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Course program

The course is centered around practical calculations in R, illustrating the concepts through
analysis of data. All sessions will be alternating between lectures and practicals, most
followed by a walk-through of the computing issues.

Please note the details of the computing requirements on the course web-site,
http://bendixcarstensen.com/AdvCoh/Melb-2015/, including download of datasets and
programs for the practicals.

Monday 23 November 2015

08:45 – 09:00 Arrival & introduction
09:00 – 10:00 Brief introduction to R.

Rates and survival.
P: Computing rates, RRs and RDs (2.1, 2.2)

10:00 – 10:40 Representation of follow-up data.
P: Lexis diagrams and Lexis objects (2.3).

10:40 – 11:00 Coffee
11:00 – 12:45 Kaplan-Meier, Cox and Lexis.

P: Fitting a Cox model and a Poisson model and comparing (2.4).
12:45 – 13:30 Lunch
13:30 – 15:00 Estimating — and drawing — a smooth curve.

Multiple time scales.
P: Estimating a curved effect: Testis cancer in DK (2.5).

15:00 – 15:30 Afternoon Tea
15:30 – 17:30 Life expectancy and life lost to disease.

Multistate models.
P: Modeling rates and computing life lost (2.6).
P: Lifetime risk of diabetes (to appear).

17:30 – 18:00 Summary of the day.
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Chapter 1

Fundamental relations in demography
and survival analysis

The following is a summary of relations between various quantities used in analysis of
follow-up studies. They are ubiquitous in the analysis and reporting of results. Hence it is
important to be familiar with all of them and the relation between them.

1.1 Probability

Survival function:

S(t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

Conditional survival function:

S(t|tentry) = P {survival at least till t| alive at tentry}
= S(t)/S(tentry)

Cumulative distribution function of death times (cumulative risk):

F (t) = P {death before t}
= P {T ≤ t} = 1− S(t)

Density function of death times:

f(t) = lim
h→0

P {death in (t, t+ h)} /h = lim
h→0

F (t+ h)− F (t)

h
= F ′(t)

Intensity:

λ(t) = lim
h→0

P {event in (t, t+ h] | alive at t} /h

= lim
h→0

F (t+ h)− F (t)

S(t)h
=
f(t)

S(t)

= lim
h→0
− S(t+ h)− S(t)

S(t)h
= − d logS(t)

dt

2
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The intensity is also known as the hazard function, hazard rate, mortality/morbidity
rate or simply “rate”.

Note that f and λ are scaled quantities, they have dimension time−1.

Relationships between terms:

− d logS(t)

dt
= λ(t)

m

S(t) = exp

(
−
∫ t

0

λ(u) du

)
= exp

(
−Λ(t)

)
The quantity Λ(t) =

∫ t
0
λ(s) ds is called the integrated intensity or the cumulative

rate. It is not an intensity (rate), it is dimensionless, despite its name.

λ(t) = − d log(S(t))

dt
= −S

′(t)

S(t)
=

F ′(t)

1− F (t)
=
f(t)

S(t)

The cumulative risk of an event (to time t) is:

F (t) = P {Event before time t} =

∫ t

0

λ(u)S(u) du = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for small values of the integrated
intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate

1.2 Statistics

Likelihood contribution from follow up of one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P {event at t4|entry at t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

Each term in this expression corresponds to one empirical rate1

(d, y) = (#deaths,#risk time), i.e. the data obtained from the follow-up of one
person in the interval of length y. Each person can contribute many empirical rates,
most with d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):

`(λ) = d log(λ)− λy

This is under the assumption that the rate (λ) is constant over the interval that the
empirical rate refers to.

1This is a concept coined by BxC, and so is not necessarily generally recognized.



4 1.3. COMPETING RISKS

Log-likelihood for several persons. Adding log-likelihoods from a group of persons
(only contributions with identical rates) gives:

D log(λ)− λY,

where Y is the total follow-up time, and D is the total number of failures.

Note: The Poisson log-likelihood for an observation D with mean λY is:

D log(λY )− λY = D log(λ) +D log(Y )− λY

The term D log(Y ) does not involve the parameter λ, so the likelihood for an
observed rate can be maximized by pretending that the no. of cases D is Poisson
with mean λY . But this does not imply that D follows a Poisson-distribution. It is
entirely a likelihood based computational convenience. Anything that is not
likelihood based is not justified.

A linear model for the log-rate, log(λ) = Xβ implies that

λY = exp
(
log(λ) + log(Y )

)
= exp

(
Xβ + log(Y )

)
Therefore, in order to get a linear model for log(λ) we must require that log(Y )
appear as a variable in the model for D ∼ (λY ) with the regression coefficient fixed
to 1, a so-called offset-term in the linear predictor.

1.3 Competing risks

Competing risks: If there is more than one, say 3, causes of death, occurring with
(cause-specific) rates λ1, λ2, λ3, that is:

λc(a) = lim
h→0

P {death from cause c in (a, a+ h] | alive at a} /h, c = 1, 2, 3

The survival function is then:

S(a) = exp

(
−
∫ a

0

λ1(u) + λ2(u) + λ3(u) du

)
because you have to escape all 3 causes of death. The probability of dying from cause
1 before age a (the cause-specific cumulative risk) is:

P {dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du 6= 1− exp

(
−
∫ a

0

λ1(u) du

)
The term exp(−

∫ a
0
λ1(u) du) is sometimes referred to as the “cause-specific survival”,

but it does not have any probabilistic interpretation in the real world. It is the
survival under the assumption that only cause 1 existed and that the mortality rate
from this cause was the same as when the other causes were present too.

Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes
1, 2 and 3 respectively:

1 = S(a) +

∫ a

0

λ1(u)S(u) du+

∫ a

0

λ2(u)S(u) du+

∫ a

0

λ3(u)S(u) du, ∀a
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Subdistribution hazard Fine and Gray defined models for the so-called subdistribution
hazard. Recall the relationship between between the hazard (λ) and the cumulative
risk (F ):

λ(a) = −
d log

(
S(a)

)
da

= −
d log

(
1− F (a)

)
da

When more competing causes of death are present the Fine and Gray idea is to use
this transformation to the cause-specific cumulative risk for cause 1, say:

λ̃1(a) = −
d log

(
1− F1(a)

)
da

This is what is called the subdistribution hazard, it depends on the survival function
S, which depends on all the cause-specific hazards:

F1(a) = P {dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du

The subdistribution hazard is merely a transformation of the cause-specific
cumulative risk. Namely the same transformation which in the single-cause case
transforms the cumulative risk to the hazard.

1.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age
(a) integrated with respect to the distribution of age at death:

EL =

∫ ∞
0

af(a) da

where f is the density of the distribution of lifetimes.

The relation between the density f and the survival function S is f(a) = −S ′(a), so
integration by parts gives:

EL =

∫ ∞
0

a
(
−S ′(a)

)
da = −

[
aS(a)

]∞
0

+

∫ ∞
0

S(a) da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
definition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) =

∫ ∞
a

S(u)/S(a) du

Lifetime lost due to a disease is the difference between the expected residual lifetime for
a diseased person and a non-diseased (well) person at the same age. So all that is
needed is a(n estimate of the) survival function in each of the two groups.

LL(a) =

∫ ∞
a

SWell(u)/SWell(a)− SDiseased(u)/SDiseased(a) du
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Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease
in question or not. That is whether we will include the possibility of a well person
getting ill and subsequently die. This does not show up in the formulae, but is a
decision required in order to devise an estimate of SWell.

Lifetime lost by cause of death is using the fact that the difference between the
survival probabilities is the same as the difference between the death probabilities. If
several causes of death (3, say) are considered then:

S(a) = 1− P {dead from cause 1 at a}
− P {dead from cause 2 at a}
− P {dead from cause 3 at a}

and hence:

SWell(a)− SDiseased(a) = P {dead from cause 1 at a|Diseased}
+ P {dead from cause 2 at a|Diseased}
+ P {dead from cause 3 at a|Diseased}
− P {dead from cause 1 at a|Well}
− P {dead from cause 2 at a|Well}
− P {dead from cause 3 at a|Well}

So we can conveniently define the lifetime lost due to cause 2, say, by:

LL2(a) =

∫ ∞
a

P {dead from cause 2 at u|Diseased & alive at a}

−P {dead from cause 2 at u|Well & alive at a} du

These quantities have the property that their sum is the total years of life lost due to
the disease:

LL(a) = LL1(a) + LL2(a) + LL3(a)

The terms in the integral are computed as (see the section on competing risks):

P {dead from cause 2 at x|Diseased & alive at a} =

∫ x

a

λ2,Dis(u)SDis(u)/SDis(a) du

P {dead from cause 2 at x|Well & alive at a} =

∫ x

a

λ2,Well(u)SWell(u)/SWell(a) du



Chapter 2

Practical exercises

2.1 Life table

Fill in the empty columns in the life-table calculations for Stage II cervix cancer patients

Year (t) N D L N−1
2
L P(F) P(S) S(t)

1 234 24 3

2 207 27 11

3 169 31 9

4 129 17 7

5 105 7 13

6 85 6 6

7 73 5 6

8 62 3 10

9 49 2 13

10 34 4 6

2.2 Calculation of rates, RR and RD

This exercise is very prescriptive, so you should make an effort to really understand
everything you type into R.

Recall that the standard error of log-rate is 1/
√
D, so that a 95% confidence interval for

the log of a rate is:
θ̂ ± 1.96/

√
D = log(λ)± 1.96/

√
D

If we take the exponential, we get the confidence interval for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf

1. Now, suppose you have 15 events during 5532 person-years. Now use R as a simple
desk calculator to derive the rate and a confidence interval:

7



8 2.2. CALCULATION OF RATES, RR AND RD

> library( Epi )

> D <- 15
> Y <- 5532
> rate <- D / Y
> erf <- exp( 1.96 / sqrt(D) )
> c( rate, rate/erf, rate*erf )

You can explore the function ci.mat(), which lets you use matrix multiplication to
produce confidence interval from an estimate and a standard error (or columns of
such):

> ci.mat()
> exp( c( log(D/Y), 1/sqrt(D) ) %*% ci.mat() )

2. Now try to achieve this estimate and c.i. using a Poisson model. Use the number of
events as the response and the log-person-years as offset:

> mm <- glm( D ~ 1, offset=log(Y), family=poisson )
> summary( mm )

What is the interpretation of the parameter in this model?

3. You can extract a confidence interval directly from the model with the ci.lin or
ci.exp functions from Epi:

> ci.lin( mm )
> ci.exp( mm )

4. There is an alternative way to fit a Poisson model, using the rates a the Poisson
response, and the person-years as weights instead (albeit it will give you a warning
about non-integer response in a Poisson model):

> mmx <- glm( D/Y ~ 1, weight=Y, family=poisson )
> ci.exp( mmx )

Verify that this give the same results as above.

5. The advantage of this latter approach is that it will also make sense to use an
identity link — the response is the same but the parameter estimated is now the rate,
not the log-rate:

> ma <- glm( D/Y ~ 1, weight=Y, family=poisson(link=identity) )

What is the meaning of the intercept in this model?

Verify that you actually get the same rate estimate as before.

6. Now use ci.lin or ci.exp to produce the estimate and the confidence intervals from
this model:

> ci.lin( ma )
> ci.exp( ma, Exp=FALSE )



MDMiEwR 2015 — Practicals 9

Why are the confidence limits not the same as from the multiplicative model?

Derive the formula for the standard error of this estimated rate.

7. Now, suppose the events and person years are collected over three periods:

> Dx <- c(3,7,5)
> Yx <- c(1412,2783,1337)
> Px <- 1:3

Try to fit the same model as before to the data from the separate periods.

> m1 <- glm( Dx ~ 1, offset=log(Yx), family=poisson )

8. Now test whether the are rates the same in the three periods: Try to fit a model with
the period as a factor in the model:

> mp <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )

and compare the two models using anova with the argument test="Chisq":

> anova( m1, mp, test="Chisq" )

Compare the test statistic to the deviance of the model mp.

What is the deviance good for?

9. If we have observations of two rates λ1 and λ0, based on (D1, Y1) and (D0, Y0) the
variance of the difference of the log of the rates, that is the log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1

+
1

D0

)
Suppose you have 15 events during 5532 person-years in an unexposed group and 28
events during 4783 person-years in an exposed group:

Compute the the rate-ratio and c.i. by:

> D0 <- 15 ; D1 <- 28
> Y0 <- 5532 ; Y1 <- 4783
> RR <- (D1/Y1)/(D0/Y0)
> erf <- exp( 1.96 * sqrt(1/D0+1/D1) )
> c( RR, RR/erf, RR*erf )
> exp( c( log(RR), sqrt(1/D0+1/D1) ) %*% ci.mat() )

10. Now achieve this using a Poisson model:

> D <- c(D0,D1) ; Y <- c(Y0,Y1); xpos <- 0:1
> mm <- glm( D ~ factor(xpos), offset=log(Y), family=poisson )



10 2.3. LEXIS DIAGRAM

What does the parameters mean in this model?

You can extract the exponentiated parameters by:

> ci.exp( mm )

11. If we instead want the rate-difference, we just subtract the rates, and the variance of
the difference is (since the rates are based on independent samples) just the sum of
the variances:

var(RD) = var(λ1) + var(λ0)

= D1/Y
2

1 +D0/Y
2

0

Use this formula to compute the rate difference and a 95% confidence interval for it:

> rd <- diff( D/Y )
> sd <- sqrt( sum( D/Y^2 ) )
> c( rd, sd ) %*% ci.mat()

12. Verify that this is the confidence interval you get when you fit an additive model with
exposure as factor:

> ma <- glm( D/Y ~ factor(xpos), weight=Y,
+ family=poisson(link=identity) )
> ci.exp( ma, Exp=FALSE )

13. Normally one would like to get both the rates and the ratio between them. This can
be achieved in one go using the ctr.mat argument to ci.exp. Try:

> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM
> mm <- glm( D ~ factor(xpos),
+ offset=log(Y), family=poisson )
> ci.exp( mm, ctr.mat=CM )
> round( ci.exp( mm, ctr.mat=CM ) )

14. Refit the model with Y/1000 as the person time, so you get the estimated rates in
units of cases per 1000.

15. Use the same machinery to the additive model to get the rates and the rate-difference
in one go. Note that the annotation of the resulting estimates are via the
column-names of the contrast matrix.

> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/Y ~ factor(xpos), weight=Y,
+ family=poisson(link=identity) )
> ci.exp( ma, ctr.mat=CM, Exp=FALSE )

0
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Figure 2.1: Lexis diagram of a small occupational cohort.

2.3 Lexis diagram

In the Lexis diagram below is shown follow-up times of a small occupational cohort over
the years 1940–1959 and the age range 40–54 years (this example is from B&D). Each line
runs from the entry to follow-up until either the diagnosis of cancer (•), or censoring or
withdrawal (no symbol) due to death from other causes or migration.

1. Calculate the number of new cases of cancer, and person-years at risk in all the three
5-year age bands: 40–44, 45–49, and 50–54 years for each of the 5-year calendar
periods 1940–44, 1945–49, and 1950–54 separately.

Hint: The data set is available as an example dataset, occup, in the Epi package.
Try:

> library( Epi )
> data( occup )
> str( occup )
> occup
> example( occup )

2. Calculate the numbers of new cases of cancer, person-years at risk in the three 5-year
age groups: 40–44, 45–49, and 50–54 years for a birth cohort born in 1902–11. Hint:
You can use the function splitLexis to subdivide follow-up in age- and calendar
time bands.



12 2.4. COX AND POISSON MODELLING

3. Continuing from 2, estimate the cumulative rate and the cumulative risk over the
whole 15-year age range for the chosen birth cohort.

4. Now suppose the age-specific incidences (per 100,000 person-years) in the three
5-year age-groups during 1940–60 in the whole population of the country were 100,
200, and 400, respectively, so there was no variation between the sub-periods.
Assuming that this is an appropriate reference population, calculate the expected
number of cases for the index occupational cohort for the same period. Compare the
observed and expected number of cases by standardized incidence ratio, SIR.

Comment on the result.

2.4 Cox and Poisson modelling

This practical is to show how results from a Cox-model can be reproduced exactly by a
Poisson model, and in particular how more sensible and relevant results can be obtained
from a Poisson model.

2.4.1 The lung cancer data

The data is the lung cancer data from the survival package which comes with R by
default. We start by declaring a really large chunk of memory, because we need that to fit
a silly model for illustration:

> # If you use windows thins might be a good idea;
> # memory.size( 3000 )
> library( Epi )
> library( survival )
> sessionInfo()

Note that loading the survival package automatically also loads the splines package,
which is also needed in the exercise.

1. First, load the lung data set and have a look at it:

> data( lung )
> str( lung )
> lung[1:10,]

2. The deaths are indicated by status being equal to 2 — how may deaths are there?

3. How many distinct survival times are there?

2.4.2 Cox-models

4. Fit a traditional Cox-model for the the Mayo clinic lung cancer by coxph, where the
response is a Surv object:

> system.time(
+ m0.cox <- coxph( Surv( time, status==2 ) ~ age + factor( sex ),
+ method="breslow", eps=10^-8, iter.max=25, data=lung )
+ )
> summary( m0.cox )
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5. Create a Lexis object from the dataset

> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )
> summary( Lung )

What do you see from the summary command?

6. Now try to fit the same Cox-model to data using the formal structures of the Lexis

object:

> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", eps=10^-8, iter.max=25, data=Lung )
> cbind( coef(m0.cox), coef(mL.cox) )

2.4.3 Poisson models

7. Now split the follow-up data split in small intervals, using all recorded survival times
as breakpoints:

> Lung.s <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time))),
+ time.scale="tfe" )
> summary( Lung.s )

List all records from one person you choose — use a table of the variable lex.id to
identify a person with not too many records.

8. Now fit the Cox model to the split dataset

> system.time(
+ mLs.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", eps=10^-8, iter.max=25, data=Lung.s )
+ )

Are the results the same?

9. Now fit a Poisson model with a factor accommodating the time-scale defined in the
Lexis object. You should use the command factor to devise a categorical variable:

> nlevels( factor( Lung.s$tfe ) )

Note it involves fitting a model with many parameters, so will take some time. Note
that the response variable lex.Xst=="Dead" is a logical, but by R converts it into a
0/1 numeric:

> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )
> length( coef(mLs.pois.fc) )
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How does the regression coefficients look compared to the Cox-model?

10. Now replace the factor-model for the time-scale by a smooth spline function. A
(cubic) spline is a function made up of 3rd degree polynomials in different intervals
defined by knots, in such a way that the polynomials fit nicely together at the knots.

First defining the knots for the spline, for example:

> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

and then fit the model using Ns (look it up!) from the Epi package:

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )
> ci.exp( mLs.pois.sp )
> ci.exp( mLs.pois.sp, subset=c("age","sex") )

2.4.4 Comparing Cox and Poisson models

11. Compare the estimates of the regression parameters and their confidence intervals
between the Cox-model, the factor-Poisson-model and the spline Poisson model.

What do you conclude?

12. Now use the fitted model to derive the estimated mortality at 0, 10, 20, . . . , 1000
days after diagnosis. You must set up a contrast matrix with columns corresponding
to the parameters of the model, and rows corresponding to the points in time where
you want the mortality:

> CM <- cbind( 1, Ns( seq(0,1000,10), knots=t.kn ), 60, 1 )
> CM[1:5,]

The mortality rates at these time points, for a 60-year old man are then:

> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )

What are the units in which lambda is measured?

Also compute the cumulative mortality rates (including the s.e.of this), by using the
function ci.cum (look it up!):

> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )
> Lambda <- rbind( 0, Lambda )

Also get the estimate of the survival curve for a male aged 60 from the Cox-model;
remember that sex must be specified as a factor with two levels in the data frame in
the argument newdata:

> sf <- survfit( m0.cox,
+ newdata=data.frame( sex=factor(2,levels=1:2),
+ age=c(60) ) )
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13. Plot the mortality rates (lambda) as a function of time since diagnosis.

Also plot the estimated survival function from the Cox model on top of the estimated
survival function based on the cumulative hazard, using the relationship:

S(t) = exp(−Λ(t))

How do the survival curves from the two approaches compare? Which one do you
consider the more sensible summary of the survival of 60 year old men with lung
cancer?

2.5 Estimation and reporting of linear and curved

effects

The purpose of this exercise is to take you through models with curved effects of age and
calendar time, in order to show you how to report 1) a curved effect of a main effect such
as age and 2) a curved effect of a relative effect where a reference point is needed. In the
exercise we will use the testisDK data from the Epi package, which contains the number of
cases of testis cancer in Denmark 1943–96:

1. First load the Danish testis cancer data, and inspect the dataset:

library( Epi )
sessionInfo()
data( testisDK )
str( testisDK )
head( testisDK )

Tabulate both events and person-years in say 10-year age-groups and 10-year periods
of follow-up. Use for example xtabs. In which ages are the age-specific testis cancer
rates highest?

2. Now fit a Poisson-model for the mortality rates with a linear term for age at
follow-up (current age, attained age):

ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
ci.exp( ml )

What do the parameters mean?

3. Work out the the predicted log-mortality rates for ages 25 to 45, say, by doing a
hand-calculation based on the coefficients:

( cf <- coef( ml ) )

4. However, we do not have the standard errors of these mortality rates, and hence
neither the confidence intervals. This is implemented in ci.exp; if we provide the
argument ctr.mat= as a matrix where each row corresponds to a prediction point
and each column to a parameter from the model. Look at the help page for ci.exp
and then try:
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( CM <- cbind( 1, 25:45 ) )
round( ci.exp( ml, ctr.mat=CM )*10^5, 3 )

5. Use this machinery to derive and plot the mortality rates over the range from 15 to
65 years, say:

C1 <- cbind( 1, 15:65 )
matplot( 15:65, ci.exp( ml, ctr.mat=C1 )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

6. Now check if the mortality rates really are exponentially increasing by age (that is
linearly on the log-scale), by adding a quadratic term to the model. Note that you
must use the expression I(A^2) in the modeling in order to avoid that the “^” is
interpreted as part of the model formula:

mq <- glm( D ~ A + I(A^2), offset=log(Y), family=poisson, data=testisDK )
ci.exp( mq, Exp=F )

Then plot the estimated rates under the quadratic model.

aa <- 15:65
C2 <- cbind( 1, aa, aa^2 )
matplot( aa, ci.exp( mq, ctr.mat=C2 )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

Try to overlay the estimated rates from the model with linear effect of age — you will
need the function matlines.

7. Repeat the same using a 3rd degree polynomial.

8. Instead of continuing with higher powers of age we could use fractions of powers, or
we could use splines, piece wise polynomial curves, that fit nicely together at join
points (knots). This is implemented in the splines package, in the function ns,
which returns a matrix. There is a wrapper Ns in the Epi-package that automatically
designate the smallest and largest knots as boundary knots, beyond which the
resulting curve is linear:

library( splines )
ms <- glm( D ~ Ns(A,knots=seq(15,65,10)), offset=log(Y),

family=poisson, data=testisDK )

In order to extract the estimated effects, construct a contrast matrix that correspond
to the parameters of the model, you can try the following (you can skip some of the
fancy stuff in the plot statement).

As <- Ns( aa, knots=seq(15,65,10) )
matplot( aa, ci.exp( ms, ctr.mat=cbind(1,As) )*10^5, log="y",

type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY" )
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9. Now add a linear term in calendar time P to the model, and make a prediction of the
incidence rates in 1970. You would need to take a look at the parameter of the model
in order to devise the contrast matrix:

msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P, offset=log(Y), family=poisson, data=testisDK )
ci.exp( msp )
matplot( aa, ci.exp( msp, ctr.mat=cbind(1,As,1970) )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

Note that cbind automatically will expand the 1 and the 1970 to match the number
of rows of As.

10. Extract the RR relative to 1970, by using the subset argument to ci.exp:

ci.exp( msp, subset="P" )

What is the annual relative increase in the testis cancer incidence rates? Show the
RR of testis cancer by year relative to 1970 by multiplying the log-RR for period with
the distance form 1970, such as:

yy <- 1943:1996
Cp1 <- cbind( yy - 1970 )
matplot( yy, ci.exp( msp, ctr.mat=Cp1, subset="P" ),

log="y", xlab="Date", ylab="RR of Testis cancer",
type="l", lty=1, lwd=c(3,1,1), col="black" )

abline( h=1 )

11. Try to add a quadratic term to the period effect, and plot the resulting RR relative
to 1970.
Hint: In order to extract the quadratic effects relative to 1970, you must form the
matrix of linear and quadratic period, and a corresponding matrix where all rows are
identical to the 1970 row:

msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
offset=log(Y), family=poisson, data=testisDK )

Cq <- cbind( yy, yy^2 ) - cbind( rep(1970,length(yy)), 1970^2 )

Use this matrix as argument to ci.exp

12. Now investigate if there is any non-linearity in period beyond the quadratic, by
fitting fit a spline for (P) as well, and comparing the models. Plot the resulting RR
by year, relative to 1970 too. You must define a contrast matrix corresponding to the
years where the prediction is made, as well as a matrix with the same number of
rows, but with all rows identical to the one corresponding to the reference year. You
must use the difference of these two as the argument to ctr.mat in ci.exp.

13. Plot the estimated age-specific rates in 1970 from this model. Note that you need a
reference matrix for the period with all rows identical to the 1970 row, but this time
with the same number of rows as the age-prediction points.

14. Collect these steps in a general outline, where you first define the knots, and the
points of age and period prediction, and then fit the model and do the two plots.

15. Form a new variable in the data frame, B=P-A, the data of birth, and repeat the last
analysis with this variable instead of P.
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2.6 Diabetes in Denmark

This exercise is using data from the National Danish Diabetes register. Theer is a sample
of 10,000 records from this in the Epi package. Actually there are two, we shall use the one
with only cases of diabetes diagnosed after 1995. The exercise is mainly about assessing
how mortality depends age, and how to understand and compute years of life lost to
diabetes by comparing with the population mortality.

1. First load the data and take a look at the data:

library( Epi )
data( DMlate )
str( DMlate )

You can get a more detailed explanation of the data by referring to the help page:

?DMlate

2. Set up the dataset as a Lexis object with age, calendar time and duration of diabetes
as timescales, and date of death as event. Make sure that you know what each of the
arguments to Lexis mean:

LL <- Lexis( entry = list( A = dodm-dobth,
P = dodm,

dur = 0 ),
exit = list( P = dox ),

exit.status = factor( !is.na(dodth),
labels=c("Alive","Dead") ),

data = DMlate )

Take a look at the first few lines of the resulting dataset using head().

3. If we want to assess how mortality depends on age, calendar time and duration, we
should split the follow-up along all three time scales. In practice it is sufficient to
split it along one of the time-scales and then just use the value of each of the
time-scales at the left endpoint of the intervals.

Use splitLexis to split the follow-up along the age-axis:

SL <- splitLexis( LL, breaks=seq(0,125,1), time.scale="A" )
summary( SL )

How many records are now in the dataset? How many person-years? Compare to the
original Lexis-dataset.

4. Now estimate a crude age-specific mortality curve for men and women separately,
using natural splines:

library( splines )
r.m <- glm( (lex.Xst=="Dead") ~ ns( A, df=10 ),

offset = log( lex.dur ),
family = poisson,
data = subset( SL, sex=="M" ) )

r.f <- update( r.m, data = subset( SL, sex=="F" ) )

Make sure you understand all the components on this modelling statement.
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5. However, when we are working with event data, the ns machinery does not
necessarity choose knots for splines sensibly, so it is better to explicitly allocate
theknots so that the number of events is the same between knots; try:

( a.kn <- with( subset(SL,lex.Xst=="Dead"),
quantile( A+lex.dur, (1:10-0.5)/10 ) ) )

These are the locations of knots that places 10% of events between each succesive
pair of knots, and 5% beyond the outer knots. If we use these as knots in the fuction
Ns we automatically get the smallest and the largest as boundary knots, beyond
which the splines are linear:

r.m <- glm( (lex.Xst=="Dead") ~ Ns( A, knots=a.kn ),
offset = log( lex.dur ),
family = poisson,
data = subset( SL, sex=="M" ) )

r.f <- update( r.m, data = subset( SL, sex=="F" ) )

6. With these objects you can get the estimated log-rates by using ci.pred, and
supplying a data frame of prediction points, so first make a data frame of prediction
points, it must have variables corresponding to the predictor variables in the model,
including the off-set variable.

nd <- data.frame( A = seq(10,90,0.5),
lex.dur = 1000 )

p.m <- ci.pred( r.m, newdata = nd )
p.f <- ci.pred( r.f, newdata = nd )
str( p.m )

Plot the two sets of estimated rates (men and women).
(Hint: use matplot)

2.6.1 Comparison with the population rates

7. We can compare the mortality rates of the diabetes patients with the mortality rates
from the general population; they are available in the data frame M.dk

data( M.dk )
head( M.dk )

Plot the mortality rates from a particular year on top of the estimated rates, for
example:

with( subset( M.dk, sex==1 & P==2005 ), lines( A, rate, col="blue", lty="12", lwd=3 ) )

Guess how to plot the mortality rates for women. . .

8. It would be more natural to model the population mortality rates in a similar fashion
as the diabetes mortality rates, try:

R.m <- glm( D ~ Ns( A, knots=seq(10,90,10) ),
offset = log( Y ),
family = poisson,
data = subset( M.dk, sex==1 & P>1994 ) )
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Now obtain the same model for women, and construct the predicted rates as before
— note that you will need a a new dataset for prediction, because in this original
dataset the person-years are called Y in the dataset with the patient follow-up
person-years were in a variable called lex.dur. Add the curves with predicted rates
to the plot of the patient mortality rates.

2.6.2 Life expectancy

9. Recall from the section of fundamental concepts that the expected lifetime is the area
under the survival curve, and remember the relationship between the mortality rates
and the survival curve:

S(a) = exp (−Λ(a)) = exp

(
−
∫ a

o

λ(s) ds

)
The λ(s) is the smooth function of age we just estimated in the models for the
diabetes population and for the general population. Now, an integral is merely a sum;
we can compute it by approximating the area under the curve with a histogram with
very narrow intervals. Now, compute λ (by ci.pred) at the middle of, say, 1000
intervals between 0 and 100 years, multiply each value by the width of the interval,
and compute the cumulative integral Λ:

mid.pt <- 0:999/10 + 1/20
mid.pt[1:5]
nd <- data.frame( A = mid.pt, Y = 1 )

Note that we devise a dataframe nd where the person-years is 1, so that we get the
predicted rates in the units of “events per year”. We use cumsum, and then the
exponential to get the survival curves:

S.m <- exp( -cumsum( ci.pred(R.m,newdata=nd)[,1]*1/10 ) )
S.f <- exp( -cumsum( ci.pred(R.f,newdata=nd)[,1]*1/10 ) )

Note that we have multiplied the estimated rate (calculated in units of events per 1
year) by the interval length, 1/10 year.

10. Plot the survival curves for men and women

11. Compute the expected lifetime as the area under thse curves; recall that we have the
survival curve evaluated at points 0.1, 0.2, . . . 99.9, 100 years. So if we take the sum
of these values of the survival function and multiply by 0.1, we get the area under the
curve. What is is the expected lifetime (at birth) of men and women, respectively?

12. Make the same calculations for diabetes patients — remember that you must use
lex.dur rather than the variable Y in the prediction data frame.

What is the expected lifetime of diabetes pateinst at birth? Is this relly a meningful
quantity?
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2.6.3 Life lost to diabetes

13. What is the difference in life expectancy between diabetes patients and the general
population?

14. Are these numbers sensible? What scenario are they referring to?

15. Instead take a look at the life-expectancy of persons, say, 50 years old. To this end
we need the conditional survival curves given that aperson is alive at age 50. But
these are just the survival curves from age 50, divided the probability of surviving till
50. Compute this and the expected residual life time from age 50 for the genral
population and for diabets patients.

16. Make this calculation general by wrapping it in an R-function that takes the age as
argiment and returns the years of life lost calculated at that age. Compute the years
of life lost to diabetes at ages 40–80 and plot these for men and women as functions
of age.

2.6.4 Changes in life lost to diabetes

17. The previous calculations just used the crude age-specific mortality rates for the
entire period 1995–2009 (incl.). Expand the models for the mortality rates for DM
patients and the population with a term of calendar time. A first approximation
could be just a linear effect of calendar time.

18. How much is the average change in mortality among diabetes patients and in the
general population?

19. Predict the mortality rates, compute survival function, expected residual life and
years of life lost to diabetes, using mortality rates from 1995, 2000, 2005 and 2010.
To this end you must predict age-specific mortality rates for each of the dates
1.1.1995 etc. and make the previous calculations for each. You may want to store
rates in an array, see the help page for the function NArray.

20. Plot a curve of life lost to diabetes for each date as a function of age. What are the
assumptions behind these curves?

21. (Very long-winded) How could we go about including duration of diabetes in the
mortality models, and how would you report the results

2.7 Practical reporting of multistate models

This exercise is merely intended as a walk-through of the facilities associated with the
function simLexis.

Therefore, take a copy of the example code on the help-page for simLexis, and walk
your way through it. There is a slightly more elaborate account of this example in a
so-called vignette that comes with the Epi package: If you start the HTML-help by typing
help.start() go to Packages and finding the Epi package. Under User guides,

package vignettes and other documentation you will find a document under the link
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Simulation in multistate models with multiple timescales, that explains this
example in more depth.



Chapter 3

Solutions to exercises:

This section contains solutions to the exercises generated by including all the output from
the suggested R-commnds (and a few more) from the corresponding .Rout-file generated
from running the R-code. At the end of each section is shown the graphs generated by the
programs.

3.1 Life table

The filled-in life table looks like this:

Year (t) N D L N−1
2
L P(F) P(S) S(t)

1 234 24 3 232.5 0.10323 0.89677 0.89677
2 207 27 11 201.5 0.13400 0.86600 0.77661
3 169 31 9 164.5 0.18845 0.81155 0.63026
4 129 17 7 125.5 0.13546 0.86454 0.54489
5 105 7 13 98.5 0.07107 0.92893 0.50616
6 85 6 6 82.0 0.07317 0.92683 0.46913
7 73 5 6 70.0 0.07143 0.92857 0.43562
8 62 3 10 57.0 0.05263 0.94737 0.41269
9 49 2 13 42.5 0.04706 0.95294 0.39327
10 34 4 6 31.0 0.12903 0.87097 0.34252

The calculations can be done quite simply in R by putting the three columns into
vectors, and just plugging data into the formulae:

> N <- c(234, 207, 169, 129, 105, 85, 73, 62, 49, 34)
> D <- c(24, 27, 31, 17, 7, 6, 5, 3, 2, 4)
> L <- c( 3, 11, 9, 7,13, 6, 6, 10, 13, 6)
> res <- cbind( N, D, L, N-L/2,
+ D/(N-L/2),
+ 1-D/(N-L/2),
+ cumprod(1-D/(N-L/2)) )
> colnames(res)[4:7] <- c("eff.N","mort","surv","Surv")
> round( res, 5 )

N D L eff.N mort surv Surv
[1,] 234 24 3 232.5 0.10323 0.89677 0.89677
[2,] 207 27 11 201.5 0.13400 0.86600 0.77661
[3,] 169 31 9 164.5 0.18845 0.81155 0.63026
[4,] 129 17 7 125.5 0.13546 0.86454 0.54489

23
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[5,] 105 7 13 98.5 0.07107 0.92893 0.50616
[6,] 85 6 6 82.0 0.07317 0.92683 0.46913
[7,] 73 5 6 70.0 0.07143 0.92857 0.43562
[8,] 62 3 10 57.0 0.05263 0.94737 0.41269
[9,] 49 2 13 42.5 0.04706 0.95294 0.39327
[10,] 34 4 6 31.0 0.12903 0.87097 0.34252

Also, assigning the survival probabilities to a vector, S, enables a simple plot of the
estimated survival function in figure ??; note we plot times 0 to 10, the first point
corresponding to a survival probability of 1 at time 0 added separately:

> S <- cumprod(1-D/(N-L/2))
> plot( 0:10, c(1,S), pch=16, type="b",
+ ylim=0:1, yaxs="i",
+ ylab="Survival", xlab="Time since diagnosis" )
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Figure 3.1: The estimated survival function — liftable estimator.
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3.2 Calculation of rates, RR and RD

Recall that the standard error of log-rate is 1/
√
D, so that a 95% confidence interval for

the log of a rate is:
θ̂ ± 1.96/

√
D = log(λ)± 1.96/

√
D

If we take the exponential, we get the confidence interval for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf

1. Now, suppose you have 15 events during 5532 person-years. Now we use R as a
simple desk calculator to derive the rate and a confidence interval (note that you can
stick several R-commands on one line if you separate them by “;”):

> library( Epi )
> D <- 15 ; Y <- 5532 ; rate <- D / Y ; erf <- exp( 1.96 / sqrt(D) )
> c( rate, rate/erf, rate*erf )

[1] 0.002711497 0.001634654 0.004497720

The function ci.mat() returns a 2 by 3 matrix, which lets you use matrix
multiplication to produce confidence interval from an estimate and a standard error
(or columns of such):

> ci.mat()

Estimate 2.5% 97.5%
[1,] 1 1.000000 1.000000
[2,] 0 -1.959964 1.959964

> exp( c( log(D/Y), 1/sqrt(D) ) %*% ci.mat() )

Estimate 2.5% 97.5%
[1,] 0.002711497 0.001634669 0.004497678

2. Now we use a Poisson model to estimate a rate and its confidence interval. We use
the number of events as the response and the log-person-years as offset:

> mm <- glm( D ~ 1, offset=log(Y), family=poisson )
> summary( mm )

Call:
glm(formula = D ~ 1, family = poisson, offset = log(Y))

Deviance Residuals:
[1] 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9103 0.2582 -22.89 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: -8.8818e-16 on 0 degrees of freedom
Residual deviance: -8.8818e-16 on 0 degrees of freedom
AIC: 6.557

Number of Fisher Scoring iterations: 3
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The default link used is the log link, and we are using the log-person-years as offset,
so the model is:

log
(
E(D)

)
= µ+ log(Y ) ⇔ log

(
E(D)/Y

)
= µ

The parameter µ in this model is therefore the log of the rate.

3. A confidence interval can be extracted directly from the model with the ci.lin() or
ci.exp()-function from Epi; note that the Exp=TRUE argument will transform the
estimate and the confidence interval to the rate-scale — normally we would only want
this, and so subset the output from ci.lin

> ci.lin( mm )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -5.910254 0.2581989 -22.89032 5.801722e-116 -6.416315 -5.404194

> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678

> round( ci.exp( mm ), 5 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.00271 0.00163 0.0045

4. The alternative way to fit a Poisson model, using the rates a the Poisson response,
and the person-years as weights instead (albeit it will give you a warning about
non-integer response in a Poisson model):

> mmx <- glm( D/Y ~ 1, weight=Y, family=poisson )
> round( ci.exp( mmx ), 5 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.00271 0.00163 0.0045

We see that this gives the same results as above.

5. The advantage of this approach is that it will also make sense to use an identity link
— the response is the same but the parameter estimated is now the rate, not the
log-rate:

> ma <- glm( D/Y ~ 1, weight=Y, family=poisson(link=identity) )

The intercept in this model is now the rate itself, because of the identity link.

We see that we get the same estimate as before:

> log( coef(ma) )

(Intercept)
-5.910254

6. We can then use ci.lin (or ci.exp with argument Exp=FALSE) to produce the
estimate and the confidence intervals from this model:

> ci.lin( ma )
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Estimate StdErr z P 2.5% 97.5%
(Intercept) 0.002711497 0.0007001054 3.872983 0.0001075112 0.001339315 0.004083678

> ci.exp( ma, Exp=FALSE )

Estimate 2.5% 97.5%
(Intercept) 0.002711497 0.001339315 0.004083678

> round( ci.exp( ma, Exp=FALSE ), 5 )

Estimate 2.5% 97.5%
(Intercept) 0.00271 0.00134 0.00408

The confidence limits from this model are based on the 2nd derivative of the
log-likelihood with respect to the rate, and not as before with respect to the log rate,
and therefor they are different — they are symmetrical on the rate-scale and not on
the log-rate scale:

`(λ) = D ln(λ)− λY `′(λ) = D/λ− Y `′′(λ) = −D/λ2
∣∣
λ=D/Y

= −Y 2/D

Thus the observed information is Y 2/D and hence the approximate standard
deviation of the rate is square root of the inverse of this,

√
D/Y , which is exactly the

standard deviation you got from the model:

> c( sqrt(D)/Y, ci.lin( ma )[,2] )

[1] 0.0007001054 0.0007001054

7. If we assume that the events and person years are collected over three time periods,
which we for convenience number 1 to 3:

> Dx <- c(3,7,5)
> Yx <- c(1412,2783,1337)
> Px <- 1:3

If we fit the same model as before to the data from the separate periods, we get the
same estimates, because the Poisson log-likelihood for three independent observations
with the same relationship between mean and person-years is identical to the
likelihood for the sum of the observations with an exp-offset equal to the sum of the
exp-offsets: ∑

i

(
Di log(λ)− λYi

)
=
(∑

i

Di

)
log(λ)− λ

(∑
i

Yi
)

— basically this is a consequence of the fact that the likelihood for follow-up data
with constant rate is additive both in the no. events and the person-time.

> m1 <- glm( Dx ~ 1, offset=log(Yx), family=poisson )
> ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678

8. With separate observations from three periods we can test whether the rates are the
same in the three periods; we just fit a model with the period as a factor:

> mp <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )
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and compare the two models via a log-likelihood ratio test using anova with the
argument test="Chisq":

> anova( m1, mp, test="Chisq" )

Analysis of Deviance Table

Model 1: Dx ~ 1
Model 2: Dx ~ factor(Px)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 0.70003
2 0 0.00000 2 0.70003 0.7047

We note that the test statistic is the same as deviance of the model mp. This is
because the deviance of a model is the log-likelihood ratio test statistic of the model
versus the saturated model; i.e. the model with one parameter per observation, in
this case the model mp.

9. If we have observations of two rates λ1 and λ0, based on (D1, Y1) and (D0, Y0) the
variance of the difference of the log of the rates, that is the log(RR), is:

var
(
log(RR)

)
= var

(
log(λ1/λ0)

)
= var

(
log(λ1)

)
+ var

(
log(λ0)

)
= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1

+
1

D0

)
If we have 15 events during 5532 person-years in an unexposed group and 28 events
during 4783 person-years in an exposed group, we can then compute the the
rate-ratio and c.i. by:

> D0 <- 15 ; D1 <- 28
> Y0 <- 5532 ; Y1 <- 4783
> RR <- (D1/Y1)/(D0/Y0)
> erf <- exp( 1.96 * sqrt(1/D0+1/D1) )
> c( RR, RR/erf, RR*erf )

[1] 2.158980 1.153146 4.042153

> exp( c( log(RR), sqrt(1/D0+1/D1) ) %*% ci.mat() )

Estimate 2.5% 97.5%
[1,] 2.15898 1.15316 4.042106

10. But this can also be achieved using a Poisson model:

> D <- c(D0,D1) ; Y <- c(Y0,Y1); xpos <- 0:1
> mm <- glm( D ~ factor(xpos), offset=log(Y), family=poisson )
> summary( mm )
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Call:
glm(formula = D ~ factor(xpos), family = poisson, offset = log(Y))

Deviance Residuals:
[1] 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.9103 0.2582 -22.890 <2e-16
factor(xpos)1 0.7696 0.3200 2.405 0.0162

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 6.1110e+00 on 1 degrees of freedom
Residual deviance: 1.7764e-15 on 0 degrees of freedom
AIC: 13.733

Number of Fisher Scoring iterations: 3

The parameters in this model are:

(Intercept): the log rate in the reference group, scaled to the units of Y

factor(xpos)1: the log RR between group 1 and 0.

We can extract the exponentiated parameters, corresponding to the rate and the
rate-ratio by:

> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678
factor(xpos)1 2.158979720 1.153159560 4.042106222

11. If we instead wanted the rate-difference as a comparative measure, we just subtract
the rates, and the variance of the difference is (since the rates are based on
independent samples) just the sum of the variances:

var(log(RD)) = var(λ1) + var(λ0)

= D1/Y
2

1 +D0/Y
2

0

When we use this formula to compute the rate difference and a 95% confidence
interval for it we get:

> rd <- diff( D/Y )
> sd <- sqrt( sum( D/Y^2 ) )
> c( rd, sd ) %*% ci.mat()

Estimate 2.5% 97.5%
[1,] 0.00314257 0.0005765288 0.005708611

12. This is also the confidence interval we get when you fit an additive model with
exposure as factor. Note that since the model is a model where the rates and rate
differences are parameters, we shall not us the Exp=TRUE argument to ci.lin:

> ma <- glm( D/Y ~ factor(xpos), weight=Y,
+ family=poisson(link=identity) )
> ci.exp( ma, Exp=FALSE )
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Estimate 2.5% 97.5%
(Intercept) 0.002711497 0.0013393153 0.004083678
factor(xpos)1 0.003142570 0.0005765288 0.005708611

13. Normally one would like to get both the rates and the ratio between them. This can
be achieved in one go using the ctr.mat argument to ci.lin:

> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM

[,1] [,2]
rate 0 1 0
rate 1 1 1
RR 1 vs. 0 0 1

> mm <- glm( D ~ factor(xpos),
+ offset=log(Y), family=poisson )
> ci.exp( mm )

exp(Est.) 2.5% 97.5%
(Intercept) 0.002711497 0.001634669 0.004497678
factor(xpos)1 2.158979720 1.153159560 4.042106222

> round( ci.exp( mm, ctr.mat=CM ), 3 )

exp(Est.) 2.5% 97.5%
rate 0 0.003 0.002 0.004
rate 1 0.006 0.004 0.008
RR 1 vs. 0 2.159 1.153 4.042

14. If we want the rates in units of cases per 1000, we just use Y/1000 as the person time:

> mm <- glm( D ~ factor(xpos),
+ offset=log(Y/1000), family=poisson )
> ci.exp( mm, ctr.mat=CM )

exp(Est.) 2.5% 97.5%
rate 0 2.711497 1.634669 4.497678
rate 1 5.854066 4.041994 8.478512
RR 1 vs. 0 2.158980 1.153160 4.042106

> round( ci.exp( mm, ctr.mat=CM ), 3 )

exp(Est.) 2.5% 97.5%
rate 0 2.711 1.635 4.498
rate 1 5.854 4.042 8.479
RR 1 vs. 0 2.159 1.153 4.042

15. The same machinery can be used to the additive model to get the rates and the
rate-difference in one go. We want the rates per 1000, so we rescale; also note that the
annotation of the resulting estimates are via the row-names of the contrast matrix.

> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/(Y/1000) ~ factor(xpos), weight=Y/1000,
+ family=poisson(link=identity) )
> round( ci.exp( ma, ctr.mat=CM, Exp=FALSE ), 2 )

Estimate 2.5% 97.5%
rate 0 2.71 1.34 4.08
rate 1 5.85 3.69 8.02
RD 1 vs. 0 3.14 0.58 5.71
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3.3 Lexis diagram

Here are the cases and person-years split by age in three bands, and by period in 3 bands
and lo for the 1902–11 birth cohort:

period 1940–44 period 1945–49 period 1950–54 1902–11 cohort

Age (y) Cases P-years Cases P-years Cases P-years Cases P-years

40-44 - 11 1 9.5 - 6 1 16.5
45-49 - 6 - 12.2 2 10.5 1 15.7
50-54 1 6 1 8.5 1 4.2 1 7.1

1. We can load the dataset from the Epi package by:

> library( Epi )
> data( occup )
> occup

AoE DoE DoX Xst
1 51.0 1941.0 1944.0 D
2 48.0 1940.0 1947.0 X
3 47.0 1942.0 1948.0 D
4 51.0 1948.0 1951.4 D
5 48.5 1946.9 1951.8 W
6 41.0 1940.0 1947.2 W
7 44.0 1944.0 1949.5 W
8 40.0 1941.0 1950.5 D
9 40.0 1943.0 1947.5 D
10 47.0 1951.0 1958.1 D
11 42.0 1947.0 1954.0 D
12 40.0 1947.0 1960.0 X
13 41.0 1951.0 1958.7 W

In order to compute the cases and person-years we set up a Lexis object:

> oL <- Lexis( entry = list( age=AoE, per=DoE ),
+ exit = list( per=DoX ),
+ entry.status = factor( rep("W",nrow(occup)) ),
+ exit.status = factor( Xst ),
+ data = occup )

Incompatible factor levels in entry.status and exit.status:
both lex.Cst and lex.Xst now have levels:
W D X

> summary( oL )

Transitions:
To

From W D X Records: Events: Risk time: Persons:
W 4 7 2 13 9 85.8 13

Exit status X and W are synonymous. If we want to classify the follow-up
(person-years and events) by age and calendar time we must first subdivide by the
two timescales; this is done by splitLexis:

> sL <- splitLexis( oL, time="age", breaks=seq(0,100,5) )
> sL <- splitLexis( sL, time="per", breaks=seq(0,100,5)+1900 )
> sL[order(sL$lex.id,sL$age),]
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lex.id age per lex.dur lex.Cst lex.Xst AoE DoE DoX Xst
1 1 51.0 1941.0 3.0 W D 51.0 1941.0 1944.0 D
2 2 48.0 1940.0 2.0 W W 48.0 1940.0 1947.0 X
3 2 50.0 1942.0 3.0 W W 48.0 1940.0 1947.0 X
4 2 53.0 1945.0 2.0 W X 48.0 1940.0 1947.0 X
5 3 47.0 1942.0 3.0 W W 47.0 1942.0 1948.0 D
6 3 50.0 1945.0 3.0 W D 47.0 1942.0 1948.0 D
7 4 51.0 1948.0 2.0 W W 51.0 1948.0 1951.4 D
8 4 53.0 1950.0 1.4 W D 51.0 1948.0 1951.4 D
9 5 48.5 1946.9 1.5 W W 48.5 1946.9 1951.8 W
10 5 50.0 1948.4 1.6 W W 48.5 1946.9 1951.8 W
11 5 51.6 1950.0 1.8 W W 48.5 1946.9 1951.8 W
12 6 41.0 1940.0 4.0 W W 41.0 1940.0 1947.2 W
13 6 45.0 1944.0 1.0 W W 41.0 1940.0 1947.2 W
14 6 46.0 1945.0 2.2 W W 41.0 1940.0 1947.2 W
15 7 44.0 1944.0 1.0 W W 44.0 1944.0 1949.5 W
16 7 45.0 1945.0 4.5 W W 44.0 1944.0 1949.5 W
17 8 40.0 1941.0 4.0 W W 40.0 1941.0 1950.5 D
18 8 44.0 1945.0 1.0 W W 40.0 1941.0 1950.5 D
19 8 45.0 1946.0 4.0 W W 40.0 1941.0 1950.5 D
20 8 49.0 1950.0 0.5 W D 40.0 1941.0 1950.5 D
21 9 40.0 1943.0 2.0 W W 40.0 1943.0 1947.5 D
22 9 42.0 1945.0 2.5 W D 40.0 1943.0 1947.5 D
23 10 47.0 1951.0 3.0 W W 47.0 1951.0 1958.1 D
24 10 50.0 1954.0 1.0 W W 47.0 1951.0 1958.1 D
25 10 51.0 1955.0 3.1 W D 47.0 1951.0 1958.1 D
26 11 42.0 1947.0 3.0 W W 42.0 1947.0 1954.0 D
27 11 45.0 1950.0 4.0 W D 42.0 1947.0 1954.0 D
28 12 40.0 1947.0 3.0 W W 40.0 1947.0 1960.0 X
29 12 43.0 1950.0 2.0 W W 40.0 1947.0 1960.0 X
30 12 45.0 1952.0 3.0 W W 40.0 1947.0 1960.0 X
31 12 48.0 1955.0 2.0 W W 40.0 1947.0 1960.0 X
32 12 50.0 1957.0 3.0 W X 40.0 1947.0 1960.0 X
33 13 41.0 1951.0 4.0 W W 41.0 1951.0 1958.7 W
34 13 45.0 1955.0 3.7 W W 41.0 1951.0 1958.7 W

Having split the follow-up we can make a tabulation of the follow-up using the utility
function timeBand:

> table( timeBand(sL,"age","left"), timeBand(sL,"per","left"))

1940 1945 1950 1955
40 4 4 2 0
45 3 4 4 2
50 2 4 3 2

Also it is now straight-forward to show the follow-up in a Lexis diagram:

However we do not want the number of observations (lines) in the dataset, we want
the number of person-years (lex.dur) and the number of deaths (lex.Xst=="D"), so
we set up a matrix with these as columns, and define the two classification variables:

> FU <- with( sL, cbind(lex.Xst=="D",lex.dur) )
> colnames(FU) <- c("D","Y")
> Age <- timeBand(sL,"age","left")
> Period <- timeBand(sL,"per","left")

This enables us to use xtabs to simultaneously tabulate person-years and deaths

> FUtab <- xtabs( FU ~ Age + Period )
> ftable( FUtab, col.vars=2:3 )



MDMiEwR 2015 — Solutions 33

40 45 50 55 60

1940

1945

1950

1955

1960

age

pe
r

Figure 3.2: Default plot of a Lexis object.

Period 1940 1945 1950 1955
D Y D Y D Y D Y

Age
40 0.0 11.0 1.0 9.5 0.0 6.0 0.0 0.0
45 0.0 6.0 0.0 12.2 2.0 10.5 0.0 5.7
50 1.0 6.0 1.0 8.6 1.0 4.2 1.0 6.1

2. If we want the tabulation by age for the birth cohort 1902–11, we simply restrict the
dataset to his group, i.e. the persons where per− age is between 1029 and 1912:

> BC <- subset(sL,per-age>1902 & per-age<1912)
> FU <- with( BC, cbind(lex.Xst=="D",lex.dur) )
> colnames(FU) <- c("D","Y")
> Age <- timeBand(BC,"age","left")
> FUctab <- xtabs( FU ~ Age )
> FUctab

Age D Y
40 1.0 16.5
45 1.0 15.7
50 1.0 7.1

3. The cumulative rate for the cohort are defined theoretically as:

5×
(

1

16.5
+

1

15.7
+

1

7.1

)
= 1.32, 1− exp(−1.32) = 0.73

or in terms of the just computed:

> sum( FUctab[,1] / FUctab[,2]*5 )
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Figure 3.3: Lexis diagram of the occupational cohort using a few bells and whistles.

[1] 1.325727

4. The expected number of cases is computed by taking the person-years and
multiplying with the reference rates, in this case 100, 200 and 400 per 100,000 PY for
the three age classes throughout the follow-up:

E =
100

105y
×(11+9.5+6+0) y+

200

105y
×(6+12.2+10.5+5.7) y+

400

105y
×(6+8.5+4.2+6.1) y = 0.1949

The observed number of cases is O = 7, so the standardized incidence ratio is
7/0.1949 = 35.9. Quite a risky occupation!

Note that the point of subdividing the follow-up by age and calendar time is to make
it possible to apply population rates to the follow-up — the population rates vary by
age and calendar time. So what is formally done is to match the population rates to
the follow-up dataset:

> p.rates <- data.frame( rate=c(100,200,400), Age=c(40,45,50) )
> sL$Age <- timeBand(sL,"age","left")
> sL <- merge( sL, p.rates)
> sL

Age lex.id age per lex.dur lex.Cst lex.Xst AoE DoE DoX Xst rate
1 40 8 40.0 1941.0 4.0 W W 40.0 1941.0 1950.5 D 100
2 40 9 40.0 1943.0 2.0 W W 40.0 1943.0 1947.5 D 100
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3 40 8 44.0 1945.0 1.0 W W 40.0 1941.0 1950.5 D 100
4 40 6 41.0 1940.0 4.0 W W 41.0 1940.0 1947.2 W 100
5 40 12 43.0 1950.0 2.0 W W 40.0 1947.0 1960.0 X 100
6 40 9 42.0 1945.0 2.5 W D 40.0 1943.0 1947.5 D 100
7 40 7 44.0 1944.0 1.0 W W 44.0 1944.0 1949.5 W 100
8 40 12 40.0 1947.0 3.0 W W 40.0 1947.0 1960.0 X 100
9 40 13 41.0 1951.0 4.0 W W 41.0 1951.0 1958.7 W 100
10 40 11 42.0 1947.0 3.0 W W 42.0 1947.0 1954.0 D 100
11 45 3 47.0 1942.0 3.0 W W 47.0 1942.0 1948.0 D 200
12 45 2 48.0 1940.0 2.0 W W 48.0 1940.0 1947.0 X 200
13 45 5 48.5 1946.9 1.5 W W 48.5 1946.9 1951.8 W 200
14 45 6 46.0 1945.0 2.2 W W 41.0 1940.0 1947.2 W 200
15 45 8 45.0 1946.0 4.0 W W 40.0 1941.0 1950.5 D 200
16 45 6 45.0 1944.0 1.0 W W 41.0 1940.0 1947.2 W 200
17 45 12 45.0 1952.0 3.0 W W 40.0 1947.0 1960.0 X 200
18 45 10 47.0 1951.0 3.0 W W 47.0 1951.0 1958.1 D 200
19 45 7 45.0 1945.0 4.5 W W 44.0 1944.0 1949.5 W 200
20 45 13 45.0 1955.0 3.7 W W 41.0 1951.0 1958.7 W 200
21 45 11 45.0 1950.0 4.0 W D 42.0 1947.0 1954.0 D 200
22 45 8 49.0 1950.0 0.5 W D 40.0 1941.0 1950.5 D 200
23 45 12 48.0 1955.0 2.0 W W 40.0 1947.0 1960.0 X 200
24 50 1 51.0 1941.0 3.0 W D 51.0 1941.0 1944.0 D 400
25 50 3 50.0 1945.0 3.0 W D 47.0 1942.0 1948.0 D 400
26 50 2 50.0 1942.0 3.0 W W 48.0 1940.0 1947.0 X 400
27 50 2 53.0 1945.0 2.0 W X 48.0 1940.0 1947.0 X 400
28 50 10 51.0 1955.0 3.1 W D 47.0 1951.0 1958.1 D 400
29 50 5 50.0 1948.4 1.6 W W 48.5 1946.9 1951.8 W 400
30 50 4 51.0 1948.0 2.0 W W 51.0 1948.0 1951.4 D 400
31 50 4 53.0 1950.0 1.4 W D 51.0 1948.0 1951.4 D 400
32 50 5 51.6 1950.0 1.8 W W 48.5 1946.9 1951.8 W 400
33 50 10 50.0 1954.0 1.0 W W 47.0 1951.0 1958.1 D 400
34 50 12 50.0 1957.0 3.0 W X 40.0 1947.0 1960.0 X 400

With this we can now compute the observed and expected cases:

> O <- with( sL, sum( lex.Xst=="D" ) )
> E <- with( sL, sum( lex.dur*rate/10^5 ) )
> c(O,E,O/E)

[1] 7.00000 0.19490 35.91585

Usually, we will use smaller intervals, as well as population rates that actually do vary
by calendar time, but that would require proper statistical modeling of the rates.
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3.4 Cox and Poisson modelling

This practical is to show how results from a Cox-model can be reproduced exactly by a
Poisson model, and in particular how more sensible and relevant results can be obtained
from a Poisson model.

3.4.1 The lung cancer data

The data is the lung cancer data from the survival package which comes with R by
default. We start by declaring a really large chunk of memory, because we need that to fit
a silly model for illustration:

memory.size( 3000 )
[1] Inf

library( Epi )
library( survival )
sessionInfo()

R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] survival_2.38-3 Epi_1.1.71

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 MASS_7.3-44 parallel_3.2.2 etm_0.6-2 splines_3.2.2
[6] grid_3.2.2 lattice_0.20-31

Note that loading the survival package automatically also loads the splines package,
which is also needed in the exercise.

1. First we load the lung data set and have a look at it:

data( lung )
str( lung )

'data.frame': 228 obs. of 10 variables:
$ inst : num 3 3 3 5 1 12 7 11 1 7 ...
$ time : num 306 455 1010 210 883 ...
$ status : num 2 2 1 2 2 1 2 2 2 2 ...
$ age : num 74 68 56 57 60 74 68 71 53 61 ...
$ sex : num 1 1 1 1 1 1 2 2 1 1 ...
$ ph.ecog : num 1 0 0 1 0 1 2 2 1 2 ...
$ ph.karno : num 90 90 90 90 100 50 70 60 70 70 ...
$ pat.karno: num 100 90 90 60 90 80 60 80 80 70 ...
$ meal.cal : num 1175 1225 NA 1150 NA ...
$ wt.loss : num NA 15 15 11 0 0 10 1 16 34 ...

lung[1:10,]
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inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0
7 7 310 2 68 2 2 70 60 384 10
8 11 361 2 71 2 2 60 80 538 1
9 1 218 2 53 1 1 70 80 825 16
10 7 166 2 61 1 2 70 70 271 34

2. The deaths are indicated by status being equal to 2, so we tabulate the number of
records with different values of status:

table( lung$status )

1 2
63 165

— so we see there are 165 deaths.

3. Some of the recorded survival times are identical we see:

addmargins( table( table( lung$time ) ) )

1 2 3 Sum
146 38 2 186

In total there are 186 survival times.

3.4.2 Cox-models

4. Fitting a traditional Cox-model for the the Mayo clinic lung cancer data is done by
coxph, where the response is a Surv object:

system.time(
m0.cox <- coxph( Surv( time, status==2 ) ~ age + factor( sex ),

method="breslow", eps=10^-8, iter.max=25, data=lung )
)

user system elapsed
0.008 0.000 0.008

summary( m0.cox )

Call:
coxph(formula = Surv(time, status == 2) ~ age + factor(sex),

data = lung, method = "breslow", eps = 10^-8, iter.max = 25)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|z|)
age 0.017013 1.017158 0.009222 1.845 0.06506
factor(sex)2 -0.512565 0.598957 0.167462 -3.061 0.00221

exp(coef) exp(-coef) lower .95 upper .95
age 1.017 0.9831 0.9989 1.0357
factor(sex)2 0.599 1.6696 0.4314 0.8316

Concordance= 0.603 (se = 0.026 )
Rsquare= 0.06 (max possible= 0.999 )
Likelihood ratio test= 14.08 on 2 df, p=0.0008741
Wald test = 13.44 on 2 df, p=0.001208
Score (logrank) test = 13.69 on 2 df, p=0.001067
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5. Now we create a Lexis object from the dataset

Lung <- Lexis( exit = list( tfe=time ),
exit.status = factor(status,labels=c("Alive","Dead")),
data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.

summary( Lung )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 63 165 228 165 69593 228

6. We can fit the same Cox-model to data using the formal structures of the Lexis

object, and we see we get the same estimates:

mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
age + factor( sex ),
method="breslow", eps=10^-8, iter.max=25, data=Lung )

cbind( coef(m0.cox), coef(mL.cox) )

[,1] [,2]
age 0.01701289 0.01701289
factor(sex)2 -0.51256479 -0.51256479

3.4.3 Poisson models

7. Now we split data split in small intervals, in fact at all recorded survival times, which
mean that all events occur at the end of an interval:

Lung.s <- splitLexis( Lung,
breaks=c(0,sort(unique(Lung$time))),
time.scale="tfe" )

summary( Lung.s )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

subset( Lung.s, lex.id==96 )

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog ph.karno
9235 96 0 5 Alive Alive 12 30 2 72 1 2 80
9236 96 5 6 Alive Alive 12 30 2 72 1 2 80
9237 96 11 1 Alive Alive 12 30 2 72 1 2 80
9238 96 12 1 Alive Alive 12 30 2 72 1 2 80
9239 96 13 2 Alive Alive 12 30 2 72 1 2 80
9240 96 15 11 Alive Alive 12 30 2 72 1 2 80
9241 96 26 4 Alive Dead 12 30 2 72 1 2 80

pat.karno meal.cal wt.loss
9235 60 288 7
9236 60 288 7
9237 60 288 7
9238 60 288 7
9239 60 288 7
9240 60 288 7
9241 60 288 7
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8. We then fit the Cox model to the split dataset

system.time(
mLs.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~

age + factor( sex ),
method="breslow", eps=10^-8, iter.max=25, data=Lung.s )

)

user system elapsed
0.130 0.003 0.134

. . . and again we get exactly the same estimates

cbind( coef(m0.cox), coef(mL.cox), coef(mLs.cox) )

[,1] [,2] [,3]
age 0.01701289 0.01701289 0.01701289
factor(sex)2 -0.51256479 -0.51256479 -0.51256479

9. Then we fit a Poisson model with a factor accommodating the time-scale, in this case
called tfe, which has exactly one level per recorded survival time:

nlevels( factor( Lung.s$tfe ) )

[1] 186

But it involves fitting a model with 186+2 parameters, so it takes some time, and
requires quite some memory, hence the memory allocation at start. Note that the
response variable lex.Xst=="Dead" is a logical, but by R converted into a 0/1
numeric:

system.time(
mLs.pois.fc <- glm( lex.Xst=="Dead" ~ factor( tfe ) +

age + factor( sex ),
offset = log(lex.dur),

family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
)

user system elapsed
14.703 0.025 14.722

length( coef(mLs.pois.fc) )

[1] 188

So we have 188, parameters, but is only the last two that are of interest, and they are
exactly the same as for the Cox-models:

rbind( coef( m0.cox), coef( mLs.pois.fc )[188-1:0] )

age factor(sex)2
[1,] 0.01701289 -0.5125648
[2,] 0.01701289 -0.5125648
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10. Hence the Cox model in reality is a model for the rates that no one in their sane
mind would fit, we would of course want to fit a model where the baseline hazard
were modelled using the actual values of the time-scale, and devising it as a
continuous function of time.

So we define internal and boundary knots for the spline basis and fit the model with
natural splines for the baseline. Using 5 knots gives us a restricted cubic spline
(natural spline) basis with 4 parameters, not counting the intercept. Note that we are
using the wrapper Ns from the Epi package to avoid the hassle of specifying the
boundary and internal knots separately.

t.kn <- c(0,25,100,500,1000)
dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

As opposed to the model with 188 parameters, this model only has 7, so it is very
quickly fitted:

system.time(
mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +

age + factor( sex ),
offset = log(lex.dur),
family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

)

user system elapsed
0.215 0.004 0.219

ci.exp( mLs.pois.sp )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0005600982 0.0001311645 0.002391729
Ns(tfe, knots = t.kn)1 2.5751960590 0.9916627245 6.687389350
Ns(tfe, knots = t.kn)2 2.6355488430 0.8560015677 8.114608625
Ns(tfe, knots = t.kn)3 3.2029000448 0.4769285447 21.509655507
Ns(tfe, knots = t.kn)4 3.1689618387 0.6843090390 14.675122733
age 1.0161894486 0.9980328610 1.034676348
factor(sex)2 0.5998287489 0.4319932401 0.832870736

ci.exp( mLs.pois.sp, subset=c("age","sex") )

exp(Est.) 2.5% 97.5%
age 1.0161894 0.9980329 1.0346763
factor(sex)2 0.5998287 0.4319932 0.8328707

3.4.4 Comparing Cox and Poisson models

11. We can now compare the estimates of the regression parameters and their confidence
intervals

ests <-
rbind( ci.exp(m0.cox),

ci.exp(mLs.pois.fc,subset=c("age","sex")),
ci.exp(mLs.pois.sp,subset=c("age","sex")) )

cmp <- cbind( ests[c(1,3,5) ,],
ests[c(1,3,5)+1,] )

rownames( cmp ) <- c("Cox","Poisson-factor","Poisson-spline")
colnames( cmp )[c(1,4)] <- c("age","sex")
round( cmp, 5 )
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age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.01716 0.99894 1.03571 0.59896 0.43137 0.83165
Poisson-factor 1.01716 0.99894 1.03571 0.59896 0.43137 0.83165
Poisson-spline 1.01619 0.99803 1.03468 0.59983 0.43199 0.83287

We can also take a look at the estimated standard deviations of the log-RR:

round(
rbind( ci.lin(m0.cox)[,2],

ci.lin(mLs.pois.fc,subset=c("age","sex"))[,2],
ci.lin(mLs.pois.sp,subset=c("age","sex"))[,2] ), 6 )

age factor(sex)2
[1,] 0.009222 0.167462
[2,] 0.009222 0.167462
[3,] 0.009199 0.167470

For all practical purposes they are the same too, so it is not so that the Cox-model or
the factor-Poisson model inflates the s.e. of the regression estimates by estimating all
the superfluous parameters.

12. We now use the parametrically estimated baseline intensity from the spline model to
compute the estimated cumulative intensities over 100 10-day periods (0–1000 days
after diagnosis) for men 60 year old at diagnosis, and then use these to compute the
cumulative intensity since diagnosis and subsequently the survival function.

Now, in order to get the predictions from the spline model we need to devise the right
contrast matrix because we need the covariance between the point estimates for
log-incidence rates.

The model matrix, corresponding to times 0,10,20,...,1000:

CM <- cbind( 1, Ns( seq(0,1000,10), knots=t.kn ), 60, 1 )

The mortality rates at these time points, for a 60-year old man are then:

lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )

The cumulative mortality mortality rates (including the s.e.of this) are compute using
ci.cum. Since this is a cumulative measure, we must explicitly supply the length of
the intervals that each rate refer to, and for convenience we add

Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )
Lambda <- rbind( 0, Lambda )

The Breslow-estimator of the survival curve for a male aged 60 Note that sex must be
specified as a factor with two levels in the data frame in the argument newdata:

sf <- survfit( m0.cox,
newdata=data.frame( sex=factor(2,levels=1:2),

age=c(60) ) )

13. We can then plot the mortality rates (lambda) and the survival function in two
adjacent panels. Note that since we entered the risk time in days, the estimates of
lambda we got out were rates per day, so we multiply them by 365.25 to the the
mortality rates per year instead. Also note the we compute the survival function as
exp(−Λ) on the fly, using the confidence intervals generated by ci.cum on the
Λ-scale.
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par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, oma=c(0,0,0,0),
las=1, bty="n" )

matplot( 0:100*10, lambda * 365.25,
type="l", lwd=c(4,1,1), lty=1, col="black", log="y",
xlim=c(0,900), xaxs="i", ylim=c(1/10,5),
xlab="Days since diagnosis",
ylab="Mortality rate per year")

# Then the survival curves by the two methods
# Here is the Breslow-estimator; note
plot( sf, lwd=c(4,1,1), col="red", conf.int=T, mark.time=F,

xlab="Days since diagnosis",
ylab="Survival", xlim=c(0,900), xaxs="i", lty=1)

matlines( 0:101*10, exp(-Lambda[,1:3]), lwd=c(4,1,1), col="black", lty=1 )

0 200 400 600 800

0.1

0.2

0.5

1.0

2.0

5.0

Days since diagnosis

M
or

ta
lit

y 
ra

te
 p

er
 y

ea
r

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Days since diagnosis

S
ur

vi
va

l

Figure 3.4: Left: Hazard function for 60-year old men from spline model with 95% c.i. Right:
Survival curve for 60 year old men; black from spline model, red from Cox-model.
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3.5 Estimation and reporting of linear and curved

effects

The purpose of this exercise is to take you through models with curved effects of age and
calendar time, in order to show you how to report 1) a curved effect of a main effect such
as age and 2) a curved effect of a relative effect where a reference point is needed.

In the exercise we will use the testisDK data from the Epi package, which contains the
number of cases of testis cancer in Denmark 1943–96:

1. First we load the Danish testis cancer data, and inspect the dataset:

> library( Epi )
> sessionInfo()

R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_1.1.71

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 MASS_7.3-44 parallel_3.2.2 survival_2.38-3 etm_0.6-2
[6] splines_3.2.2 grid_3.2.2 lattice_0.20-31

> data( testisDK )
> str( testisDK )

'data.frame': 4860 obs. of 4 variables:
$ A: num 0 1 2 3 4 5 6 7 8 9 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: num 1 1 0 1 0 0 0 0 0 0 ...
$ Y: num 39650 36943 34588 33267 32614 ...

> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33

We can tabulate both events (testis cancer diagnoses) and person-years using either
xtabs or stat.table, the latter is a bit more versatile, because we can get rates too:

> round( ftable( xtabs( cbind(D,PY=Y/1000) ~ I(floor(A/10)*10) +
+ I(floor(P/10)*10),
+ data=testisDK ),
+ row.vars=c(3,1) ), 1 )
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I(floor(P/10) * 10) 1940 1950 1960 1970 1980 1990
I(floor(A/10) * 10)

D 0 10.0 7.0 16.0 18.0 9.0 10.0
10 13.0 27.0 37.0 72.0 97.0 75.0
20 124.0 221.0 280.0 535.0 724.0 557.0
30 149.0 288.0 377.0 624.0 771.0 744.0
40 95.0 198.0 230.0 334.0 432.0 360.0
50 40.0 79.0 140.0 151.0 193.0 155.0
60 29.0 43.0 54.0 83.0 82.0 44.0
70 18.0 26.0 35.0 41.0 40.0 32.0
80 7.0 9.0 13.0 19.0 18.0 21.0

PY 0 2604.7 4037.3 3885.0 3820.9 3070.9 2165.5
10 2135.7 3505.2 4004.1 3906.1 3847.4 2261.0
20 2225.5 2923.2 3401.6 4028.6 3941.2 2824.6
30 2195.2 3058.8 2856.2 3410.6 3968.8 2728.4
40 1874.9 2980.1 2986.8 2823.1 3322.6 2757.7
50 1442.8 2426.5 2796.6 2813.3 2635.0 2069.2
60 1041.9 1711.8 2055.1 2358.1 2357.3 1565.0
70 537.6 967.9 1136.1 1336.9 1538.0 1100.9
80 133.6 261.6 346.3 423.5 504.2 414.6

Note that for this type of cancer the peak age-specific rates are in the 30es.

2. We then fit a Poisson-model for the mortality rates with a linear term for age:

> ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
> ci.exp( ml )

exp(Est.) 2.5% 97.5%
(Intercept) 5.682883e-05 0.0000545697 0.0000591815
A 1.005499e+00 1.0045507062 1.0064479370

The parameter labeled A gives the annual increase in mortality by age (0.55%/year),
but the intercept parameter is meaningless; it is the predicted mortality per 1
person-year (because we used Y in the offset, and this is in units of person-years), but
for a 0 year old male.

3. We can work out the predicted log-mortality rates for ages 25 to 45, say, by doing a
hand-calculation based on the coefficients:

> ( cf <- coef( ml ) )

(Intercept) A
-9.775466746 0.005483811

We now have the intercept (the log-rate) and the slopes for age and calendar time, so
to get the age-specific rates in ages 50 to 60 we just take the intercept and add the
slope multiplied by the vector of ages.

> round( cbind( 25:45, exp( cf[1] + cf[2]*(25:45) )*10^5 ), 3 )

[,1] [,2]
[1,] 25 6.518
[2,] 26 6.554
[3,] 27 6.590
[4,] 28 6.626
[5,] 29 6.662
[6,] 30 6.699
[7,] 31 6.736
[8,] 32 6.773
[9,] 33 6.810
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[10,] 34 6.848
[11,] 35 6.885
[12,] 36 6.923
[13,] 37 6.961
[14,] 38 7.000
[15,] 39 7.038
[16,] 40 7.077
[17,] 41 7.116
[18,] 42 7.155
[19,] 43 7.194
[20,] 44 7.234
[21,] 45 7.273

Note that we also multiplied by 105 in order to get the rates in units of cases per
100,000 person-years.

4. But we do not have the standard errors of these mortality rates, and hence neither
the confidence intervals. This is implemented in ci.exp; if we provide the argument
ctr.mat= as a matrix where each row corresponds to a prediction point and each
column to a parameter from the model.

Thus for each age we need the corresponding multipliers for the coefficients:

> ( CM <- cbind( 1, 25:45 ) )

[,1] [,2]
[1,] 1 25
[2,] 1 26
[3,] 1 27
[4,] 1 28
[5,] 1 29
[6,] 1 30
[7,] 1 31
[8,] 1 32
[9,] 1 33
[10,] 1 34
[11,] 1 35
[12,] 1 36
[13,] 1 37
[14,] 1 38
[15,] 1 39
[16,] 1 40
[17,] 1 41
[18,] 1 42
[19,] 1 43
[20,] 1 44
[21,] 1 45

> round( ci.exp( ml, ctr.mat=CM )*10^5, 3 )

exp(Est.) 2.5% 97.5%
[1,] 6.518 6.365 6.674
[2,] 6.554 6.403 6.708
[3,] 6.590 6.441 6.742
[4,] 6.626 6.479 6.777
[5,] 6.662 6.516 6.812
[6,] 6.699 6.554 6.847
[7,] 6.736 6.592 6.883
[8,] 6.773 6.630 6.919
[9,] 6.810 6.667 6.956
[10,] 6.848 6.705 6.993
[11,] 6.885 6.743 7.031
[12,] 6.923 6.780 7.069
[13,] 6.961 6.817 7.108
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[14,] 7.000 6.855 7.147
[15,] 7.038 6.892 7.187
[16,] 7.077 6.929 7.228
[17,] 7.116 6.966 7.268
[18,] 7.155 7.003 7.310
[19,] 7.194 7.040 7.352
[20,] 7.234 7.077 7.394
[21,] 7.273 7.113 7.437

5. We can now use this machinery to plot the mortality rates over the range from 15 to
65 years:

> C1 <- cbind( 1, 15:65 )
> matplot( 15:65, ci.exp( ml, ctr.mat=C1 )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )

6. Now suppose we want to see if the mortality rates really are exponentially increasing
by age (that is linearly on the log-scale), we could add a quadratic term to the model:

> mq <- glm( D ~ A + I(A^2), offset=log(Y), family=poisson, data=testisDK )
> ci.exp( mq, Exp=F )

Estimate 2.5% 97.5%
(Intercept) -12.365625166 -12.482504296 -12.248746037
A 0.180595889 0.174140158 0.187051619
I(A^2) -0.002325937 -0.002410829 -0.002241045

Note that we must use the function I() to prevent the “^” to be interpreted as part
of the model formula.

We can then plot the estimated rates using the same machinery, but now with 3
columns in the matrix:

> aa <- 15:65
> C2 <- cbind( 1, aa, aa^2 )
> matplot( aa, ci.exp( mq, ctr.mat=C2 )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matlines( aa, ci.exp( ml, ctr.mat=C1 )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )

Which indeed is dramatically different — we see that the model with quadratic effect
gives a much better fit; a deviance of 4800 on 1 d.f.:

> anova( mq, ml, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ A + I(A^2)
Model 2: D ~ A
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4857 7815.8
2 4858 12648.0 -1 -4832.1 < 2.2e-16

7. We could do the same using a 3rd degree polynomial:



MDMiEwR 2015 — Solutions 47

20 30 40 50 60

4

6

8

10

12

14

Age

Te
st

is
 c

an
ce

r 
in

ci
de

nc
e 

ra
te

 p
er

 1
00

,0
00

 P
Y

Figure 3.5: Testis cancer incidence rates overall, modelled by 2nd degree polynomial, overlaid
by the estimated linear estimate.

> mc <- glm( D ~ A + I(A^2) + I(A^3), offset=log(Y), family=poisson, data=testisDK )
> C3 <- cbind( 1, aa, aa^2, aa^3 )
> matplot( aa, ci.exp( mc, ctr.mat=C3 )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )

8. Instead of continuing with higher powers of age we could use fractions of powers
(“fractional polynomials”), or we could use splines, which are piece wise polynomial
curves, that fit nicely together at join points (knots). This is implemented in the
splines package, in the function ns, which returns a matrix. There is a wrapper Ns
in the Epi-package that automatically designate the smallest and largest knots as
boundary knots, beyond which the resulting curve is linear:

> library( splines )
> ms <- glm( D ~ Ns(A,knots=seq(15,65,10)), offset=log(Y), family=poisson, data=testisDK )
> As <- Ns( aa, knots=seq(15,65,10) )
> matplot( aa, ci.exp( ms, ctr.mat=cbind(1,As) )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )

9. Now in addition to this we would like to see how the dependence on calendar was, so
we add a linear term to the model, and make a prediction for 1970, say:

> msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P, offset=log(Y), family=poisson, data=testisDK )
> CM <- cbind( 1, Ns( aa, knots=seq(15,65,10) ), 1970 )
> matplot( aa, ci.exp( msp, ctr.mat=CM )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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Figure 3.6: Testis cancer incidence rates overall, modelled by 3rd degree polynomial.

10. We would also like to see how the RR relative to 1970 is, so we select only the period
parameter, using the subset argument:

> ci.exp( msp, subset="P" )

exp(Est.) 2.5% 97.5%
P 1.024235 1.022769 1.025704

So we have an increase of 2.4%

To get the RR relative to 1970 for the years 1943 to 1996 we must multiply the
log-RR for period with the distance form 1970, such as:

> yy <- 1943:1996
> Cp1 <- cbind( yy - 1970 )
> matplot( yy, ci.exp( msp, ctr.mat=Cp1, subset="P" ),
+ log="y", xlab="Date", ylab="RR of Testis cancer",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )

11. As above we might like to see how it looks if we add a quadratic to the period effect:

> msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
+ offset=log(Y), family=poisson, data=testisDK )
> Cq <- cbind( yy, yy^2 ) - cbind( rep(1970,length(yy)), 1970^2 )
> matplot( yy, ci.exp( msp, ctr.mat=Cq, subset="P" ),
+ log="y", xlab="Age", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Figure 3.7: Testis cancer incidence rates overall, modelled by splines.

12. But we would like also to see if there were some non-linearity beyond the quadratic,
with period as well, so we fit a spline for period (P) as well

> mssp <- glm( D ~ Ns(A,knots=seq(15,65,10)) +
+ Ns(P,knots=seq(1950,1990,10)),
+ offset=log(Y), family=poisson, data=testisDK )
> anova( mssp, msp, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ Ns(A, knots = seq(15, 65, 10)) + Ns(P, knots = seq(1950,
1990, 10))

Model 2: D ~ Ns(A, knots = seq(15, 65, 10)) + P + I(P^2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4850 4787.9
2 4852 4792.3 -2 -4.488 0.106

But as above we must compute the difference in the contribution from period in year
y and in the reference year, here 1970. So every row of the contrast matrix must have
the corresponding contribution from the reference year subtracted

> Ps <- Ns( yy , knots=seq(1950,1990,10) )
> Pr <- Ns( rep(1970,length(yy)), knots=seq(1950,1990,10) )
> matplot( yy, ci.exp( mssp, ctr.mat=Ps-Pr, subset="P" ),
+ log="y", xlab="Age", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )

13. But for this model we would also like to see the estimated age-specific rates in say
1970.

To this end we need a reference matrix for the year with a number of rows equal to
the number of age-prediction points:
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Figure 3.8: Testis cancer incidence rate in 1970. Note the different level of the rates relative
to the overall plot above.

> Ar <- Ns( rep(1970,length(aa)), knots=seq(1950,1990,10) )
> matplot( aa, ci.exp( mssp, ctr.mat=cbind(1,As,Ar) )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )

14. In order to all do this in one go where we have overview of what we do, what is
needed is:

• the knots for age and period

• the prediction points for age and period

• the reference point for period

— then we can derive everything else from this:

> a.kn <- seq(15,65,10)
> p.kn <- seq(1950,1990,10)
> a.pt <- 10:65
> p.pt <- 1945:1993
> p.ref <- 1970
> na <- length(a.pt)
> np <- length(p.pt)
> As <- Ns( a.pt, knots=a.kn )
> Ps <- Ns( p.pt, knots=p.kn )
> Prp <- Ns( rep(p.ref,np), knots=p.kn )
> Pra <- Ns( rep(p.ref,na), knots=p.kn )
> mAP <- glm( D ~ Ns(A,knots=a.kn) + Ns(P,knots=p.kn),
+ offset=log(Y), family=poisson, data=testisDK )
> par( mfrow=c(1,2) )
> matplot( a.pt, ci.exp( mAP, ctr.mat=cbind(1,As,Pra) )*10^5,
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Figure 3.9: Testis cancer incidence rate-ratio relative to 1970.

+ log="y", xlab="Age",
+ ylab=paste( "Testis cancer incidence per 100,000 PY, in", p.ref ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ ylim=c(1,20) )
> matplot( p.pt, ci.exp( mAP, ctr.mat=Ps-Prp, subset="P" ),
+ log="y", xlab="Age", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ ylim=c(1,20)/4 )
> abline( h=1, v=p.ref )

15. Finally with this in place we could do the same for a model where we had replaced P,
the data of follow-up by the the date of birth, B=P-A:

> testisDK <- transform( testisDK, B = P-A )
> # with( testisDK, hist( rep(B,D), breaks=100, col="black" ) )
> a.kn <- seq(15,65,5)
> b.kn <- seq(1900,1970,5)
> a.pt <- 10:65
> b.pt <- 1890:1970
> b.ref <- 1940
> na <- length(a.pt)
> nb <- length(b.pt)
> As <- Ns( a.pt, knots=a.kn )
> Bs <- Ns( b.pt, knots=b.kn )
> Brb <- Ns( rep(b.ref,nb), knots=b.kn )
> Bra <- Ns( rep(b.ref,na), knots=b.kn )
> mAB <- glm( D ~ Ns(A,knots=a.kn) + Ns(B,knots=b.kn),
+ offset=log(Y), family=poisson, data=testisDK )
> par( mfrow=c(1,2) )
> matplot( a.pt, ci.exp( mAB, ctr.mat=cbind(1,As,Bra) )*10^5,
+ log="y", xlab="Age",
+ ylab=paste( "Testis cancer incidence per 100,000 PY, in", b.ref, "birth cohort"),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
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Figure 3.10: Testis cancer incidence rate-ratio relative to 1970.

+ ylim=c(1,20) )
> matplot( b.pt, ci.exp( mAB, ctr.mat=Bs-Brb, subset="B" ),
+ log="y", xlab="Age", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ ylim=c(1,20)/4 )
> abline( h=1, v=b.ref )
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Figure 3.11: Incidence rates of testis cancer in 1950 per 100,000 PY.
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Figure 3.12: Relative risk by date of follow-up.
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Figure 3.13: Incidence rates of testis cancer in 1970, and RR relative to this.
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Figure 3.14: Incidence rates of testis cancer in the 1940 birth cohort, and RR relative to
this. We see that there is a considerable effect of birth cohort — there seems to be an effect
of being born during the 1st or 2nd world war.
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3.6 Diabetes in Denmark

This exercise is using data from the National Danish Diabetes register. There is a sample
of 10,000 records from this in the Epi package. This is of interest because it is only for
these where the data of diagnosis is certain, and hence for whom we can compute the
duration of diabetes during follow-up.

The exercise is mainly about assessing how mortality depends age, and how to
understand and compute years of life lost to diabetes by comparing with the population
mortality.

1. First, we load the Epi package and the dataset, and take a look at it:

> # options( width=120 )
> library( Epi )
> data( DMlate )
> str( DMlate )

'data.frame': 10000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

> head( DMlate )

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> summary( DMlate )

sex dobth dodm dodth dooad doins
M:5185 Min. :1898 Min. :1995 Min. :1995 Min. :1995 Min. :1995
F:4815 1st Qu.:1930 1st Qu.:2000 1st Qu.:2002 1st Qu.:2001 1st Qu.:2001

Median :1941 Median :2004 Median :2005 Median :2004 Median :2005
Mean :1942 Mean :2003 Mean :2005 Mean :2004 Mean :2004
3rd Qu.:1951 3rd Qu.:2007 3rd Qu.:2008 3rd Qu.:2007 3rd Qu.:2007
Max. :2008 Max. :2010 Max. :2010 Max. :2010 Max. :2010

NA's :7497 NA's :4503 NA's :8209
dox

Min. :1995
1st Qu.:2010
Median :2010
Mean :2009
3rd Qu.:2010
Max. :2010

2. We then set up the dataset as a Lexis object with age, calendar time and duration of
diabetes as timescales, and date of death as event.

> LL <- Lexis( entry = list( A = dodm-dobth,
+ P = dodm,
+ dur = 0 ),
+ exit = list( P = dox ),
+ exit.status = factor( !is.na(dodth),
+ labels=c("Alive","Dead") ),
+ data = DMlate )
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NOTE: entry.status has been set to "Alive" for all.

We can get an overview of the data by using the summary function on the object:

> summary( LL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 7497 2499 9996 2499 54273.27 9996

3. We now want to assess how mortality depends on age, calendar time and duration. In
principle we could split the follow-up along all three time scales, but in practice it
would be sufficient to split it along one of the time-scales and then just use the value
of each of the time-scales at the left endpoint of the intervals.

We note that the total follow-up time was some 54,000 person-years, so if we split the
follow-up in 12-month intervals we get a bit more than 50,000 records:

> SL <- splitLexis( LL, breaks=seq(0,125,1), time.scale="A" )
> summary( SL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 61627 2499 64126 2499 54273.27 9996

4. We then estimate a crude age-specific mortality curves for men and women
separately, using natural splines:

> library( splines )
> r.m <- glm( (lex.Xst=="Dead") ~ ns( A, df=10 ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> r.f <- update( r.m, data = subset( SL, sex=="F" ) )

Make sure you understand all the components on this modeling statement.

5. However, when we are working with event data, the ns machinery does not
necessarily choose knots for splines sensibly, so it is better to explicitly allocate knots
so that the number of events is the same between knots, here we use quantile on the
subset of data with events — note that we add lex.dur so that we get the actual
event times:

> ( a.kn <- with( subset(SL,lex.Xst=="Dead"),
+ quantile( A+lex.dur, (1:10-0.5)/10 ) ) )

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
56.02519 63.67995 69.06092 73.25311 76.29021 79.03847 81.42094 84.27242 87.66598 92.27406

These are the locations of knots that places 10% of events between each successive
pair of knots, and 5% beyond the outer knots. If we use these as knots in the
function Ns we automatically get the smallest and the largest as boundary knots,
beyond which the splines are linear:
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> r.m <- glm( (lex.Xst=="Dead") ~ Ns( A, knots=a.kn ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> r.f <- update( r.m, data = subset( SL, sex=="F" ) )

6. With these objects we can get the estimated log-rates by using ci.pred, supplying a
data frame of prediction points, and finally use the wrapper ci.pred to get the rates
with CIs:

> nd <- data.frame( A = seq(10,90,0.5),
+ lex.dur = 1000)
> p.m <- ci.pred( r.m, newdata = nd )
> p.f <- ci.pred( r.f, newdata = nd )

and then we can plot the two sets of estimated rates:

> matplot( seq(10,90,0.5), cbind(p.m,p.f),
+ type="l", lty=1, lwd=c(3,1,1), las=1,
+ col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.1,200),
+ xlab="Age", ylab="Mortality rates per 1000 PY" )
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Figure 3.15: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Blue: men, red: women.
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3.6.1 Comparison with the population rates

7. We can compare with the mortality rates from the general population; they are
available in the data frame M.dk

> data( M.dk )
> head( M.dk )

A sex P D Y rate
1 0 1 1974 459 35963.33 12.762999
2 0 2 1974 303 34382.83 8.812537
3 0 1 1975 435 36099.00 12.050195
4 0 2 1975 311 34652.17 8.974908
5 0 1 1976 405 34965.00 11.583012
6 0 2 1976 258 33278.33 7.752792

So we just plot the mortality rates from 2005 on top of this:

> with( subset( M.dk, sex==1 & P==2005 ), lines( A, rate, col="blue", lty="12", lwd=3 ) )
> with( subset( M.dk, sex==2 & P==2005 ), lines( A, rate, col="red" , lty="12", lwd=3 ) )
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Figure 3.16: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Broken lines are empirical rates from 2005. Blue: men, red: women.

8. It would however be more prudent to model these rates in a similar fashion as the
diabetes mortality — note that we now supply a column Y for the person-years in
order to get rates per 1000 PY:
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> R.m <- glm( D ~ Ns( A, knots=seq(10,90,10) ),
+ offset = log( Y ),
+ family = poisson,
+ data = subset( M.dk, sex==1 & P>1994 ) )
> R.f <- update( R.m, data = subset( M.dk, sex==2 & P>1994 ) )
> nd <- data.frame( A = seq(10,90,0.5),
+ Y = 1000)
> P.m <- ci.pred( R.m, newdata = nd )
> P.f <- ci.pred( R.f, newdata = nd )

Once we have the predicted rates from a smoothing model we can redo the plot with
these overlaid:

> matplot( seq(10,90,0.5), cbind(p.m,p.f),
+ type="l", lty=1, lwd=c(3,1,1),
+ col=rep(c("blue","red"),each=3),
+ log="y", ylim=c(0.1,200),
+ xlab="Age", ylab="Mortality rates per 1000 PY" )
> matlines( seq(10,90,0.5), cbind(P.m,P.f), lty="12",
+ col=c("blue","red"), lwd=c(3,1,1) )
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Figure 3.17: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Broken lines are modeled population rates 1995–2010. Blue: men, red:
women.

3.6.2 Life expectancy

9. Recall from the section of fundamental concepts that the expected lifetime is the area
under the survival curve, and remember the relationship between the mortality rates
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and the survival curve:

S(t) = exp

(
−
∫ t

o

λ(s) ds

)
The λ(s) is the smooth function of age we just estimated in the models for the
diabetes population and for the general population.

Now, an integral is merely a sum; we can compute it by approximating the area
under the curve with a histogram with very narrow intervals. So we compute the λ in
the middle of 1000 intervals between 0 and 100 years, each 1/10 year long. We then
multiply each value by the width of the interval to get the integral:

> mid.pt <- 0:999/10 + 1/20
> mid.pt[1:5]

[1] 0.05 0.15 0.25 0.35 0.45

> nd <- data.frame( A = mid.pt, Y = 1 )

Note that we devise a data frame nd where the person-years is 1, so that we get the
predicted rates in the units of “events per year”. Recall that ci.pred automatically
gives us the rates, so in order to get the cumulative rates at each of the ages,

Λ(t) =

∫ t

O

λ(s) ds

we use cumsum, and then the exponential to get the survival curves:

> S.m <- exp( -cumsum( ci.pred(R.m,newdata=nd)[,1]*1/10 ) )
> S.f <- exp( -cumsum( ci.pred(R.f,newdata=nd)[,1]*1/10 ) )

Note that we have multiplied the estimated rate (calculated in units of events per 1
year in ci.pred) by the interval length 1/10.

10. We now have the population survival curves for men and women, so easily plotted:

> matplot( mid.pt+1/20, cbind(S.m,S.f),
+ type="l", lty=1, col=c("blue","red"), lwd=3,
+ ylim=c(0,1), xlim=c(0,100),
+ ylab="Survival probability", xlab="Age (years)" )

11. We can compute the expected lifetime as the area under these curves as a simple
sum; recall that we have the survival curve evaluated at points 0.1, 0.2, . . . 99.9, 100
years. So if we take the sum of these values of the survival function and multiply by
0.1, we get the area under the curve:

> ( EL.m <- sum(S.m)/10 )

[1] 74.84376

> ( EL.f <- sum(S.f)/10 )

[1] 79.40901
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Figure 3.18: Survival curves for the Danish population

Formally, what we have done is to sum the values of the survival curves at the points
1/10, 2/10, . . . — because the survival function we computed is evaluated at the end
of each interval. If we assume that each values corresponds to the midpoint of an
interval, the first interval is really the interval (1/20;3/20), so what we are missing is
the first 1/20 long interval so the calculation should really be (taking the survival
function to be 1 in this interval):

> ( EL.m <- sum(S.m)/10+1/20 )

[1] 74.89376

> ( EL.f <- sum(S.f)/10+1/20 )

[1] 79.45901

12. We can make the same calculations for diabetes patients, but now we need the
variable lex.dur rather than the variable Y:

> nd <- data.frame( A = mid.pt, lex.dur = 1 )
> s.m <- exp( -cumsum( ci.pred(r.m,newdata=nd)[,1]*1/10 ) )
> s.f <- exp( -cumsum( ci.pred(r.f,newdata=nd)[,1]*1/10 ) )
> ( el.m <- sum(s.m)/10 )

[1] 66.39297

> ( el.f <- sum(s.f)/10 )

[1] 71.82342

These expected lifetimes are not really meaningful; the formal interpretation is the
expected lifetime of persons that through life experience mortality rates as persons
with diabetes — notably persons that get diabetes at different times through life. So
one essential assumption is that mortality among diabetes patients does not depend
on duration of diabetes. . .
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3.6.3 Life lost to diabetes

13. Thus wee see that diabetes patients have a smaller life expectancy than the general
population, the differences are what is usually termed the years of life lost to
diabetes:

> EL.m - el.m

[1] 8.500787

> EL.f - el.f

[1] 7.635589

14. These numbers are not really sensible, as we are pretending to look at persons with
diabetes at birth, assuming that they have the same mortality as persons with
diabetes diagnosed later in life. So we are ignoring the effect of diabetes duration on
mortality.

15. Instead we might look at the life-expectancy of persons, say, 50 years old. To this end
we need the conditional survival curves given that a person is alive at age 50. But
these are just the survival curves from age 50, divided the probability of surviving till
50:

> S50.m <- S.m[500:1000]/S.m[500]
> S50.f <- S.f[500:1000]/S.f[500]
> s50.m <- s.m[500:1000]/s.m[500]
> s50.f <- s.f[500:1000]/s.f[500]

With these conditional survival curves we can now compute the years of life lost to
diabetes at age 50:

> ( EL50.m <- sum(S50.m)/10 )

[1] 27.40997

> ( EL50.f <- sum(S50.f)/10 )

[1] 31.07231

> ( el50.m <- sum(s50.m)/10 )

[1] 21.65778

> ( el50.f <- sum(s50.f)/10 )

[1] 25.51076

> EL50.m - el50.m

[1] 5.752186

> EL50.f - el50.f

[1] 5.561547

So we see that years of life lost at age 50 is about 5 to 6 years for both sexes.

16. We can make this a bit more general by wrapping the calculation in a function that
takes the conditioning age as input:
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> YLL <- function( A )
+ {
+ SA.m <- S.m[(A*10):1000]/S.m[(A*10)]
+ SA.f <- S.f[(A*10):1000]/S.f[(A*10)]
+ sA.m <- s.m[(A*10):1000]/s.m[(A*10)]
+ sA.f <- s.f[(A*10):1000]/s.f[(A*10)]
+ ELA.m <- sum(SA.m)/10
+ ELA.f <- sum(SA.f)/10
+ elA.m <- sum(sA.m)/10
+ elA.f <- sum(sA.f)/10
+ c( Men=ELA.m - elA.m,
+ Women=ELA.f - elA.f )
+ }
> YLL( 50 )

Men Women
5.752186 5.561547

> YLL( 60 )

Men Women
4.100607 4.156742

Finally we can compute the number of years lost for ages 40 through 80:

> yll <- matrix( NA, 41, 2 )
> rownames( yll ) <- 40:80
> colnames( yll ) <- c("Men","Women")
> t(yll)

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
Men NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Women NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

68 69 70 71 72 73 74 75 76 77 78 79 80
Men NA NA NA NA NA NA NA NA NA NA NA NA NA
Women NA NA NA NA NA NA NA NA NA NA NA NA NA

> for( a in 40:80 ) yll[a-39,] <- YLL(a)
> round( t(yll), 1 )

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Men 7.1 6.9 6.8 6.7 6.6 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.5 5.3 5.1 5.0 4.8 4.6 4.5 4.3 4.1
Women 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.4 5.3 5.2 5.1 4.9 4.8 4.6 4.5 4.3 4.2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Men 3.9 3.7 3.5 3.4 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.0 1.9 1.8 1.6 1.3
Women 4.0 3.8 3.6 3.5 3.3 3.1 3 2.8 2.7 2.5 2.4 2.3 2.1 2.0 1.8 1.7 1.5 1.4 1.3 1.2

Finally we can plot the years of life lost to diabetes for men and women at different
ages:

> matplot( 40:80, yll,
+ type="l", lty=1, lwd=3, col=c("blue","red"),
+ ylim=c(0,7),
+ ylab="Years of life lost to DM", xlab="Age at evaluation" )

3.6.4 Changes in life lost to diabetes

17. In the previous calculations we only used the crude age-specific mortality rates for
the entire period 1995–2009 (incl.).

We now expand the models for the mortality rates with a term in calendar time. A
first approximation could be just a linear effect of calendar time. Note that
everything not mentioned in the update statement is kept from the original model.
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Figure 3.19: Years of life lost to diabetes at different ages.

> rp.m <- update( r.m, . ~ . + P )
> rp.f <- update( r.f, . ~ . + P )
> Rp.m <- update( R.m, . ~ . + P )
> Rp.f <- update( R.f, . ~ . + P )

18. In order to extract the trend by period we use the subset argument to ci.exp —
that will give us the annual relative change in rates:

> ci.exp( rp.m, subset="P" )

exp(Est.) 2.5% 97.5%
P 0.9636571 0.9493981 0.9781303

If we subtract 1 and multiply by 100 we get the annual trend in rates:

> chg <-
+ cbind( rbind( ci.exp(rp.m,subset="P"),
+ ci.exp(rp.f,subset="P") ),
+ rbind( ci.exp(Rp.m,subset="P"),
+ ci.exp(Rp.f,subset="P") ) )
> rownames( chg ) <- c("DM","Pop")
> colnames( chg ) <- paste( c("M:","","","F:","",""), colnames( chg ) )
> round( (chg-1)*100, 1 )
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M: exp(Est.) 2.5% 97.5% F: exp(Est.) 2.5% 97.5%
DM -3.6 -5.1 -2.2 -2.3 -2.4 -2.3
Pop -3.5 -5.1 -2.0 -1.7 -1.8 -1.7

We see that mortality rates among diabetes patients decline faster than in the general
population, and faster among men; but also that there is virtually no difference in
mortality decline between DM and no DM for men.

19. We start by predicting the mortality rates. Since we will need the mortality rates in
ages 0-100, and for all combinations of age, sex, date and DM / population, we store
the predictions in an array so that we can easily access them for further calculations:

> a.pt <- 0:999/10 + 1/20
> mort <- NArray( list( A = a.pt,
+ P = seq(1995,2010,5),
+ sex = c("M","W"),
+ type = c("DM","Pop") ) )
> str( mort )

logi [1:1000, 1:4, 1:2, 1:2] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ A : chr [1:1000] "0.05" "0.15" "0.25" "0.35" ...
..$ P : chr [1:4] "1995" "2000" "2005" "2010"
..$ sex : chr [1:2] "M" "W"
..$ type: chr [1:2] "DM" "Pop"

Once the array is set up, we can fill in the predicted mortalities (in units of cases per
1 PY) at ages spaced 1/10 year apart:

> nd <- data.frame( A = a.pt,
+ Y = 1,
+ lex.dur = 1 )
> for( ip in seq(1995,2010,5) )
+ {
+ nd$P <- ip
+ mort[,paste(ip),"M","DM"] <- ci.pred( rp.m, newdata=nd )[,1]
+ mort[,paste(ip),"W","DM"] <- ci.pred( rp.f, newdata=nd )[,1]
+ mort[,paste(ip),"M","Pop"] <- ci.pred( Rp.m, newdata=nd )[,1]
+ mort[,paste(ip),"W","Pop"] <- ci.pred( Rp.f, newdata=nd )[,1]
+ }
> round( ftable( mort[1:5+600,,,]*1000,
+ row.vars=c(4,1),
+ col.vars=c(3,2) ), 1 )

sex M W
P 1995 2000 2005 2010 1995 2000 2005 2010

type A
DM 60.05 39.1 32.5 27.0 22.4 26.3 22.0 18.4 15.4

60.15 39.4 32.7 27.2 22.6 26.5 22.2 18.5 15.5
60.25 39.6 32.9 27.4 22.7 26.7 22.3 18.7 15.6
60.35 39.9 33.2 27.6 22.9 26.9 22.5 18.8 15.7
60.45 40.2 33.4 27.7 23.1 27.1 22.7 19.0 15.8

Pop 60.05 14.5 12.9 11.5 10.2 9.0 8.2 7.5 6.9
60.15 14.7 13.0 11.6 10.3 9.0 8.3 7.6 6.9
60.25 14.8 13.2 11.7 10.4 9.1 8.4 7.7 7.0
60.35 14.9 13.3 11.8 10.5 9.2 8.4 7.7 7.1
60.45 15.1 13.4 11.9 10.6 9.3 8.5 7.8 7.1

From this we can devise an array of the cumulative rates by simply summing along
the age-dimension — using apply, but dividing by 10 because every interval is 1/10
year long:
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> Mort <- apply( mort, 2:4, cumsum )/10
> str( Mort )

num [1:1000, 1:4, 1:2, 1:2] 3.72e-05 7.48e-05 1.13e-04 1.51e-04 1.89e-04 ...
- attr(*, "dimnames")=List of 4
..$ A : chr [1:1000] "0.05" "0.15" "0.25" "0.35" ...
..$ P : chr [1:4] "1995" "2000" "2005" "2010"
..$ sex : chr [1:2] "M" "W"
..$ type: chr [1:2] "DM" "Pop"

> round( ftable( Mort[200+1:5,,,],
+ row.vars=c(4,1),
+ col.vars=c(3,2) ), 5 )

sex M W
P 1995 2000 2005 2010 1995 2000 2005 2010

type A
DM 20.05 0.01800 0.01496 0.01243 0.01033 0.00999 0.00835 0.00697 0.00583

20.15 0.01817 0.01510 0.01255 0.01043 0.01009 0.00843 0.00704 0.00589
20.25 0.01835 0.01525 0.01267 0.01053 0.01019 0.00852 0.00712 0.00595
20.35 0.01853 0.01540 0.01280 0.01064 0.01029 0.00860 0.00719 0.00601
20.45 0.01872 0.01555 0.01292 0.01074 0.01040 0.00869 0.00726 0.00607

Pop 20.05 0.01250 0.01111 0.00988 0.00878 0.00768 0.00703 0.00644 0.00589
20.15 0.01254 0.01115 0.00991 0.00881 0.00769 0.00704 0.00645 0.00590
20.25 0.01258 0.01118 0.00994 0.00884 0.00770 0.00705 0.00646 0.00591
20.35 0.01262 0.01122 0.00998 0.00887 0.00771 0.00706 0.00647 0.00592
20.45 0.01267 0.01126 0.01001 0.00890 0.00772 0.00707 0.00648 0.00593

Note that this only gives an array of the same structure because the dimension we
are applying a function over (A) is the first, and because the function applied returns
a vector of the same length as input. The survival curve is then simply computed by
taking exp(−Λ); we can plot the survival curves for men with and without diabetes
for each of the 4 dates of evaluation:

> Surv <- exp( -Mort )
> matplot( a.pt, cbind( Surv[,,"M","DM"],
+ Surv[,,"M","Pop"] ),
+ type="l", lwd=3, lty=1, col=heat.colors(6)[1:4] )

If we now want to compute the expected residual life from age 40, say, we need the
conditional survival function from age 40:

> S40 <- Surv[400:1000,,,]/Surv[rep(400,601),,,]
> matplot( a.pt[400:1000], cbind( S40[,,"M","DM"],
+ S40[,,"M","Pop"] ),
+ type="l", lwd=3, lty=1, col=heat.colors(6)[1:4] )

The expected residual life time from age 40 is then the sum of these multiplied by the
interval length:

> ERL40 <- apply( S40, 2:4, sum )/10
> str( ERL40 )

num [1:4, 1:2, 1:2] 25.7 27.7 29.6 31.7 30.1 ...
- attr(*, "dimnames")=List of 3
..$ P : chr [1:4] "1995" "2000" "2005" "2010"
..$ sex : chr [1:2] "M" "W"
..$ type: chr [1:2] "DM" "Pop"

> ftable( ERL40 )
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Figure 3.20: Estimated survival curves for men, based on mortality rates as of 1 January
1995, 2000, 2005 and 2010, for the general population (upper curves) and the diabetic pop-
ulation (lower curves). Survival is increasing by calendar time.

type DM Pop
P sex
1995 M 25.71040 34.54566

W 30.14586 39.02936
2000 M 27.65551 35.67264

W 32.11185 39.85356
2005 M 29.64429 36.80467

W 34.09393 40.67512
2010 M 31.67231 37.94021

W 36.08057 41.49283

We can expand this to show the years of life lost at age 40:

> ERL40 <- ERL40[,,c(1,2,2)]
> dimnames(ERL40)[[3]][3] <- "YLL"
> ERL40[,,"YLL"] <- ERL40[,,"Pop"] - ERL40[,,"DM"]
> ftable( ERL40, row.vars=2:1 )

type DM Pop YLL
sex P
M 1995 25.710395 34.545655 8.835260

2000 27.655508 35.672643 8.017135
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Figure 3.21: Estimated survival curves for men, given survival till age 40, based on mortality
rates as of 1 January 1995, 2000, 2005 and 2010, for the general population (upper curves)
and the diabetic population (lower curves). Survival is increasing by calendar time.

2005 29.644288 36.804673 7.160385
2010 31.672307 37.940215 6.267908

W 1995 30.145865 39.029357 8.883492
2000 32.111851 39.853562 7.741710
2005 34.093932 40.675116 6.581185
2010 36.080569 41.492830 5.412262

20. If we want a curve of life lost to diabetes as a function of age, we should formalize
what we do above; when we compute the residual life time, we compute the integral
from a given age to infinity (well, 100 years), and then divide by the survival function
at the given age. We can make this in one go for all ages by cumulating the survival
function from the top of the age-scale. So wee need a function that cumulates from
the end of a vector rather than from the beginning of a vector (rev is the function
that puts a vector in reverse order):

> musmuc <- function(x) rev(cumsum(rev(x)))

We the apply this to Surv along the age-scale, divide by the interval length, and
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finally divide by Surv, to rescale to the integrals of the conditional survival functions:

> ERL <- ( apply( Surv, 2:4, musmuc )/10 ) / Surv
> LL <- ERL[,,,c(1,2,2)]
> dimnames( LL )[[4]][3] <- "YLL"
> LL[,,,3] <- LL[,,,"Pop"]-LL[,,,"DM"]
> str( LL )

num [1:1000, 1:4, 1:2, 1:3] 62 61.9 61.8 61.7 61.6 ...
- attr(*, "dimnames")=List of 4
..$ A : chr [1:1000] "0.05" "0.15" "0.25" "0.35" ...
..$ P : chr [1:4] "1995" "2000" "2005" "2010"
..$ sex : chr [1:2] "M" "W"
..$ type: chr [1:3] "DM" "Pop" "YLL"

The years of life lost at different ages can then be plotted for each of the years where
we did the evaluation:

> matplot( a.pt, cbind( LL[,,"M","YLL"], LL[,,"W","YLL"] ),
+ type="l", lty=1, lwd=1:4, col=rep(c("blue","red"),each=4),
+ xlim=c(40,80), ylim=c(0,10), yaxs="i",
+ xlab="Age alive", ylab="Years of life lost to DM" )
> abline( h=1:10, v=4:8*10, col=gray(0.8) )

We see in figure 3.22 that the decrease in the years of life lost to diabetes has been
more dramatic among women than among men, consonant with the fact that the
mortality rates among DM men have been dropping at about the same rate as among
the rest of the population, whereas the mortality among DM women have been
decreasing considerably faster
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Figure 3.22: Years of life lost to DM at different ages for men (blue) and women (red)
evaluated on the basis of mortality rates at 1 January 1995, 2000, 2005, 2010 (thin to thick).
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