of death probability: $D /(N-L / 2)$
Estimated risk of death in year 1 for Stage I women is $5 / 107.5=0.0465$
surv-ratEstimated 1 year survival is $1-0.0465=0.9535$

Survival after Cervix cancer

	Stage I				Stage II		
Year	N	D	L		N	D	L
1	110	5	5		234	24	3
2	100	7	7		207	27	11
3	86	7	7		169	31	9

Estimated risk in year 1 for Stage I women is $5 / 107.5=0.0465$
Estimated risk in year 2 for Stage I women is $7 / 96.5=0.0725$
Estimated risk in year 3 for Stage I women is $7 / 82.5=0.0848$
Estimated 1 year survival is $1-0.0465=0.9535$
Estimated 2 year survival is $0.9535 \times(1-0.0725)=0.8843$
Estimated 3 year survival is $0.8843 \times(1-0.0848)=0.8093$
This is the life-table estimator.

- No need to use 1 year intervals
- Very small intervals will leave at most 1 censoring or 1 death in each
- Interval with 1 death and n_{t} persons at risk:

$$
\mathrm{P}\{\text { Death }\}=1 / n_{t}
$$

- corresponding death probability $\left(n_{t}-1\right) / n_{t}$
- if you multiply these over times with event:

$$
S(t)=\prod_{t \text { with event }}\left(n_{t}-1\right) / n_{t}
$$

... you have the Kaplan-Meier estimator

- looks complicated bút just a question of book keeping

Prerequisites

```
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
```


The lung data set

```
> library(survival)
> data(lung)
> lung$sex <- factor(lung$sex,
+ levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)
> head(lung)
\begin{tabular}{rrrrrrrrrr} 
& inst & time & status & age & sex & ph.ecog & ph.karno & pat.karno meal.cal & wt.loss \\
1 & 3 & 10.053388 & 2 & 74 & \(M\) & 1 & 90 & 100 & 1175
\end{tabular}
```


Survival function

- Use survfit to construct the Kaplan-Meier estimator of overall survival:

```
> ?Surv
> ?survfit
> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km
    n events median 0.95LCL 0.95UCL
228.00 165.00 10.18 9.36 11.93
> # summary(km) # very long output
```

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

We can plot the survival curve-this is the default plot for a survfit object:
> plot(km)
What is the median survival? What does it mean?

We can plot the survival curve-this is the default plot for a survfit object:
> plot(km)
What is the median survival? What does it mean? Explore if survival patterns between men and women are different:

```
> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms
Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)
\begin{tabular}{lrrrrr} 
& n & events & median & \(0.95 L C L\) & \(0.95 U C L\) \\
sex=M & 138 & 112 & 8.87 & 6.97 & 10.2 \\
sex=W & 90 & 53 & 14.00 & 11.43 & 18.1
\end{tabular}
```

We see that men have worse survival than women, but they are also a bit older (age is age at diagnosis of lung cancer):

```
> with(lung, tapply(age, sex, mean))
```

| M | W |
| ---: | ---: | ---: |
| 63.34058 | 61.07778 |

Formally there is a significant difference in survival between men and women

```
> survdiff(Surv(time, status==2) ~ sex, data = lung)
Call:
survdiff(formula = Surv(time, status == 2) ~ sex, data = lung)
\begin{tabular}{lrrrrr} 
& N & Observed & Expected & \((0-E)^{\wedge} 2 / E\) & \((0-E)^{\wedge} 2 / V\) \\
sex \(=\mathrm{M}\) & 138 & 112 & 91.6 & 4.55 & 10.3 \\
sex \(=W\) & 90 & 53 & 73.4 & 5.68 & 10.3
\end{tabular}
Chisq= 10.3 on 1 degrees of freedom, p= 0.001
```


Rates and rate-ratios

- Occurrence rate:

$$
\lambda(t)=\lim _{h \rightarrow 0} \mathrm{P}\{\text { event in }(t, t+h] \mid \text { alive at } t\} / h
$$

—measured in probability per time: time $^{-1}$

- observation in a survival study: (exit status, time alive)
- empirical rate $(d, y)=$ (deaths, time)
- the Cox model is a model for rates as function of time (t) and covariates $\left(x_{1}, x_{2}\right)$:

$$
\lambda(t, x)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

-mortality depends on the person's sex and age, say.

- Data looks like data for a K-M analysis plus covariate values

Rates and rate-ratios: Simple Cox model

Now explore how sex and age (at diagnosis) influence the mortality-note that in a Cox-model we are addressing the mortality rate and not the survival:

```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
> ci.exp(c0)
> ci.exp(c1)
```

What variables from lung are we using?

```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + age, data = lung)
> summary(c1)
Call:
coxph(formula = Surv(time, status == 2) ~ sex + age, data = lung)
    n=228, number of events= 165
\begin{tabular}{lrrrrr} 
& coef & \(\exp\) (coef) & se(coef) & z & \(\operatorname{Pr}(>|z|)\) \\
sexW & -0.513219 & 0.598566 & 0.167458 & -3.065 & 0.00218 \\
age & 0.017045 & 1.017191 & 0.009223 & 1.848 & 0.06459 \\
& & & & & \\
& \(\exp\) (coef) & \(\exp (-\) coef \()\) & lower .95 & upper .95 \\
sexW & 0.5986 & 1.6707 & 0.4311 & 0.8311 \\
age & 1.0172 & 0.9831 & 0.9990 & 1.0357
\end{tabular}
Concordance \(=0.603\) (se \(=0.025\) )
Likelihood ratio test= 14.12 on 2 df , \(\mathrm{p}=9 \mathrm{e}-04\)
Wald test \(=13.47\) on 2 df , \(\mathrm{p}=0.001\)
Score (logrank) test \(=13.72\) on \(2 \mathrm{df}, \quad \mathrm{p}=0.001\)
```

$>c i . \exp (c 0)$

	exp(Est.)	2.5%	97.5%
sexW	0.5880028	0.4237178	0.8159848
> ci. $\exp (c 1)$			
sexp(Est.)	2.5%	97.5%	
sexW	0.598566	0.4310936	0.8310985
age	1.017191	0.9989686	1.0357467

What do these estimates mean?

$$
\lambda(t, x)=\lambda_{0}(t) \exp \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)
$$

Where is β_{1} ? Where is β_{2} ? Where is $\lambda_{0}(t)$?
What is the mortality RR for a 10 year age difference?

If mortality is assumed constant $(\lambda(t)=\lambda)$, then the likelihood for the Cox-model is equivalent to a Poisson likelihood, which can be fitted using the poisreg family from the Epi package:

```
> ?poisreg
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # Poisson
\begin{tabular}{lrrr} 
& \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 0.03255152 & 0.01029228 & 0.1029511 \\
sexW & 0.61820515 & 0.44555636 & 0.8577537 \\
age & 1.01574132 & 0.99777446 & 1.0340317
\end{tabular}
> ci.exp(c1) # Cox
\begin{tabular}{lrrr} 
& exp(Est.) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.598566 & 0.4310936 & 0.8310985 \\
age & 1.017191 & 0.9989686 & 1.0357467
\end{tabular}
```

Sex and age effects are quite close between the Poisson and the Cox models.

Poisson model has an intercept term, the estimate of the (assumed) constant underlying mortality.
The risk time part of the response (second argument in the cbind) was entered in units of months (remember we rescaled in the beginning?), the (Intercept) (taken from the ci.exp) is a rate per 1 person-month.

What age and sex does the (Intercept) refer to?

```
> ci.exp(p1) # Poisson
```

	\exp (Est.)	2.5%	97.5%
(Intercept)	0.03255152	0.01029228	0.1029511
sexW	0.61820515	0.44555636	0.8577537
age	1.01574132	0.99777446	1.0340317

poisreg and poisson

```
poisreg: cbind(d,y) ~ ...
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
poisson: d ~ ... + offset(log(y))
> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
```


Representation of follow-up: Lexis object

```
> Ll <- Lexis (exit = list(tfl = time),
\(+\quad\) exit.status \(=\) factor(status,
\(+\quad\) levels = 1:2,
    labels = c("Alive", "Dead")),
    data \(=\) lung)
```

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.
> head(LI)
tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex ph.ecog ph.k

10 | 10.053388 | Alive Dead | 1 | 3 | 10.053388 | 74 | M | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2	0	14.948665	Alive	Dead	2	3	14.948665	2	68	M
3	0	33.182752	Alive	Alive	3	3	33.182752	1	56	M
4	0	6.899384	Alive	Dead	4	5	6.899384	2	57	M

 meal.cal wt.loss
 | 1 | 1175 | NA |
| :--- | :--- | :--- |
| 2 | 1225 | 15 |

New variables in a Lexis object

tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the entry time is 0 from the entry time. But it defines a timescale.
lex.dur: the length of time a person is in state lex. Cst, here measured in months, because time is.
lex.Cst: Current state, the state in which the lex.dur time is spent.
lex.Xst: eXit state, the state to which the person moves after the lex. dur time in lex. Cst.
lex.id: an id of each record in the source dataset. Can be explicitly set by $i d=$.

Lexis object: Overview of follow-up

Overkill?
The point is that the machinery generalizes to multistate data.

Lexis object: Overview of follow-up

Overkill?

The point is that the machinery generalizes to multistate data.

```
> summary(Ll)
Transitions:
    To
\begin{tabular}{crrrrr} 
From & Alive Dead & Records: & Events: Risk time: & Persons: \\
Alive & 63 & 165 & 228 & 165 & 2286.42
\end{tabular}
```

What is the average follow-up time for persons?
> boxes(Ll, boxpos = TRUE, scale.Y = 12, digits. $R=2$)

Explain the numbers in the graph.

Cox model using the Lexis-specific variables:

```
> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
    lex.Xst == "Dead") ~ sex + age,
data = Ll)
```

Surv(from-time, to-time, event indicator)

Using the Lexis features:

```
> cL <- coxph.Lexis(Ll, tfl ~ sex + age)
survival::coxph analysis of Lexis object Ll:
Rates for the transition Alive->Dead
Baseline timescale: tfl
> round(cbind(ci.exp(cL),
+ ci.exp(cl)), 3)
\begin{tabular}{lrrrrrr} 
& exp(Est.) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.599 & 0.431 & 0.831 & 0.599 & 0.431 & 0.831 \\
age & 1.017 & 0.999 & 1.036 & 1.017 & 0.999 & 1.036
\end{tabular}
```


The crude Poisson model:

```
> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = LI)
```

or even simpler, by using the Lexis features:

```
> pL <- glm.Lexis(Ll, ~ sex + age)
stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition: Alive->Dead
> round(cbind(ci.exp(pL),
+ ci.exp(pc)), 3)
\begin{tabular}{lrrrrrr} 
& \(\exp (\) Est. ) & \(2.5 \%\) & \(97.5 \%\) & \(\exp (\) Est.) & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 0.033 & 0.010 & 0.103 & 0.033 & 0.010 & 0.103 \\
sexW & 0.618 & 0.446 & 0.858 & 0.618 & 0.446 & 0.858 \\
age & 1.016 & 0.998 & 1.034 & 1.016 & 0.998 & 1.034
\end{tabular}
```


Poisson and Cox model

The crude Poisson model is a Cox-model with the (quite brutal) assumption that baseline rate is constant over time.

Poisson and Cox model

The crude Poisson model is a Cox-model with the (quite brutal) assumption that baseline rate is constant over time.

But results are similar:

```
> round(cbind(ci.exp(cL),
+ ci.exp(pL)[-1,]), 3)
\begin{tabular}{lrrrrrr} 
& exp(Est.) & \(2.5 \%\) & \(97.5 \%\) & \(\exp (\) Est. ) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.599 & 0.431 & 0.831 & 0.618 & 0.446 & 0.858 \\
age & 1.017 & 0.999 & 1.036 & 1.016 & 0.998 & 1.034
\end{tabular}
```


Likelihood and records

Suppose a person is alive from t_{e} (entry) to t_{x} (exit) and that the person's status at t_{x} is d, where $d=0$ means alive and $d=1$ means dead. If we choose, say, two time points, t_{1}, t_{2} between t_{e} and t_{x}, standard use of conditional probability (formally, repeated use of Bayes' formula) gives

$$
\begin{aligned}
\mathrm{P}\left\{d \text { at } t_{x} \mid \text { entry at } t_{e}\right\}= & \mathrm{P}\left\{\text { survive }\left(t_{e}, t_{1}\right] \mid \text { alive at } t_{e}\right\} \times \\
& \mathrm{P}\left\{\text { survive }\left(t_{1}, t_{2}\right] \mid \text { alive at } t_{1}\right\} \times \\
& \mathrm{P}\left\{\text { survive }\left(t_{2}, t_{3}\right] \mid \text { alive at } t_{2}\right\} \times \\
& \mathrm{P}\left\{d \text { at } t_{x} \mid \text { alive at } t_{3}\right\}
\end{aligned}
$$

Rates and likelihood

For a start assume that the mortality is constant over time $\lambda(t)=\lambda:$

$$
\begin{aligned}
& \mathrm{P}\{\text { death during }(t, t+h]\} \approx \lambda h \\
& \quad \Rightarrow \mathrm{P}\{\text { survive }(t, t+h]\} \approx 1-\lambda h
\end{aligned}
$$

where the approximation gets better the smaller h is.

Dividing follow-up time

- Survival for a time span: $y=t_{x}-t_{e}$

Dividing follow-up time

- Survival for a time span: $y=t_{x}-t_{e}$
- Subdivided in N intervals, each of length $h=y / N$

Dividing follow-up time

- Survival for a time span: $y=t_{x}-t_{e}$
- Subdivided in N intervals, each of length $h=y / N$
- Survival probability for the entire span from t_{e} to t_{x} is the product of probabilities of surviving each of the small intervals, conditional on being alive at the beginning each interval:

$$
\mathrm{P}\left\{\text { survive } t_{e} \text { to } t_{x}\right\} \approx(1-\lambda h)^{N}=\left(1-\frac{\lambda y}{N}\right)^{N}
$$

Dividing follow-up time

- From mathematics it is known that $(1+x / n)^{n} \rightarrow \exp (x)$ as $n \rightarrow \infty$ (some define $\exp (x)$ this way).

Dividing follow-up time

- From mathematics it is known that $(1+x / n)^{n} \rightarrow \exp (x)$ as $n \rightarrow \infty$ (some define $\exp (x)$ this way).
- So if we divide the time span y in small pieces we will have that $N \rightarrow \infty$:

$$
\begin{equation*}
\mathrm{P}\left\{\text { survive } t_{e} \text { to } t_{x}\right\} \approx\left(1-\frac{\lambda y}{N}\right)^{N} \rightarrow \exp (-\lambda y), \quad N \rightarrow \infty \tag{2}
\end{equation*}
$$

Dividing follow-up time

- From mathematics it is known that $(1+x / n)^{n} \rightarrow \exp (x)$ as $n \rightarrow \infty$ (some define $\exp (x)$ this way).
- So if we divide the time span y in small pieces we will have that $N \rightarrow \infty$:

$$
\begin{equation*}
\mathrm{P}\left\{\text { survive } t_{e} \text { to } t_{x}\right\} \approx\left(1-\frac{\lambda y}{N}\right)^{N} \rightarrow \exp (-\lambda y), \quad N \rightarrow \infty \tag{2}
\end{equation*}
$$

- The contribution to the likelihood from a person observed for a time span of length y is $\exp (-\lambda y)$, and the contribution to the log-likelihood is therefore $-\lambda y$.

Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be

Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be
- the probability surviving till just before the end of the interval,

Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be
- the probability surviving till just before the end of the interval,
- multiplied by

Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be
- the probability surviving till just before the end of the interval,
- multiplied by
- the probability of dying in the last tiny instant (of length ϵ) of the interval

Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be
- the probability surviving till just before the end of the interval,
- multiplied by
- the probability of dying in the last tiny instant (of length ϵ) of the interval
- The probability of dying in this tiny instant is $\lambda \epsilon$

Dividing follow-up time

- A person dying at the end of the last interval, the contribution to the likelihood from the last interval will be
- the probability surviving till just before the end of the interval,
- multiplied by
- the probability of dying in the last tiny instant (of length ϵ) of the interval
- The probability of dying in this tiny instant is $\lambda \epsilon$
- log-likelihood contribution from this last instant is $\log (\lambda \epsilon)=\log (\lambda)+\log (\epsilon)$.

Total likelihood

The total likelihood for one person is the product of all these terms from the follow-up intervals (i) for the person; and the log-likelihood (ℓ) is therefore:

$$
\begin{aligned}
\ell(\lambda) & =-\lambda \sum_{i} y_{i}+\sum_{i} d_{i} \log (\lambda)+\sum_{i} d_{i} \log (\epsilon) \\
& =\sum_{i}\left(d_{i} \log (\lambda)-\lambda y_{i}\right)+\sum_{i} d_{i} \log (\epsilon)
\end{aligned}
$$

Total likelihood

The total likelihood for one person is the product of all these terms from the follow-up intervals (i) for the person; and the log-likelihood (ℓ) is therefore:

$$
\begin{aligned}
\ell(\lambda) & =-\lambda \sum_{i} y_{i}+\sum_{i} d_{i} \log (\lambda)+\sum_{i} d_{i} \log (\epsilon) \\
& =\sum_{i}\left(d_{i} \log (\lambda)-\lambda y_{i}\right)+\sum_{i} d_{i} \log (\epsilon)
\end{aligned}
$$

The last term does not depend on λ, so can be ignored

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
log-Likelihood
$d \log (\lambda)-\lambda y$

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
log-Likelihood
$d \log (\lambda)-\lambda y$

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{e} \rightarrow t_{1} \mid$ entry $\left.t_{e}\right)$
log-Likelihood
$d \log (\lambda)-\lambda y$

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{e} \rightarrow t_{1} \mid$ entry $\left.t_{e}\right)$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
log-Likelihood
$d \log (\lambda)-\lambda y$

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{e} \rightarrow t_{1} \mid$ entry $\left.t_{e}\right)$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
$\times \mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{2}\right)$
log-Likelihood
$d \log (\lambda)-\lambda y$

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{e} \rightarrow t_{1} \mid$ entry $\left.t_{e}\right)$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
$\times \mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{2}\right)$
log-Likelihood

$$
d \log (\lambda)-\lambda y
$$

$$
=0 \log (\lambda)-\lambda y_{1}
$$

$$
+0 \log (\lambda)-\lambda y_{2}
$$

$$
+d \log (\lambda)-\lambda y_{3}
$$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{\times} \mid \text {entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \times \mathrm{P}\left(\text { surv } t_{2} \rightarrow t_{\times} \mid \text {entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood
$0 \log (\lambda)-\lambda y$
$=0 \log (\lambda)-\lambda y_{1}$
$+0 \log (\lambda)-\lambda y_{2}$
$+0 \log (\lambda)-\lambda y_{3}$

Probability

P (event at $t_{x} \mid$ entry $\left.t_{e}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{e} \rightarrow t_{1} \mid$ entry $\left.t_{e}\right)$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
$\times \mathrm{P}\left(\right.$ event at $t_{\times} \mid$entry $\left.t_{2}\right)$
log-Likelihood
$1 \log (\lambda)-\lambda y$
$=0 \log (\lambda)-\lambda y_{1}$
$+0 \log (\lambda)-\lambda y_{2}$
$+1 \log (\lambda)-\lambda y_{3}$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood

$$
d \log (\lambda)-\lambda y
$$

$$
=0 \log (\lambda)-\lambda y_{1}
$$

$$
+0 \log (\lambda)-\lambda y_{2}
$$

$$
+d \log (\lambda)-\lambda y_{3}
$$

Probability

$\mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{e}\right)$
$=\mathrm{P}\left(\right.$ surv $t_{e} \rightarrow t_{1} \mid$ entry $\left.t_{e}\right)$
$\times \mathrm{P}\left(\right.$ surv $t_{1} \rightarrow t_{2} \mid$ entry $\left.t_{1}\right)$
$\times \mathrm{P}\left(d\right.$ at $t_{\mathrm{x}} \mid$ entry $\left.t_{2}\right)$
log-Likelihood

$$
d \log (\lambda)-\lambda y
$$

$$
=0 \log (\lambda)-\lambda y_{1}
$$

$$
+0 \log (\lambda)-\lambda y_{2}
$$

$$
+d \log (\lambda)-\lambda y_{3}
$$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{e}\right) \\
& \quad=\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood

$$
\begin{aligned}
& d \log (\lambda)-\lambda y \\
& \quad=0 \log \left(\lambda_{1}\right)-\lambda_{1} y_{1} \\
& \quad+0 \log \left(\lambda_{2}\right)-\lambda_{2} y_{2} \\
& \quad+d \log \left(\lambda_{3}\right)-\lambda_{3} y_{3}
\end{aligned}
$$

Probability

$$
\begin{aligned}
& \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{e}\right) \\
& =\mathrm{P}\left(\text { surv } t_{e} \rightarrow t_{1} \mid \text { entry } t_{e}\right) \\
& \quad \times \mathrm{P}\left(\text { surv } t_{1} \rightarrow t_{2} \mid \text { entry } t_{1}\right) \\
& \quad \times \mathrm{P}\left(d \text { at } t_{\times} \mid \text {entry } t_{2}\right)
\end{aligned}
$$

log-Likelihood

$$
\begin{aligned}
& d \log (\lambda)-\lambda y \\
& \quad=0 \log \left(\lambda_{1}\right)-\lambda_{1} y_{1} \\
& \quad+0 \log \left(\lambda_{2}\right)-\lambda_{2} y_{2} \\
& \quad+d \log \left(\lambda_{3}\right)-\lambda_{3} y_{3}
\end{aligned}
$$

- allows different rates $\left(\lambda_{i}\right)$ in each interval

Baseline hazard: splitting time

```
> Sl <- splitMulti(Ll, tfl = 0:36)
> summary(Ll)
Transitions:
    To
\begin{tabular}{crrrrr} 
From & Alive & Dead & Records: & Events: & Risk time:
\end{tabular} Persons:
> summary(Sl)
Transitions:
        To
From Alive Dead Records: Events: Risk time: Persons:
```

What happended to no. records?
What happended to amount of risk time?
What happended to no. events?
> wh <- names(Ll)[1:10] \# names of variables in some order
> subset(Ll, lex.id == 10)[,wh]

```
    tfl lex.dur lex.Cst lex.Xst lex.id inst 
```

> subset(Sl, lex.id == 10)[,wh]

	tfl lex.dur	lex.Cst	lex.Xst	lex.id	inst	time	status		
163	01.0000000	Alive	Alive	10	7	5.453799	2	61	M
164	11.0000000	Alive	Alive	10	7	5.453799	2	61	
165	21.0000000	Alive	Alive	10	7	5.453799	2	61	
166	31.0000000	Alive	Alive	10	7	5.453799	2	61	
167	41.0000000	Alive	Alive	10	7	5.453799	2	61	
168	50.4537988	Alive	Dead	10	7	5.453799	2	61	

In Sl each record now represents a small interval of follow-up for a person, so each person has many records.

Natural splines for baseline hazard

```
> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)
or even simpler:
```

$>\operatorname{ps}<-\operatorname{glm} . L e x i s(S l, \quad \sim N s(t f l, k n o t s=\operatorname{seq}(0,36,12))+$ sex + age $)$
stats::glm Poisson analysis of Lexis object Sl with log link:
Rates for the transition: Alive->Dead

```
> ci.exp(ps)
```

(Intercept)

\exp (Est.)	2.5%	97.5%
0.0189837	0.005700814	0.06321569
2.4038681	0.809442081	7.13896863
4.1500822	0.436273089	39.47798357
0.8398973	0.043928614	16.05849662
0.5987171	0.431232662	0.83124998
1.0165872	0.998377104	1.03512945

Comparing with estimates from the Cox-model and from the model with constant baseline:

```
> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 3)
\begin{tabular}{lrrrrrrrrr} 
& exp(Est.) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) & \(\exp\) (Est.) & \(2.5 \%\) & \(97.5 \%\) \\
sexW & 0.599 & 0.431 & 0.831 & 0.599 & 0.431 & 0.831 & 0.618 & 0.446 & 0.858 \\
age & 1.017 & 0.999 & 1.036 & 1.017 & 0.998 & 1.035 & 1.016 & 0.998 & 1.034
\end{tabular}
```


But where is the baseline hazard?

ps is a model for the hazard so we can predict the value of it at defined values for the covariates in the model:

```
> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)
```

We can over-plot with the predicted rates from the model where mortality rates are constant, the only change is the model (pc instead of ps):

```
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
```


Here is the baseline hazard!

surv What are the units on the y-axis? Describe the mortality rates

Survival function and hazard function

$$
S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right)
$$

Survival function and hazard function

$$
S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right)
$$

Simple, but the Cl for $S(t)$ not so simple...
Implemented in the ci.surv function
Arguments: 1:model, 2:prediction data frame, 3:equidistance
Prediction data frame must correspond to a sequence of equidistant time points:

```
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1], col="blue")
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1, col="magenta")
```


Survival functions

Hazard and survival functions

```
> par(mfrow = c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> #
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
> #
> # survival
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3, conf.int = FALSE)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 1, lty = 1)
```


Hazard and survival functions

K-M estimator and smooth Poisson model

Kaplan-Meier estimator and compared to survival from

 corresponding Poisson-model, which is one with time (tfl) as the only covariate:```
> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = Sl)
> # hazard
> matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
> # survival from smooth model
> matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)
```


## K-M estimator and smooth Poisson model




## K-M estimator and smooth Poisson model

We can explore how the tightness of the knots in the smooth model influence the underlying hazard and the resulting survival function:

```
> zz <- function(dk) # distance between knots
+ {
+ par(mfrow=c(1,2))
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),
+ family = poisreg,
 data = Sl)
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=3)
+
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
+ lines(km, lwd = 2, col = "forestgreen")
+ }

\section*{K-M estimator and smooth Poisson model}

\section*{Survival analysis summary}
- 1 to 1 correspondence between hazard function and survival function
- K-M and Cox use a very detailed baseline hazard (omits it)
- Smooth parametric hazard function more credible:
- Define Lexis object
- Split along time
- Fit Poisson model
- Prediction data frame
- ci.pred to get baseline rates
- ci.surv to get baseline survival
```

> data(lung)
> lung$sex <- factor(lung$sex, labels=c("M", "F"))
> Lx <- Lexis(exit = list(tfe=time),

+ exit.status = factor(status,labels = c("Alive", "Dead")),
+ data = lung)
> sL <- splitMulti(Lx, tfe=seq(0, 1200, 10))

```

\section*{Smooth parametric hazard function}
```

> m0 <- glm.Lexis(sL, ~ Ns(tfe, knots = seq(0, 1000, 200)) + sex + age)

```

\section*{Prediction data frame}
> nd <- data.frame (tfe \(=\operatorname{seq}(0,900,20)+10\), sex \(=" M "\), age = 65)

\section*{Predictions}
> rate <- ci.pred(m0, nd) * 365.25 \# per year, not per day
> surv <- ci.surv(m0, nd, int = 20)

\section*{Plot the rates}
> matshade(nd\$tfe, rate, log = "y", plot = TRUE)

\section*{Plot the survival function}
\(>\) matshade (nd\$tfe - 10, surv, ylim \(=c(0,1), p l o t=T R U E)\)
> library(survival)
> library(Epi)
> library(popEpi)
> \# popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()
> data(DM1ate)
> \# str(DMlate)
> set.seed (1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
\(>\operatorname{str}(\) DMlate \()\)
'data.frame': 2000 obs. of 7 variables:
\$ sex : Factor w/ 2 levels "M", "F": 2121111111 ...
\$ dobth: num \(19641944195719521952 \ldots\)
\$ dodm : num 20032006200820072003 ...
\$ dodth: num NA ...
\$ dooad: num NA 2006 NA 20072006 ...
\$ doins: num NA NA NA 2008 NA ...
\$ dox : num 20102010201020102010 ...

\section*{Lexis object from DM to Death}
```

> Ldm <- Lexis (entry = list(per = dodm,
$+\quad$ age $=$ dodm - dobth,
$t f d=0)$,
exit $=$ list $(p e r=$ dox $)$,
exit.status $=$ factor(!is.na(dodth),
labels = c("DM","Dead")),
data = DMIate)

```

NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol
> summary (Ldm)
Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
\(\begin{array}{llllll}\text { DM } & 1521 & 478 & 1999 & 478 & 10742.34\end{array}\)

\section*{Cut follow-up at the date of \(O A D\)}
```

> Cdm <- cutLexis(Ldm,

+ cut = Ldm\$dooad,
+ timescale = "per",
+ new.state = "OAD")
> summary(Cdm)

```
Transitions:
 To
\begin{tabular}{crrrrrrr}
From & DM & OAD & Dead & Records: & Events: Risk time: & Persons: \\
DM & 685 & 634 & 226 & 1545 & 860 & 5414.3 & 1545 \\
OAD & 0 & 836 & 252 & 1088 & 252 & 5328.1 & 1088 \\
Sum 685 & 1470 & 478 & 2633 & 1112 & 10742.3 & 1999
\end{tabular}

\section*{Cut follow-up at the date of OAD, dooad}
```

> subset(Ldm, lex.id %in% c(2:3,20))[,c(1:7,12)]

|  | per | age tfd | lex.dur | lex. Cst | lex. Xst | lex.id | dooad |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 235221 | 2005.6 | 61.517 | 0 | 4.3532 | DM | DM | 2 |
| 2005.8 |  |  |  |  |  |  |  |
| 230872 | 2007.9 | 51.097 | 0 | 2.1109 | DM | DM | 3 |

> subset(Cdm, lex.id %in% c(2:3,20))[,c(1:7,12)]

|  | per | age | tfd | lex.dur | lex. Cst | lex. Xst | lex.id | dooad |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 2005.6 | 61.517 | 0.00000 | 0.13415 | DM | OAD | 2 | 2005.8 |
| 2001 | 2005.8 | 61.651 | 0.13415 | 4.21903 | OAD | OAD | 2 | 2005.8 |
| 3 | 2007.9 | 51.097 | 0.00000 | 2.11088 | DM | DM | 3 | NA |
| 20 | 2006.0 | 73.183 | 0.00000 | 1.01848 | DM | OAD | 20 | 2007.0 |
| 2019 | 2007.0 | 74.201 | 1.01848 | 2.77344 | OAD | Dead | 20 | 2007.0 |

```

\section*{Restrict to those alive in DM}
```

> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)
Transitions:
To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414.3 1545
> par(mfrow=c(1,2))
> boxes(Cdm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)

```

\section*{Transitions in Cdm and Adm}

\section*{Survival function?}
\[
\begin{aligned}
& S(t)=\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
& S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right) \\
& S(t)=\exp \left(-\int_{0}^{t} \mu(u) \mathrm{d} u\right)
\end{aligned}
\]

\section*{Survival function?}
- Regarding either Dead or OAD as censorings - or neither?
- Simple survival: what is the probability of being in each of the states Alive and Dead
-depends on one rate, Alive \(\rightarrow\) Dead
- Competing risks: what is the probability of being in each of the states DM, OAD and Dead
-depends on two rates, \(\mathrm{DM} \rightarrow\) OAD and DM \(\rightarrow\) Dead

\section*{Survival function and Cumulative risk function}
survfit does the trick; the requirements are:
1. (start, stop, event) arguments to Surv
2. the third argument to the Surv function is a factor
3. an id argument is given, pointing to an id variable that links together records belonging to the same person.
4. the initial state (DM) must be the first level of the factor lex. Xst

\section*{Survival function and Cumulative risk function}
```

> levels(Adm\$lex.Xst)
[1] "DM" "OAD" "Dead"
> m3 <- survfit(Surv(tfd, tfd + lex.dur, lex.Xst) ~ 1,

+ id = lex.id,
+ data = Adm)
> \# names(m3)
> m3$states
[1] "(s0)" "OAD" "Dead"
> head(cbind(time = m3$time, m3\$pstate))
time
[1,] 0.0027379 0.99871 0.0012945 0.00000000
[2,] 0.0054757 0.99288 0.0064725 0.00064725
[3,] 0.0082136 0.98900 0.0090615 0.00194175
[4,] 0.0109514 0.98770 0.0097087 0.00258900
[5,] 0.0136893 0.98382 0.0135922 0.00258900
[6,] 0.0164271 0.98058 0.0168285 0.00258900

```

\section*{Survival function and cumulative risks-formulae}
\[
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{\text {OAD }}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u
\end{aligned}
\]

\section*{Survival function and cumulative risks-formulae}
\[
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{\text {OAD }}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
S(t) & +R_{\text {OAD }}(t)+R_{\text {Dead }}(t)=1, \quad \forall t
\end{aligned}
\]

\section*{Survival function and cumulative risks}
```

> par( mfrow=c(1,2) )
> matplot(m3$time, m3$pstate,

+ type="s", lty=1, lwd=4,
+ col=c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim=c(0,1), yaxs="i" )
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text(rep(12,3), c(0.9,0.3,0.6), levels(Cdm))
> box(bty="o")
> par( mfrow = c(1,2) )
> matshade(m3$time, cbind(m3$pstate,
+ m3$lower,
m3$upper) [, c(1,4,7,2,5,8,3,6,9)],
plot = TRUE, lty = 1, lwd = 4,
col = c("ForestGreen","red","black"),
xlim=c(0,15), xaxs="i",
ylim =c(0,1), yaxs = "i")
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text(rep(12,3), c(0.9,0.3,0.6), levels(Cdm))
> box(bty="o")

```

\section*{Survival and cumulative risk functions}

\section*{Survival and cumulative risk functions}

\section*{Survival function and cumulative risks-don't}
\[
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{\text {0AD }}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
& \neq \int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s) \mathrm{d} s\right) \mathrm{d} u \\
& =1-\exp \left(-\int_{0}^{t} \lambda(s) \mathrm{d} s\right)
\end{aligned}
\]

\section*{Survival function and cumulative risks-don't}
\[
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{0 \mathrm{AD}}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
& \neq \int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s) \mathrm{d} s\right) \mathrm{d} u \\
& =1-\exp \left(-\int_{0}^{t} \lambda(s) \mathrm{d} s\right)-\text { nice formula, but wrong! }
\end{aligned}
\]

\section*{Survival function and cumulative risks-don't}
\[
\begin{aligned}
S(t) & =\exp \left(-\int_{0}^{t} \lambda(u)+\mu(u) \mathrm{d} u\right) \\
R_{\text {Dead }}(t) & =\int_{0}^{t} \mu(u) S(u) \mathrm{d} u \\
R_{0 \mathrm{AD}}(t) & \left.=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u\right) \\
& =\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u \\
& \neq \int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s) \mathrm{d} s\right) \mathrm{d} u \\
& =1-\exp \left(-\int_{0}^{t} \lambda(s) \mathrm{d} s\right)-\text { nice formula, but wrong! }
\end{aligned}
\]

Probability of OAD assuming Dead does not exist and rate of OAD unchanged!

\section*{Survival function and cumulative risks-don't}
```

> m2 <- survfit(Surv(tfd,

+ tfd + lex.dur,
+ lex.Xst == "OAD" ) ~ 1,
+ data = Adm)
> M2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ 1,
+ data = Adm)
> par(mfrow = c(1,2))
> mat2pol(m3$pstate, c(2,3,1), x = m3$time,
+ col = c("red", "black", "transparent"),
xlim=c(0,15), xaxs="i",
yaxs = "i", xlab = "time since DM", ylab = "" )
lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
> mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
+ col = c("black","red","transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "" )
> lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )

```

\section*{Survival and cumulative risk functions}

\section*{Cause-specific rates}
- There is nothing wrong with modeling the cause-specific event-rates, the problem lies in how you transform them into probabilities.
- The relevant model for a competing risks situation normally consists of separate models for each of the cause-specific rates.
- ... not for technical or statistical reasons, but for substantial reasons:
it is unlikely that rates of different types of event (OAD initiation and death, say) depend on time in the same way.

\section*{Cause-specific rates}
> Sdm <- splitMulti (Adm, tfd \(=\operatorname{seq}(0,20,0.1))\)
> summary(Adm)
Transitions:
To
From DM OAD Dead Records: Events: Risk time: Persons: \(\begin{array}{llllll}\text { DM } & 685 & 634 & 226 & 1545 & 860\end{array}\)
> summary (Sdm)
Transitions:
To
From DM OAD Dead Records: Events: Risk time: Persons:
\(\begin{array}{llllll}\text { DM } & 54064 & 634 & 226 & 54924 & 860\end{array}\)

\section*{Cause-specific rates}
> round (cbind (
+ with(subset(Sdm, lex.Xst == "OAD"), quantile(tfd + lex.dur, 0:5/5)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:5/5))), 2)
\begin{tabular}{lrr}
& {\([, 1]\)} & {\([, 2]\)} \\
\(0 \%\) & 0.00 & 0.01 \\
\(20 \%\) & 0.09 & 0.51 \\
\(40 \%\) & 0.24 & 1.73 \\
\(60 \%\) & 1.27 & 3.58 \\
\(80 \%\) & 3.37 & 6.20 \\
\(100 \%\) & 14.31 & 11.86
\end{tabular}
> okn <- c (0, 0.5, 3, 10)
\(>d k n<-c(0,2.0,5,9)\)
> OAD.glm <- glm.Lexis (Sdm, ~ Ns (tfd, knots = okn), to = "OAD")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->OAD
> Dead.glm <- glm.Lexis (Sdm, ~ Ns (tfd, knots = dkn), to = "Dead")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead

\section*{Cause-specific rates}
```

> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( OAD.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
> matshade(nd\$tfd,

+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+ yaxs="i", ylim = c(0, 20),
+ 
# log = "y", ylim = c(2, 20),

+ col = rep(c("red","black"), 2), lwd = 3)

```

\section*{Survival and cumulative risk functions}

\section*{Survival and cumulative risk functions}

\section*{Integrals with R}
- Integrals look scary to many people, but they are really just areas under curves.
- The key is to understand how a curve is represented in R.
- A curve of the function \(\mu(t)\) is a set of two vectors: one vector of \(t \mathrm{~s}\) and one vector \(y=\mu(t) \mathrm{s}\).
- When we have a model such as the glm above that estimates the mortality as a function of time (tfd), we can get the mortality as a funtion of time by first choosing the timepoints, say from 0 to 15 years in steps of 0.01 year (\(\approx 4\) days), using ci.pred
- Then use the formuale with all the integrals to get the state probabilities.

\section*{Integrals with R}
```

> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd)[,1]
> head(cbind(t, mu))
lrrr
> plot(t, mu, type="l", lwd = 3,

+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, 0.1), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
> abline(v=0:50/10, col="white")

```

Integrals with R

\section*{Numerical integration with R}
```

> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10))
[1] 1
> mid(x)
[1] 1.5 2.5 3.5 4.5 6.0 8.5

```
\(\operatorname{mid}(x)\) is a vector that is 1 shorter than the vector \(x\), just as \(\operatorname{diff}(x)\) is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first 500 intervals, corresponding to the first 501 interval endpoints:
```

    [,1] [,2]
    20.010 .069022
30.010 .068685
40.010 .068350
50.010 .068017

```
> cbind(diff(t), mid(mu))[1:5,]

\section*{Numerical integration with R}

In practice we will want the integral function of \(\mu\), so for every \(t\) we want \(M(t)=\int_{0}^{t} \mu(s) \mathrm{d}(s)\). This is easily accomplished by the function cumsum:
```

> head(cbind(t, Mu))

|  | t | Mu |
| ---: | ---: | ---: |
|  | 0.00 | 0.00000000 |
| 2 | 0.01 | 0.00069022 |
| 3 | 0.02 | 0.00137707 |
| 4 | 0.03 | 0.00206057 |
| 5 | 0.04 | 0.00274074 |
| 6 | 0.05 | 0.00341760 |

```
\(>M u<-c(0\), cumsum \((\operatorname{diff}(t) * \operatorname{mid}(m u)))\)

Note the first value which is the integral from 0 to 0 , so by definition 0 .

\section*{Cumulative risks from parametric models}

If we have estimates of \(\lambda\) and \(\mu\) as functions of time, we can derive the cumulative risks.
In practice this will be by numerical integration; compute the rates at closely spaced intervals and evaluate the integrals as sums. This is easy.
but what is not so easy is to come up with confidence intervals for the cumulative risks.

\section*{Simulation of cumulative risks: ci.Crisk}
1. generate a random vector from the multivariate normal distribution with mean equal to the parameters of the model, and variance-covariance equal to the estimated variance-covariance of the parameter estimates
2. use this to generate a simulated set of rates \((\lambda(t), \mu(t))\), evaluated a closely spaced times
3. use these in numerical integration to derive state probabilities at these times
4. repeat 1000 times, say, to obtain 1000 sets of state probabilities at these times
5. use these to derive confidence intervals for the state probabilities as the 2.5 and 97.5 percentiles of the state probabilities at each time

\section*{Cumulative risks from parametric models}
```

> cR <- ci.Crisk(mods = list(OAD = OAD.glm,
$+\quad$ Dead $=$ Dead.glm),
$+\quad n d=n d)$

```
NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
\(>\operatorname{str}(c R)\)
List of 4
 \$ Crisk: num [1:1501, 1:3, 1:3] \(10.9920 .9840 .9760 .969 \ldots\)
 ..- attr(*, "dimnames")=List of 3
 \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
 \$ cause: chr [1:3] "Surv" "OAD" "Dead"
 \$: chr [1:3] "50\%" "2.5\%" "97.5\%"
 \$ Srisk: num [1:1501, 1:2, 1:3] 0 \(0.0006920 .0013750 .0020490 .002715 \ldots\)
 ..- attr(*, "dimnames")=List of 3
 \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
 \$ cause: chr [1:2] "Dead" "Dead+OAD"
 \(\$\) : chr [1:3] "50\%" "2.5\%" "97.5\%"
 \$ Stime: num [1:1501, 1:3, 1:3] 0 \(0.009960 .019840 .029640 .03937 \ldots\)
 ..- attr(*, "dimnames")=List of 3
 \$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...

\section*{Cumulative risks from parametric models}

So now plot the cumulative risks of being in each of the states (the Crisk component):
```

> matshade(cR$time, cbind(cR$Crisk[,1,],

+ cR\$Crisk[,2,],
+ cR\$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))

```

\section*{Survival and cumulative risk functions}

\section*{Stacked probabilities: (matrix 2 polygons)}
> mat2pol(cR\$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])

1st argument to mat2pol must be a 2-dimensional matrix, with rows representing the \(x\)-axis of the plot, and columns states.
The component Srisk has the confidence limits of the stacked probabilities:
```

> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
> matlines(as.numeric(dimnames(cR$Srisk)[["tfd"]]),

+ cbind(cR\$Srisk[,"Dead" ,2:3],
+ cR\$Srisk[,"Dead+OAD",2:3]),
+ lty = 3, lwd = 2, col = gray(0.7))

```

\section*{Survival and cumulative risk functions}

\section*{Survival and cumulative risk functions}

\section*{Expected life time: using simulated objects}

The areas between the lines (up to say 10 years) are expected sojourn times, that is:
- expected years alive without OAD
- expected years lost to death without OAD
- expected years after OAD, including years dead after OAD

Not all of these are of direct relevance; actually only the first may be so.

They are available (with simulation-based confidence intervals) in the component of \(c R\), Stime (Sojourn time).

\section*{Expected life time: using simulated objects}

A relevant quantity would be the expected time alive without OAD during the first 5,10 and 15 years:
```

> str(cR$Stime)
    num [1:1501, 1:3, 1:3] 0 0.00996 0.01984 0.02964 0.03937 \ldots
    - attr(*, "dimnames")=List of 3
        ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
..\$ cause: chr [1:3] "Surv" "OAD" "Dead"
..\$ : chr [1:3] "50%" "2.5%" "97.5%"
> round(cR\$Stime[c("5","10","15"),"Surv",], 1)
tfd 50% 2.5% 97.5%
5 3.2 3.1 3.3
10}5.1 4.9 5.3
15 6.4 6.0 6.7

```

\section*{Background: Steno 2 trial}
- Clinical trial for diabetes ptt. with kidney disease (micro-albuminuria)
- 160 ptt. randomised \(1: 1\) to either of
- Conventional treatment
- Intensified multifactorial treament
- Recuitment 1993-1994
- Trial period 1993-2001
- Latest follow-up till 2018

\section*{Steno 2 trial: goal}
- Is there a treatment effect on:
- CVD mortality
- non-CVD mortality
- Albuminuria state
- Rate-ratios
- Life times
- Changes in clinical parameters
```

> data(steno2)
> steno2 <- cal.yr(steno2)
> steno2 <- transform(steno2,

+ doEnd = pmin(doDth, doEnd, na.rm = TRUE))
> str(steno2)
'data.frame': 160 obs. of 14 variables:
\$ id : num 1 2 3 4 5 6 7 8 9 10
\$ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1...
\$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
\$ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
\$ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
\$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...
\$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
\$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
\$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
\$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
\$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
\$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
\$ doEnd : 'cal.yr' num 2015 2015 2002 2003 1998 ...
\$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...

```

\section*{A Lexis object}
```

> L2 <- Lexis (entry = list(per = doBase,
$+\quad$ age = doBase - doBth,
tfi $=0$ ),
exit $=$ list $($ per $=$ doEnd $)$,
exit.status $=$ factor (deathCVD + !is.na(doDth),
labels=c ("Mic", "D(oth)", "D(CVD)")),
id = id,
data $=$ steno2)

```

NOTE: entry.status has been set to "Mic" for all.

Explain the coding of exit.status.

\section*{A Lexis object}
```

> summary(L2, t = TRUE)
Transitions:

```

```

Timescales:
per age tfi

```

How many persons are there in the cohort?
How many deaths are there in the cohort?
How much follow-up time is there in the cohort?
How many states are there in the model (so far)?

\section*{Albuminuria status}
```

> data(st2alb) ; head(st2alb, 3)
id doTr state
1 1 1993-06-12 Mic
2 1 1995-05-13 Norm
3 2000-01-26 Mic
> cut2 <- rename(cal.yr(st2alb),

+ lex.id = id,
+ cut = doTr,
+ new.state = state)
> with(cut2, addmargins(table(table(lex.id))))
1
4

```

\section*{What does this table mean?}

\section*{Albuminuria status as states}
```

> L2$per <- as.numeric(L2$per)
> cut2$cut <- as.numeric(cut2$cut)
> L3 <- rcutLexis(L2, cut2, time = "per")
> summary(L3)

```

Transitions:
To
\begin{tabular}{lrrrrrrrrr}
From & Mic & Norm Mac & D(oth) & D(CVD) & Records: & Events: & Risk time: & Persons: \\
Mic & 299 & 72 & 65 & 27 & 13 & 476 & 177 & 1381.57 & 160 \\
Norm & 31 & 90 & 5 & 14 & 7 & 147 & 57 & 607.86 & 69 \\
Mac & 20 & 3 & 44 & 14 & 18 & 99 & 55 & 427.16 & 64 \\
Sum & 350 & 165 & 114 & 55 & 38 & 722 & 289 & 2416.59 & 160
\end{tabular}
> boxes (L3, boxpos = TRUE, cex = 0.8)

\section*{What's wrong with this}

\section*{What's in jump}
```

> (jump <-

+ subset(L3, (lex.Cst == "Norm" \& lex.Xst == "Mac") |
+ (lex.Xst == "Norm" \& lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])

|  | lex.id | per | lex.dur | lex.Cst | lex. Xst |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 291 | 70 | 1999.487 | 2.6748802 | Mac | Norm |
| 353 | 86 | 2001.759 | 12.8158795 | Norm | Mac |
| 506 | 130 | 2000.910 | 1.8781656 | Mac | Norm |
| 511 | 131 | 1997.756 | 4.2354552 | Norm | Mac |
| 525 | 136 | 1997.214 | 0.4709103 | Mac | Norm |
| 526 | 136 | 1997.685 | 4.2436687 | Norm | Mac |
| 654 | 171 | 1996.390 | 5.3388090 | Norm | Mac |
| 676 | 175 | 2004.585 | 9.8836413 | Norm | Mac |

```
—and what will you do about it?

\section*{How to fix things}
```

> set.seed(1952)
> xcut <- transform(jump,

+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic")
> xcut <- select(xcut, c(lex.id, cut, new.state))
> L4 <- rcutLexis(L3, xcut)
> L4 <- Relevel(L4, c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> summary(L4)
Transitions:
To

| From | Norm Mic | Mac | D (CVD) | D(oth) | Records: | Events: Risk time: | Persons: |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Norm | 90 | 35 | 0 | 6 | 13 | 144 | 54 | 581.04 | 66 |
| Mic | 72 | 312 | 65 | 14 | 30 | 493 | 181 | 1435.14 | 160 |
| Mac | 0 | 22 | 41 | 18 | 12 | 93 | 52 | 400.41 | 60 |
| Sum | 162 | 369 | 106 | 38 | 55 | 730 | 287 | 2416.59 | 160 |

```

\section*{Plot the boxes}
```

> boxes (L4, boxpos $=$ list $(x=c(20,20,20,80,80)$,
$+$
$+$
$+$
show. $B E=" n z "$,
scale. $R=100$, digits. $R=2$,
cex $=0.9$, pos.arr $=0.3$ )

```


Explain all the numbers in the graph.
Describe the overall effect of albuminuria on the two mortality rates.

\section*{Modeling transition rates}
- A model with a smooth effect of timescales on the rates require follow-up in small bits

\section*{Modeling transition rates}
- A model with a smooth effect of timescales on the rates require follow-up in small bits
- Achieved by splitLexis (or splitMulti from popEpi)

\section*{Modeling transition rates}
- A model with a smooth effect of timescales on the rates require follow-up in small bits
- Achieved by splitLexis (or splitMulti from popEpi)
- Compare the Lexis objects
> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/2))
> summary (L4)
Transitions:
To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
\(\begin{array}{llllllllll}\text { Norm } & 90 & 35 & 0 & 6 & 13 & 144 & 54 & 581.04 & 66\end{array}\)
\(\begin{array}{lllllllll}\text { Mic } & 72 & 312 & 65 & 14 & 30 & 493 & 181 & 1435.14\end{array}\)
\(\begin{array}{llllllllll}\text { Mac } & 0 & 22 & 41 & 18 & 12 & 93 & 52 & 400.41 & 60\end{array}\)
\(\begin{array}{llllllllll}\text { Sum } & 162 & 369 & 106 & 38 & 55 & 730 & 287 & 2416.59 & 160\end{array}\)
> summary (S4)
Transitions:
To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
\(\begin{array}{lllllllll}\text { Norm } & 1252 & 35 & 0 & 6 & 13 & 1306 & 54 & 581.04\end{array}\)
\(\begin{array}{llllllllll}\text { Mic } & 72 & 3101 & 65 & 14 & 30 & 3282 & 181 & 1435.14 & 160\end{array}\)
\(\begin{array}{lllllllll}\text { Mac } & 0 & 22 & 844 & 18 & 12 & 896 & 52 & 400.41\end{array}\)
\(\begin{array}{llllllllll}\text { Sum } & 1324 & 3158 & 909 & 38 & 55 & 5484 & 287 & 2416.59 & 160\end{array}\)

\section*{How the split works:}
```

> subset(L4, lex.id == 96)[,1:7]

```
\begin{tabular}{rrrrrrrr}
& per & age & tfi & lex.dur & lex.Cst & lex. Xst & lex.id \\
417 & 1993.650 & 51.53183 & 0.0000000 & 0.4544832 & Mic & Norm & 96 \\
418 & 1994.104 & 51.98631 & 0.4544832 & 2.5790554 & Norm & Norm & 96 \\
419 & 1996.683 & 54.56537 & 3.0335387 & 1.9028063 & Norm & Norm & 96 \\
420 & 1998.586 & 56.46817 & 4.9363450 & 2.8966461 & Norm & D(CVD) & 96
\end{tabular}
> subset (S4, lex.id \(==96)[c(1: 5, N A, 17: 19), 1: 7]\)
\begin{tabular}{lrrrrrrr}
& lex.id & per & age & tfi & lex.dur & lex. Cst & lex. Xst \\
3138 & 96 & 1993.650 & 51.53183 & 0.0000000 & 0.45448323 & Mic & Norm \\
3139 & 96 & 1994.104 & 51.98631 & 0.4544832 & 0.04551677 & Norm & Norm \\
3140 & 96 & 1994.150 & 52.03183 & 0.5000000 & 0.50000000 & Norm & Norm \\
3141 & 96 & 1994.650 & 52.53183 & 1.0000000 & 0.50000000 & Norm & Norm \\
3142 & 96 & 1995.150 & 53.03183 & 1.5000000 & 0.50000000 & Norm & Norm \\
NA & NA & NA & NA & NA & NA & <NA> & <NA> \\
3154 & 96 & 2000.150 & 58.03183 & 6.5000000 & 0.50000000 & Norm & Norm \\
3155 & 96 & 2000.650 & 58.53183 & 7.0000000 & 0.50000000 & Norm & Norm \\
3156 & 96 & 2001.150 & 59.03183 & 7.5000000 & 0.33299110 & Norm & D(CVD)
\end{tabular}
\(>\) subset \((L 4\), lex.id \(==159)[, 1: 7]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & per & age & & fi lex.dur & ur lex.Cst & lex. Xst & lex.id & \\
\hline & 646 & 1994.025 & 67.49624 & 0.000000 & 0000.1341547 & 47 Mic & Mic & 159 & \\
\hline & 647 & 1994.159 & 67.63039 & 0.134154 & 2.6639288 & 88 Mic & Norm & 159 & \\
\hline & 648 & 1996.823 & 70.29432 & 2.798083 & 2.3737166 & 66 Norm & Mic & 159 & \\
\hline & 649 & 1999. 196 & 72.66804 & 5.171800 & 01 7.3210130 & 30 Mic & Mac & 159 & \\
\hline & 650 & 2006. 517 & 79.98905 & 12.492813 & 313.9479808 & 08 Mac & D (CVD) & 159 & \\
\hline & \(>\) su & bset (S4, & lex.id = & \(=159)[c(1\) & (1:2,NA, 6:7, & , NA , 12: 13, & NA, 27:28 & , NA, \(36:\) & \\
\hline & & lex.id & per & age & tfi & lex.dur & lex.Cst & lex. Xst & \\
\hline & 4853 & 159 & 1994.025 & 67.49624 & 0.00000000 & 0.1341547 & Mic & Mic & \\
\hline & 4854 & 159 & 1994.159 & 67.63039 & 0.13415470 & 0.3658453 & Mic & Mic & \\
\hline & NA & NA & NA & NA & NA & NA & <NA> & <NA> & \\
\hline & 4858 & 159 & 1996.025 & 69.49624 & 2.00000000 & 0.5000000 & Mic & Mic & \\
\hline & 4859 & 159 & 1996.525 & 69.99624 & 2.5000000 & 0.2980835 & Mic & Norm & \\
\hline & NA. 1 & NA & NA & NA & NA & NA & <NA> & <NA> & \\
\hline & 4864 & 159 & 1998.525 & 71.99624 & 4.5000000 & 0.5000000 & Norm & Norm & \\
\hline & 4865 & 159 & 1999.025 & 72.49624 & 5.00000000 & 0.1718001 & Norm & Mic & \\
\hline & NA. 2 & NA & NA & NA & NA & NA & <NA> & <NA> & \\
\hline & 4879 & 159 & 2005. 525 & 78.9962411 & 11.50000000 & 0.5000000 & Mic & Mic & \\
\hline & 4880 & 159 & 2006.025 & 79.496241 & 12.00000000 & 0.4928131 & Mic & Mac & \\
\hline & NA. 3 & 3 NA & NA & NA & NA & NA & <NA> & <NA> & \\
\hline & 4888 & 159 & 2009.525 & 82.996241 & 15.50000000 & 0.5000000 & Mac & Mac & \\
\hline msmt & 4889 & 1592 & 2010.025 & 83.4962416 & 16.00000000 & 0.4407940 & Mac & D (CVD) & 128/ 151 \\
\hline
\end{tabular}

\section*{How the split works}

Same amount of follow-up
Same transitions
More intervals (5, resp. 37)
Different value of time scales between intervals

\section*{Purpose of the split}
- Assumption of constant rate in each interval

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates
- time scales

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates
- time scales
- randomly varying covariates (not now)

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates
- time scales
- randomly varying covariates (not now)
- value of some covariates differ between intervals

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates
- time scales
- randomly varying covariates (not now)
- value of some covariates differ between intervals
- each record contributes one term to the (log-)likelihood for a specific rate
from a given origin state (lex.Cst)
to a given destination state (lex. Xst).

\section*{Purpose of the split}
- Assumption of constant rate in each interval
- All intervals are (shorter than) 0.5 years
- Magnitude of the rates depend on covariates:
- fixed covariates
- time scales
- randomly varying covariates (not now)
- value of some covariates differ between intervals
- each record contributes one term to the (log-)likelihood for a specific rate
from a given origin state (lex.Cst)
to a given destination state (lex. Xst).
- —looks as the likelihood for a single Poisson observation

\section*{Modeling the rate: Mic -> D (CVD)}
```

> mr <- glm(cbind(lex.Xst == "D(CVD)" \& lex.Cst != lex.Xst,
lex.dur)
~ Ns(tfi, knots = seq( 0, 20, 5)) +
Ns(age, knots = seq(50, 80, 10)),
family = poisreg,
data = subset(S4, lex.Cst == "Mic"))

```

\section*{... the same as:}
```

> mp <- glm((lex.Xst == "D(CVD)" \& lex.Cst != lex.Xst)

+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(S4, lex.Cst == "Mic"))
> summary(coef(mr) - coef(mp))

```
\begin{tabular}{rrrrrr}
Min. & 1st Qu. & Median & Mean & 3rd Qu. & Max. \\
\(-1.315 \mathrm{e}-12\) & \(-2.389 \mathrm{e}-13\) & \(-2.343 \mathrm{e}-14\) & \(-1.540 \mathrm{e}-13\) & \(7.050 \mathrm{e}-15\) & \(6.466 \mathrm{e}-13\)
\end{tabular}

\section*{Modeling the rate: Mic -> D (CVD)}

\section*{A convenient wrapper for Lexis objects:}
```

> mL <- glm.Lexis(S4,

+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)),
+ from = "Mic",
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for the transition: Mic->D(CVD)
> summary(coef(mr) - coef(mL))

| Min. 1st Qu. | Median | Mean 3rd Qu. | Max. |  |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 |

```
glm.Lexis by default models all transitions to absorbing states, from states preceding these
```

> mX <- glm.Lexis(S4,

+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq}(50, 80, 10)) +
+ lex.Cst)

```
stats::glm Poisson analysis of Lexis object \(S 4\) with log link:
Rates for transitions: Norm->D(CVD), Mic->D(CVD), Mac->D (CVD), Norm->D(oth), Mic->

Describe the model(s) in mX:
- What rates are modeled ?
- How are they modeled (assumptions about shapes) ?
- What are the differences between the rates modeled?
- What would you rather do?
```

> mox <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
Ns(age, knots = seq(50, 80, 10)) +
+
lex.Cst / allo,
to = "D(oth)")

```
stats::glm Poisson analysis of Lexis object \(S 4\) with log link: Rates for transitions: Norm->D(oth), Mic->D(oth), Mac->D(oth)
\(>m C x<-g l m . L e x i s(S 4, \quad \sim N s(t f i, k n o t s=\operatorname{seq}(0,20,5))+\)
\(+\quad\) Ns (age, knots \(=\operatorname{seq}(50,80,10))\) +
+ lex.Cst / allo,
\(+\)
\[
\text { to }=\text { "D (CVD)") }
\]
stats::glm Poisson analysis of Lexis object S4 with log link: Rates for transitions: Norm->D (CVD), Mic->D (CVD), Mac->D (CVD)
```

> det <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+
Ns(age, knots = seq(50, 80, 10)) +
+
lex.Cst / allo,
from = c("Norm","Mic"),
to = c("Mic","Mac"))

```
stats::glm Poisson analysis of Lexis object \(S 4\) with log link:
Rates for transitions: Norm->Mic, Mic->Mac
```

> imp <- glm.Lexis (S4, ~ Ns(tfi, knots $=\operatorname{seq}(0,20,5))+$
$+$
$+$
$+$
$+$
Ns (age, knots $=\operatorname{seq}(50,80,10))+$
lex.Cst / allo,
from $=c(" M a c ", " M i c ")$,
to $=c(" M i c ", " N o r m "))$

```
stats::glm Poisson analysis of Lexis object \(S 4\) with log link:
Rates for transitions: Mac->Mic, Mic->Norm

\section*{Specification of the model}
```

> Tr <- list(Norm = list("Mic" = det,

+ "D(oth)" = mox,
+ 
+ Mic = list("Mac" = det,
+ "Norm" = imp,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx),
+ Mac = list("Mic" = imp,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx))
> lapply(Tr, names)
\$Norm
[1] "Mic" "D(oth)" "D(CVD)"

```
\$Mic
[1] "Mac" "Norm" "D(oth)" "D(CVD)"
\$Mac
[1] "Mic" "D(oth)" "D(CVD)"

\section*{Specification of the prediction population}

\section*{A population that looks like the original Steno2 population.}
```

> ini <- L2[,c("per", "age", "tfi")]
> ini <- rbind(transform(ini, lex.Cst = factor("Mic"), allo = factor("Int")),

+ transform(ini, lex.Cst = factor("Mic"), allo = factor("Conv")))
> ini$lex.Cst <- factor(ini$lex.Cst, levels = levels(L4))
> str(ini)
Classes 'Lexis' and 'data.frame': 320 obs. of 5 variables:
\$ per : num 1993 1993 1993 1993 1993 ...
\$ age : 'cal.yr' num 61.1 46.6 49.9 48.5 57.3 ...
\$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
\$ lex.Cst: Factor w/ 5 levels "Norm","Mic","Mac",..: 2 2 2 2 2 2 2 2 2 2 ...
\$ allo : Factor w/ 2 levels "Int","Conv": 1 1 1 1 1 1 1 1 1 1 ...
    - attr(*, "breaks")=List of 3
..\$ per: NULL
..\$ age: NULL
..\$ tfi: NULL
    - attr(*, "time.scales")= chr "per" "age" "tfi"
    - attr(*, "time.since")= chr "" "" ""

```

\section*{Simulating a cohort}
```

> set.seed(1952)
> system.time(

+ Sorg <- simLexis(Tr = Tr, \# models for each transition
+ init = ini, \# cohort of straters
+ N = 10, \# how many copies of each person in ini
+ t.range = 20, \# how long should we simulate before censoring
+ n.int = 100))\# how many intervals for evaluating rates
user system elapsed
18.745 8.848 16.851

```

\section*{Simulated cohort}
```

> summary(Sorg)
Transitions:
To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:

```

```

    Mic}1422\mp@code{646 1302 281 574 4225 4, 3579 26869.84 
    Mac lllllllllll
    Sum 1809 1671 1610 7llllllllll
    ```

\section*{How many are where, when?}
```

> Nst <- nState(Sorg,

+ at = \operatorname{seq}(0, 20, 0.2),
+ from = 0,
+ time.scale = "tfi")
>str(Nst)
'table' int [1:101, 1:5] 0 88 167 233 295 341 389 443 500 542 ...
    - attr(*, "dimnames")=List of 2
..\$ when : chr [1:101] "0" "0.2" "0.4" "0.6"
..\$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...
> head(Nst)
State

when	Norm	Mic	Mac	D (CVD)	D (oth)
0	0	3200	0	0	0
0.2	88	3077	33	2	0
0.4	167	2966	62	5	0
0.6	233	2863	98	6	0
0.8	295	2772	120	13	0
1	341	2693	148	17	1

```

\section*{Who is where when?}
```

> Nint <- nState(subset(Sorg, allo == "Int"),

+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> Nconv<- nState(subset(Sorg, allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> head(Nint , 4)

State					
when	Norm	Mic	Mac	D (CVD)	D (oth)
0	0	1600	0	0	0
0.1	24	1569	6	1	0
0.2	55	1533	11	1	0
0.3	76	1507	15	2	0

> head(Nconv, 4)
State
when Norm Mic Mac D(CVD) D(oth)

## Cumulative proportions (state probabilities)

```
> Pint <- pState(Nint)
> Pconv <- pState(Nconv)
> str(Pint)
 'pState' num [1:201, 1:5] 0 0.015 0.0344 0.0475 0.0644 ...
 - attr(*, "dimnames")=List of 2
 ..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...
 ..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...
> head(Pint)
 State
\begin{tabular}{crrrrr}
when & Norm & Mic & Mac & D (CVD) & D(oth) \\
0 & 0.000000 & 1.000000 & 1.000000 & 1 & 1 \\
0.1 & 0.015000 & 0.995625 & 0.999375 & 1 & 1 \\
0.2 & 0.034375 & 0.992500 & 0.999375 & 1 & 1 \\
0.3 & 0.047500 & 0.989375 & 0.998750 & 1 & 1 \\
0.4 & 0.064375 & 0.985625 & 0.998750 & 1 & 1 \\
0.5 & 0.077500 & 0.977500 & 0.998750 & 1 & 1
\end{tabular}
```


## Standard plotting of the state probs

```
> clr <- c("forestgreen", "orange", "red", "blue", gray(0.4))
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> plot(Pint, col = clr, xlim = c(0, 20))
> plot(Pconv, col = clr, xlim = c(20, 0))
```



## What now?

- Initial population:

The probabilities refer to a population of patienst with the same age-composition as the original Steno2 population.

- We can get an estimate of this using the Aalen-Johansen estimator ()
- But we can get something better by using a different initial population:
- A set of prespecified ages


## A different initial population

## ini must be a Lexis object - hence the copy from S4

```
> ini <- S4[1:10,c("lex.id", "per", "age", "tfi", "lex.Cst", "allo")]
> ini[,"lex.id"] <- 1:10
> ini[,"per"] <- 1993 # not used but it is a time scale in S4
> ini[,"age"] <-
+ ini[,"ain"] <- rep(seq(45,65,5), 2)
> ini[,"tfi"] <- O
> ini[,"lex.Cst"] <- factor("Mic",
 levels = c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> ini[,"allo"] <- factor(rep(c("Int","Conv"), each = 5))
> ini
```



## A different initial population

## ini must be a Lexis object

```
> str(ini)
Classes 'Lexis' and 'data.frame': 10 obs. of 7 variables:
 $ lex.id : int 1 2 3 4567 8 9 10
 $ per : num 1993 1993 1993 1993 1993 ...
 $ age : num 45 50 55 60 65 45 50 55 60 65
 $ tfi : num 0 0 0 0 0 0 0 0 0 0
 $ lex.Cst: Factor w/ 5 levels "Norm","Mic","Mac",..: 2 2 2 2 2 2 2 2 2 2
 $ allo : Factor w/ 2 levels "Conv","Int": 2 2 2 2 2 1 1 1 1 1
 $ ain : num 45 50 55 60 65 45 50 55 60 65
 - attr(*, "time.scales")= chr "per" "age" "tfi"
 - attr(*, "time.since")= chr "" "" ""
 - attr(*, "breaks")=List of 3
 ..$ per: NULL
 ..$ age: NULL
 ..$ tfi: num 0 0.5 1 1.5 2 2.5 3 3.54 4.5 ...
```

> system.time(

+ Sdef <- simLexis(Tr = Tr,
$+\quad$ init $=$ ini,
$+\quad N=500$,
$+\quad$ t.range $=20$,
$+\quad$ n.int $=200)$ )
user system elapsed
$37.915 \quad 14.621 \quad 37.666$
> \# str (Sdef)
> summary(Sdef)
Transitions:
To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
$\begin{array}{llllllllll}\text { Norm } & 583 & 1028 & 0 & 196 & 407 & 2214 & 1631 & 17784.05 & 2028\end{array}$
Mic 221410662055413879
$\begin{array}{llllll}\text { Mac } & 0 & 599 & 510 & 582 & 364\end{array}$ 6627 $\begin{array}{llll}2055 & 1545 & 12284.90 & 1879 \\ 0896 & 8737 & 73314.73 & 5000\end{array}$


## Stratified initial population

- Makes little sense to show overall state probabilities
- Only separately for age by allocation
- Nothe that we only have one time scale in the state.plot


## Stratified initial population

```
> P45c <- pState(nState(subset(Sdef, ain == 45 & allo == "Conv"),
 at = seq(0, 20, 0.1),
 from = 0,
 time.scale = "tfi"))
P45i <- pState(nState(subset(Sdef, ain == 45 & allo == "Int"),
 at = seq(0, 20, 0.1),
 from = 0,
 time.scale = "tfi"))
 P50c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
 at = seq(0, 20, 0.1),
 from = 0,
 time.scale = "tfi"))
 P50i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
 at = seq(0, 20, 0.1),
 from = 0,
 time.scale = "tfi"))
 P55c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
 at = seq(0, 20, 0.1),
 from = 0,
 time.scale = "tfi"))
msmt > P55i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
```


## Time spent in Norm during 20 years

```
> summary(Sdef)
```

Transitions:
To

| From | Norm | Mic | Mac | D (CVD) | D(oth) | Records: | Events: | Risk time: |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Persons:

> names (Sdef)
[1] "lex.id"
"per"
"age" "tfi"
"lex.dur"
"lex.Cst"
"lex.Xst"
"allo"
[9] "ain"
"cens"
> with(ini, table(age, allo))

allo		
age	Conv	Int
45	1	1
50	1	1
55	1	1
60	1	1

