
Occurrence rates, cumulative risks,
competing risks, state probabilities

with multiple states and time scales in

in egister esearch

with and Epi::Lexis

Computer practicals

SDCG, Nuuk
1–3 March 2022

http://bendixcarstensen.com/AdvCoh/courses/Nuuk-2022
Version 3

Compiled Monday 28th February, 2022, 13:29
from: /home/bendix/teach/AdvCoh/courses/Nuuk.2022/pracs/pracs.tex

Lecturers:

Bendix Carstensen Steno Diabetes Center Copenhagen, Denmark
& Department of Biostatistics, University of Copenhagen

b@bxc.dk bendix.carstensen@regionh.dk

http://BendixCarstensen.com

Dorte Vistisen Steno Diabetes Center Copenhagen, Denmark
& Department of Biostatistics, University of Copenhagen

dorte.vistisen@regionh.dk

Lars Pedersen Statistics Greenland

Johan Ejstrud Ejstrud Consulting

Organizers:

Marit Eika Jørgensen Steno Diabetes Center Greenland

Hjalte Erichsen University of Greenland

http://bendixcarstensen.com/AdvCoh/courses/Nuuk-2022
mailto:b@bxc.dk
mailto:bendix.carstensen@regionh.dk
http://BendixCarstensen.com
mailto:dorte.vistisen@regionh.dk

Contents

Preface . iii
Program . iv

1 Using R 1
1.1 Installing and using R . 1
1.2 Writing code and results . 1

1.2.1 Coding style in R . 2
1.2.2 R lingo . 2

1.3 Simple usage of R . 3
1.3.1 Using R as a calculator . 3
1.3.2 A functional language . 3
1.3.3 Sequences . 5
1.3.4 The births data . 6
1.3.5 Referencing parts of a data frame . 7
1.3.6 Summaries . 7
1.3.7 Generating new variables . 7
1.3.8 Logical variables . 8
1.3.9 Turning a variable into a factor . 9
1.3.10 Tables . 11
1.3.11 Reading data . 13
1.3.12 Saving data . 14

1.4 Graphics . 15
1.4.1 ggplot2 . 15
1.4.2 Base graphics . 15
1.4.3 Simple base graphs . 16

1.5 Dates in R . 20

2 Survival and rates: lung 23
2.1 Data and simple survival . 23
2.2 Rates and rate-ratios: Simple Cox model . 25
2.3 Simple Poisson model . 26
2.4 Representation of follow-up: Lexis object 27
2.5 Estimating the hazard function: splitting time 29

3 Competing risks: DMlate 35

ii

3.1 Data . 35
3.2 State probabilities . 37
3.3 What not to do . 38
3.4 Modeling cause specific rates . 39
3.5 Integrals with R . 41
3.6 Cumulative risks from parametric models . 44
3.7 Expected life time: using simulated objects 46

4 Multistate models: steno2 48
4.1 Lexis object for steno2 . 48
4.2 Transition rates: multiple time scales . 53
4.3 State probabilities . 58

4.3.1 Models for transition rates . 58
4.3.2 Simulation of state probabilities . 61

4.4 State probabilities using the Aalen-Johansen approach from survival 71
4.5 Time spent in albuminuria states . 77
4.6 Clinical variables . 78
4.7 Several transitions from one state: stack . 81

5 Statistics Greenland 85
5.0.1 api light - saved queries . 85
5.0.2 for more control . 86
5.0.3 Example 1: pxweb (cran) . 87

5.1 Example 6: pxR (cran) . 94
5.2 Carlos J. Gil Bellosta <cgb at datanalytics.com> 94

Preface

This course draws on the content of the book “Epidemiology with R” [?],
(http://bendixcarstensen.com/EwR), and the draft of my new book (which by no means is
sure ever to appear as a book) “Practical multistate modeling with R and Epi:Lexis”. The
former is available through Oxford University Press, the latter as a draft (updated at
unpredictable times) as http://bendixcarstensen.com/MSbook.pdf.

• The target audience is the group of statisticians and epidemiologists working in or
with the 5 SDCentres.

• The prerequisites are
1. a very basic knowledge of R(exercises 1 is designed to get you going),
2. a working installation of Epi_2.44
3. a working installation of popEpi_0.4.8
4. some epidemiological practice

• The format of the course will be short lectures closely aligned with the topics in the
exercises. The exercises will be run in chunks between the short lectures.

Exercises are given including most of the solutions. You can get the exercise code chunks
from the course website http://bendixcarstensen.com/AdvCoh/courses/Nuuk-2022

iii

http://bendixcarstensen.com/EwR
http://bendixcarstensen.com/MSbook.pdf
http://bendixcarstensen.com/AdvCoh/courses/Nuuk-2022

Program

Tuesday 1 March

9:00–9:15 Welcome and practical information
9:15–10.15 L: General introduction to R

10:15–10.30 Coffee break
10:30–12:00 P: Exercises in R
12:00–13:00 Lunch
13:00–13:45 Lars Pedersen: Introduction to Statistics Greenland
13:45–14:00 Coffee break
14:00–15:30 P: Exercises in R (cont.)

Wednesday 2 March

9:00–10:00 L: Introduction to multistate models
10:00–10.30 Coffee break
10:30–12:00 P: Survival analysis
12:00–13:00 Lunch
13:00–13:45 L: Introduction to competing risks
13:45–14:00 Coffee break
14:00–15:30 P: Cause specific rates and competing risks

Thursday 3 March

9:00–10.00 L: Multistate models in practice
10:00–10.30 Coffee break
10:30–12:00 P: Multistate models
12:00–13:00 Lunch
13:00–13:45 Johan Ejstrud: Survival analysis in the pharmaceutical industry
14:00–15:30 P: State probabilities

Within each of the the chunks of topics (see the table of contents) there will be a short
introductury lecture, introducing the practical.

iv

Chapter 1

Using R

This introduction to R is based on chapter 1 of my book “Epidemiology with R”,
The best way to learn R is to use it. Start by using it as a simple calculator, and keep on

exploring what you get back by inspecting the size, shape and content of what you create.

1.1 Installing and using R

The first thing you should do is to install R on your computer so that you can start doing
simple exercises.
R is available from CRAN, The Comprehensive R Archive Network (Google it), you will find a

link to installation there. If it does not work directly it may be because your administrator
has placed restrictions on what you are allowed to install on your computer.

A nice interface to R is RStudio (Google it) which is a commercial product, but RStudio
has a free open source license that allows you to have a very good and handy interface to R
for free, including the possibility of writing reports using Rmarkdown, Sweave or knitr.

1.2 Writing code and results

You have probably repeatedly been told that you should comment your computer code so
that you can actually remember what you intended to do with the code. And in some
instances did. If you return to un-commented code more than a fortnight after it was written
you will most likely be facing the problem of reverse-engineering: trying to deduce from the
code what you did (and maybe even what you intended to do). That is not always a pleasant
exercise, and some people end up doing the programming from scratch again. This leaves
you with a number of different programs that purportedly claim to do approximately the
same. But of course never does. So the coding first approach is a recipe for chaos in your
code and results.

Therefore it is a good habit first in plain text to describe what you want to do, and only
subsequently write the code that does it.

1

2 1.2 Writing code and results PMM

1.2.1 Coding style in R

Different people have different coding styles, that is how they place variable name,
parentheses and operators relative to each other. There is no particular reason that you
should take over precisely the coding style I am (trying to be) using in this book; many will
disagree to some or all of my points. But you should give it a good thought because you can
make your code more readable.

I have largely adhered to the following general rules in the code you see in this book,
mainly for the sake of readability:

• Put spaces around the assignment operator (“<-”)
• Let any comma be followed by a space.
• Put spaces around all operators such as +, /, etc., except around “:”
• Use fairly short and meaningful names for variables and objects. Very long object

names makes it difficult to get the meaning of the code (and increases the likelihood of
typos). This is one of the most difficult tasks in programming, but it pays to spend
time on it. long_name_proponents do exist, though.

• Use short lines of code; a command can be broken across several line at (almost) any
point. Normally it is done after a comma.

• Occasionally you may want to put more than one statement on the same line. That
can be done by separating statements with a semi colon (;).

• When using braces (“{}”) let the opening and closing braces be at the same position on
the line. Putting them on a separate line each is sometimes useful. The closing brace
should always be on a line of its own.

• When putting the arguments of a function on separate lines, place all arguments
indented at the opening bracket of the function.

• When calling functions with many arguments, it is sometimes useful to make the equal
signs between argument names and argument values vertically aligned (this is in
conflict with the previous point).

Finally, keep in mind that when writing a piece of R-code it is only a secondary purpose to
get the data processing and calculations correct; the primary purpose of the code is to
document that what you claim to have done is actually what you did do.

1.2.2 R lingo

When talking about R, a couple of words and phrases are used frequently:
gets is the official pronunciation of the assignment operator “<-”
of is the official pronunciation of using a function on a argument, “f of x” meaning f(x). So

whenever you hear “glm of . . . ” you should type glm() and wait for what goes in
between the brackets.

console the window in RStudio where the results are displayed and where you can type the
occasional command you do not wish inserted in your document.

script window the window in RStudio where you type your code (or Rmarkdown code and
text)

arguments are what is supplied to functions inside brackets. Each argument has a name

Using R 1.3 Simple usage of R 3

which is placed to the left of an “=”, and a value which is placed to the right of it. So
name=value. The argument names are characteristics of the function, you supply the
values. These pairs are separated by commas.

package is a collection of functions (and/or datasets) that can be attached to your
R-session so that you have access to the functions. Epi is one such package. Oddly, a
package is attached (loaded) for use by the function library().
Before you can do that you must install the package by
install.packages("Epi")—that is only needed once, library() is needed anew
whenever you restart R.

1.3 Simple usage of R

The following is intended for you to try out and also change a bit to get further insight to
the objects you are manipulating. It introduces a number of basic features of R that are best
demonstrated if you explore them yourself. Therefore, only some of the results of the code
are shown; you only get to see the missing ones by running R yourself.

When you start R you will see a “>” at the beginning of the line in the console. When you
type code in there (or transfer it from the script using CTRL-ENTER) R will know if you have
typed a complete expression or not. If you have, you will see the result of it (if any is
produced), but if you have not completed the command, the next line will have a + at the
beginning indicating that R expects more to come.

1.3.1 Using R as a calculator

Typing 2+2 will return the answer 4, typing 2^3 will return the answer 8 (2 to the power of
3), typing log(10) will return the natural logarithm of 10, which is 2.3026, and typing
sqrt(25) will return the square root of 25.

Instead of printing the result you can store it in an object, say
> a <- 2 + 2

. . . and you can actually also do:
> 2 + 2 -> a

The contents of the object a can be printed by typing a. Try that.

1.3.2 A functional language

R is a functional language; everything you ever do is to call a function that transforms
something to something else and possibly assigns it or just prints it, try for example:
> x <- 1:10
> x

There does not seem to be any functions here? The first statement actually uses the function
“:” which takes two arguments, in this case 1 and 10 and returns a sequence of numbers with
distance 1 and assigns it to x (—you can actually write ":"(1, 10) if you wish). The
second statement implicitly invokes the print function to print the vector x. Using a
function on x without assigning it will automatically invoke the print function and print it
on your screen (console).

4 1.3 Simple usage of R PMM

From a practical point of view what you do is that you create a vector of the number 1 to
10 and store it in a so-called object called x, so you can access it later. For example printing
it by just typing its name as above.

A couple of simple functions are:
> sum(x)
> sd(x)
> diff(x)
> cumsum(x)
> rev(x)
> prod(x)
> x > 7
> x >= 7

Try them and find out what they do.
Exercises:

1. Calculate
√

32 + 42.
2. Find the probability above 4.3 in a chi-squared distribution on 1 degree of

freedom.

Objects and functions

All commands in R are functions which act on objects. One important kind of object is a
vector, which is an ordered collection of numbers, or an ordered collection of character
strings. Examples of vectors are (4, 6, 1, 2.2), which is a numeric vector with 4 components,
and (“Charles Darwin”, “Alfred Wallace”) which is a vector of character strings with 2
components. The components of a vector must be of the same type (numeric, character or
logical). The combine function c(), together with the assignment operator, is used to create
vectors. Thus
> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 by first combining the 4 numbers 4, 6, 1, 2.2
in order and then assigning the result to the vector v.

Collections of components of different types are called lists, and are created with the
list() function. Thus
> m <- list(4:7, six = 6, "name of company")
> m
[[1]]
[1] 4 5 6 7

$six
[1] 6

[[3]]
[1] "name of company"

creates a list with 3 components. lists allows elements of different kinds, in this case two
numeric vectors (length 4 an 1) and a character vector; and in this case the second element is
named.

The main differences between the numbers 4, 6, 1, 2.2 and the vector v is that along with
v is stored information about what sort of object it is and hence how it is printed and how it
is combined with other objects, try:

Using R 1.3 Simple usage of R 5

> v
> 3 + v
> 3 * v

and you will see that R understands what to do in each case. This may seem trivial, but
remember that unlike most statistical packages there are many different kinds of object in R.

You can get a description of the structure of any object using the function str(). For
example, str(v) shows that v is numeric with 4 components.

What makes R different: functions

R also gives you the possibility of writing your own functions; they need not be very fancy,
nor do they need to have any arguments. In this book we will frequently use probabilities π
and odds, ω = π/(1− π) and so we will want to be able to convert easily from one to
another. This can be done by defining functions for the conversions:
> p2o <- function(p) p / (1 - p)
> o2p <- function(o) o / (1 + o)

These functions will convert between probabilities and odds:
> p2o(0.25)
> o2p(8)

What do you think you get if you write o2p(p2o(0.25))?
A function in R is defined by function and the value returned by the function is the value

of the last statement. To make it a bit more clear how a function is defined we could have
written:
> p2o <-
+ function(p)
+ {
+ odds <- p / (1 - p)
+ odds
+ }

The function is defined by naming the arguments (what is between the ()s—in this case one,
p), and then defining what to be computed from these in the body of the function (what is
between the {}s). The value of the function when called with appropriate argument(s) is the
value of the last expression in the function body, in this case just “odds”.

1.3.3 Sequences

It is not always necessary to type out all the components of a vector to create one. For
example, the vector (15, 20, 25, . . . , 85) can be created with:
> seq(15, 85, by = 5)

and the vector (5, 20, 25, . . . , 85) can be created with
> c(5, seq(20, 85, by = 5))

It is also possible to repeat vectors in complex patterns, try:
> rep(c(3, 2, 7), c(1, 4, 3))
> rep(c(3, 2, 7), 5)
> rep(c(3, 2, 7), each = 5)

A particularly simple form of a sequence is on where the step length is 1; this is created by
“:”:
> 7:10
> 8:3.5

6 1.3 Simple usage of R PMM

> 3.7:8.1

You can learn more about a function by typing “?” followed by the function name. For
example ?seq gives information about the syntax and usage of the function seq().

Exercises:
1. Create a vector w with components 1,−1, 2,−2
2. Print this vector (to the screen)
3. Obtain a description of w using str()

4. Create the vector w+1, and print it.
5. Create the vector (0, 1, 5, 10, 15, ... , 75) using c() and seq().
6. Create a vector with 20 elements equally spaced between 7 and 23

1.3.4 The births data

The most important example of a vector in epidemiology is the data on a variable recorded
for a group of subjects. A collection of these can be put side-by-side to form a data set, in R
called a data.frame. As an example we shall use the births data which concern 500 mothers
who had singleton births in a large London hospital. These data are available as an R
data.frame called births in the Epi package.

The easiest way to access the births data is first to load the Epi package with
> library(Epi)

and then to load the data with
> data(births)

You get an overview from the Epi package documentation of the data set by:
> ?births

Some of the variables which make up these data take integer values while others are numeric
taking measurements as values. For most variables the integer values are just codes for
different categories, such as "male" and "female" which are coded 1 and 2 for the variable
sex.

The function
> str(births)

shows that the object births is a data frame with 500 observations of 8 variables. The
names and types of the variables are also shown together with the first couple of values of
each variable.

Exercises:
1. The data frame diet in the Epi package contains data from a follow-up

study with coronary heart disease as the end-point. Load these data with
> data(diet)

and print the contents of the data frame to the screen.
2. Check that you now have two objects, births, and diet in your work

space, using ls() or the lls() from Epi.
3. Obtain a description of the object diet.
4. Remove the object diet with the command

> rm(diet)

Check that you only have the object births left in your workspace.

Using R 1.3 Simple usage of R 7

1.3.5 Referencing parts of a data frame

Typing births will list the entire data frame - not usually very helpful. Now try
> births[1, "bweight"]

This will list the value taken by the first subject for the bweight variable. Similarly
> births[2, "bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for
the first 10 persons for the bweight variable, try
> births[1:10, "bweight"]

and to list all the data for this variable, try
> births[, "bweight"]

An alternative way of referring to a variable in a data frame is using the “$”
> births$bweight

Exercises:
1. Print the data on the variable gestwks for subject 7 in the births data

frame.
2. Print all the data for subject 7.
3. Print all the data on the variable gestwks.

1.3.6 Summaries

A good way to start an analysis is to ask for a summary of the data by typing
> summary(births)

To see just the names of the variables in the data frame try
> names(births)

A bit more information is obtained by
> str(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to
specify the name of the data frame. Thus births$hyp refers to the variable hyp in the
births data frame, and typing births$hyp will print the data on this variable. To
summarize the variable hyp try:
> summary(births$hyp)

So you see that summary behaves differently when you supply a data frame and vector to it.
In most datasets there will be some missing values. The summary shows the number of

missing values for each variable, indicated by NA (Not Available).

1.3.7 Generating new variables

New variables can be produced using assignment together with the usual mathematical
operations and functions:

+ - * / ^ sqrt log exp

The sign ^ means “to the power of”, sqrt(x) means “square root of x”,
√
x. log means

“natural logarithm”.
The transform function allows you to transform or generate variables in a data frame.

For example, try:
> births <- transform(births,
+ num1 = 1,

8 1.3 Simple usage of R PMM

+ logbw = log(bweight),
+ avg = bweight / gestwks)

The variable logbw is the natural logarithm of birth weight, and avg is the birth weight per
gestational week.

dplyr

The package dplyr provides a slightly different syntax for the same using the pipe operator,
%>%, to indicate that first we have births, and then we subject it to a mutation:
> library(dplyr)
> bth <- births %>% mutate(num1 = 1,
+ logbw = log(bweight),
+ avg = bweight / gestwks)

More logically, we might put the assignment of the result at the end to indicate that the
assignment comes after the mutation:
> births %>% mutate(num1 = 1,
+ logbw = log(bweight),
+ avg = bweight / gestwks) -> bth

All three sets of code will produce the same result, namely the births data frame with three
extra variables. The mutate function is however more versatile; for example, it allows further
calculations on variables defined inside mutate, which transform does not.

1.3.8 Logical variables

Logical variables take the values TRUE or FALSE, and behave mostly like factors. New
variables can be created which are logical functions of existing variables. For example
> low <- births$bweight < 2000
> str(low)

creates a logical variable low with levels TRUE and FALSE, according to whether bweight is
less than 2000 or not. The logical expressions which R allow are:

! == < <= > >= !=

The first is logical negation, the second equals and the last is logical not equals. One
common use of logical variables is to restrict a command to a subset of the data. For
example, to list the values taken by bweight for hypertensive women, try
> births$bweight[births$hyp == 1]

If you want the entire data frame restricted to hypertensive women try:
> births[births$hyp == 1,]

The subset() function allows you to take a subset of a data frame. Try
> subset(births, hyp == 1)

You can check whether birth weight is smaller than 2500 grams among the first 10 births:
> births$bweight[1:10] < 3000
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

and you can also find out where the TRUE values are:
> which(births$bweight[1:10] < 3000)
[1] 1 3

Caveat: You cannot use TRUE or FALSE as names of variables. But you can abbreviate TRUE

and FALSE as T and F, and you can use T and F as variable names. If you do can get almost
impenetrable errors or, even worse, undetected misbeaviour, some very hard to find. So:
Never call a variable T or F, and always use the full form TRUE and FALSE.

Using R 1.3 Simple usage of R 9

Exercises:
1. Create a logical variable called early according to whether gestwks is less

than 30 or not. Make a frequency table of early using table.
2. Print the id numbers of women with gestwks less than 30 weeks.

1.3.9 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the
levels of the factor. Variables such as hyp and sex are originally coded using integer codes,
and by default R will interpret these codes as numeric values taken by the variables. But we
would never want to do calculations on these numerical values; they would only ever be used
to indicate a category.

For R to recognize that the codes refer to categories it is necessary to convert the variables
to be factors, and in order to make code and results human readable also to label the levels.
To convert the variable hyp to be a factor, try
> hyp <- factor(births$hyp)
> lls()

The latter shows that hyp is both in your work space (as a factor), and in the births data
frame (as a numeric variable). It is better to use the transform function on the data frame,
so that the hyp variable in the data frame is converted to a factor:
> births <- transform(births, hyp = factor(hyp))
> str(births)
'data.frame': 500 obs. of 11 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ bweight: num 2974 3270 2620 3751 3200 ...
$ lowbw : num 0 0 0 0 0 0 0 0 0 0 ...
$ gestwks: num 38.5 NA 38.2 39.8 38.9 ...
$ preterm: num 0 NA 0 0 0 0 0 0 0 0 ...
$ matage : num 34 30 35 31 33 33 29 37 36 39 ...
$ hyp : Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
$ sex : num 2 1 2 1 1 2 2 1 2 1 ...
$ num1 : num 1 1 1 1 1 1 1 1 1 1 ...
$ logbw : num 8 8.09 7.87 8.23 8.07 ...
$ avg : num 77.2 NA 68.7 94.2 82.3 ...

which shows that hyp, in the births data frame, is now a factor with two levels, labeled “0”
and “1”—the original values taken by the variable. It is better to assign labels as (say)
"normal" and "hyper" with:
> births <- transform(births,
+ hyp = factor(hyp, labels = c("normal", "hyper")))
> str(births$hyp)

You may want a different order than the numerical defaults of the levels; one way of
achieving this is using the levels argument:
> births <- transform(births,
+ early = factor(preterm,
+ levels = c(1, 0),
+ labels = c("Pre", "Norm")))
> with(births, table(preterm, early))

The naming of the arguments is a bit odd, levels refer to the incoming values (of preterm)
and labels to the outgoing values (in early). However, if you afterwards want to know

10 1.3 Simple usage of R PMM

what values the factor assumes, we refer to these as the levels of the factor:
> levels(births$early)

Internally, the factor levels are stored as the integers 1, 2, . . . , and the (names of the) levels
of the factor in a separate structure. That way the names of the levels are only stored once,
saving space.

Manipulating factor levels

When producing tables you may want to have levels of a factor in a specific order or even
combine some of the levels. Using the dataset diet, try:
> data(diet)
> table(diet$job)

Driver Conductor Bank worker
102 84 151

> table(relevel(diet$job, 2))
Conductor Driver Bank worker

84 102 151
> table(relevel(diet$job, "Bank worker"))
Bank worker Driver Conductor

151 102 84
> table(Relevel(diet$job, 3:1))
Bank worker Conductor Driver

151 84 102
> table(Relevel(diet$job, list(3, 1:2)))

Bank worker Driver+Conductor
151 186

The base R function relevel (lower case) only has the capability of moving a specific level
of the factor up as the first — a facility which is handy in regression modeling. The Epi

function Relevel (capitalized) allows combination of factor levels too.
Relevel also allows grouping via a look-up in a table — try

> example(Relevel)

to see examples of this.
If you take a subset of a data frame, you may end up with a factor that has a levels that is

not assumed:
> subdiet <- subset(diet, job != "Driver")
> table(subdiet$job)

In some contexts this may be impractical; the way to get rid of the non-used levels is by
using factor:
> table(factor(subdiet$job))

Exercises:
1. In the births data frame, convert the variable sex into a factor.
2. Label the levels of sex as "M" and "W".
3. In the diet dataset, combine levels Driver and Conductor to a level called

Bus employee.

Grouping values of a quantitative variable

For a numeric variable like matage it is occasionally useful to group the values and to create
a new factor representing the grouping. This should only be used for exploration of data;
modeling of effects of a quantitative variable should never be based on a grouping,

Using R 1.3 Simple usage of R 11

For example we might cut the values taken by matage into the groups 20–29, 30–34, 35–39,
40–44, and then create a factor called agegrp with 4 levels corresponding to the four groups.
The best way of doing this is with the function cut:
> births <- transform(births, agegrp = cut(matage,
+ breaks = c(25, 30, 35, 40, 45),
+ right = FALSE))
> table(births$agegrp, exclude = NULL)
[25,30) [30,35) [35,40) [40,45) <NA>

68 200 194 36 2code explained: transform is used to define a new variable (a factor), agegrp in the
births data frame. The argument right is a logical indicating whether the right endpoint
should be included in each interval; we want the left endpoint to be included, so we set it to
FALSE. Persons with a value of matage less than 25 or larger than 45 will be transformed to
NA. table will ignore NAs, unless instructed to include everything by exclude=NULL.

By default the factor levels are labeled [20-25), [25-30), etc., where [20-25) refers to the
interval which includes the left end (20) but not the right end (25). This was brought about
by using the argument right=FALSE. When right=TRUE (which is the default) the intervals
include the right end but not the left.

It is important to realize that observations which are not inside the range specified in the
breaks() part of the command result in missing values for the new factor. For example:
> births <- transform(births, agegrp=cut(matage,
+ breaks = c(20, 30, 35),
+ right = FALSE))
> summary(births$agegrp)

Only observations from 20 up to, but not including 35, are included. For the rest, agegrp is
coded missing. This will not immediately show up if you use table, but the argument
exclude=NULL will remedy this; try:
> table(births$agegrp)
> table(births$agegrp, exclude = NULL)
> addmargins(table(births$agegrp, exclude = NULL))

addmargins adds margins to any type of a table; it can be any type of margins, not only
sums (which is the default).

Exercises:
1. Summarize the numeric variable gestwks, which records the length of

gestation for the baby, and make a note of the range of values.
2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45

weeks, including the left hand end, but not the right hand. Make a table of
the frequencies for the four levels of gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and
make a table of frequencies.

1.3.10 Tables

When starting to look at any new data frame the first step is to check that the values of the
variables make sense and correspond to the codes defined in the coding schedule. For
categorical variables (factors) this can be done by looking at one-way frequency tables and
checking that only the specified codes (levels) occur. A very useful function for making

12 1.3 Simple usage of R PMM

tables is stat.table from the Epi package.
The distribution of the factors hyp and sex can be viewed by typing

> data(births)
> stat.table(hyp, data = births)
> stat.table(sex, data = births)

Their cross-tabulation is obtained by typing
> stat.table(list(hyp, sex), data = births)

-------sex-------
hyp 1 2

0 221 207
1 43 29

Cross-tabulations are useful when checking for consistency, but because no distinction is
drawn between the response variable and any explanatory variables, they are not necessarily
useful as a way of presenting data, and as you see, rather meaningless if the variables you
tabulate are not properly labeled factors.

Tables of means and other things

To obtain the mean of bweight by sex, try
> stat.table(sex, mean(bweight), data = births)

The headings of the table can be improved with
> stat.table(sex,
+ list("Mean birth weight" = mean(bweight)),
+ data = births)

To make a two-way table of mean birth weight by sex and hypertension, first convert sex
and hyp to factors for readability.
> births <- transform(births, sex = factor(sex, labels = c("M", "W")),
+ hyp = factor(hyp, labels = c("No", "Yes")))
> stat.table(list(sex, hyp),
+ mean(bweight),
+ margins = TRUE,
+ data = births)

and to tabulate the count as well as the mean, including the margins:
> stat.table(list(sex, hyp),
+ list(count(),
+ mean(bweight)),
+ margins = TRUE,
+ data = births)

Available functions for the cells of the table are count, mean, weighted.mean, sum,

min, max, quantile, median, IQR, and ratio. The last of these is useful for rates and
odds. For example, to make a table of the odds of low birth weight by hypertension, try
> stat.table(hyp,
+ list("odds" = ratio(lowbw, 1 - lowbw, 100)),
+ data = births)

The scale factor 100 makes the odds per 100, so essentially %. Margins can be added to the
tables, as required. For example, you will do
> stat.table(sex,
+ mean(bweight),

Using R 1.3 Simple usage of R 13

+ margins = TRUE,
+ data = births)

for a one-way table. For a two-way table, you can try;
> stat.table(list(sex, hyp),
+ mean(bweight),
+ margins = c(TRUE, FALSE),
+ data = births)
> stat.table(list(sex, hyp),
+ mean(bweight),
+ margins = TRUE,
+ data = births)

Exercises:
1. Make a table of median birth weight by sex.
2. Do the same for gestation time, but include count as a function to be

tabulated along with median. Note that when there are missing values for
the variable being summarized the count refers to the number of
non-missing observations for the row variable, not the summarized variable.

3. Create a table showing the mean gestation time for the baby by hyp and
lowbw, together with margins for both.

4. Make a table showing the odds of hypertension by sex of the baby.

1.3.11 Reading data

R can read data from many different formats, the functions for reading various data formats
are found in a number of different packages. So remember to read the documentation, there
are many pitfalls, and since this book is not about data no comprehensive overview is given
here. Reading data without reading the documentation of the function you use to read data
is a prescription of erroneous data.

When reading data, a number of points should be kept in mind that may give rise to funny
data if forgotten:

• Variable names — are they in the first line of the data file?
• How are missing values coded?
• How are categorical variables (factors) coded?
• How are dates represented?
• What is the decimal separator?

Different function for reading data will handle these issues differently, and most will have a
large number of arguments that control how data is read.

The following functions will cover many needs you may have:
• Plain files with spaces separating variables, use read.table, for example:

> fem <- read.table("http://bendixcarstensen.com/SPE/data/fem.dat",
+ header = TRUE,
+ na.strings = c("-99", "NA"))

As you see, R will recognize a URL and read directly from it. In the file, the first line
contains the variable names, and missing values are represented either by -99 or NA.

• Comma-separated files, .csv, use the function read.csv or read.csv2 depending on
whether the file is with comma or semicolon as separator.

• Clipboard: A quick and dirty way to get in a small chunk of data is to highlight the

14 1.3 Simple usage of R PMM

data on your screen (e.g. in Excel) and press CTRL-C (“copy”). The data is then
placed on your clipboard. You can then just do:
> qad <- read.table("clipboard")

—but you will still have the all the issues with missing data representation etc.
• Data from other statistical packages such as SAS or Stata: Use the functionalities in

the haven package:
> help(package = haven)

The package haven also contains facilities to write data in formats for other statistics
pages.

• Excel files, use the package xlsx, see help(package = xlsx) to obtain more
information.

• SQL databases: use the package RODBC, see help(package = RODBC) to obtain more
information.

1.3.12 Saving data

Saving the work space

When exiting from R you are offered the chance of saving all the objects in your current work
space. If you do so, the work space is re-instated next time you start R. It is only
occasionally useful to do this, but if you choose to do so it is worth tidying things up,
because the work space can fill up with temporary objects, and it is easy to forget what
these are when you resume the session.

The general advice is not to save the workspace.

Saving R objects in a file

The command read.table() is relatively slow because it carries out quite a lot of processing
as it reads the data. To avoid doing this more than once you can save the data frame, which
includes the R information, and read from this saved file in future. For example,
> save(births, file = "births.Rda")

will save the births data frame in the file births.Rda. By default the data frame is saved as
a binary file, but the option ascii=TRUE can be used to save it as a text file. You can save
more than one object in an R-file, they need not be data frames, they can be fitted models
for example:
> save(births, p2o, o2p, file = "births.Rda")

To load the object(s) from an .Rda file, use:
> load("births.Rda", verbose=TRUE)

The commands save() and load() can be used with any R objects, but they are
particularly useful when dealing with large data frames. The verbose argument lists the
names of the objects loaded.

Using with

It is quite tedious to write births$ in front of every variable name used. One way of
avoiding this is to wrap the expressions in with, such as:
> with(births, plot(gestwks, bweight))

Using R 1.4 Graphics 15

The first argument is a data frame, the second argument is an expression where variable
names are assumed to come from the data frame. You can use other variable names too,
they will be taken from the global environment,

1.4 Graphics

There are two main graphics systems used in R: Base graphics, which is an integral part of
any R distribution, and ggplot2 (gg referring to grammar of graphics) which is a separate
package that you need to install, which has a different syntax, and is not compatible with
base graphics. ggplot2 is part of the tidyverse packages.

Besides these two there is also lattice graphics that allows quite elaborate graphs of
multidimensional structures, however at the price of quite a complicated interface.

1.4.1 ggplot2

The grammar of graphics underlies the package ggplot2, which defines graphs as graphical
objects (grobs) that can be modified by adding different aspects of the graph such as themes.

It is not as easy to master as base graphics, but the graphs (particular multiframe
displays) will be more consistent. However, this graphical system is an entire (large) topic of
its own, and will not be treated in any detail in this book; a few examples of its use will be
shown though. The ggplot2 package is part of the tidyverse environment, see section ??
on page ??.

1.4.2 Base graphics

The plotting model of base graphics is emulating your pencil (or fountain pen): ink on paper.
Each command in base graphics puts something on the graph, and you cannot remove it. If
you get it wrong, you will have to start over—which is not so bad, you just run the code
again. Unless you are typing along in the console window—do not do that

If you just issue plot commands, the graph will appear on the screen; if you want to put
the graph in a particular file, you must open a graphics device before the plotting commands,
and close it afterwards. For example, if you want a plot in a pdf-file you will open the pdf

device using pdf() and close it using dev.off():
> pdf("a_graph.pdf")
> x <- seq(1, 5, 0.01)
> plot(x, (x - 2) * (x - 4))
> dev.off()

This will create the file a_graph.pdf in your current directory (if you do not know which
that is, use getwd())

You can get a list of available devices by:
> ?Devices

(must be a capital D).
Sometimes the default graph window in RStudio is too small to hold your graph. You can

open another graph window outside of RStudio by:
> RStudioGD()

16 1.4 Graphics PMM

(RStudioGgraphicsDevince). Your graphs will then go there and you can just swap to this the
usual way (using Alt-Tab, i.e. holding down the Alt key and repeatedly pressing the Tab-key,
and releasing the Alt once you have found your graph window).

1.4.3 Simple base graphs

There are three kinds of plotting functions in base graphics:
1. Functions that generate a new plot, e.g. hist() and plot().
2. Functions that add extra things to an existing plot, e.g. lines() and text().
3. Functions that allow you to interact with the plot, e.g. locator() and identify().

We will not go into these.
The normal procedure for making a graph in R is to make a fairly simple initial plot and
then add on points, lines, text etc., preferably in a script.

Plot on the screen

Load the births data and get an overview of the variables:
> library(Epi)
> data(births)

Now attach the data frame and look at the birth-weight distribution with
> attach(births)
> hist(bweight)

The histogram can be refined – take a look at the possible options with
> ?hist

and try some of the options, for example:
> hist(bweight, col = "gray", border = "white")

To look at the relationship between birth-weight and gestational weeks, try
> plot(gestwks, bweight)

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols
try:
> plot(1:25, pch = 1:25)

or, using the rep function to generate a grid of points:
> plot(rep(1:5, 5), rep(1:5, each = 5), pch = 1:25,
+ cex = 5, xlim = c(0, 6), ylim = c(0, 6), lwd = 4)
> text(rep(1:5, 5) + 0.3, rep(1:5, each = 5), 1:25)

Exercises:
1. Make a plot of the birth weight versus maternal age with

> plot(matage, bweight)

2. Label the axes with
> plot(matage, bweight, xlab="Maternal age", ylab="Birth weight (g)")

Colours

There are many colours recognized by R. You can list them all by colours() or,
equivalently, colors() (R allows you to use British or American spelling). To colour the
points of birth-weight versus gestational weeks, try
> plot(gestwks, bweight, pch=16, col="green")

Using R 1.4 Graphics 17

This creates a solid mass of colour in the center of the cluster of points and it is no longer
possible to see individual points. You can recover this information by overwriting the points
with black circles using the points() function.
> points(gestwks, bweight)

R has functions that generate vectors of colours for you. For example,
> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There other
functions that generates other sequences of colours, type ?rainbow to see them.

Gray-tones are produced by the function gray (or grey), which takes a numerical
argument between 0 and 1; gray(0) is black and gray(1) is white. Try:
> plot(0:10, pch = 16, cex = 3, col = gray(0:10 / 10))
> points(0:10, pch = 1, cex = 3)

Colours can be given explicitly in the RGB-space (red, green, blue) as a character string
"#RRGGBB" where R, G and B are hexadecimal1 digits (0–9, A–F).

There is a number of functions in base R to manipulate colours, try for example:
> col2rgb("orange")
> rgb(t(col2rgb("orange")), m = 256)

There is also the possibility of generating semi-transparent colours, using for example
adjustcolor. This is used in the function matshade that plots confidence bands as shaded
areas.

Some thought has been put into constructing functions that generate sequences of colours
useful in more advanced graphs; two such packages are RColorBrewer and viridis. It is
left to you to explore these further, try for example
> help(package = RColorBrewer)

Adding to a plot

As we just saw, points() is one of several functions that add elements to an existing plot.
By using these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birth weight vs. gestational weeks using different
colours for male and female babies. To start with an empty plot, try:
> attach(births)
> plot(gestwks, bweight, type="n")

Even if nothing is plotted, the axes are constructed so that all points will be contained in the
plot.

Then we can add the points with the points function:
> points(gestwks[sex==1], bweight[sex==1], col = "blue")
> points(gestwks[sex==2], bweight[sex==2], col = "red")

To add a legend explaining the colours, try
> legend("topleft", pch = 1,
+ legend = c("Boys", "Girls"),
+ col = c("blue", "red"))

This should put the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

1Refers to the base 16 representation of numbers using digits 0–9, A–F, with A representing 10, F
representing 15 and, say, 1B representing 16+11=27. A two-digit hexadecimal number can represent the
numbers from 0 through 255 (162 − 1)

18 1.4 Graphics PMM

Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get
subsets of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we
had a 5 level factor instead just two sexes.

Instead of specifying one color for all points, we may specify a vector of colours of the
same length as the gestwks and bweight vectors. This is rather tedious to do directly, but
R allows you to specify an expression anywhere, so we can use the fact that sex takes the
values 1 and 2, as follows:

First create a colour vector with two colours, and take a look at sex:
> c("blue", "red")
> births$sex

Now see what happens if you index the colour vector by sex:
> c("blue", "red")[sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get
"red", so the result is a long vector of "blue"s and "red"s corresponding to the males and
females. This can now be used in the plot:
> plot(gestwks, bweight, pch = 16, col = c("blue", "red")[sex])

The same trick can be used if we want to have a separate symbol for mothers under 30 and
over 35, say. We first generate the indexing variable as a factor
> magr <- cut(matage, c(0, 30, 35, 100))
> table(magr)

magr is now a factor with 3 levels, and indexing with the variable is the same as indexing
with the numerical representation of the factor, 1, 2, 3; so we ask for symbols 15, 16, 17
according to the age-class of the mother. Moreover, in the specification of the legend we can
just use the generated levels as text.
> plot(gestwks, bweight,
+ pch = (15:17)[magr], col = c("blue", "red")[sex])
> legend("topleft", pch = 15:17, legend = levels(magr), col = 1, bty = "n")
> text(28, 4200+0:1*200, c("Boys", "Girls"),
+ col = c("blue", "red"), adj = 0)

Note that we generated the legend for the colors by simply using text to write “Boys” resp.
“Girls” in blue and red.

R will accept any kind of complexity in the indexing as long as the result is a valid index,
including a factor.

Saving graphs for use in other documents

Once you have a graph in the graphics window in RStudioyou can click on Export and
choose the format you want your graph in. The pdf (Acrobat reader) has a button of its
own, .pdf normally the most economical, and Acrobat reader has good options for viewing
in more detail on the screen.

The win.metafile format will give you an enhanced metafile .emf, which can be
imported into a Word document. Metafiles can be re-sized and edited inside Word; they are
in a vector graphics format as are .pdf and .eps, which means they do not get woolly when
enlarged, as do bitmap formats tiff, bmp, jpg and png.

Using R 1.4 Graphics 19

If you want precise control over the size of your plot-file you can start a graphics device
before doing the plot. Instead of appearing on the screen, the plot will be written directly to
a file. After the plot has been completed you will need to close the device again in order to
be able to access the file. Try:
> pdf(file = "plot1.pdf", height = 3, width = 4)
> plot(gestwks, bweight)
> dev.off()

This will give you a pdf file plot1.pdf with a graph which is 3 inches tall and 4 inches wide.
Similarly:
> win.metafile(file="plot1.emf", height=3, width=4)
> plot(gestwks, bweight)
> dev.off()

will give you a emf file plot1.emf with a graph which is 3 inches tall and 4 inches wide.
This is a vector graphics file that can be inserted in a Word document, and which can be
modified in Word.

The win.metafile is only available on windows systems, for other systems use the device
emf from the devEMF package.

Same graph on multiple devices

If you want the same graph in different file types (or in slightly different aspect ratios), a
simple way is to exploit the function facility in R and put the entire plot code into a function
with no arguments, and the call the function when different devices are open as in the
following example:
> myplfn <- function() # Define the function that does the plot
+ {
+ plot(gestwks, bweight,
+ pch = (15:17)[magr], col = c("blue", "red")[sex])
+ legend("topleft", pch = 15:17, legend = levels(magr), col = 1, bty = "n")
+ text(28, 4200+0:1*200, c("Boys", "Girls"),
+ col = c("blue", "red"), adj = 0)
+ }
> #
> # on the screen
> myplfn()
> #
> # pdf graph
> pdf("plot1.pdf", height = 8, width = 10)
> myplfn()
> dev.off()
> #
> # windows meta file
> win.metafile("plot1.eps", height = 8, width = 10)
> myplfn()
> dev.off()

This has the advantage that if you want to change the plot a little, you only edit the code in
one place and all plots will be revised accordingly.

20 1.5 Dates in R PMM

The par() command

It is possible to manipulate almost any element in a graph, by using the graphics options.
These are collected in the function par. For example, if you want axis labels always to be
horizontal, use the command par(las=1). This will be in effect until a new graphics device
is opened. No one promised you that things should be intuitively clear.

It is a good idea to take a print of the help page for par (having set the font size to
“smallest” because it is long) and carry it with you at any time to read in buses, cinema
queues, during boring lectures etc., and perhaps even put under your pillow at night. Do not
despair, few R-users can understand what all the options are for.
par can also be used to ask about the current plot, for example par("usr") will give you

the exact extent of the axes in the current plot. With logarithmic axes it’s not immediately
obvious what you get, you need to read the help page for par.

If you want more plots on a single page you can use the command
> par(mfrow = c(2, 3))

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The
plots will appear by row, i.e. in the top row first. If you want the plots to appear
column-wise, use par(mfcol = c(2, 3)) (you still get 2 rows by 3 columns). To restore the
layout to a single plot per page use
> par(mfrow = c(1, 1))

A more versatile machinery for putting multiple graphs on a page in almost arbitrary
(rectangular, though) layouts is the function layout—not treated further here.

1.5 Dates in R

Epidemiological studies often contain date variables which take values such as 2/11/1962.
We shall use the diet data to illustrate how to deal with variables whose values are dates.

The important variables in the dataset are chd, which takes the value 1 if the subject
develops coronary heart disease during the study, and the value 0 if the observation is
censored, and the three date variables which are date of birth (dob), date of entry (doe) and
date of exit (dox). The command
> data(diet)
> str(diet)

shows that these three variables are Date variables; if you try
> head(diet)

you will see these variables printed as “real” dates. The variables are internally stored as
number of days since 1/1/1970.

To convert a character string (or a character variable or factor) to date format try:
> as.Date("14/07/1952", format = "%d/%m/%Y")
> as.numeric(as.Date("14/07/1952", format = "%d/%m/%Y"))

The first statement shows the date form and the latter the number of days since 1/1/1970,
which is a negative number for dates prior to 1/1/1970.

The format parts, “%d” etc., identify elements of the dates, whereas the “/”s are just the
separator characters that are in the character string. There is a large number of possibilities
for formats, see ?strftime.

Reading dates from an external file is done by reading the fields as character variables and

Using R 1.5 Dates in R 21

then transforming them to date variables by the function as.Date, using the the relevant
format. It will also work if your date variables accidentally ended as factors.

If you want to enter a fixed date, for example if you want to terminate follow-up at 1st
April 1995 you could say:
> newx <- pmin(diet$dox, as.Date("1995-4-1", format="%F"))

The format %F is shorthand for the ISO-standard date representation %Y-%m-%d, which is the
default, so it can be omitted altogether:
> newx <- pmin(diet$dox, as.Date("1975-4-1"))

You will get NAs if your dates are not correct:
> as.Date(c("1997-02-28", "1997-02-29", "1997-13-22"))

You can have other separators than ”-”, even quite silly ones:
> as.Date("1995$4$1", format = "%Y$%m$%d")
> as.Date("1995sep4DIV1", format = "%Ysep%mDIV%d")

You can print dates in the format you like by using the function format (really
format.Date), try for example:
> bdat <- as.Date("1952-7-14", format = "%F")
> format(bdat, format = "%A %d %B %Y")

In practical epidemiological analyses it is more convenient to use time measured in years than
in days, so the Epi package has a function cal.yr that converts dates to numeric years
> (dd <- as.Date(c('1970-1-1',
+ '1971-1-1',
+ '1972-1-1',
+ '1973-1-1',
+ '1974-1-1',
+ '1975-1-1')))
[1] "1970-01-01" "1971-01-01" "1972-01-01" "1973-01-01" "1974-01-01"
[6] "1975-01-01"
> cal.yr(dd)
[1] 1970.000 1970.999 1971.999 1973.001 1974.000 1974.999
attr(,"class")
[1] "cal.yr" "numeric"

Because of the leap-years it is only every 4th year 1 January precisely fits with an integer.
Formally, the cal.yr converts dates (measured in units of days) to units of 365.25 days, and
we just choose to call this unit “year”. The conventional use of “year” is formally inaccurate,
because a year sometimes is 365 and sometimes 366 days.

You can also see that the differences between the dates are not the same, neither measured
in days or “years” of course.
> diff(dd)
> diff(cal.yr(dd))

On the other hand if you take dates that have a given distance in days you get consistency:
> (xx <- as.Date("1970-1-17") + 0:5 * 300)
[1] "1970-01-17" "1970-11-13" "1971-09-09" "1972-07-05" "1973-05-01"
[6] "1974-02-25"
> diff(cal.yr(xx))
[1] 0.8213552 0.8213552 0.8213552 0.8213552 0.8213552
attr(,"class")
[1] "cal.yr" "numeric"

In addition, cal.yr has the facility that with a data frame as argument it will find all Date
variables in the data frame and convert them to cal.yr format, and return the data frame
with the converted variables; try:
> data(diet)

22 1.5 Dates in R PMM

> diet[1:4, 1:4]
id doe dox dob

1 102 1976-01-17 1986-12-02 1939-03-02
2 59 1973-07-16 1982-07-05 1912-07-05
3 126 1970-03-17 1984-03-20 1919-12-24
4 16 1969-05-16 1969-12-31 1906-09-17
> food <- cal.yr(diet)
> food[1:4, 1:4]

id doe dox dob
1 102 1976.042 1986.917 1939.164
2 59 1973.537 1982.507 1912.508
3 126 1970.205 1984.215 1919.977
4 16 1969.370 1969.997 1906.709
> str(food[1:4])
'data.frame': 337 obs. of 4 variables:
$ id : num 102 59 126 16 247 272 268 206 182 2 ...
$ doe: 'cal.yr' num 1976 1974 1970 1969 1968 ...
$ dox: 'cal.yr' num 1987 1983 1984 1970 1979 ...
$ dob: 'cal.yr' num 1939 1913 1920 1907 1919 ...

Exercises:
1. Generate a new variable y which is the elapsed time in years between the

date of entry and the date of exit.
2. Enter your own birthday as a date. Print it using format.Date() with the

format "%A %d %B %Y". Did you learn anything new?
3. Print your birthday in cal.yr format.
4. Enter the birthday of your husband/wife/. . . as a date too. When will you

be (or were you) 100 years old together? (Hint: mean() works on vectors of
dates as well.)

Chapter 2

Survival and rates: lung

Paraphernalia

It is advisable to load all packages needed at the start:
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> clear()

2.1 Data and simple survival

1. Load the lung data from the survival package, and convert sex to a factor (always
do that with categorical variables). Also we rescale time from days to months:
> data(lung)
> lung$sex <- factor(lung$sex,
+ levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)
> head(lung)
inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

1 3 10.053388 2 74 M 1 90 100 1175 NA
2 3 14.948665 2 68 M 0 90 90 1225 15
3 3 33.182752 1 56 M 0 90 90 NA 15
4 5 6.899384 2 57 M 1 90 60 1150 11
5 1 29.010267 2 60 M 0 100 90 NA 0
6 12 33.577002 1 74 M 1 50 80 513 0

2. Use survfit to construct the Kaplan-Meier estimator of overall survival:
> ?Surv
> ?survfit
> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km
Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228.00 165.00 10.18 9.36 11.93
> # summary(km) # very long output

23

24 2.1 Data and simple survival PMM

The standard print method just prints the number of events and the median survival,
while the summary prints the entire survival function estimate.
We can plot the survival curve—this is the default plot for a survfit object:
> plot(km)

What is the median survival? What does it mean?
3. Explore if survival patterns between men and women are different:

> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms
Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)

n events median 0.95LCL 0.95UCL
sex=M 138 112 8.87 6.97 10.2
sex=W 90 53 14.00 11.43 18.1

We can plot the two resulting survival curves with confidence limits:
> plot(kms, col = c("blue", "red"), lwd = 1, conf.int = TRUE)
> lines(kms, col = c("blue", "red"), lwd = 3)

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1: Kaplan-Meier estimators of survival for men (blue) and women (red). W
../graph/surv-kms

Survival and rates: lung 2.2 Rates and rate-ratios: Simple Cox model 25

e see that men have worse survival than women, but they are also a bit older (age is
age at diagnosis of lung cancer):
> with(lung, tapply(age, sex, mean))

M W
63.34058 61.07778

Formally there is a significant difference in survival between men and women
> ?survdiff
> survdiff(Surv(time, status==2) ~ sex, data = lung)

What is the null hypothesis tested here?

2.2 Rates and rate-ratios: Simple Cox model

4. Now explore how sex and age (at diagnosis) influence the mortality—note that we are
now addressing the mortality rate and not the survival in a Cox-model:
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + I(age/10), data = lung)
> summary(c1)
Call:
coxph(formula = Surv(time, status == 2) ~ sex + I(age/10), data = lung)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|z|)
sexW -0.51322 0.59857 0.16746 -3.065 0.00218
I(age/10) 0.17045 1.18584 0.09223 1.848 0.06459

exp(coef) exp(-coef) lower .95 upper .95
sexW 0.5986 1.6707 0.4311 0.8311
I(age/10) 1.1858 0.8433 0.9897 1.4208

Concordance= 0.603 (se = 0.025)
Likelihood ratio test= 14.12 on 2 df, p=9e-04
Wald test = 13.47 on 2 df, p=0.001
Score (logrank) test = 13.72 on 2 df, p=0.001
> ci.exp(c0)

exp(Est.) 2.5% 97.5%
sexW 0.5880028 0.4237178 0.8159848
> ci.exp(c1)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
I(age/10) 1.185842 0.9897335 1.4208086

We see that there is not much confounding by age; the W/M mortality RR (hazard
ratio is another word for this) is slightly below 0.6 whether age is included or not.
The age effect is formally non-significant, the estimate corresponds to a 1.7% higher
mortality rate per year of age at diagnosis (mortality RR or hazard ratio of 1.017).
What is the mortality RR for a 10 year age difference?

5. We can check if the assumption of proportional hazards holds, cox.zph provides a test,
and the plot method shows the Schoenfeld residuals and a smooth of them;
interpretable as an estimate of the interaction effect; that is how the W/M (log)
rate-ratio depends on time:
> ?cox.zph

26 2.3 Simple Poisson model PMM

> cox.zph(c0)
chisq df p

sex 2.86 1 0.091
GLOBAL 2.86 1 0.091
> (z1 <- cox.zph(c1))

chisq df p
sex 2.608 1 0.11
I(age/10) 0.209 1 0.65
GLOBAL 2.771 2 0.25
> par(mfrow = c(1, 2)) ; plot(z1)

If the proportional hazards model holds, then the resulting lines in he plots should be
approximately horizontal.

6. We see that there is no systematic pattern for age, but an increase by sex. The
cox.zph really gives a test for an interaction between each covariate and the time scale.
We will keep that in mind so we can assess this through proper modeling of the
interaction—the Cox model does not include the estimate of the effect of time, and
the by that token it is impossible to estimate any interaction with time as well.

7. Before we showed the Kaplan-Meier estimator for each of the two sexes. We can also
show the estimated survival curves for the two sexes as derived from the Cox-model.
This requires a prediction data frame—a data frame with the same variables as in the
Cox-model and values of these representing the persons for whom we want predictions:

> prs <- survfit(c0, newdata = data.frame(sex = c("M","W")))
> plot(prs, col = c("blue", "red"))

How is the shape of the two curves relative to each other?
8. Try to over-plot the Cox-prediction on the Kaplan-Meier curves:

> plot(prs, col = c("blue", "red"), lwd = 1, lty = 1, conf.int = TRUE)
> lines(prs, col = c("blue", "red"), lty = 1, lwd=3)
> lines(kms, col = c("blue", "red"), lty = 2, lwd=2)

Do they agree? What does that mean?

2.3 Simple Poisson model

9. But we do not know how the mortality per se looks as a function of time (since
diagnosis). That function is not available from the Cox-model or from the survfit

object. To that end we must provide a model for the effect of time on mortality; the
simplest is of course to assume that it is constant or a simple linear function of time.
For a start we assume that the mortality is constant over time, it is so that the
likelihood for the model is equivalent to a Poisson likelihood, which can be fitted using
the poisreg family from the Epi package:
> ?poisreg
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # estimates form Poisson

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317

Survival and rates: lung 2.4 Representation of follow-up: Lexis object 27

> ci.exp(c1) # estimates from Cox
exp(Est.) 2.5% 97.5%

sexW 0.598566 0.4310936 0.8310985
I(age/10) 1.185842 0.9897335 1.4208086

We see that the estimates of sex and age effects are quite close between the Poisson
and the Cox models, but also that the Poisson model has an intercept term, the
estimate of the (assumed) constant underlying mortality. Since we entered the risk
time part of the response (second argument in the cbind) in units of months
(remember we rescaled in the beginning?), the (Intercept) (taken from the ci.exp)
is a rate per 1 person-month.
What age and sex does the (Intercept) refer to?

10. The syntax for poisreg is a bit different from that for poisson, which would be:
> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
> ci.exp(px)

The formulation with the offset is the reason that papers use the description ”. . . we
fitted a Poisson model with log person years as offset”.
The drawback of the poisson approach is that you need the (risk) time (person-years)
as a variable in the prediction frame. This is not the case for poisreg, where you get
the predicted rates per unit in which as you entered the person years when specifying
the model.
We shall return to prediction of rates.

2.4 Representation of follow-up: Lexis object

If we want to see how mortality varies by age we must split the follow-up of each person in
small intervals of say, 30 days. This is most easily done using a Lexis object. That is
basically just taking the lung dataset and adding a few features that defines times and
states. The point is that it makes life a lot easier when things get more complex than just
simple survival.

11. First make a Lexis object:
> ?Lexis
> Ll <- Lexis(exit = list(tfl = time),
+ exit.status = factor(status,
+ levels = 1:2,
+ labels = c("Alive","Dead")),
+ data = lung)
NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.
> head(Ll)
tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex ph.ecog ph.karno

1 0 10.053388 Alive Dead 1 3 10.053388 2 74 M 1 90
2 0 14.948665 Alive Dead 2 3 14.948665 2 68 M 0 90

28 2.4 Representation of follow-up: Lexis object PMM

3 0 33.182752 Alive Alive 3 3 33.182752 1 56 M 0 90
4 0 6.899384 Alive Dead 4 5 6.899384 2 57 M 1 90
5 0 29.010267 Alive Dead 5 1 29.010267 2 60 M 0 100
6 0 33.577002 Alive Alive 6 12 33.577002 1 74 M 1 50
pat.karno meal.cal wt.loss

1 100 1175 NA
2 90 1225 15
3 90 NA 15
4 60 1150 11
5 90 NA 0
6 80 513 0

We see that 5 variables have been added to the dataset:
tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the

entry time is 0 from the entry time.
lex.dur: the length of time a person is in state lex.Cst, here measured in months,

because time is.
lex.Cst: Current state, the state in which the lex.dur time is spent.
lex.Xst: eXit state, the state to which the person moves after the lex.dur time in

lex.Cst.
lex.id: a numerical id of each record in the dataset (normally this will be a person

id).
This seems a bit of an overkill for keeping track of time and death for the lung cancer
patients, but the point is that this generalizes to multistate data too.
It also gives a handy overview of the follow-up:
> summary(Ll)
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

What is the average follow-up time for persons?
For a graphical representation, try:
> ?boxes
> boxes(Ll, boxpos = TRUE)

Explain the numbers in the resulting graph. Redo the graph with risk time counted in
years.

12. We can make the Cox-analysis using the Lexis-specific variables by:
> ?Surv
> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
+ lex.Xst == "Dead") ~ sex + age,
+ data = Ll)

but even simpler, by using the Lexis features:
> ?coxph.Lexis
> cL <- coxph.Lexis(Ll, tfl ~ sex + age)
survival::coxph analysis of Lexis object Ll:
Rates for the transition Alive->Dead
Baseline timescale: tfl
> ci.exp(cL)

exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

Survival and rates: lung 2.5 Estimating the hazard function: splitting time 29

> ci.exp(cl)
exp(Est.) 2.5% 97.5%

sexW 0.598566 0.4310936 0.8310985
age 1.017191 0.9989686 1.0357467

13. And we can make the Poisson-analysis by:
> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = Ll)

or even simpler, by using the Lexis features:
> pL <- glm.Lexis(Ll, ~ sex + age)
stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition: Alive->Dead
> ci.exp(pL)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
> ci.exp(pc)

exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317

Remember that the Poisson-model fitted is a very brutal approximation to the
Cox-model; it assumes that the baseline hazard is constant, whereas the Cox-model
allows the baseline hazard to vary arbitrarily by time.

2.5 Estimating the hazard function: splitting time

If we want a more detailed version of the baseline hazard we split follow-up time in small
intervals, assume that the hazard is constant in each small interval, and assume the the size
of the hazard varies smoothly with time, tfl:

14. We can subdivide the follow-up in small intervals by survival:::survSplit,
Epi:::splitLexis or popEpi:::splitMulti (and possibly many more). The
splitMulti is by far the easiest to use (and fastest as well). Recall we rescaled time to
months, so we split in 1 month intervals:
> Sl <- splitMulti(Ll, tfl = 0:36)

This will split the follow-up along the time-scale tfl at times 0, 1, . . . , 36 months; we
see that the follow-up time is the same, but there are now about 10 times as many
records:
> summary(Ll)
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 2286.42 228

> summary(Sl)
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 2234 165 2399 165 2286.42 228

We can see how the follow up for person, 10 say, is in the original and the split dataset:

30 2.5 Estimating the hazard function: splitting time PMM

> wh <- names(Ll)[1:10] # names of variables in some order
> subset(Ll, lex.id == 10)[,wh]

tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex
10 0 5.453799 Alive Dead 10 7 5.453799 2 61 M
> subset(Sl, lex.id == 10)[,wh]

tfl lex.dur lex.Cst lex.Xst lex.id inst time status age sex
163 0 1.0000000 Alive Alive 10 7 5.453799 2 61 M
164 1 1.0000000 Alive Alive 10 7 5.453799 2 61 M
165 2 1.0000000 Alive Alive 10 7 5.453799 2 61 M
166 3 1.0000000 Alive Alive 10 7 5.453799 2 61 M
167 4 1.0000000 Alive Alive 10 7 5.453799 2 61 M
168 5 0.4537988 Alive Dead 10 7 5.453799 2 61 M

In Sl each record now represents a small interval of follow-up for a person, so each
person has many records. The main thing to note here is tfl, which represents the
time from lung cancer at the beginning of each interval, and lex.dur representing the
risk time (“person-years”, in months though).

15. We can now include a smooth effect of tfl in the Poisson-model allowing the baseline
hazard to vary by time. That is done by natural splines, Ns:
> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)
> ci.exp(ps)

exp(Est.) 2.5% 97.5%
(Intercept) 0.0189837 0.005700814 0.06321569
Ns(tfl, knots = seq(0, 36, 12))1 2.4038681 0.809442081 7.13896863
Ns(tfl, knots = seq(0, 36, 12))2 4.1500822 0.436273089 39.47798357
Ns(tfl, knots = seq(0, 36, 12))3 0.8398973 0.043928614 16.05849662
sexW 0.5987171 0.431232662 0.83124998
age 1.0165872 0.998377104 1.03512945

or even simpler:
> ?glm.Lexis
> ps <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age)
> ci.exp(ps)

16. Compare these to the regression estimates from the Cox-model and from the model
with constant baseline:
> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 3)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexW 0.599 0.431 0.831 0.599 0.431 0.831 0.618 0.446 0.858
age 1.017 0.999 1.036 1.017 0.998 1.035 1.016 0.998 1.034

We see that the smooth parametric Poisson model and the Cox model produce
virtually the same estimates, whereas the Poisson model with constant hazard produce
slightly different ones.

17. The proportional hazards assumption is the same for the Cox model and the Poisson
models: The M/W hazard ratio is the same at any time after diagnosis. What differs is
the assumed shape of the hazard (not a hazard ratio).
The Cox model allows the baseline rate to change arbitrarily at every event time time
not using the quantitative nature of time, the ps Poisson model has a baseline that

Survival and rates: lung 2.5 Estimating the hazard function: splitting time 31

varies smoothly by time and the pc Poisson model has a baseline that is constant over
time. The latter is clearly not tenable, whereas the smooth Poisson model and the Cox
model give the same regression estimates.

18. We now have a parametric model for the baseline hazard which means that we can
show the estimated baseline hazard for a 60-year old woman, by supplying a suitable
prediction frame, i.e. a data frame where each row represents a set of covariate values,
including the time where we want the predicted mortality:
> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)

We can over-plot with the predicted rates from the model where mortality rates are
constant, the only change is the model (pc instead of ps):
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 2, lwd = 3)

What we see from the plot is that mortality rates are increasing during the first 1.5
years after lung cancer and then leveling off.
Put some sensible axis labels on the plot, and rescale the rates to rates per 1
person-year.

19. We can transform the hazard function, λ(t), to a survival function, S(t) using the
relationship S(t) = exp(−

∫ t
0 λ(u) du). This is implemented in the ci.surv function,

which takes the model and a prediction data frame as arguments; the prediction data
frame must correspond to a sequence of equidistant time points, so we can use prf for
this purpose:
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)

We can expand this by overlaying the survival function from the model with constant
hazard (also known as ”exponential(y distributed) survival”) and the KM-estimator
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1])
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1)

We see that the survival function from the constant hazard model is quite a bit off, but
also a good correspondence between the Cox-model based survival and the survival
from the parametric hazard function.
We can bring the plots together in one graph:
> par(mfrow = c(1,2))
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
> # survival
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> matshade(prf$tfl, ci.surv(pc, prf, intl = 0.2),
+ lty = 3, alpha = 0, lwd = 3)
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3)

32 2.5 Estimating the hazard function: splitting time PMM

0 5 10 15 20 25 30

0.
02

0.
05

0.
10

0.
20

x

y

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x
y

Figure 2.2: Hazards (left) and survival (right) for 60 year old women. The left hand plot is
unavailable from the Cox model.

../graph/surv-ratesurv

20. We have compared the predicted survival curve from a Poisson model with age and sex
and time since lung cancer as covariates to that from a Cox-model with age and sex as
covariates and time since lung cancer as underlying time scale.
We now go back to the Kaplan-Meier estimator and compare that to the corresponding
Poisson-model, which is one with time (tfl) as the only covariate:
> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = Sl)
> # hazard
> matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
> # survival from smooth model
> matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ plot = TRUE, lwd = 3, ylim = 0:1)
> # K-M estimator
> lines(km, lwd = 2)

21. We can explore how the tightness of the knots in the smooth model influence the
underlying hazard and the resulting survival function. This is easiest done by setting
up a function that does the analysis withe different number of knots
> zz <-
+ function(dk)
+ {
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),

Survival and rates: lung 2.5 Estimating the hazard function: splitting time 33

0 5 10 15 20 25 30

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

x

y

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 2.3: Baseline hazard (left), and corresponding survival function from parametric model
and Kaplan-Meier estimator.

../graph/surv-parkm

+ family = poisreg,
+ data = Sl)
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=3)
+
+ plot(km, lwd = 2, col = "limegreen")
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ lwd = 3, ylim = 0:1)
+ }
> par(mfrow=c(1,2))
> zz(12)
> par(mfrow=c(4,2))
> for (nk in c(6, 4, 3, 2)) zz(nk)

You will see that the more knots you include, the closer the parametric estimate gets
to the Kaplan-Meier estimator. But also that the estimated underlying hazard
becomes increasingly silly. The ultimate silliness is of course achieved when we arrive
at the Kaplan-Meier estimator.
Fortunately the baseline hazard underlying the Kaplan-Meier and the Breslow
estimator is rarely shown.

34 2.5 Estimating the hazard function: splitting time PMM

0 5 10 15 20 25 30

0.01

0.02

0.05

0.10

0.20

0.50

1.00

x

y

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

0.01

0.02

0.05

0.10

0.20

0.50

1.00

x

y

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

0.01

0.02

0.05

0.10

0.20

0.50

1.00

x

y

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

0.01

0.02

0.05

0.10

0.20

0.50

1.00

x

y

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.4: Hazard (left) and survival (right) comparing a parametric model with different
number of knots and the Kaplan-Meier estimator.

../graph/surv-knots2

Chapter 3

Competing risks: DMlate

Paraphernalia

It is advisable to load all packages needed at the start:
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()

3.1 Data

This exercise follows quite closely the section on competing risks in “Epidemiology with R”,
pp. 207 and 210 ff. With the major exception that we will use the function ci.Crisk, which
was not available in the Epi package when the book was written.

We shall use the DMlate dataset which is a random sample of Danish diabetes patients,
with dates of birth, diabetes, OAD start, insulin start and death.

We want to look at the event “start of OAD”, which occurs at dooad, while taking death
as competing event into account. This means that we want to address the question of the
probability of starting OAD, while taking death into account. Essentially estimating the
probability of being in each of the states DM, OAD and Dead, where OAD means “started OAD
and either alive or dead after this” and Dead means “dead without starting OAD”.

1. Load the DMlate data from the Epi package, and for ease of calculation restrict to a
random sample of 2000 persons:
> data(DMlate)
> # str(DMlate)
> set.seed(1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> str(DMlate)
'data.frame': 2000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 1 1 1 1 1 ...
$ dobth: num 1964 1944 1957 1952 1952 ...
$ dodm : num 2003 2006 2008 2007 2003 ...

35

36 3.1 Data PMM

$ dodth: num NA NA NA NA NA NA NA NA NA NA ...
$ dooad: num NA 2006 NA 2007 2006 ...
$ doins: num NA NA NA 2008 NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
> head(DMlate)

sex dobth dodm dodth dooad doins dox
70126 F 1963.591 2003.481 NA NA NA 2009.997
235221 M 1944.127 2005.644 NA 2005.778 NA 2009.997
230872 F 1956.790 2007.886 NA NA NA 2009.997
138167 M 1952.355 2006.969 NA 2006.969 2008.026 2009.997
406109 M 1952.240 2003.361 NA 2005.852 NA 2009.997
72438 M 1978.758 2001.948 NA NA 2001.967 2009.997

2. Define a Lexis object with the total follow up for each person:
> Ldm <- Lexis(entry = list(per = dodm,
+ age = dodm - dobth,
+ tfd = 0),
+ exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM","Dead")),
+ data = DMlate)
NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol
> summary(Ldm)
Transitions:

To
From DM Dead Records: Events: Risk time: Persons:
DM 1521 478 1999 478 10742.34 1999

Then subdivide the follow-up at the date of OAD, using dooad:
> Cdm <- cutLexis(Ldm,
+ cut = Ldm$dooad,
+ timescale = "per",
+ new.state = "OAD")
> summary(Cdm)
Transitions:

To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414.29 1545
OAD 0 836 252 1088 252 5328.05 1088
Sum 685 1470 478 2633 1112 10742.34 1999

In this context we are not interested in what goes on after OAD so we only keep
follow-up in state DM (note that we must use subset because filter does not have a
method for Lexis objects):
> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)
Transitions:

To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414.29 1545

> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)

As shown in figure 3.1 we now have a traditional competing risks set-up, with some
1500 DM patients starting without OAD, and where the quantity of interest is the
probability of starting drug treatment, and the OAD state here means “having been on
oral antidiabetic treatment, disregarding subsequent death”. The other event

Competing risks: DMlate 3.2 State probabilities 37

DM
5,414.3

1,545 685

OAD
5,328.1

454 836

Dead
0 478

634
(11.7)

226
(4.2)

252
(4.7)

DM
5,414.3

1,545 685

OAD
5,328.1

454 836

Dead
0 478

DM
5,414.3

1,545 685

OAD
5,328.1

454 836

Dead
0 478

DM
5,414.3

1,545 685

OAD
0 634

Dead
0 226

634
(11.7)

226
(4.2)

DM
5,414.3

1,545 685

OAD
0 634

Dead
0 226

DM
5,414.3

1,545 685

OAD
0 634

Dead
0 226

Figure 3.1: Competing risks set-up for events OAD and Dead.
../graph/cmpr-boxCR

considered is Dead which here means “dead without initiating oral antidiabetic
treatment”.

3.2 State probabilities

We can compute the (correct) counterpart of the survival function for this competing risks
setup. The survival function we saw in the previous exercise gives the probability of being
alive, and the complement is the probability of being dead.

3. survfit can do the corresponding calculation for the three states in the figure; the
requirements are: 1) the third argument to the Surv function is a factor and 2) an id

argument is given, pointing to an id variable that links together records belonging to
the same person. The latter is superfluous in this case because there is only one record
for each person, but even so it is required by the function survfit.
Also note that the initial state (DM) must be the first level of the factor lex.Xst:
> levels(Adm$lex.Xst)
[1] "DM" "OAD" "Dead"
> m3 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst) ~ 1,
+ id = lex.id,
+ data = Adm)
> names(m3)
[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "p0" "cumhaz" "std.err" "sp0" "logse" "transitions"
[13] "conf.int" "conf.type" "lower" "upper" "conf.type" "conf.int"
[19] "states" "type" "call"
> m3$states
[1] "(s0)" "OAD" "Dead"
> head(cbind(time = m3$time, m3$pstate))

time

38 3.3 What not to do PMM

[1,] 0.002737851 0.9987055 0.001294498 0.0000000000
[2,] 0.005475702 0.9928803 0.006472492 0.0006472492
[3,] 0.008213552 0.9889968 0.009061489 0.0019417476
[4,] 0.010951403 0.9877023 0.009708738 0.0025889968
[5,] 0.013689254 0.9838188 0.013592233 0.0025889968
[6,] 0.016427105 0.9805825 0.016828479 0.0025889968

Because lex.Xst is a factor, survfit will compute the Aalen-Johansen estimator of
being in a given state and place the probabilities in the matrix m3$pstate; the times
these refer to are in the vector m3$time. These are measured in years since diabetes,
because tfd is in units of years,
Explore the object m3; start by using names(m3).
Compare m3$transitions to summary(Adm).

4. The m3$pstate contains the Aalen-Johansen probabilities of being in the Alive,
having left to the OAD, resp. Dead state.
Plot the three curves in the same graph (use for example matplot). Add the
confidence limits.

5. These three curves have sum 1, so basically this is a way of distributing the
probabilities across states at each time. It is therefore natural to stack the
probabilities, which can be done by stackedCIF:
> par(mfrow=c(1,2))
> matplot(m3$time, m3$pstate,
+ type="s", lty=1, lwd=4,
+ col=c("ForestGreen","red","black"),
+ xlim=c(0,15), xaxs="i",
+ ylim=c(0,1), yaxs="i")
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i")
> text(rep(12,3), c(0.9,0.3,0.6), levels(Cdm))
> box()

6. What do you get if you replace “~ 1” by “~ sex” in the call to survfit?

3.3 What not to do

A very common error is to use a partial outcome such as OAD, when there is a competing
type of event, in this case Dead. If that is ignored and a traditional survival analysis is made
as if OAD were the only possible event, we will have a substantial overestimate of the
cumulative probability of going on drug. Here is an illustration of this erroneous approach:
> m2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "OAD") ~ 1,
+ data = Adm)
> M2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst == "Dead") ~ 1,
+ data = Adm)
> par(mfrow = c(1,2))
> mat2pol(m3$pstate, c(2,3,1), x = m3$time,
+ col = c("red", "black", "transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "")

Competing risks: DMlate 3.4 Modeling cause specific rates 39

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

m3$time

m
3$

ps
ta

te

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Time

C
um

ul
at

iv
e

in
ci

de
nc

e

DM

OAD

Dead

Figure 3.2: Separate state probabilities (left) and stacked state probabilities (right). In the left
panel, Alive is green, OAD is red and Dead is black. ../graph/cmpr-surv2

> lines(m2$time, 1 - m2$surv, lwd = 3, col = "red")
> mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
+ col = c("black","red","transparent"),
+ xlim=c(0,15), xaxs="i",
+ yaxs = "i", xlab = "time since DM", ylab = "")
> lines(M2$time, 1 - M2$surv, lwd = 3, col = "black")

The first two statements calculate the survival as if only OAD, respectively Dead were the only
way of exiting the state Alive. The mat2pol (matrix to polygon) takes the columns of state
probabilities from the survfit object m3 that contains the correctly modeled probabilities
and plot them as coloured areas stacked; the second argument to mat2pol is the order in
which they should be stacked. The lines plot the wrongly computed cumulative risks (from
m2 and M2) — in order to find these we fish out the surv component from the survfit

objects.

3.4 Modeling cause specific rates

There is nothing wrong with modeling the cause-specific event-rates, the problem lies in how
you transform them into probabilities. The relevant model for a competing risks situation
normally consists of separate models for each of the cause-specific rates. Not for technical or
statistical reasons, but for substantial reasons; it is unlikely that rates of different types of
event (OAD initiation and death, say) depend on time in the same way.

40 3.4 Modeling cause specific rates PMM

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

time since DM

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

time since DM

Figure 3.3: Stacked state probabilities Alive is white, OAD is red and Dead is black. The red
line in the left panel is the wrong (but often computed) “cumulative risk” of OAD, and the black
line in the right panel is the wrong (but often computed) “cumulative risk” of Death. The
black and the red areas in the two plots represent the correctly computed probabilities; they
have the same size in both panels, only they are stacked differently. ../graph/cmpr-surv3

7. Now model the two sets of rates by parametric models; this must be based on a
time-split data set:
> Sdm <- splitMulti(Adm, tfd = seq(0,20,0.1))
> summary(Adm)
Transitions:

To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 685 634 226 1545 860 5414.29 1545

> summary(Sdm)
Transitions:

To
From DM OAD Dead Records: Events: Risk time: Persons:
DM 54064 634 226 54924 860 5414.29 1545

8. We will use natural splines for the effect of diabetes duration in a model using glm.
The Ns requires a set of pre-specified knots for the time variable, where the
specification should be (partially) guided by the location on the times of the events:
> round(cbind(
+ with(subset(Sdm, lex.Xst == "OAD"), quantile(tfd + lex.dur, 0:10/10)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:10/10))),
+ 3)

[,1] [,2]
0% 0.003 0.005
10% 0.038 0.129
20% 0.095 0.507
30% 0.142 1.083
40% 0.239 1.730

Competing risks: DMlate 3.5 Integrals with R 41

50% 0.534 2.552
60% 1.268 3.584
70% 2.199 4.490
80% 3.373 6.196
90% 5.213 8.471
100% 14.311 11.858

We see that the OAD occur earlier than Dead, so we choose the knots a bit earlier:
> okn <- c(0,0.5,3,6)
> dkn <- c(0,2.0,5,9)
> OAD.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = okn), from = "DM", to = "OAD")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->OAD
> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), from = "DM", to = "Dead")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead

9. With models for the two rates out of the DM state we can derive the estimated rates
from the two models for rates by time by using a prediction frame, nd:
> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred(OAD.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)

Now plot the estimated rates, in this case the gam models with dotted and glm models
with full lines; mortality with black and OAD rates with red:
> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+ log = "y", ylim = c(2, 20),
+ col = rep(c("red","black"), 2), lwd = 3)

3.5 Integrals with R

Based on these parametric models we can estimate the cumulative risks of being in each of
the states, but also the expected time time spent in each state. The theory of these involves
calculation of integrals of the rate functions. Integrals looks scary to many people, but they
are really just areas under curves. So here is a digression showing how to calculate integrals
as areas under a curve.

The key is to understand how a curve is represented in R. A curve representing the
function µ is just a set of two vectors, one vector of ts and one vector y = µ(t)s. When we
have a model such as the gam or glm above that estimates the mortality as a function of time
(tfd), we can get a representation of the mortality as a funtion of time by first choosing the
timepoints, say from 0 to 15 years in steps of 0.01 year (≈ 4 days). Then put this in a
dataframe (nd, newdata) with the variable name from the model to get the function values
at the chosen time points:
> t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd)[,1]
> head(cbind(t, mu))

t mu
1 0.00 0.06919036
2 0.01 0.06885302

42 3.5 Integrals with R PMM

0 5 10 15

2

5

10

20

x

y

Figure 3.4: Mortality rates (black) and OAD-rates (red), from a glm model with natural
splines.

../graph/cmpr-OAD-mort

3 0.02 0.06851733
4 0.03 0.06818330
5 0.04 0.06785093
6 0.05 0.06752022
> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, max(mu)), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")

This is a representaion of the points (t, µ(t)); if we want the integral of mu over the interval
[0, 5], say, M(5) =

∫ 5
0 µ(s) ds, we are just asking for the area under the curve. Each t

represents an endpoint of an interval, but what we want in order to compute the area under
the curve is the width of each interval, diff(t), multiplied by the average of the function
values at the ends of each interval (this goes under the name of the ”trapezoidal formula”).
So we need a small function to compute midpoints between successive values in a vector:
> mid <- function(x) x[-1] - diff(x) / 2
> (x <- c(1:5, 7, 10))
[1] 1 2 3 4 5 7 10
> mid(x)
[1] 1.5 2.5 3.5 4.5 6.0 8.5

Note that mid(x) is a vector that is 1 shorter than the vector x, just as diff(x) is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first 500

intervals, corresponding to the first 501 interval endpoints:
> sum(diff(t[1:501]) * mid(mu[1:501]))

Competing risks: DMlate 3.5 Integrals with R 43

0 1 2 3 4 5 6 7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

t

m
u

Figure 3.5: Mortality function and integral from 0 to 5 years.
../graph/cmpr-int-ill

[1] 0.1896222

So now we have computed
∫ 5

0 µ(s) d(s). This is called the cumulative rate over the interval
[0, 5] years.

It is iportamt to get the units right. In the modeling we entered the risk time
(“person-years”) in units of 1 year, so the unit of predicted mortality function, mu, is events
per 1 person-year. Therefore, the units of t must be year too; otherwise we will introduce a
scaling.

In pratice we will want the integral function of µ, so for every t we want
M(t) =

∫ t
0 µ(s) d(s). This is easily accomplished by the function cumsum:

> Mu <- c(0, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))

t Mu
0.00 0.0000000000

2 0.01 0.0006902169
3 0.02 0.0013770686
4 0.03 0.0020605718
5 0.04 0.0027407429
6 0.05 0.0034175987

Note the first value which is the integral from 0 to 0, so by definition 0.

44 3.6 Cumulative risks from parametric models PMM

3.6 Cumulative risks from parametric models

Here is the theory where we need integration: The cumulative risk of OAD at time t is:

ROAD(t) =
∫ t

0
λ(u)S(u) du =

∫ t

0
λ(u) exp

(
−
∫ u

0
λ(s) + µ(s) ds

)
du

where λ is the rate of OAD (lam), and µ the mortality rate (mrt). A similar formula is
obtained for the cumulative risk of Dead (that is “dead without OAD”), by exchanging λ and
µ.

The prectical calculation of these quantities are on pages 214–5 of “Epidemiology with R”.
10. This means that if we have estimates of λ and µ as functions of time, we can derive the

cumulative risks. In practice this will be by numerical integration; compute the rates
at closely spaced intervals and evaluate the integrals as sums. This is easy, but what is
not so easy is to come up with confidence intervals for the cumulative risks.
Confidence intervals are most conveniently produced by simulation (“parametric
bootstrap” as some say):
(a) generate a random vector from the multivariate normal distribution with mean

equal to the parameters of the model, and variance-covariance equal to the
estimated variance-covariance of the parameter estimates (the Hessian as it is
called).

(b) use this to generate a simulated set of rates (λ(t), µ(t)), evaluated a closely
spaced times

(c) use these in numerical integration to derive state probabilities at these times
(d) repeat 1000 times, say, to obtain 1000 sets of state probabilities at these times
(e) use these to derive confidence intervals for the state probabilities as the 2.5 and

97.5 percentiles of the state probabilities at each time
This machinery is implemented in the function ci.Crisk
> cR <- ci.Crisk(mods = list(OAD = OAD.glm,
+ Dead = Dead.glm),
+ nd = nd)
NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
> str(cR)
List of 4
$ Crisk: num [1:1501, 1:3, 1:3] 1 0.991 0.983 0.975 0.968 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "OAD" "Dead"
.. ..$: chr [1:3] "50%" "2.5%" "97.5%"
$ Srisk: num [1:1501, 1:2, 1:3] 0 0.000692 0.001374 0.002048 0.002713 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:2] "Dead" "Dead+OAD"
.. ..$: chr [1:3] "50%" "2.5%" "97.5%"
$ Stime: num [1:1501, 1:3, 1:3] 0 0.00996 0.01983 0.02963 0.03934 ...
..- attr(*, "dimnames")=List of 3
.. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
.. ..$ cause: chr [1:3] "Surv" "OAD" "Dead"
.. ..$: chr [1:3] "50%" "2.5%" "97.5%"
$ time : num [1:1501] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
- attr(*, "int")= num 0.01

Competing risks: DMlate 3.6 Cumulative risks from parametric models 45

There are 4 components of the results, the three first are simply arrays with 2 or 3
functions of time with confidence intervals.
So now plot the cumulative risks of being in each of the states (the Crisk component):

> matshade(as.numeric(dimnames(cR$Crisk)[[1]]),
+ cbind(cR$Crisk[,1,],
+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 3.6: Cumulative risks of being in each of the states DM (green), OAD (red) and Dead

../graph/cmpr-crisk

11. Plot the stacked probabilities (matrix 2 polygons):
> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])

The component Srisk has the confidence limits of the stacked probabilities, add these
to the plot, for example by semi-transparent shades or dotted lines,
If you are really entrepreneurial, devise a function that will take the Srisk component
of cR and produce a stacked plot with shaded confidence limits; here is the stacked

46 3.7 Expected life time: using simulated objects PMM

plot:
> matshade(as.numeric(dimnames(cR$Srisk)[[1]]),
+ cbind(cR$Srisk[,1,],
+ cR$Srisk[,2,]), plot = TRUE,
+ lwd = 2, col = c("black","red"),
+ ylim = 0:1, yaxs = "i")

Note the yaxs = "i". . .
You may want to look at adjustcolor or rgb to see how to make semi-transparent
colours.

3.7 Expected life time: using simulated objects

12. It is not only the cumulative risks of being in different states that my be of interest,
the integrals — area under the cumulative risk curves are of interest too. The
cumulative risks are probabilities, so dimensionless, which means that integrals of these
along the time-axis will have dimension time; they will represent the expected time
spent in each of the states.
The areas between the lines (up to say 10 years) are expected sojourn times, that
is:

• expected years alive without OAD
• expected years lost to death without OAD
• expected years after OAD, including years dead after OAD

Not all of these are of direct relevance; actually only the first may be so. They are
available (with simulation-based confidence intervals) in the component of cR, Stime
(Sojourn time).
A relevant quantity would be the expected time alive without OAD during the first 5,
10 and 15 years (remember that the first dimension of Stime is in unots of 1/100 year):

> str(cR$Stime)
num [1:1501, 1:3, 1:3] 0 0.00996 0.01983 0.02963 0.03934 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
..$ cause: chr [1:3] "Surv" "OAD" "Dead"
..$: chr [1:3] "50%" "2.5%" "97.5%"

> round(cR$Stime[1:3*500+1,"Surv",], 1)
tfd 50% 2.5% 97.5%
5 3.2 3.1 3.3
10 5.1 4.9 5.3
15 6.4 6.0 6.8

13. We can also compute the expected fraction of the first 5, 10, 15 years alive:
> (mY <- matrix(rep(1:3 * 5, 3), 3, 3))

[,1] [,2] [,3]
[1,] 5 5 5
[2,] 10 10 10
[3,] 15 15 15
> round(100 * cR$Stime[1:3*500+1,"Surv",] / mY, 1)
tfd 50% 2.5% 97.5%
5 64.7 62.5 66.8
10 51.3 49.1 53.4

Competing risks: DMlate 3.7 Expected life time: using simulated objects 47

15 42.7 40.3 45.0

This can also be shown as a function of time; how large a fraction of the first t time
can a person expect to be alive, for t ranging from 0 to 15 years:
> time <- as.numeric(dimnames(cR$Stime)[[1]]) / 100
> matshade(time, cR$Stime[,"Surv",] /
+ cbind(time,
+ time,
+ time) * 100,
+ plot=TRUE,
+ ylim = 0:1*100, yaxs = "i", xaxs = "i")

Amend the plot with proper axis labels.

Chapter 4

Multistate models: steno2

Paraphernalia

First we load the relevant packages and set some options:
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> # setwd("/home/bendix/teach/AdvCoh/courses/Aalborg.2022/pracs")
> # setwd("/home/bendix/teach/AdvCoh/courses/Nuuk.2022/pracs")
> getwd()
[1] "C:/Bendix/teach/AdvCoh/courses/Nuuk.2022/pracs"
> clear()

For later convenience we devise a function that prints a data frame with all its numerical
values rounded—this is particularly useful for Lexis objects with time scales calendar time
and say, age.
> nround <-
+ function(df, dec = 2)
+ {
+ wh.num <- sapply(df, is.numeric)
+ df[,wh.num] <- round(df[,wh.num], dec)
+ print(df)
+ }

4.1 Lexis object for steno2

1. Bring in the steno2 dataset, and convert dates to cal.yr to get a natural unit of time
(years—365.25 days, that is). Because of the way data were anonymized, the doEnd is
not perfectly aligned to doDth, which we remedy on the fly by resetting doEnd if a
doDth is known.
> data(steno2)
> steno2 <- transform(cal.yr(steno2),
+ doEnd = ifelse(!is.na(doDth),
+ doDth,
+ doEnd))

48

Multistate models: steno2 4.1 Lexis object for steno2 49

> str(steno2)
'data.frame': 160 obs. of 14 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1 ...
$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
$ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
$ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...
$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
$ doEnd : num 2015 2015 2002 2003 1998 ...
$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...

2. Start by setting up a Lexis data frame for the entire observation time for each person;
from entry (doBase, date of baseline) to exit, doEnd. Note that we call the initial state
Mic(roalbuminuria), because all patients in the Steno2 study had this status at
entry—it was one of the inclusion criteria:
> L2 <- Lexis(entry = list(per = doBase,
+ age = doBase - doBth,
+ tfi = 0),
+ exit = list(per = doEnd),
+ exit.status = factor(deathCVD + !is.na(doDth),
+ labels=c("Mic","D(oth)","D(CVD)")),
+ id = id,
+ data = steno2)
NOTE: entry.status has been set to "Mic" for all.
> summary(L2, t = TRUE)
Transitions:

To
From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 67 55 38 160 93 2420.91 160

Timescales:
per age tfi
"" "" ""
> boxes(L2, boxpos = TRUE, show.BE = TRUE)

How many deaths are there in the cohort?
Explain the coding of exit.status.
How many person-years?
What are the time scales?

3. In this set-up we can study the CVD and the non-CVD mortality rates, a classical
competing risks problem, but we want in particular to see how the mortality rates
depend on albuminuria status.
In order to allocate follow-up (person-time and events) to current albuminuria status
we need to know when the persons change status; this is recorded in the data frame
st2alb.
We will cut the follow-up at each date of albuminuria measurement allowing the
patients to change between states Normoalbuminuria, Microalbuminuria and

50 4.1 Lexis object for steno2 PMM

Macroalbuminuria at each of these dates, possibly several times per person. To this end
we use the function rcutLexis (recurrent cuts), which requires a data frame of
transitions with columns lex.id, cut and new.state — see ?rcutLexis.
We change the scale of the date of transition to year by cal.yr (to align with the per

variable in L2), and in order to comply with the requirements of rcutLexis rename
the id variable id to lex.id, the date variable doTr to cut and the state variable
state to new.state:
> data(st2alb)
> cut2 <- rename(cal.yr(st2alb),
+ lex.id = id,
+ cut = doTr,
+ new.state = state)
> str(cut2)
'data.frame': 563 obs. of 3 variables:
$ lex.id : num 1 1 1 1 1 2 2 2 2 2 ...
$ cut : 'cal.yr' num 1993 1995 2000 2002 2007 ...
$ new.state: Factor w/ 3 levels "Norm","Mic","Mac": 2 1 2 1 2 1 2 3 2 2 ...
> head(cut2)
lex.id cut new.state

1 1 1993.444 Mic
2 1 1995.361 Norm
3 1 2000.067 Mic
4 1 2001.984 Norm
5 1 2007.317 Mic
6 2 1993.786 Norm

How many persons are in the cut2 data frame?
> with(cut2, addmargins(table(table(lex.id))))
1 2 3 4 5 Sum
4 25 40 46 41 156

Explain the entries in this table.
4. Now cut at intermediate transition times (note that rcutLexis assumes that values in

the cut column refer to the first timescale by default, and the first of the timescales in
L2 is per:
> L3 <- rcutLexis(L2, cut2)
> summary(L3)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 299 72 65 27 13 476 177 1383.56 160
Norm 31 90 5 14 7 147 57 608.75 69
Mac 20 3 44 14 18 99 55 428.60 64
Sum 350 165 114 55 38 722 289 2420.91 160

> boxes(L3, boxpos = TRUE, cex = 0.8)

5. Note that there are transitions both ways between all three of Norm, Mic and Mac,
which is a bit illogical, since we have a natural ordering of states: Norm < Mic < Mac,
so transitions from Norm to Mac (and vice versa) should go through Mic

In order to remedy this anomaly we find all transitions Norm→ Mac and provide a
transition Norm→ Mic in between. And of course similarly for transitions Mac→ Norm.
The relevant “jump” transitions are easily found:
> (jump <-
+ subset(L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |

Multistate models: steno2 4.1 Lexis object for steno2 51

Mic
1,383.6

Norm
608.8

Mac
428.6

D(oth)

D(CVD)

72
(0.1)

65
(0.0)

27
(0.0)

13
(0.0)

31
(0.1)

5
(0.0)

14
(0.0)

7
(0.0) 20

(0.0)

3
(0.0)

14
(0.0)

18
(0.0)

Mic
1,383.6

Norm
608.8

Mac
428.6

D(oth)

D(CVD)

Mic
1,383.6

Norm
608.8

Mac
428.6

D(oth)

D(CVD)

Figure 4.1: The default lay-out of the 5 boxes placed on a circle, including the jumps directly
between Norm and Mac.

../graph/ms-boxL3

+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])

lex.id per lex.dur lex.Cst lex.Xst
291 70 1999.487 2.6748802 Mac Norm
353 86 2001.759 12.8158795 Norm Mac
506 130 2000.910 1.8781656 Mac Norm
511 131 1997.756 4.2354552 Norm Mac
525 136 1997.214 0.4709103 Mac Norm
526 136 1997.685 4.2436687 Norm Mac
654 171 1996.390 5.3388090 Norm Mac
676 175 2004.585 9.8836413 Norm Mac

52 4.1 Lexis object for steno2 PMM

6. What we need to do for each of these “jumps” is to provide an extra transition to Mic

at a time during the stay in either Norm or Mac, i.e. somewhere between per and
per + lex.dur in these records; we choose a random time in the middle 80% between
the dates:
> set.seed(1952)
> xcut <- select(transform(jump,
+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic"),
+ c(lex.id, cut, new.state))
> xcut

lex.id cut new.state
291 70 2001.789 Mic
353 86 2012.232 Mic
506 130 2001.488 Mic
511 131 2001.032 Mic
525 136 1997.610 Mic
526 136 2000.780 Mic
654 171 1997.057 Mic
676 175 2013.472 Mic

How many extra records will be generated when cutting the follow-up?
7. Now make extra cuts (transitions to Mic) at these dates using rcutLexis with xcut

on the L3 object:
> L4 <- rcutLexis(L3, xcut)
> summary(L4)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

We see that there are no transitions directly between Norm and Mac in L4, so we can
make a more intelligible plot of the transitions:
> opar <- par(bg="black",fg="white")
> par(opar)
> boxes(L4, boxpos = list(x = c(20,20,20,80,80),
+ y = c(50,90,10,75,25)),
+ show.BE = "nz",
+ scale.R = 100, digits.R = 2,
+ cex = 0.9, pos.arr = 0.3)

Explain the arguments used to boxes.
Explain the numbers in the graph.
Describe the overall effect of albuminuria on the two mortality rates.

With this multistate model (well, there is no model yet) set up we can look at mortality
rates and see how they depend on the current albuminuria state, or look at the transition
rates between the different albuminuria states and assess how these depend on covariates.

Multistate models: steno2 4.2 Transition rates: multiple time scales 53

Mic
1,437.4

160 36

Norm
581.8

 18

Mac
401.7

 13

D(oth)
 55

D(CVD)
 38

72
(5.01)

65
(4.52)

30
(2.09)

14
(0.97)

35
(6.02)

13
(2.23)

6
(1.03)

22
(5.48)

12
(2.99)

18
(4.48)

Mic
1,437.4

160 36

Norm
581.8

 18

Mac
401.7

 13

D(oth)
 55

D(CVD)
 38

Mic
1,437.4

160 36

Norm
581.8

 18

Mac
401.7

 13

D(oth)
 55

D(CVD)
 38

Figure 4.2: Transitions between states in the Steno2 study.
../graph/ms-b4

4.2 Transition rates: multiple time scales

8. We will model the transition rates with parametric functions, so we need to split the
dataset along some time scale; we will use 3 month intervals (they should be
sufficiently small to accommodate an assumption of constant rates in each interval):
> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/2))
> summary(L4)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

> summary(S4)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 3107 72 65 30 14 3288 181 1437.39 160

54 4.2 Transition rates: multiple time scales PMM

Norm 35 1254 0 13 6 1308 54 581.83 66
Mac 22 0 847 12 18 899 52 401.70 60
Sum 3164 1326 912 55 38 5495 287 2420.91 160

We see that the number of events (transitions) and person-years are the same, in the
two Lexis objects, but the number of records in S4 is substantially larger than in L4.

9. We can now model the overall mortality rates as functions of age and duration (time
since entry) using the defaults for glm.Lexis (this function call will trigger a warning):

> ma <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst)
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth), Mic->D(CVD), Norm->D(CVD), Mac->D(CVD)
> ci.exp(ma)

exp(Est.) 2.5% 97.5%
(Intercept) 0.002050421 0.0003671892 1.144975e-02
Ns(tfi, knots = seq(0, 20, 5))1 5.586238327 1.1524085205 2.707899e+01
Ns(tfi, knots = seq(0, 20, 5))2 3.948224386 0.9544630678 1.633219e+01
Ns(tfi, knots = seq(0, 20, 5))3 34.408040078 0.8997125880 1.315879e+03
Ns(tfi, knots = seq(0, 20, 5))4 0.466409150 0.1500745257 1.449530e+00
Ns(age, knots = seq(50, 80, 10))1 3.269829526 1.3358892679 8.003497e+00
Ns(age, knots = seq(50, 80, 10))2 11.582318649 1.4600392048 9.188117e+01
Ns(age, knots = seq(50, 80, 10))3 12.640207886 5.6379476934 2.833919e+01
lex.CstNorm 1.041469079 0.6062915725 1.789004e+00
lex.CstMac 1.772156120 1.1036543651 2.845580e+00

The warning triggered here just tells you that you are modeling the occurrence of any
type of death, which amounts to modeling of the sum of CVD and non-CVD death
rates.
The model structure with lex.Cst as an additive term is assuming that the overall
mortality rates are proportional between states of albuminuria.
What are the mortality rate-ratios (hazard ratios), what ratios do they refer to: rates
of what between which groups?

10. The default for glm.Lexis is to model all transitions to absorbing states which in this
case are the two “dead” states, D(oth) and D(CVD).
The glm.Lexis above is just a convenience wrapper for:
> m1 <- glm(cbind(lex.Xst %in% c("D(oth)", "D(CVD)")
+ & lex.Cst != lex.Xst,
+ lex.dur)
+ ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ family = poisreg,
+ data = subset(S4, lex.Cst %in% c("Norm","Mic","Mac")))

This will also give the same results as:
> m2 <- glm((lex.Xst %in% c("D(oth)", "D(CVD)") & lex.Cst != lex.Xst)
+ ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(S4, lex.Cst %in% c("Norm","Mic","Mac")))

Multistate models: steno2 4.2 Transition rates: multiple time scales 55

—note the difference between the families poisreg and poisson: poisreg enters events
and person-time more logically as part of the outcome, whereas poisson enters events
as the response and person-years (lex.dur) via the offset,

11. The parameters from any of the formulations are on the log-scale so we want to see
them exponentiated, so on the rate-scale:
> round(ci.exp(ma), 2)

exp(Est.) 2.5% 97.5%
(Intercept) 0.00 0.00 0.01
Ns(tfi, knots = seq(0, 20, 5))1 5.59 1.15 27.08
Ns(tfi, knots = seq(0, 20, 5))2 3.95 0.95 16.33
Ns(tfi, knots = seq(0, 20, 5))3 34.41 0.90 1315.88
Ns(tfi, knots = seq(0, 20, 5))4 0.47 0.15 1.45
Ns(age, knots = seq(50, 80, 10))1 3.27 1.34 8.00
Ns(age, knots = seq(50, 80, 10))2 11.58 1.46 91.88
Ns(age, knots = seq(50, 80, 10))3 12.64 5.64 28.34
lex.CstNorm 1.04 0.61 1.79
lex.CstMac 1.77 1.10 2.85

We see there is a higher mortality in the Mac state but no discernible difference
between the Mic and the Norm states.
It can be formally tested whether the three states carry the same mortality using a
Wald test (testing whether the Norm and Mac parameters both are 0 on the log-scale):
> Wald(ma, subset = "lex.Cst")

Chisq d.f. P
6.11103822 2.00000000 0.04709827

What is the meaning of this test (i.e. the null hypothesis).
12. Now do the same analysis for the two causes of death separately, using the to

argument to glm.Lexis:
> mo <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth)
> round(ci.exp(mo), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 7.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 115.151 2.779 4.770588e+03
Ns(tfi, knots = seq(0, 20, 5))2 30.897 1.466 6.512260e+02
Ns(tfi, knots = seq(0, 20, 5))3 23342.027 4.716 1.155320e+08
Ns(tfi, knots = seq(0, 20, 5))4 1.737 0.302 1.000100e+01
Ns(age, knots = seq(50, 80, 10))1 2.745 0.901 8.360000e+00
Ns(age, knots = seq(50, 80, 10))2 2.053 0.208 2.028900e+01
Ns(age, knots = seq(50, 80, 10))3 12.979 4.637 3.633200e+01
lex.CstNorm 1.000 0.518 1.929000e+00
lex.CstMac 0.994 0.503 1.965000e+00
> mC <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(CVD), Norm->D(CVD), Mac->D(CVD)
> round(ci.exp(mC), 3)

exp(Est.) 2.5% 97.5%

56 4.2 Transition rates: multiple time scales PMM

(Intercept) 0.001 0.000 0.012
Ns(tfi, knots = seq(0, 20, 5))1 1.079 0.165 7.069
Ns(tfi, knots = seq(0, 20, 5))2 1.932 0.305 12.254
Ns(tfi, knots = seq(0, 20, 5))3 1.143 0.018 73.365
Ns(tfi, knots = seq(0, 20, 5))4 0.129 0.016 1.065
Ns(age, knots = seq(50, 80, 10))1 6.419 1.069 38.564
Ns(age, knots = seq(50, 80, 10))2 417.853 1.795 97264.177
Ns(age, knots = seq(50, 80, 10))3 14.997 3.545 63.443
lex.CstNorm 1.091 0.416 2.859
lex.CstMac 3.513 1.719 7.179

What is the conclusion w.r.t. the effect of albuminuria state on the two cause-specific
mortality rates?

13. Make a formal test of relevant hypotheses using Wald.
> Wald(mo, subset = "Cst")

Chisq d.f. P
0.0002966161 2.0000000000 0.9998517030
> Wald(mC, subset = "Cst")

Chisq d.f. P
13.764652275 2.000000000 0.001025755

What is the formal w.r.t. mortality dependence on albuminuria status?
14. We can show how fitted mortality rates look for persons currently in state Mic entering

the study at a set of specific ages. The entry ages are in the vector L2$age:
> summary(L2$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
37.39 48.52 56.60 55.13 61.06 67.50

Based on this we shall use ages 45, 55 and 65, and show mortality rates for persons
entering at these ages. We will show the rates as functions of their current age. We
need a prediction data frame, with values for all variables in the model, (current) age
and time from entry, tfi. Here expand.grid is our friend:
> expand.grid(tfi = c(NA, seq(0, 20, 5)),
+ ain = c(45, 55, 65))

tfi ain
1 NA 45
2 0 45
3 5 45
4 10 45
5 15 45
6 20 45
7 NA 55
8 0 55
9 5 55
10 10 55
11 15 55
12 20 55
13 NA 65
14 0 65
15 5 65
16 10 65
17 15 65
18 20 65

—it will give all combinations of the values in the vectors supplied as a data.frame.
The NAs are there for plotting purposes— we get a break in plotted curves if there is an

Multistate models: steno2 4.2 Transition rates: multiple time scales 57

NA in the data. We want the tfi points to be closer than in the illustrative example:
> prf <- transform(expand.grid(tfi = c(NA, seq(0, 20, 0.5)),
+ ain = c(45, 55, 65))[-1,],
+ age = ain + tfi,
+ lex.Cst = "Mic")
> head(prf)
tfi ain age lex.Cst

2 0.0 45 45.0 Mic
3 0.5 45 45.5 Mic
4 1.0 45 46.0 Mic
5 1.5 45 46.5 Mic
6 2.0 45 47.0 Mic
7 2.5 45 47.5 Mic
> prf[40:44,]

tfi ain age lex.Cst
41 19.5 45 64.5 Mic
42 20.0 45 65.0 Mic
43 NA 55 NA Mic
44 0.0 55 55.0 Mic
45 0.5 55 55.5 Mic
> matshade(prf$age, cbind(ci.pred(mo, prf),
+ ci.pred(mC, prf)) * 100,
+ lwd = 3, col = c("black","blue"),
+ log = "y", ylim = c(0.01,50), plot = TRUE)

OTE: matshade uses polygon internally, and if the polygon—her the confidence
limits—are too far outside the plotting area, they will not show up. Increase the ylim

to see what is the matter.
The rates of death from other causes is very small at the beginning and increases
steeply over the first 5 years of follow-up, while the CVD mortality is pretty stable
with a foreseeable increase by age.
Give an informal description of the curves, and a possible reason for the shape of the
curves.

15. We can show the impact of albuminuria state on the mortality rates in a 3-panel
layout:
> par(mfrow=c(1,3))
> for(st in c("Norm","Mic","Mac"))
+ {
+ matshade(prf$age, cbind(ci.pred(mo, transform(prf, lex.Cst = st)),
+ ci.pred(mC, transform(prf, lex.Cst = st))) * 100,
+ lwd = 3, col = c("black","blue"),
+ log = "y", ylim = c(0.05,50), plot = TRUE)
+ text(60, 50, st, adj = 0)
+ }
> # the matshade uses polygon that requires the shades to be inside so
> # we replace small numbers by 0.05 - the 0.05 must be second arg
> for(st in c("Norm","Mic","Mac"))
+ {
+ matshade(prf$age, pmax(
+ cbind(ci.pred(mo, transform(prf, lex.Cst = st)),
+ ci.pred(mC, transform(prf, lex.Cst = st))) * 100,
+ 0.05),
+ lwd = 3, col = c("black","blue"),
+ log = "y", ylim = c(0.05,50), plot = TRUE)

58 4.3 State probabilities PMM

50 60 70 80

0.01

0.05

0.10

0.50

1.00

5.00

10.00

50.00

x

y

Figure 4.3: CVD mortality rates (blue) and non-CVD mortality rates (black), with 95%
confidence intervals as shades. Curve represent persons entering the study at ages 45, 55 and
65 respectively. N ../graph/ms-mort1

+ text(60, 50, st, adj = 0)
+ }

How are the curves in the three panels related?
Describe the effect of albuminuria status on the two types of mortality.
How can you see this from the model parameters?

4.3 State probabilities

We would like to see how the probabilities of being in each of the states in figure 4.2 look as
a function of time since entry, and we will in particular be interested in how this depends on
allo, the allocation to intensified or standard treatment.

4.3.1 Models for transition rates

Thus we will need models for 1) the cause-specific mortality rates and 2) transition rates
between albuminuria states. And of course models which all include the effect of allo
(treatment allocation).

Multistate models: steno2 4.3 State probabilities 59

We already fitted models for the mortality rates, but here we refit them in a slightly
different guise.

Mortality rates

16. We first model the mortality rates using a proportional hazards model, but allowing
different mortality between the two allocation groups (in allo), and the three
albuminuria states (in lex.Cst):
> mix <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst * allo,
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth)
> round(ci.exp(mix), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 5.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 138.431 3.177 6.032407e+03
Ns(tfi, knots = seq(0, 20, 5))2 36.322 1.653 7.981850e+02
Ns(tfi, knots = seq(0, 20, 5))3 35690.096 6.479 1.965958e+08
Ns(tfi, knots = seq(0, 20, 5))4 2.183 0.378 1.259800e+01
Ns(age, knots = seq(50, 80, 10))1 2.746 0.909 8.295000e+00
Ns(age, knots = seq(50, 80, 10))2 1.627 0.159 1.666400e+01
Ns(age, knots = seq(50, 80, 10))3 11.953 4.268 3.347400e+01
lex.CstNorm 1.039 0.388 2.786000e+00
lex.CstMac 1.686 0.665 4.275000e+00
alloConv 1.931 0.927 4.022000e+00
lex.CstNorm:alloConv 0.929 0.244 3.544000e+00
lex.CstMac:alloConv 0.336 0.086 1.314000e+00

We would however like to see the allocation effect on mortality separately for each
albuminuria state; this is done by the “/” operator in the model formula (pronounced
allo effect within lex.Cst):
> mox <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth)
> round(ci.exp(mox), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 5.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 138.431 3.177 6.032407e+03
Ns(tfi, knots = seq(0, 20, 5))2 36.322 1.653 7.981850e+02
Ns(tfi, knots = seq(0, 20, 5))3 35690.096 6.479 1.965958e+08
Ns(tfi, knots = seq(0, 20, 5))4 2.183 0.378 1.259800e+01
Ns(age, knots = seq(50, 80, 10))1 2.746 0.909 8.295000e+00
Ns(age, knots = seq(50, 80, 10))2 1.627 0.159 1.666400e+01
Ns(age, knots = seq(50, 80, 10))3 11.953 4.268 3.347400e+01
lex.CstNorm 1.039 0.388 2.786000e+00
lex.CstMac 1.686 0.665 4.275000e+00
lex.CstMic:alloConv 1.931 0.927 4.022000e+00
lex.CstNorm:alloConv 1.794 0.590 5.455000e+00
lex.CstMac:alloConv 0.649 0.204 2.065000e+00
> c(deviance(mox), deviance(mix))

60 4.3 State probabilities PMM

[1] 554.6063 554.6063

The use of the deviance gives a good indication that the models fitted actually are the
same model, just differently parametrized.
What is the meaning of the parameters?

17. We also need a similar model for the CVD-mortality:
> mCx <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->D(CVD), Norm->D(CVD), Mac->D(CVD)
> round(ci.exp(mCx), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.009
Ns(tfi, knots = seq(0, 20, 5))1 0.928 0.141 6.105
Ns(tfi, knots = seq(0, 20, 5))2 2.202 0.357 13.586
Ns(tfi, knots = seq(0, 20, 5))3 1.012 0.016 65.082
Ns(tfi, knots = seq(0, 20, 5))4 0.110 0.012 0.976
Ns(age, knots = seq(50, 80, 10))1 6.836 1.113 41.984
Ns(age, knots = seq(50, 80, 10))2 558.246 2.052 151860.752
Ns(age, knots = seq(50, 80, 10))3 20.881 4.798 90.877
lex.CstNorm 1.244 0.307 5.044
lex.CstMac 1.544 0.380 6.272
lex.CstMic:alloConv 1.684 0.579 4.894
lex.CstNorm:alloConv 1.392 0.276 7.016
lex.CstMac:alloConv 4.880 1.372 17.355

What is the conclusion for the intervention effect on CVD mortality rates?

Albuminuria state rates

For a complete description of transitions in the model we also need models for the transitions
between albuminuria states.

18. We will use different models for deterioration and improvement in albuminuria (arrow
up or down in figure 4.2). Again the modeling is a bit simplified by glm.Lexis:
> det <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ from = c("Norm","Mic"),
+ to = c("Mic","Mac"))
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->Mic, Mic->Mac
> imp <- glm.Lexis(S4, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ from = c("Mic","Mac"),
+ to = c("Norm","Mic"))
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Mic->Norm, Mac->Mic
> round(ci.exp(det), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.030 0.015 0.060
Ns(tfi, knots = seq(0, 20, 5))1 0.606 0.232 1.584
Ns(tfi, knots = seq(0, 20, 5))2 0.264 0.075 0.931

Multistate models: steno2 4.3 State probabilities 61

Ns(tfi, knots = seq(0, 20, 5))3 0.243 0.041 1.440
Ns(tfi, knots = seq(0, 20, 5))4 0.218 0.061 0.784
Ns(age, knots = seq(50, 80, 10))1 2.029 0.852 4.831
Ns(age, knots = seq(50, 80, 10))2 3.477 0.927 13.042
Ns(age, knots = seq(50, 80, 10))3 2.712 0.762 9.645
lex.CstNorm 2.560 1.448 4.525
lex.CstMic:alloConv 1.964 1.178 3.277
lex.CstNorm:alloConv 0.488 0.221 1.080
> round(ci.exp(imp), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.207 0.131 0.326
Ns(tfi, knots = seq(0, 20, 5))1 0.255 0.079 0.825
Ns(tfi, knots = seq(0, 20, 5))2 0.059 0.009 0.383
Ns(tfi, knots = seq(0, 20, 5))3 0.042 0.007 0.240
Ns(tfi, knots = seq(0, 20, 5))4 0.201 0.039 1.050
Ns(age, knots = seq(50, 80, 10))1 0.825 0.281 2.420
Ns(age, knots = seq(50, 80, 10))2 0.351 0.070 1.763
Ns(age, knots = seq(50, 80, 10))3 0.583 0.070 4.873
lex.CstMac 1.064 0.469 2.415
lex.CstMic:alloConv 0.526 0.324 0.855
lex.CstMac:alloConv 1.338 0.543 3.294
> round(ci.exp(det, subset="al"), 1)

exp(Est.) 2.5% 97.5%
lex.CstMic:alloConv 2.0 1.2 3.3
lex.CstNorm:alloConv 0.5 0.2 1.1
> round(ci.exp(imp, subset="al"), 1)

exp(Est.) 2.5% 97.5%
lex.CstMic:alloConv 0.5 0.3 0.9
lex.CstMac:alloConv 1.3 0.5 3.3

What was the meaning of “different models for det and imp”?
What do the parameters in the models represent?
What are the assumptions in the models?
Label the transitions in figure 4.2 with the models for each of the transitions.

4.3.2 Simulation of state probabilities

We now have statistical models for all transitions, two models for the cause specific mortality
rates, and two models for transitions between albuminuria states.

The state probabilities that in principle can be derived from these are not trivial to
compute, essentially they can only be computed by simulation1.

19. But first we need an explicit specification of what transitions the models refer to, since
the simulated transitions will be using predictions from these models. This is specified
in a list of lists (remember what a list is??).
There must be one element in the list for each transient state (of which we have 3):
> Tr <- list(Norm = list("Mic" = det,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx),
+ Mic = list("Mac" = det,
+ "Norm" = imp,

1A detailed description of the use of simLexis is available in the vignette in the Epi package, also available
as http://bendixcarstensen.com/Epi/simLexis.pdf

http://bendixcarstensen.com/Epi/simLexis.pdf

62 4.3 State probabilities PMM

+ "D(oth)" = mox,
+ "D(CVD)" = mCx),
+ Mac = list("Mic" = imp,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx))
> lapply(Tr, names)
$Norm
[1] "Mic" "D(oth)" "D(CVD)"

$Mic
[1] "Mac" "Norm" "D(oth)" "D(CVD)"

$Mac
[1] "Mic" "D(oth)" "D(CVD)"

For example, the object Tr$Norm$Mic is a model for the transition rate Norm→ Mic;
we see that there are 10 entries in the specification of Tr, corresponding to each of the
10 transitions in the diagram in figure 4.2. Some of the entries in Tr point to the same
model; all the models fitted were actually joint models for more than one transiton.

20. We can use the estimated rates to simulate the transition between states in a group of
people with a given set of covariates.
The simulated data can the be used to assess the probability of being in each of the
states at a given time after entry to the study, separately for the two intervention
groups if we wish.
These probabilities depend on the age at entry to the study (because current age (age)
and time since entry, (tfi) are both in the models).
We can choose our initial cohort in (at least) two different ways:

• Use a population with the same age-distribution as the entire study population
(“population-averaged”)

• Evaluate the probabilities for a prespecified set of ages at entry (“conditional”).
What is needed for this is a data frame of persons indicating their initial status.
simLexis will then simulate their individual trajectories through states (what
transition takes place when) and produce a simulated cohort of persons in the form of
a Lexis object. The initial (baseline) data frame should also be a Lexis object, but
the values of lex.Xst and lex.dur need not be given, since these will be simulated.

Study population cohort

21. First construct a cohort with the same covariate distribution as the entire study for
each of the allocation groups:
> ini <- L2[,c("per", "age", "tfi", "lex.Cst")]
> ini <- rbind(transform(ini, lex.Cst = "Mic", allo = "Int"),
+ transform(ini, lex.Cst = "Mic", allo = "Conv"))
> # lex.Cst must be a factor with the relevant set of levels
> ini$lex.Cst <- factor(ini$lex.Cst,
+ levels = c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> str(ini)
Classes 'Lexis' and 'data.frame': 320 obs. of 5 variables:
$ per : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ age : 'cal.yr' num 61.1 46.6 49.9 48.5 57.3 ...

Multistate models: steno2 4.3 State probabilities 63

$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Cst: Factor w/ 5 levels "Norm","Mic","Mac",..: 2 2 2 2 2 2 2 2 2 2 ...
$ allo : chr "Int" "Int" "Int" "Int" ...
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: NULL
- attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
- attr(*, "time.since")= chr [1:3] "" "" ""

This will be the initial values in the cohort we follow through states—we have the
starting state in lex.Cst and the covariates (at start): timescales (per, age, tfi) and
the other covariates allo

22. First we simulate transitions from a large cohort that looks like the study population,
say 10 copies of each person in the original data set (see ?simLexis):
> set.seed(1952)
> system.time(
+ Sorg <- simLexis(Tr = Tr, # models for each transition
+ init = ini, # cohort of starters
+ N = 10, # how many copies of each person in ini
+ t.range = 20, # how long should we simulate before censoring
+ n.int = 200))# how many intervals for evaluating rates
bruger system forlobet
19.05 2.42 21.47

> summary(Sorg, t = T)
Transitions:

To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 398 640 0 119 282 1439 1041 11621.26 1310
Mic 1439 622 1311 279 580 4231 3609 27091.33 3200
Mac 0 391 302 380 238 1311 1009 7604.01 1217
Sum 1837 1653 1613 778 1100 6981 5659 46316.59 3200

Timescales:
per age tfi
"" "" ""
> nround(subset(Sorg, lex.id %in% 28:32), 2)

lex.id per age tfi lex.dur lex.Cst lex.Xst allo cens
79 28 1993.37 49.94 0.00 0.78 Mic Norm Int 2013.37
80 28 1994.15 50.72 0.78 5.57 Norm Mic Int 2013.37
81 28 1999.72 56.29 6.35 1.10 Mic Norm Int 2013.37
82 28 2000.82 57.39 7.45 5.74 Norm D(oth) Int 2013.37
83 29 1993.37 49.94 0.00 2.11 Mic Norm Int 2013.37
84 29 1995.48 52.06 2.11 2.79 Norm D(oth) Int 2013.37
85 30 1993.37 49.94 0.00 7.15 Mic Norm Int 2013.37
86 30 2000.53 57.10 7.15 3.14 Norm D(CVD) Int 2013.37
87 31 1993.34 48.50 0.00 5.14 Mic Norm Int 2013.34
88 31 1998.47 53.64 5.14 14.86 Norm Norm Int 2013.34
89 32 1993.34 48.50 0.00 4.64 Mic Mac Int 2013.34
90 32 1997.98 53.14 4.64 0.65 Mac Mic Int 2013.34
91 32 1998.62 53.79 5.28 14.18 Mic D(oth) Int 2013.34

23. Describe in words how the simulated data looks, and what each record represents.
What is it really we simulated?
> addmargins(table(table(Sorg$lex.id)))

1 2 3 4 5 6 7 8 Sum

64 4.3 State probabilities PMM

874 1397 534 297 70 24 3 1 3200

What does this table mean?
24. Now we can just count how many of the original 1600 persons are in each of the states

at each of a set of times; this is done by the function nState:
> system.time(
+ Nst <- nState(Sorg,
+ at = seq(0, 20, 0.2),
+ from = 0,
+ time.scale = "tfi"))
bruger system forlobet
1.16 0.02 1.17

> str(Nst)
'table' int [1:101, 1:5] 0 88 168 230 290 336 384 438 488 529 ...
- attr(*, "dimnames")=List of 2
..$ when : chr [1:101] "0" "0.2" "0.4" "0.6" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

> head(Nst)
State

when Norm Mic Mac D(CVD) D(oth)
0 0 3200 0 0 0
0.2 88 3077 33 2 0
0.4 168 2965 60 7 0
0.6 230 2865 97 8 0
0.8 290 2780 114 16 0
1 336 2702 142 19 1

This is however not necessarily a relevant summary; we would be interested in seeing
how things look in each of the allocation groups, Int and Conv.
> Nint <- nState(subset(Sorg, allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> Nconv<- nState(subset(Sorg, allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> head(Nint)

State
when Norm Mic Mac D(CVD) D(oth)
0 0 1600 0 0 0
0.1 24 1569 6 1 0
0.2 55 1533 11 1 0
0.3 77 1506 15 2 0
0.4 105 1472 21 2 0
0.5 121 1443 34 2 0

> head(Nconv)
State

when Norm Mic Mac D(CVD) D(oth)
0 0 1600 0 0 0
0.1 18 1562 19 1 0
0.2 33 1544 22 1 0
0.3 41 1524 31 4 0
0.4 63 1493 39 5 0
0.5 76 1471 47 6 0

If we divide each of these by 1600, we get the probabilities of being in each if the states

Multistate models: steno2 4.3 State probabilities 65

at the different times since entry.
25. If we want the cumulated state probabilities over states we can derive these by pState,

that yields a matrix with the cumulative state probabilities.
> Pint <- pState(Nint)
> Pconv <- pState(Nconv)
> str(Pint)
'pState' num [1:201, 1:5] 0 0.015 0.0344 0.0481 0.0656 ...
- attr(*, "dimnames")=List of 2
..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

> head(Pint)
State

when Norm Mic Mac D(CVD) D(oth)
0 0.000000 1.000000 1.000000 1 1
0.1 0.015000 0.995625 0.999375 1 1
0.2 0.034375 0.992500 0.999375 1 1
0.3 0.048125 0.989375 0.998750 1 1
0.4 0.065625 0.985625 0.998750 1 1
0.5 0.075625 0.977500 0.998750 1 1

Describe the structure of Pst.
26. There is a standard plotting method for a pState object, it will plot the stacked state

probabilities stacked in the order given by the perm argument (not used here because
they are already in the order we want):
> clr <- c("forestgreen", "orange", "red", "blue", gray(0.4))
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> plot(Pint, col = clr, xlim = c(0, 20))
> # the survival curve
> lines(as.numeric(rownames(Pint)), Pint[,"Mac"], lwd = 4, col = "white")
> lines(as.numeric(rownames(Pint)), Pint[,"Mac"], lwd = 1, col = "black")
> text(rownames(Pint)[150],
+ Pint[150,] - diff(c(0, Pint[150,]))/2,
+ colnames(Pint), col = "white", cex = 0.8)
> plot(Pconv, col = clr, xlim = c(20, 0))
> # the survival curve
> lines(as.numeric(rownames(Pconv)), Pconv[,"Mac"], lwd = 4, col = "white")
> lines(as.numeric(rownames(Pconv)), Pconv[,"Mac"], lwd = 1, col = "black")
> text(rownames(Pconv)[150],
+ Pconv[150,] - diff(c(0, Pconv[150,]))/2,
+ colnames(Pint), col = "white", cex = 0.8)
> mtext(c("Intensive care","Conventional care"),
+ side = 3, at = c(1,3)/4, outer = TRUE, line = -2)

Redo the plot with proper labeling of axes, including units where needed.
27. Describe the results and conclude on the probabilities shown.
28. The plot 4.4 may be of limited interest; the probabilities here are really “the probability

that a randomly chosen person from the Steno 2 study. . . ”. So we are referring to a
universe that is not generalizable, the reference is to a particular distribution of ages at
entry into the study. The plot is only partially relevant for showing the intervention
effect, the absolute sizes of the state probabilities are strictly speaking irrelevant.

66 4.3 State probabilities PMM

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

Norm

Mic

Mac

D(CVD)

D(oth)

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

Norm

Mic

Mac

D(CVD)

D(oth)

Intensive care Conventional care

Figure 4.4: State probabilities for the two intervention groups, for populations of the same
structure as the original total Steno2 population.

../graph/ms-pStates

Cohort with predefined variables

29. Even if we take the modeling background deeply serious and accept that occurrence
rates depend only on current age (age), time since entry (tfi) and treatment allocation
(allo), the assumption of age-distribution as in the Steno 2 study is quite absurd; who
wants to refer to this? Often this is disguised in terms such as “population averaged”.
Therefore, it would be more relevant to show the results for a homogeneous population
of persons at select ages at entry. This would just require a different init data frame:
> ini <- S4[1:10,c("lex.id", "per", "age", "tfi", "lex.Cst", "allo")]
> ini[,"lex.id"] <- 1:10
> ini[,"per"] <- 1993 # not used but it is a time scale in S4
> ini[,"age"] <-
+ ini[,"ain"] <- rep(seq(45,65,5), 2)
> ini[,"tfi"] <- 0
> ini[,"lex.Cst"] <- factor("Mic",
+ levels = c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> ini[,"allo"] <- factor(rep(c("Int","Conv"), each = 5))
> ini

lex.id per age tfi lex.Cst allo ain
1 1 1993 45 0 Mic Int 45
2 2 1993 50 0 Mic Int 50
3 3 1993 55 0 Mic Int 55
4 4 1993 60 0 Mic Int 60
5 5 1993 65 0 Mic Int 65
6 6 1993 45 0 Mic Conv 45
7 7 1993 50 0 Mic Conv 50
8 8 1993 55 0 Mic Conv 55
9 9 1993 60 0 Mic Conv 60

Multistate models: steno2 4.3 State probabilities 67

10 10 1993 65 0 Mic Conv 65
> str(ini)
Classes 'Lexis' and 'data.frame': 10 obs. of 7 variables:
$ lex.id : int 1 2 3 4 5 6 7 8 9 10
$ per : num 1993 1993 1993 1993 1993 ...
$ age : num 45 50 55 60 65 45 50 55 60 65
$ tfi : num 0 0 0 0 0 0 0 0 0 0
$ lex.Cst: Factor w/ 5 levels "Norm","Mic","Mac",..: 2 2 2 2 2 2 2 2 2 2
$ allo : Factor w/ 2 levels "Conv","Int": 2 2 2 2 2 1 1 1 1 1
$ ain : num 45 50 55 60 65 45 50 55 60 65
- attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
- attr(*, "time.since")= chr [1:3] "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: num [1:51] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...

Note that it is important that we enter the variable lex.Cst as a factor with the same
levels as in the Lexis object S4, in the order we want the states when reporting results.
allo must also be entered as a factor, otherwise it is not possible to compute
predictions from the models where allo were included as a factor.

30. For each of these combinations of age (at entry) and treatment allocation we will
simulate 100 persons (note that we are using the same transition rates, the models in
Tr):
> system.time(
+ Sdef <- simLexis(Tr = Tr,
+ init = ini,
+ N = 100,
+ t.range = 20,
+ n.int = 200))
bruger system forlobet
5.21 0.19 5.39

> # str(Sdef)
> summary(Sdef)
Transitions:

To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Norm 126 210 0 42 76 454 328 3667.94 407
Mic 454 210 402 89 180 1335 1125 8756.18 1000
Mac 0 125 87 122 68 402 315 2296.99 365
Sum 580 545 489 253 324 2191 1768 14721.11 1000

> nround(head(Sdef))
lex.id per age tfi lex.dur lex.Cst lex.Xst allo ain cens

1 1 1993.00 45.00 0.00 0.06 Mic Norm Int 45 2013
2 1 1993.06 45.06 0.06 19.94 Norm Norm Int 45 2013
3 2 1993.00 45.00 0.00 20.00 Mic Mic Int 45 2013
4 3 1993.00 45.00 0.00 20.00 Mic Mic Int 45 2013
5 4 1993.00 45.00 0.00 3.94 Mic D(oth) Int 45 2013
6 5 1993.00 45.00 0.00 8.19 Mic Mac Int 45 2013

In real applications we would use 5000 or 10,000 replicates of each to minimize the
simulation error.

31. Now we will repeat the graph above, but for the 10 combinations of age at enrollment
(ain), and allocation; we start with the 45 year old allocated to Int:
> P45i <- nState(subset(Sdef, ain == 45 & allo == "Int"),

68 4.3 State probabilities PMM

+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> head(P45i)

State
when Norm Mic Mac D(CVD) D(oth)
0 0 100 0 0 0
0.1 3 97 0 0 0
0.2 8 92 0 0 0
0.3 11 89 0 0 0
0.4 13 87 0 0 0
0.5 14 86 0 0 0

> head(pState(P45i))
State

when Norm Mic Mac D(CVD) D(oth)
0 0.00 1 1 1 1
0.1 0.03 1 1 1 1
0.2 0.08 1 1 1 1
0.3 0.11 1 1 1 1
0.4 0.13 1 1 1 1
0.5 0.14 1 1 1 1

This should then be repeated for 4 other ages at enrollment and the two allocations,
plus we will only store the state probabilities:
> P45c <- pState(nState(subset(Sdef, ain == 45 & allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P45i <- pState(nState(subset(Sdef, ain == 45 & allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P50c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P50i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P55c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P55i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P60c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P60i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))

Multistate models: steno2 4.3 State probabilities 69

> P65c <- pState(nState(subset(Sdef, ain == 65 & allo == "Conv"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))
> P65i <- pState(nState(subset(Sdef, ain == 65 & allo == "Int"),
+ at = seq(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi"))

32. Then we can plot these in a multiple lay-out:
> par(mfrow = c(5,2), mar = c(1,1,0,0),
+ oma = c(3,3,1,0), mgp=c(3,1,0)/1.6)
> plot(P45i, col = clr, xlim = c(0,20))
> plot(P45c, col = clr, xlim = c(20,0))
> plot(P50i, col = clr, xlim = c(0,20))
> plot(P50c, col = clr, xlim = c(20,0))
> plot(P55i, col = clr, xlim = c(0,20))
> plot(P55c, col = clr, xlim = c(20,0))
> plot(P60i, col = clr, xlim = c(0,20))
> plot(P60c, col = clr, xlim = c(20,0))
> plot(P65i, col = clr, xlim = c(0,20))
> plot(P65c, col = clr, xlim = c(20,0))
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = 0)
> mtext(paste(seq(45,65,5)), side = 2, at = (5:1*2-1)/10,
+ outer = TRUE, line = 0)

e see that the curves are quite ragged; this is the simulation errors, it would be nicer if
we simulated 1000 copies of each instead of only 100.

33. Digression: The previous is a lot of hard-coding, we would like to be able to easily get
a plot with only a subset of the ages. To this end it is more convenient to collect the
state probabilities in an array:
> (ain <- seq(45, 65, 5))
[1] 45 50 55 60 65
> (all <- levels(S4$allo))
[1] "Int" "Conv"
> pdef <- NArray(c(list(ain = ain,
+ allo = all),
+ dimnames(P45i)))
> str(pdef)
logi [1:5, 1:2, 1:201, 1:5] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Int" "Conv"
..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

But when we stick the results in an array we lose the pState class of the results: so we
resort to the mat2pol function that stacks probabilities and plots them, so we simply
take the result from nState and divide by the number in the initial state (Mic) using
sweep:
> for(aa in ain)
+ for(gg in all)
+ pdef[paste(aa), gg, ,] <-
+ nState(subset(Sdef, ain == aa & allo == gg),
+ at = as.numeric(dimnames(pdef)[["when"]]),
+ from = 0,

70 4.3 State probabilities PMM

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

Int Conv

45

50

55

60

65

Figure 4.5: Predicted probabilities of being in each of the states for persons aged 45, 50, 55,
60 and 65 at entry, separately for the two intervention groups. W ../graph/ms-panel5

+ time.scale = "tfi")
> pdef <- sweep(pdef, 1:2, pdef[,,1,"Mic"], "/")
> str(pdef)
num [1:5, 1:2, 1:201, 1:5] 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 4
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Int" "Conv"

Multistate models: steno24.4 State probabilities using the Aalen-Johansen approach from survival 71

..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...

..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

Then we have the state probabilities in the array pdef
> ain <- seq(45, 65, 10)
> par(mfrow = c(length(ain),2),
+ mar = c(3,3,1,1),
+ oma = c(0,2,1,0),
+ mgp = c(3,1,0) / 1.6)
> for(aa in ain)
+ {
+ mat2pol(pdef[paste(aa),"Int" ,,], col = clr, xlim = c(0,20))
+ mat2pol(pdef[paste(aa),"Conv",,], col = clr, xlim = c(20,0))
+ }
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = 0)
> mtext(ain, side = 2, at = (length(ain):1 * 2 - 1) / (length(ain) * 2),
+ outer = TRUE, line = 0)

4.4 State probabilities using the Aalen-Johansen

approach from survival

The survival package allows estimation of state probabilities by the Aalen-Johansen
estimator similar to what we did in competing risks.

As mentioned under competing risks, the results will refer to a population of the same
structure as the study population, and so the absolute sizes of the state probabilities will not
be generalizable to other populations. The results here correspond to the results we derived
using the original Steno2 population cohort in section 4.3.2 on page 62 ff.

The estimates of state probabilities in section 4.3.2 are based on parametric models for the
transition probabilities, where some of the transition rates depend on age and duration in
the same way. The estimates from the Aalen-Johansen approach is non-parametric in the
sense that the transition rates can have any shape; the down side is that they cannot depend
on more than one time scale (sensibly time since entry) and the shape and size of them are
not easily retrievable.

34. A direct application gives the wrong result—transitions are wrong:
> AaJ <- survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ data = L4)
> AaJ$transitions

to
from Norm Mac D(oth) D(CVD) (censored)
(s0) 63 55 19 9 14
Norm 96 5 17 10 16
Mac 3 46 19 19 6
D(oth) 0 0 0 0 0
D(CVD) 0 0 0 0 0

> summary(L4)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160

72 4.4 State probabilities using the Aalen-Johansen approach from survival PMM

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

x

20 15 10 5 0

0.0

0.2

0.4

0.6

0.8

1.0

x

x

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

x

20 15 10 5 0

0.0

0.2

0.4

0.6

0.8

1.0

x

x

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

x

20 15 10 5 0

0.0

0.2

0.4

0.6

0.8

1.0

x

x

Int Conv

45

55

65

Figure 4.6: Predicted probabilities of being in each of the states for persons aged 45, 55 and
65 at entry, separately for the two intervention groups.

../graph/ms-panel3

Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

Comparing with the summary of L4 we see that we get the number of transitions
wrong; me must use the istate argument:

Multistate models: steno24.4 State probabilities using the Aalen-Johansen approach from survival 73

> survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ istate = lex.Cst,
+ data = L4)

. . . but this will crash. This is because the machinery does not allow records with null
transitions, that is records that is just a transition from a given state to the same if it
is the last record for a person (i.e. censorings in the last state).

35. We therefore must rename these levels of lex.Xst to, say, cens (for censored, but any
name will do), and this state must then be the first level of lex.Xst:
> R4 <- sortLexis(L4)
> last <- rev(!duplicated(rev(R4$lex.id)))
> R4$lex.Xst <- ifelse(last & R4$lex.Cst == R4$lex.Xst,
+ "cens",
+ as.character(R4$lex.Xst))
> R4 <- Relevel(factorize(R4), "cens")
NOTE: lex.Cst and lex.Xst now have levels:
Mic Norm Mac cens D(CVD) D(oth)
> summary(L4)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

> summary(R4)
Transitions:

To
From cens Mic Norm Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Mic 36 276 72 65 14 30 493 217 1437.39 160
Norm 18 35 72 0 6 13 144 72 581.83 66
Mac 13 22 0 28 18 12 93 65 401.70 60
Sum 67 333 144 93 38 55 730 354 2420.91 160

Describe how the two Lexis objects are related.
36. As mentioned, we must tell what state each record starts in, this is conveyed in the

argument istate (initial state):
> AaJ <- survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ istate = lex.Cst,
+ data = R4)

We see that we get the correct number of transitions when we merge the initial state
s(0) with Mic:
> AaJ$transitions[,c(6,1:5)]

to
from (censored) Mic Norm Mac D(CVD) D(oth)
Mic 36 276 72 65 14 30
Norm 18 35 72 0 6 13
Mac 13 22 0 28 18 12
D(CVD) 0 0 0 0 0 0
D(oth) 0 0 0 0 0 0

> summary(R4)
Transitions:

To

74 4.4 State probabilities using the Aalen-Johansen approach from survival PMM

From cens Mic Norm Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
Mic 36 276 72 65 14 30 493 217 1437.39 160
Norm 18 35 72 0 6 13 144 72 581.83 66
Mac 13 22 0 28 18 12 93 65 401.70 60
Sum 67 333 144 93 38 55 730 354 2420.91 160

> summary(L4)
Transitions:

To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
Mic 312 72 65 30 14 493 181 1437.39 160
Norm 35 90 0 13 6 144 54 581.83 66
Mac 22 0 41 12 18 93 52 401.70 60
Sum 369 162 106 55 38 730 287 2420.91 160

The predicted state probabilities are in the slot called pstate, and the confidence
intervals in the corresponding slots lower and upper.
> names(AaJ)
[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "p0" "cumhaz" "std.err" "sp0" "logse" "transitions"
[13] "lower" "upper" "conf.type" "conf.int" "states" "type"
[19] "call"
> AaJ$states
[1] "Mic" "Norm" "Mac" "D(CVD)" "D(oth)"
> head(AaJ$pstate)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.99375 0.00000 0.00625 0 0
[2,] 0.98750 0.00625 0.00625 0 0
[3,] 0.98750 0.00625 0.00625 0 0
[4,] 0.98125 0.01250 0.00625 0 0
[5,] 0.98125 0.01250 0.00625 0 0
[6,] 0.98125 0.01250 0.00625 0 0
> head(AaJ$lower)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.9816133 NA 0.0008858142 NA NA
[2,] 0.9704340 0.0008858142 0.0008858142 NA NA
[3,] 0.9704340 0.0008858142 0.0008858142 NA NA
[4,] 0.9604561 0.0031535032 0.0008858142 NA NA
[5,] 0.9604561 0.0031535032 0.0008858142 NA NA
[6,] 0.9604561 0.0031535032 0.0008858142 NA NA
> head(AaJ$upper)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 NA 0.04409785 NA NA
[2,] 1 0.04409785 0.04409785 NA NA
[3,] 1 0.04409785 0.04409785 NA NA
[4,] 1 0.04954807 0.04409785 NA NA
[5,] 1 0.04954807 0.04409785 NA NA
[6,] 1 0.04954807 0.04409785 NA NA

We can now show the Aalen-Johansen estimator of the state probabilities:
> mat2pol(AaJ$pstate, perm = c(2,1,3,5,4), x = AaJ$time,
+ col = clr)
> lines(AaJ$time, apply(AaJ$pstate[,1:3], 1, sum), lwd = 5)

37. But as above, we are interested in seeing the results from each of the allocation groups,
so we do the calculation for each:
> AaJ <- survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ allo,
+ id = lex.id,
+ istate = lex.Cst,

Multistate models: steno24.4 State probabilities using the Aalen-Johansen approach from survival 75

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

x

Figure 4.7: Overall state probabilities from the Aalen-Johansen model
../graph/ms-AaJ

+ data = R4)
> names(AaJ)
[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "p0" "strata" "std.err" "sp0" "logse" "cumhaz"
[13] "transitions" "lower" "upper" "conf.type" "conf.int" "states"
[19] "type" "call"

The result in the AaJ object is in a long vector of time and pstate, the two parts
corresponding to Int and Conv put after one another, with the length of each part in
strata.
> AaJ$states
[1] "Mic" "Norm" "Mac" "D(CVD)" "D(oth)"
> AaJ$strata
allo=Int allo=Conv

375 337
> wh <- rep(substr(names(AaJ$strata), 6, 9), AaJ$strata)
> table(wh)
wh
Conv Int
337 375

So we just make the plots for the two subsets and place them next to each other as
before:

76 4.4 State probabilities using the Aalen-Johansen approach from survival PMM

> par(mfrow = c(1,2), mar=c(3,3,2,2))
> mat2pol(AaJ$pstate[wh=="Int",],
+ perm = c(2,1,3:5),
+ x = AaJ$time[wh=="Int"],
+ col = clr, xlim = c(0,21), xaxs = "i", yaxs = "i")
> lines(AaJ$time[wh=="Int"],
+ apply(AaJ$pstate[,1:3], 1, sum)[wh=="Int"], lwd = 4)
> mat2pol(AaJ$pstate[wh=="Conv",],
+ perm = c(2,1,3:5),
+ x = AaJ$time[wh=="Conv"],
+ col = clr, xlim = c(21,0), xaxs = "i", yaxs = "i")
> lines(AaJ$time[wh=="Conv"],
+ apply(AaJ$pstate[,1:3], 1, sum)[wh=="Conv"], lwd = 4)
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = -2)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

x

x

20 15 10 5 0
0.0

0.2

0.4

0.6

0.8

1.0

x

x

Int Conv

Figure 4.8: Aalen-Johansen estimator of the state probabilities for the two intervention groups,
for the original total Steno2 population, subdivided by intervention allocation.

../graph/ms-AaJstates

38. This can be considered the empirical counterpart of figure 4.4; the state probabilities
for a population as the one in the study. However not quite so; the models underlying
figure 4.4 are proportional hazards in the sense that the effects of age and time since
enrollment are proportional between state by allocation (6 groups for mortality, 4
groups for albuminuria state), whereas the figures in 4.8 are based on separate models
for each transition and allocation.

39. We have confidence intervals for each of the state probabilities in the slots lower and
upper, but not for the sums of these. And it is the sums of state probabilities we have

Multistate models: steno2 4.5 Time spent in albuminuria states 77

shown in the graph.
Moreover we would also want confidence intervals for areas under the curves. Neither
are available from the Aalen-Johansen nor from the simulation approach. The
simulation approach does not even give confidence intervals

4.5 Time spent in albuminuria states

Besides the state probabilities at different times after entry for groups of patients, we may
also want to assess the time spent in each state, during, say, the first 15 or 20 years after
entry.

40. We may want to compare groups by the expected time spent in the normoalbuminuric
state during the first, say, 20 years. The expected time in a state is simply the
time-integral of the probabilities, so we can easily compute it from pdef; each
probability represents an interval of length 0.1, so we just take the midpoint of the
probabilities at the ends of each interval.
Be careful when inspecting the results, it is not entirely obvious what apply does, keep
track of the dimensions of each new table:
> mid <- function(x) x[-1] - diff(x) / 2
> pmid <- apply(pdef, c(1,2,4), mid)
> str(pmid)
num [1:200, 1:5, 1:2, 1:5] 0.015 0.055 0.095 0.12 0.135 0.16 0.19 0.21 0.23 0.25 ...
- attr(*, "dimnames")=List of 4
..$: chr [1:200] "0.1" "0.2" "0.3" "0.4" ...
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Int" "Conv"
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

> pyr <- apply(pmid, 2:4, sum) * 0.1
> str(pyr)
num [1:5, 1:2, 1:5] 7.03 5.43 4.53 3.87 1.61 ...
- attr(*, "dimnames")=List of 3
..$ ain : chr [1:5] "45" "50" "55" "60" ...
..$ allo : chr [1:2] "Int" "Conv"
..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...

> round(ftable(pyr, col.vars = 3:2), 1)
State Norm Mic Mac D(CVD) D(oth)
allo Int Conv Int Conv Int Conv Int Conv Int Conv

ain
45 7.0 4.7 9.1 9.5 1.5 2.4 0.2 0.3 2.1 3.0
50 5.4 3.3 9.7 9.0 2.0 3.5 0.8 2.5 2.0 1.7
55 4.5 3.2 10.8 9.1 2.4 2.2 1.4 2.9 0.9 2.7
60 3.9 1.8 8.9 7.8 1.7 2.6 2.7 4.5 2.9 3.4
65 1.6 1.1 6.9 6.8 2.4 2.4 3.0 5.4 6.1 4.4

These numbers are the expected time (in years) spent in each state during the first 20
years after enrollment; we see that the intervention group spend far more time in Norm

than do the conventional group, regardless of the age at entry.
The time spent in the two dead states are not really interpretable, it would be
something like the number of years (during the first 20 years after enrollment) lost to
each of the causes. We see that the most dramatic differences are for the CVD deaths.
Look at the differences:

78 4.6 Clinical variables PMM

> round(pyr[,"Int",] - pyr[,"Conv",], 1)
State

ain Norm Mic Mac D(CVD) D(oth)
45 2.3 -0.4 -0.9 -0.1 -0.9
50 2.1 0.8 -1.5 -1.7 0.2
55 1.3 1.7 0.2 -1.4 -1.7
60 2.0 1.1 -0.9 -1.8 -0.5
65 0.5 0.1 -0.1 -2.3 1.7

These are estimated times spent (sojourn times they are called) in each state. It is a bit
strange to say that 55 year old enrollees in the intervention group spent 2.0 years less being
dead from CVD than persons from the conventional group.

4.6 Clinical variables

So far we have only considered covariates that we know the value of at any time point,
including future time points, that is the allocation status and timescales such as age and
time since inclusion.

41. In the dataset st2clin are clinical measurements taken at different dates, up to six
different occasions per person:
> data(st2clin)
> str(st2clin)
'data.frame': 750 obs. of 5 variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ doV : Date, format: "1993-05-07" "1993-05-05" ...
$ a1c : num 87.3 66.5 73 61.2 102.7 ...
$ chol: num 3.9 6.6 5.6 5.2 6 4.8 8.6 5.1 4.2 5.4 ...
$ crea: num 83 83 68 97 149 55 56 78 123 79 ...
> st2clin <- rename(cal.yr(st2clin),
+ lex.id = id,
+ per = doV)
> summary(st2clin)

lex.id per a1c chol crea
Min. : 1.00 Min. :1993 Min. : 32.80 Min. : 2.200 Min. : 28.00
1st Qu.: 39.00 1st Qu.:1995 1st Qu.: 54.80 1st Qu.: 4.000 1st Qu.: 67.00
Median : 84.50 Median :1997 Median : 66.35 Median : 4.800 Median : 88.00
Mean : 85.81 Mean :2000 Mean : 68.22 Mean : 4.941 Mean : 99.16
3rd Qu.:131.00 3rd Qu.:2002 3rd Qu.: 79.38 3rd Qu.: 5.700 3rd Qu.: 115.25
Max. :176.00 Max. :2015 Max. :147.60 Max. :14.000 Max. :1067.00

NA's :4 NA's :3 NA's :2
> addmargins(table(table(st2clin$lex.id)))
1 2 3 4 5 6 Sum
2 6 23 38 31 60 160

Explain the contents of the table.
42. We can use addCov.Lexis to amend the follow-up data with the clinical

measurements:
> S5 <- addCov.Lexis(S4, st2clin, "per")
> tt <- table(st2clin$lex.id)
> (who <- names(tt[tt == 3])[1])
[1] "5"
> subset(st2clin, lex.id == who)

lex.id per a1c chol crea
5 5 1993.151 102.7 6.0 149

Multistate models: steno2 4.6 Clinical variables 79

165 5 1995.511 54.7 8.8 140
321 5 1997.496 41.9 5.8 141
> nround(subset(S5,
+ lex.id == who,
+ select = c(lex.id,per,tfi,tfc,exnam,a1c,chol,crea)))

lex.id per tfi tfc exnam a1c chol crea
159 5 1993.22 0.00 0.07 ex1 102.7 6.0 149
160 5 1993.72 0.50 0.57 ex1 102.7 6.0 149
161 5 1993.77 0.55 0.62 ex1 102.7 6.0 149
162 5 1994.22 1.00 1.07 ex1 102.7 6.0 149
163 5 1994.72 1.50 1.57 ex1 102.7 6.0 149
164 5 1995.22 2.00 2.07 ex1 102.7 6.0 149
165 5 1995.51 2.29 0.00 ex2 54.7 8.8 140
166 5 1995.72 2.50 0.21 ex2 54.7 8.8 140
167 5 1996.22 3.00 0.71 ex2 54.7 8.8 140
168 5 1996.72 3.50 1.21 ex2 54.7 8.8 140
169 5 1997.07 3.85 1.56 ex2 54.7 8.8 140
170 5 1997.22 4.00 1.71 ex2 54.7 8.8 140
171 5 1997.50 4.27 0.00 ex3 41.9 5.8 141
172 5 1997.72 4.50 0.23 ex3 41.9 5.8 141
> timeScales(S5)
[1] "per" "age" "tfi" "tfc"
> timeSince(S5)
per age tfi tfc
"" "" "" ""

We see that tfc is included as a time scale, but it is a not a proper time scale; it is
reset to 0 at every clinical visit, and it also has some missing values, as do the clinical
variables. The missing values are where there is follow-up before the earliest clinical
measurement for a person.
But it needs to be a time scale in the Lexis object in order to be properly handled
when subsequently cutting and splitting a Lexis object.

43. The values of the clinical measurements in st2clin are added to the follow-up data:
extra cut points at the measurement dates are added, and the values of the clinical
variables are propagated as LOCF (Last Observation Carried Forward), so it is
possible to model the effect of these clinical variables on transition rates—creatinine is
traditionally modeled on a log-scale, here we use the base 2 logarithm.
> detc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ from = c("Norm","Mic"),
+ to = c("Mic","Mac"))
stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Norm->Mic, Mic->Mac
> impc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = c("Norm","Mic"),
+ from = c("Mic","Mac"))
stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Mic->Norm, Mac->Mic
> round(ci.exp(detc), 3)

80 4.6 Clinical variables PMM

exp(Est.) 2.5% 97.5%
(Intercept) 0.033 0.002 0.553
Ns(tfi, knots = seq(0, 20, 5))1 0.680 0.259 1.788
Ns(tfi, knots = seq(0, 20, 5))2 0.280 0.078 1.008
Ns(tfi, knots = seq(0, 20, 5))3 0.244 0.040 1.478
Ns(tfi, knots = seq(0, 20, 5))4 0.228 0.063 0.830
Ns(age, knots = seq(50, 80, 10))1 2.096 0.880 4.993
Ns(age, knots = seq(50, 80, 10))2 4.283 1.096 16.735
Ns(age, knots = seq(50, 80, 10))3 3.358 0.906 12.447
lex.CstNorm 2.587 1.459 4.589
a1c 1.005 0.993 1.018
chol 1.090 0.910 1.307
log2(crea) 0.866 0.583 1.285
lex.CstMic:alloConv 1.702 0.977 2.964
lex.CstNorm:alloConv 0.433 0.193 0.973
> round(ci.exp(impc), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 1.085 0.061 19.162
Ns(tfi, knots = seq(0, 20, 5))1 0.247 0.076 0.804
Ns(tfi, knots = seq(0, 20, 5))2 0.059 0.009 0.386
Ns(tfi, knots = seq(0, 20, 5))3 0.041 0.007 0.248
Ns(tfi, knots = seq(0, 20, 5))4 0.190 0.036 1.001
Ns(age, knots = seq(50, 80, 10))1 0.838 0.288 2.442
Ns(age, knots = seq(50, 80, 10))2 0.363 0.071 1.848
Ns(age, knots = seq(50, 80, 10))3 0.592 0.071 4.927
lex.CstMac 1.059 0.468 2.396
a1c 0.991 0.978 1.003
chol 0.963 0.803 1.155
log2(crea) 0.872 0.580 1.313
lex.CstMic:alloConv 0.598 0.359 0.996
lex.CstMac:alloConv 1.523 0.610 3.799
> moc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Mic->D(oth), Norm->D(oth), Mac->D(oth)
> mCc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq(0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Mic->D(CVD), Norm->D(CVD), Mac->D(CVD)
> round(ci.exp(moc), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 1.000000e-03
Ns(tfi, knots = seq(0, 20, 5))1 145.699 3.077 6.898293e+03
Ns(tfi, knots = seq(0, 20, 5))2 25.400 1.041 6.198740e+02
Ns(tfi, knots = seq(0, 20, 5))3 36604.424 5.048 2.654029e+08
Ns(tfi, knots = seq(0, 20, 5))4 1.751 0.286 1.074000e+01
Ns(age, knots = seq(50, 80, 10))1 2.115 0.676 6.610000e+00
Ns(age, knots = seq(50, 80, 10))2 1.119 0.108 1.161500e+01
Ns(age, knots = seq(50, 80, 10))3 8.945 2.938 2.723000e+01
lex.CstNorm 1.033 0.384 2.778000e+00

Multistate models: steno2 4.7 Several transitions from one state: stack 81

lex.CstMac 1.341 0.504 3.567000e+00
a1c 1.005 0.987 1.024000e+00
chol 0.845 0.635 1.124000e+00
log2(crea) 1.849 1.140 3.002000e+00
lex.CstMic:alloConv 1.936 0.875 4.288000e+00
lex.CstNorm:alloConv 1.887 0.602 5.920000e+00
lex.CstMac:alloConv 0.771 0.233 2.553000e+00
> round(ci.exp(mCc), 3)

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.011
Ns(tfi, knots = seq(0, 20, 5))1 0.873 0.131 5.824
Ns(tfi, knots = seq(0, 20, 5))2 1.883 0.275 12.886
Ns(tfi, knots = seq(0, 20, 5))3 0.802 0.011 58.470
Ns(tfi, knots = seq(0, 20, 5))4 0.108 0.012 1.000
Ns(age, knots = seq(50, 80, 10))1 6.213 0.975 39.600
Ns(age, knots = seq(50, 80, 10))2 525.886 1.826 151495.697
Ns(age, knots = seq(50, 80, 10))3 19.071 4.167 87.283
lex.CstNorm 1.248 0.307 5.069
lex.CstMac 1.416 0.343 5.853
a1c 0.999 0.980 1.019
chol 1.007 0.738 1.374
log2(crea) 1.346 0.755 2.399
lex.CstMic:alloConv 1.674 0.550 5.091
lex.CstNorm:alloConv 1.384 0.269 7.115
lex.CstMac:alloConv 5.068 1.386 18.529

Only crea has any effect; a doubling of creatinine is associated with a 1.85 times
higher mortality rate from other (non-CVD) causes. Confidence interval is (1.14,3.00),
so not terribly precisely determined.
There are limitations in using clinical measurements as time-dependent variables
without a model for the clinical variables. In order to simulate events based on models
for transition rates we must know all covariates at all times, so models with
non-deterministicly varying are not usable. Timescales are time-varying covariate, but
they vary deterministicly, so their value for each person will be known at any time
of follow-up.
So the models with effects of clinical variables as presented here cannot be used for
prediction of state probabilities—that would requires some kind of model for the
clinical variables over time as well.

4.7 Several transitions from one state: stack

So far, we have only jointly modeled transitions that originated in different states, for
example

Mic→ Mac and Norm→ Mic;
Norm→ D(CVD), Mic→ D(CVD) and Mac→ D(CVD).
As long as the different rates modeled are originating in different states, the likelihood will

have at most one contribution from each record in the Lexis follow-up data set.
But if we want to create a joint model for more than one rate originating in a given state

we must repeat some of risk time in different contributions to the likelihood. This means

82 4.7 Several transitions from one state: stack PMM

that the modeling cannot be based on (subsets of) a Lexis object, we must repeat some
records. This is detailed in section on Competing Risks in the PMM (Practical Multistate
Modeling, http://bendixcarstensen.com/MSbook.pdf, very preliminary).

This behaviour can be achieved by the stack.Lexis function:
> St4 <- stack(S4)
NOTE: lex.Cst and lex.Xst now have levels:
Mic Norm Mac D(oth) D(CVD)
> c(nrow(S4), nrow(St4))
[1] 5495 19773
> table(S4$lex.Cst)

Mic Norm Mac D(oth) D(CVD)
3288 1308 899 0 0

> table(St4$lex.Tr, St4$lex.Cst)
Mic Norm Mac D(oth) D(CVD)

Mac->D(CVD) 0 0 899 0 0
Mac->D(oth) 0 0 899 0 0
Mac->Mic 0 0 899 0 0
Mic->D(CVD) 3288 0 0 0 0
Mic->D(oth) 3288 0 0 0 0
Mic->Mac 3288 0 0 0 0
Mic->Norm 3288 0 0 0 0
Norm->D(CVD) 0 1308 0 0 0
Norm->D(oth) 0 1308 0 0 0
Norm->Mic 0 1308 0 0 0

> ftable(St4$lex.Tr, St4$lex.Xst, St4$lex.Fail, col.vars = 2:3)
Mic Norm Mac D(oth) D(CVD)

FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

Mac->D(CVD) 22 0 0 0 847 0 12 0 0 18
Mac->D(oth) 22 0 0 0 847 0 0 12 18 0
Mac->Mic 0 22 0 0 847 0 12 0 18 0
Mic->D(CVD) 3107 0 72 0 65 0 30 0 0 14
Mic->D(oth) 3107 0 72 0 65 0 0 30 14 0
Mic->Mac 3107 0 72 0 0 65 30 0 14 0
Mic->Norm 3107 0 0 72 65 0 30 0 14 0
Norm->D(CVD) 35 0 1254 0 0 0 13 0 0 6
Norm->D(oth) 35 0 1254 0 0 0 0 13 6 0
Norm->Mic 0 35 1254 0 0 0 13 0 6 0

We see that the lex.Fail is only TRUE where lex.Xst is equal to the second part if the
lex.Tr.

The two ways of representing the data for person 102 are quite different:
> nround(subset(S4 , lex.id == 102)[,1:8], 1)

lex.id per age tfi lex.dur lex.Cst lex.Xst id
3348 102 1993.5 58.3 0.0 0.5 Mic Mic 102
3349 102 1994.0 58.8 0.5 0.5 Mic Mic 102
3350 102 1994.5 59.3 1.0 0.5 Mic Mic 102
3351 102 1995.0 59.8 1.5 0.3 Mic D(CVD) 102
> nround(subset(St4, lex.id == 102)[,1:9], 1)

lex.id per age tfi lex.dur lex.Cst lex.Xst lex.Tr lex.Fail
3348 102 1993.5 58.3 0.0 0.5 Mic Mic Mic->Norm FALSE
3349 102 1994.0 58.8 0.5 0.5 Mic Mic Mic->Norm FALSE
3350 102 1994.5 59.3 1.0 0.5 Mic Mic Mic->Norm FALSE
3351 102 1995.0 59.8 1.5 0.3 Mic D(CVD) Mic->Norm FALSE
33481 102 1993.5 58.3 0.0 0.5 Mic Mic Mic->Mac FALSE
33491 102 1994.0 58.8 0.5 0.5 Mic Mic Mic->Mac FALSE

http://bendixcarstensen.com/MSbook.pdf

Multistate models: steno2 4.7 Several transitions from one state: stack 83

33501 102 1994.5 59.3 1.0 0.5 Mic Mic Mic->Mac FALSE
33511 102 1995.0 59.8 1.5 0.3 Mic D(CVD) Mic->Mac FALSE
33482 102 1993.5 58.3 0.0 0.5 Mic Mic Mic->D(oth) FALSE
33492 102 1994.0 58.8 0.5 0.5 Mic Mic Mic->D(oth) FALSE
33502 102 1994.5 59.3 1.0 0.5 Mic Mic Mic->D(oth) FALSE
33512 102 1995.0 59.8 1.5 0.3 Mic D(CVD) Mic->D(oth) FALSE
33483 102 1993.5 58.3 0.0 0.5 Mic Mic Mic->D(CVD) FALSE
33493 102 1994.0 58.8 0.5 0.5 Mic Mic Mic->D(CVD) FALSE
33503 102 1994.5 59.3 1.0 0.5 Mic Mic Mic->D(CVD) FALSE
33513 102 1995.0 59.8 1.5 0.3 Mic D(CVD) Mic->D(CVD) TRUE

Suppose we wanted to fit a model for the two types of mortality assuming that, say, the
effect of sex was the same.

Since some of the transitions we put in the same model originate from the same state we
need the stacked data representation where each record corresponds to a likelihood term.
> cbind(with(subset(St4, grepl("D", lex.Tr)), table(lex.Tr)))

[,1]
Mac->D(CVD) 899
Mac->D(oth) 899
Mac->Mic 0
Mic->D(CVD) 3288
Mic->D(oth) 3288
Mic->Mac 0
Mic->Norm 0
Norm->D(CVD) 1308
Norm->D(oth) 1308
Norm->Mic 0

We can then fit a model with common effect of
> stD <- glm(cbind(lex.Fail, lex.dur)
+ ~ Ns(tfi, knots = seq(0, 20, 5)) * lex.Tr +
+ Ns(age, knots = seq(50, 80, 10)) * lex.Tr +
+ lex.Tr / allo + sex,
+ family = poisreg,
+ offset = log(lex.dur),
+ data = subset(St4, grepl("D", lex.Tr)))
> round(ci.exp(stD)[,1,drop=F],3)

exp(Est.)
(Intercept) 0.000000e+00
Ns(tfi, knots = seq(0, 20, 5))1 9.296000e+00
Ns(tfi, knots = seq(0, 20, 5))2 1.359700e+01
Ns(tfi, knots = seq(0, 20, 5))3 7.635000e+00
Ns(tfi, knots = seq(0, 20, 5))4 3.810000e-01
lex.TrMac->D(oth) 0.000000e+00
lex.TrMic->D(CVD) 3.551000e+00
lex.TrMic->D(oth) 1.600000e-02
lex.TrNorm->D(CVD) 0.000000e+00
lex.TrNorm->D(oth) 6.259000e+00
Ns(age, knots = seq(50, 80, 10))1 7.196000e+00
Ns(age, knots = seq(50, 80, 10))2 2.550790e+02
Ns(age, knots = seq(50, 80, 10))3 7.351400e+01
sexM 1.457000e+00
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrMac->D(oth) 6.009169e+67
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrMac->D(oth) 1.973003e+48
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrMac->D(oth) 9.857399e+132
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrMac->D(oth) 1.761155e+28

84 4.7 Several transitions from one state: stack PMM

Ns(tfi, knots = seq(0, 20, 5))1:lex.TrMic->D(CVD) 9.000000e-03
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrMic->D(CVD) 1.370000e-01
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrMic->D(CVD) 1.930000e-01
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrMic->D(CVD) 2.460000e-01
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrMic->D(oth) 8.986370e+02
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrMic->D(oth) 5.157600e+01
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrMic->D(oth) 1.227135e+07
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrMic->D(oth) 2.857700e+01
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrNorm->D(CVD) 1.889027e+04
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrNorm->D(CVD) 9.037953e+04
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrNorm->D(CVD) 2.612224e+10
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrNorm->D(CVD) 0.000000e+00
Ns(tfi, knots = seq(0, 20, 5))1:lex.TrNorm->D(oth) 4.070000e-01
Ns(tfi, knots = seq(0, 20, 5))2:lex.TrNorm->D(oth) 3.390000e-01
Ns(tfi, knots = seq(0, 20, 5))3:lex.TrNorm->D(oth) 6.371300e+01
Ns(tfi, knots = seq(0, 20, 5))4:lex.TrNorm->D(oth) 3.720000e-01
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))1 2.070000e-01
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))1 1.894000e+00
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))1 2.670000e-01
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))1 2.220000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))1 1.094000e+00
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))2 8.000000e-03
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))2 5.857000e+00
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))2 5.000000e-03
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))2 0.000000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))2 1.400000e-02
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))3 1.340000e-01
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))3 1.910000e-01
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))3 1.600000e-01
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))3 0.000000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))3 2.680000e-01
lex.TrMac->D(CVD):alloConv 9.182000e+00
lex.TrMac->D(oth):alloConv 6.290000e-01
lex.TrMic->D(CVD):alloConv 1.699000e+00
lex.TrMic->D(oth):alloConv 2.125000e+00
lex.TrNorm->D(CVD):alloConv 2.063000e+00
lex.TrNorm->D(oth):alloConv 1.788000e+00

So under the assumption that the sex-effects are the same for all 6 mortality rates in figure
4.2 the M/W rate ratio is 1.46.

But it is only rarely that we want to model different rates out of the same state, so the
actual use of stack(.Lexis) is seldom needed.

You should be aware that when using the mstate package, follow-up is stored as stacked
objects, and so that

Chapter 5

Statistics Greenland

Statbank Greenland runs on a software package primarily developed by Statistics Sweden
over the past 30 years in cooperation with about 30 national statistical institutes. Statistics
Greenland has been participating in this work almost for the full period.

Today there are many ways to get data from the Statbank to local software via
api(application programming interface) or more directly by a feature in the software, known
as ‘saved queries’.

5.0.1 api light - saved queries

‘saved queries’ are stored on the Statbank host-server and referred to with an identifyer
string. When a table has been selected and further manipulated (like pivot, aggregations or
other) one can save and distribute the ‘saved query’ combined with specified update-options
for the time dimension.

When the Statbank is ‘called’
https://bank.stat.gl:443/sq/< query-id >
a file is returned reflecting the table selection and subsequent workflow.
The query id can have options attached for specifying fileformat, action and/or language
<query-id.fileformat?action1&action2>
Valid fileformats are: .px - as PX-file
.xlsx - as Excel-file
.xlsx doublecolumn - Excel-file with double column
.csv - default csv-file
.csv tab - tabseparated csv-file without heading
.csv tabhead - tabseparated csv-file with heading
.csv comma - commaseparated csv-file without heading
.csv commahead - commaseparated csv-file with heading
.csv space - spaceseparated csv-file without heading
.csv spacehead - spaceseparated csv-file with heading
.csv semicolon - semicolonseparated csv-file without heading
.csv semicolonhead - semicolonseparated csv-file with heading
.json stat - json-stat-file

85

https://bank.stat.gl:443/sq/

86 PMM

.json stat2 - json-stat 2-file

.html5 table – HTML5 table

.relational table – relational table (txt)
<query-id?action>
Valid actions are: select, lang
if select is specified instead of returning a file, the Statbank selection screen is shown, with

the selected values high-lighted.
Valid languages are specific to each Statbank, in Greenland we use:
en (English),
kl (Greenlandic) or
da (Danish)
If more than one action is required the are separated by &
Example:
https://bank.stat.gl:443/sq/< query-id >?select&lang=kl
So data can be specified with any pxweb-statbank. To read data to R, the table can be

imported to your r-script with:
as a 2-dimentional Dataframe
sq data csv <- read csv(
“https://bank.stat.gl:443/sq/8fb0941c-3579-4848-a488-6a9afe4266ff.csv”
locale = locale(encoding = “latin1”))
as Dataframe with variables: sq data rel <- read delim(
“https://bank.stat.gl:443/sq/< query-id >.relational table”,
locale = locale(encoding = “latin1”), delim = ”�”)
Out-of-the-box the Pxweb software offers information on selected variables/values in a

saved query by adding ‘?select’. But no information on added editing. Also if the metadata
in the table, the saved query is based upon, has changed, Pxweb often reports error, with no
help offered.

Query-id example:
https://bank.stat.gl:443/sq/8fb0941c-3579-4848-a488-6a9afe4266ff
With error:
https://bank.stat.gl:443/sq/8fb0941c-3579-4848-a488-6a9afe42lars
StatBank Greenland ONLY
StatGreenland has added a simple ‘sqget’-asp function to bank.stat.gl software, that allows

one to get information on any existing saved query:
https://bank.stat.gl/sqget.asp?8fb0941c-3579-4848-a488-6a9afe42lars

5.0.2 for more control

For more control and deeper integration, Pxweb-based statbanks offers a standard api to be
consumed by many machine-languages. For this paper we focus on integration with R:

By March 2022 there are two free R resources on Cran to read pxweb-based Statbanks via
api. (‘pxR’ reads local pcaxis-files only. Denmark and Ireland does not use
pxweb-out-of-the-box)

https://cran.r-project.org (package repository):

https://bank.stat.gl:443/sq/
https://bank.stat.gl:443/sq/8fb0941c-3579-4848-a488-6a9afe4266ff.csv
https://bank.stat.gl:443/sq/
https://bank.stat.gl:443/sq/8fb0941c-3579-4848-a488-6a9afe4266ff
https://bank.stat.gl:443/sq/8fb0941c-3579-4848-a488-6a9afe42lars
https://bank.stat.gl/sqget.asp?8fb0941c-3579-4848-a488-6a9afe42lars
https://cran.r-project.org

Statistics Greenland 87

pxweb
PxWebApiData (SSB.no)
csodata (only CSO.ie)
Github:
statgl (stat.gl)
dkstat (only DST.dk)

#==

Packages used below

might need to be installed

#==

library(tidyverse)

Install or update packages from cran:

install.packages("pxweb")

install.packages("PxWebApiData")

install.packages("csodata")

Install or update packages from GitHub:

if(!require("devtools")) install.packages("devtools")

library("devtools")

#

install_github("rOpenGov/dkstat")

devtools::install_github("StatisticsGreenland/statgl")

#== end ===

5.0.3 Example 1: pxweb (cran)

Magnusson Måns, Kainu M, Huovari J, Lahti L (2019).

“pxweb: R tools for PX-WEB API.” General interface to all pxweb based Statbanks.
Last updated 2021-10-09
Highlight:
Use pxweb interactive to find relevant table(s) from one of 28 Statbanks and have ready to

run r-script generated
In example 1 the pxweb package is used to get data from bank.stat.gl by
data df pxweb <- pxweb get data(url, query, variable.value.type = “code”)
variable.value.type can be code or text
code are the same for all languages, text is dependent on the language code found in the

url
” * ” is short for all values in a variable. So if a variable has:
c(“T”,“N”,“S”) values, instead ’ * ’ return all

88 PMM

#==

Example 1: pxweb (cran)

Magnusson M, Kainu M, Huovari J, Lahti L (2019).

pxweb: R tools for PX-WEB API.

#==

library(pxweb)

#pxweb_interactive()

px_data <- pxweb_get_data(url =

"https://bank.stat.gl:443/api/v1/en/Greenland/BE/BE80/BEXCALC.PX",

query = list("year of birth" = "*",

gender = c("M", "K"),

"triangles(lexis)" = "*",

event = "*",

time = "*"),

variable.value.type = "code")

Example 2: PxWebApiData (cran)

Statistics Norway, Øyvind Langsrud <oyl at ssb.no>

General interface to all pxweb based Statbanks.
Last updated 2021-10-11
In example 2 the PxWebApiData package is used to get data from statbank.hagstova.fo

#==

Example 2: PxWebApiData (cran)

Statistics Norway, Øyvind Langsrud <oyl at ssb.no>

#==

library(PxWebApiData)

meta <- ApiData(

"https://statbank.hagstova.fo:443/api/v1/en/H2/DEV/COH/Lexis.px",

returnMetaFrames = TRUE)

names(meta)

[1] "year of birth" "event" "sex" "Triangles(Lexis)"

[5] "year"

meta[[2]]$values

[1] "P" "B" "I" "O" "D" "C" "U"

Statistics Greenland 89

data <- PxWebApiData::ApiData(

"https://statbank.hagstova.fo:443/api/v1/en/H2/DEV/COH/Lexis.px",

"year of birth" = TRUE,

sex = c("M", "F"),

"Triangles(Lexis)" = c("0", "1"),

event = TRUE,

year = TRUE # top3 : 3i instead of TRUE

)

Extract the first list element, which contains full variable names.

data_df_PxWebApiData <- data[[1]]

head(data_df_PxWebApiData,5)

year of birth event sex Triangles(Lexis) year value

1 1885 Population (start of year) Males Upper 1985 1

2 1885 Population (start of year) Males Upper 1986 1

3 1885 Population (start of year) Males Upper 1987 0

4 1885 Population (start of year) Males Upper 1988 0

5 1885 Population (start of year) Males Upper 1989 0

Example 3: statgl (GitHub)

Statistics Greenland - https://github.com/StatisticsGreenland/statgl

General interface to all pxweb based Statbanks.
Last updated 2021-01-04
the statgl-package bundles pxweb-based statbank functionality with presentation features,

used by Statistics Greenland on Sustainable Development Goals
In example 3 the statgl package is used to get data from statbank.hagstova.fo and also 2

Greenlandic examples to show additional features

#==

Example 3: statgl (GitHub)

Statistics Greenland - https://github.com/StatisticsGreenland/statgl

#==

library(statgl)

#statgl_search("Population")

#statgl_search("Education", lang = "en", api_url = "https://statbank.hagstova.fo:443/api/v1/en/H2")

data_df_statgl <- statgl_fetch(

https://github.com/StatisticsGreenland/statgl
https://stat.gl/en/sdg

90 PMM

area gender 2016 2017 2018 2019 2020 2021 2022
c. Nuuk City Total 17.316 17.600 17.796 17.984 18.326 18.800 19.261
c. Nuuk City Female 8.183 8.334 8.437 8.533 8.703 8.903 9.131
c. Nuuk City Male 9.133 9.266 9.359 9.451 9.623 9.897 10.130

"https://statbank.hagstova.fo:443/api/v1/en/H2/DEV/COH/Lexis.px",

"year of birth" = px_all(),

sex = c("M", "F"),

"Triangles(Lexis)" = c("0", "1"),

event = px_all(),

year = px_all(), # px_top(3)

.val_code=TRUE)

CONST_statbank <- "https://bank.stat.gl/api/v1/en/Greenland"

statgl_url("BEXCALCR", api_url = CONST_statbank) %>%

statgl_fetch(area = c("NUK"),

event = c("P"),

gender = px_all(),

time = px_top(7),

.eliminate_rest = TRUE ,

.col_code = TRUE,

.val_code = FALSE

) %>%

select(-event) %>%

pivot_wider(names_from = time,values_from = value) %>%

statgl_table()

https://stat.gl/en/sdg

library(lubridate)

Import

INXIU101_raw <-

statgl_url("INXIU101", lang = "en") %>%

statgl_fetch(

indicator = 2:4,

time = px_all(),

.col_code = TRUE

) %>%

as_tibble()

Transform

Statistics Greenland 91

INXIU101 <-

INXIU101_raw %>%

mutate(

time = time %>% make_date(),

indicator = indicator %>% as.factor() %>% fct_rev()

)

Plot

INXIU101 %>%

ggplot(aes(

x = time,

y = value,

fill = indicator

)) +

geom_area(position = "identity") +

scale_y_continuous(labels = scales::percent_format(

scale = 1,

accuracy = 1.1,

big.mark = ".",

decimal.mark = ","

)) +

theme_statgl() +

scale_fill_statgl(reverse = TRUE, guide = guide_legend(reverse = TRUE)) +

labs(

title = "At-risk-of-povery rate",

x = " ",

y = " "

)

ReadStatBanks_files/figure-latex/Example3-1.pdf

Example 4: dkstat

https://github.com/rOpenGov/dkstat

Statbank Denmark specific

#==

Example 4: dkstat

https://github.com/rOpenGov/dkstat

#==

https://github.com/rOpenGov/dkstat

92 PMM

library(dkstat)

dkstat::dst_search("Grønland", lang="da") %>% head(5)

id text unit updated

14 BEF5G Personer født i Grønland og bosat i Danmark 1. januar Antal 2022-02-11T08:00:00

firstPeriod latestPeriod active variables

14 2008 2022 TRUE køn, alder, forældrenes fødested, tid

bef5g_meta <- dst_meta("bef5g", lang = "da")

bef5g_meta[[1]]

$id

[1] "BEF5G"

##

$text

[1] "Personer født i Grønland og bosat i Danmark 1. januar"

##

$description

[1] "Personer født i Grønland og bosat i Danmark 1. januar efter køn, alder, forældrenes fødested og tid"

##

$unit

[1] "Antal"

##

$updated

[1] "2022-02-11T08:00:00"

##

$footnote

NULL

bef5g_meta[[2]]

id text elimination

1 KØN køn TRUE

2 ALDER alder TRUE

3 FF forældrenes fødested TRUE

4 Tid tid FALSE

bef5g_meta[[3]]$FF

id text

1 BDK Begge forældre født i Danmark

2 BGRL Begge forældre født i Grønland

3 BUDL Begge forældre født i udlandet

4 BUOP Begge forældre uoplyst

5 DKGRL En forælder født i Danmark og en forælder født i Grønland

6 DKUDL En forælder født i Danmark og en forælder født i udlandet

Statistics Greenland 93

7 DKUOP En forælder født i Danmark og en forælder uoplyst

8 GRLUDL En forælder født i Grønland og en forælder født i udlandet

9 GRLUOP En forælder født i Grønland og en forælder uoplyst

10 UDLUOP En forælder født i udlandet og en forælder uoplyst

data_dkstat <- dst_get_data(table = "bef5g",

KØN = "*",

ALDER = "*",

FF = "*",

Tid = "*",

lang = "en",

meta_data = bef5g_meta,

value_presentation="value") %>%

as_tibble()

Example 5: csodata (cran)

Conor Crowley <conor.crowley at cso.ie>

Statbank Ireland specific

#==

Example 5: csodata (cran)

Conor Crowley <conor.crowley at cso.ie>

#==

library(csodata)

#

toc <- cso_get_toc()

head(toc)

#

population <- cso_search_toc("Population")

#

tbl1 <- cso_get_data("PEB07")

#

meta1 <- cso_get_meta("PEA19") %>% as_tibble()

cso_disp_meta("PEA19")

data_df_cso <- statgl_fetch(url =

"https://ws.cso.ie/public/api.restful/PxStat.Data.Cube_API.PxAPIv1/en/17/PME/PEA21",

Year = px_all(),

sex = px_all(),

Nationality = px_all(),

.val_code=TRUE)

#

data_df_cso <- pxweb_get_data(url =

94 5.1 Example 6: pxR (cran) PMM

"https://ws.cso.ie/public/api.restful/PxStat.Data.Cube_API.PxAPIv1/en/17/PME/PEA21",

query = list(Year = "*",

sex = "*",

Nationality = "*"))

#

5.1 Example 6: pxR (cran)

5.2 Carlos J. Gil Bellosta <cgb at datanalytics.com>

Read PX-files to R
Last updated 2020-06-07

#==

Example 6: pxR (cran)

Carlos J. Gil Bellosta <cgb at datanalytics.com>

#==

library(pxR)

Read px-files

library(pxR)

#

Reading PC-Axis files into R

Function read.px reads a PC-Axis file from a given location and returns

an object of class px containing all the data and metadata in the

original PC-Axis file.

#

The single most important piece of information within a pxobject is the

data matrix, which can be extracted into a R data.frame using function

as.data.frame. For instance,

#

my.px.object <- read.px("/path/to/pc-axis/file")

my.px.data <- as.data.frame(my.px.object)

will create the data.frame my.px.data with the data in the corresponding

PC-Axis file.

#

copy and run next line to console to convert to Latex

rmarkdown::render("ReadStatBanks.Rmd", output_format = "latex_document")

	Contents
	Preface
	Program

	Using R
	Installing and using R
	Writing code and results
	Coding style in R
	R lingo

	Simple usage of R
	Using R as a calculator
	A functional language
	Sequences
	The births data
	Referencing parts of a data frame
	Summaries
	Generating new variables
	Logical variables
	Turning a variable into a factor
	Tables
	Reading data
	Saving data

	Graphics
	ggplot2
	Base graphics
	Simple base graphs

	Dates in R

	Survival and rates: lung
	Data and simple survival
	Rates and rate-ratios: Simple Cox model
	Simple Poisson model
	Representation of follow-up: Lexis object
	Estimating the hazard function: splitting time

	Competing risks: DMlate
	Data
	State probabilities
	What not to do
	Modeling cause specific rates
	Integrals with R
	Cumulative risks from parametric models
	Expected life time: using simulated objects

	Multistate models: steno2
	Lexis object for steno2
	Transition rates: multiple time scales
	State probabilities
	Models for transition rates
	Simulation of state probabilities

	State probabilities using the Aalen-Johansen approach from survival
	Time spent in albuminuria states
	Clinical variables
	Several transitions from one state: stack

	Statistics Greenland
	api light - saved queries
	for more control
	Example 1: pxweb (cran)
	Example 6: pxR (cran)
	Carlos J. Gil Bellosta <cgb at datanalytics.com>

