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Data

The best way to learn R

I The best way to learn R is to use it!

I This is a very short introduction before you sit
down in front of a computer.

I R is a little different from other packages for
statistical analysis.

I These differences make R very powerful, but for
a new user they can sometimes be confusing.

I Our first job is to help you up the initial
learning curve so that you can be comfortable
with R.
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Nothing is lost or hidden

I Statistical software provides “canned”
procedures to address common statistical
problems.

I Canned procedures are useful for routine
analysis, but they are also limiting.

I You can only do what the programmer lets you do.

I In R, the results of statistical calculations are
always accessible.

I You can use them for further calculations.
I You can always see how the calculations were done.
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R Packages

I The capabilities of R can be extended using
“packages”.

I Distributed over the Internet via CRAN:
(the Comprehensive R Archive Network) and
can be downloaded directly from an R session.

I There is an R package developed during the
annual course on “Statistical Practice in
Epidemiology using R, called “Epi”.

I Contains special functions for epidemiologists
and some data sets that .

I There are 5,825 other user contributed
packages on CRAN.
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Objects and functions

R allows you to build powerful procedures from
simple building blocks. These building blocks are
objects and functions.

I All data in R is represented by objects, for
example:

I A dataset (called data frame in R)
I A vector of numbers
I The result of fitting a model to data

I You, the user, call functions
I Functions act on objects to create new

objects:
I Using glm on a dataframe (an object) produces

a fitted model (another object).
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Because all is functions. . .

I You will always (almost) use parentheses:
> res <- FUN( x, y )

I . . . which is pronounced

I res gets (”<-”) FUN of x,y (”(x,y)”)
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Vectors

One of the simplest objects in R is a sequence of
numbers, called a vector.

You can create a vector in R with the collection (c)
function:

> c(1,3,2)

[1] 1 3 2

You can save the results of any calculation using the
left arrow:

> x <- c(1,3,2)

> x

[1] 1 3 2
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The workspace

I Every time you use <-, you create a new object
in the workspace (or overwrite an old one).

I A list of objects in the workspace can be seen
with the objects function (synonym: ls()):
> objects()

[1] "a" "aa" "acz2" "alpha" "b"

[6] "bar" "bb" "bdendo" "beta" "cc"

[11] "Col"
I In Epi is a function lls() that gives a bit

more information on the objects.
I The workspace is held entirely in (volatile)

computer memory and will be lost at the end
of the session unless you explicitly save it.
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Working Directory

Every R session has a current working directory,
which is the location on the hard disk where files are
saved, and the default location from which files are
read into R.

I getwd() Prints the current working directory

I setwd("c:/Users/Martyn/Project") sets
the current working directory.

I You may also use a Graphical User Interface
(GUI) to change directory.
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Ending an R session

I To end an R session, call the quit() function
I Every time you want to do something in R, you call

a function.

I You will be asked “Save workspace image?”
Yes saves the workspace to the file

“.RData” in your current working
directory. It will be automatically
loaded into R the next time you
start an R session.

No does not save the workspace.
Cancel continues the current R session

without saving anything.
I It is recommended you just say “No”.
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Always start with a clean workspace

Keeping objects in your workspace from one session
to another can be dangerous:

I You forget how they were made.

I You cannot easily recreate them if your data
changes.

I They may not even be from the same project

It is almost always best to start with an empty
workspace and use a script file to create the objects
you need from scratch.
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Rectangular Data

Rectangular data sets are common to most
statistical packages

”id” ”visit” ”time” ”status”

1 1 0.0 0
1 2 1.5 0
2 1 0.0 0
2 2 1.1 0
2 3 2.3 1

Columns represent variables.
Rows represent individual records.
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The world is not a rectangle!

I Most statistical packages used by
epidemiologists assume that all data can be
represented as a rectangular data set.

I R allows a much richer set of data structures,
represented by objects of different classes.

I Rectangular data sets are just one type of
object that may be in your workspace. This
class of object is called a data frame.
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Data Frames

Each column of a data frame is a variable.

Variables may be of different types:

I vectors:
I numeric: c(1,2,3)
I character:

c("John","Paul","George","Ringo")
I logical: c(FALSE,FALSE,TRUE)

I factors:
factor(c("low","medium","high","low",
"low"))
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Building your own data frame

Data frames can be constructed from a list of
vectors

> mydata <- data.frame(x=c(3,6,7),f=c("a","b","a"))

> mydata

x f

1 3 a

2 6 b

3 7 a

Character vectors are automatically converted to
factors.
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Inspecting data frames

Most data frames are too large to inspect by
printing them to the screen, so use:

I names returns a vector of variable names.
I You can use sort(names(x)) to get them in

alphabetical order.

I head prints the first few lines, and tail. . .

I str prints a brief overview of the structure of
the data frame. Can be used on any object.

I summary prints a more comprehensive summary

I Quantiles for numeric variables
I Tables for factors
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Extracting values from a data frame

Use square brackets to take subsets of a data
frame

I mydata[1,2]. The value in row 1, column 2.

I mydata[1,]. The whole of the first row.

I mydata[,2]. The whole of the second column.

You can also extract a column from a data frame by
name:

I mydata$age. The column, or variable, named
“age”

I mydata[,"age"]. The same.

Introducing R (Data) 17/ 220



Importing data
I R has good facilities for importing data from

other applications:
I read.dta for reading Stata datasets.
I read.spss for reading SPSS datasets.
I read.xport and read.ssd for reading

SAS-datasets.
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Reading Text Files

The function read.table reads data from a text
file and returns a data frame.

I mydata <- read.table("myfile")
I myfile could be

I A file in the current working directory: fem.dat
I A path to a file: c:/rex/fem.dat
I A URL:

http://BendixCarstensen.com/AdvCoh/Scot-

2014/data/bogus.txt

I Note: myfile must be enclosed in quotes.

write.table does the opposite.

R uses a forward slash / for file paths. If you want
to use backslash, you have to double it:

c:\\rex\\fem.datIntroducing R (Data) 19/ 220

Some useful arguments to read.table

I header = TRUE if first line contains variable
names

I sep="," if values are comma-separated instead
of being space-delimited.

I as.is = TRUE to stop strings being converted
to factors

I na.strings = "99" to denote that 99 means
“missing”. Default values are:

I NA“Not Available”
I NaN“Not a Number”

I For comma-separated files there is coderead.csv
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Reading Binary Data

I R can read in data in binary (non-text) format
from other statistical systems using the foreign
extension package.

I R is an open source project, and relies on the
format for binary files to be well-documented.

I Example: SAS XPORT format has been adopted
as a data exchange standard by the US Food
and Drug Administration. SAS CPORT format
remains a proprietary format.
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Some functions in the foreign package

I read.dta for Stata (also write.dta)

I read.xport for SAS XPORT format (not
CPORT)

I read.epiinfo for EPIINFO

I read.mtp for MiniTab Portable Worksheet

I read.spss for SPSS

See the “R Data Import/Export manual” for more
details. RShowDoc("R-data")
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Accessing databases systems
Microsoft Access:
> library(RODBC)

> ch <- odbcConnectAccess("../data/theData.mdb")

> bd <- sqlFetch(ch, "aTable" )

Microsoft Excel:
> library( RODBC )

> cnc <- odbcConnectExcel(paste("../theXel.xls",sep=""))

> sht <- sqlFetch( cnc, "theSheet" )

> close( cnc )

Other databases
> ?odbcConnect
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Summary - data

I You can use a data frame to organize your
variables

I You can extract variables from a data frame
using $.

I You can extract variables and observation using
indecing [,]

I You can read in data using
I read.table
I tailored function from the foreign package
I database interface from the RODBC package
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Summary - when it goes wrong

When somthing is fishy with an object obj, try to
find out what you (accidentally) got, by using:

> lls()

> str( obj )

> dim( obj )

> length( obj )

> names( obj )

> head( obj )

> class( obj )

> mode( obj )
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Language

I R is a programming language – also on the
command line

I (This means that there are syntax rules)

I Print an object by typing its name

I Evaluate an expression by entering it on the
command line

I Call a function, giving the arguments in
parentheses – possibly empty

I Notice ls vs. ls()
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Objects

I The simplest object type is vector

I Modes: numeric, integer, character, generic
(list)

I Operations are vectorized: you can add entire
vectors with a + b

I Recycling of objects: If the lengths don’t
match, the shorter vector is reused
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R expressions

x <- rnorm(10, mean=20, sd=5)

m <- mean(x)

sum((x - m)^2)

I Object names

I Explicit constants

I Arithmetic operators

I Function calls

I Assignment of results to names
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Function calls

Lots of things you do with R involve calling
functions.
For instance

mean(x, na.rm=TRUE)

The important parts of this are

I The name of the function

I Arguments: input to the function

I Sometimes, we have named arguments
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Function arguments
rnorm(10, mean=m, sd=s)

hist(x, main="My histogram")

mean(log(x + 1))

Items which may appear as arguments:

I Names of an R objects
I Explicit constants
I Return values from another function call or

expression
I Some arguments have their default values.
I Use help(function ) or args(function ) to

see the arguments (and their order and default
values) that can be given to any function.
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Creating simple functions

logit <- function(p) log(p/(1-p))

logit(0.5)

simpsum <-

function(x, dec=5)

{

# produces mean and SD of a variable

# default value for dec is 5

round(c(mean=mean(x),sd=sd(x)),dec)

}

x <- rnorm(100)

simpsum(x)

simpsum(x,2)
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Indexing

I R has several useful indexing mechanisms:

I a[5] single element

I a[5:7] several elements

I a[-6] all except the 6th

I a[c(1,1,2,1,2)] some elements repeated

I a[b>200] logical index

I a[ well ] indexing by name
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Lists

I Lists are vectors where the elements can have
different types

I Functions often return lists
I lst <-

list(A=rnorm(5),B="hello",K=12)
I Special indexing:
I lst$A
I lst[1:2] a list with first two first elements (A

and B — NB: single brackets)
I lst[1] a list of length 1 which is the first

element (codeA — NB: single brackets)
I lst[[1]] first element (NB: double brackets)

— a vector of length 5.
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Classes, generic functions

I R objects have classes

I Functions can behave differently depending on
the class of an object

I E.g. summary(x) or print(x) does different
things if x is numeric, a factor, or a linear
model fit
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The workspace

I The global environment contains R objects
created on the command line.

I There is an additional search path of loaded
packages and attached data frames.

I When you request an object by name, R looks
first in the global environment, and if it doesn’t
find it there, it continues along the search path.

I The search path is maintained by library(),
attach(), and detach()

I List the search path by search()
I Notice that objects in the global environment

may mask objects in packages and attached
data frames
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Data manipulation and with

bmi <- with(stud, weight/(height/100)^2)

uses variables weight and height in the data frame
stud (not the variables with the same name in the
workspace), but creates the variable bmi in the
global environment (not in the data frame).

To create a new variable in the data frame, you can
use:

stud$bmi <- with( stud, weight/(height/100)^2 )
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Constructors

I Matrices and arrays, constructed by the
(surprise) matrix and array functions.

I You can extract and set names with names(x);
for matrices and data frames also
colnames(x) and rownames(x)

I You can also construct a matrix from its
columns using cbind, whereas joining two
matrices with equal no of columns (with the
same column names) can be done using rbind.
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Factors (class variables)

I Factors are used to describe groupings.
I Basically, these are just integer codes plus a set

of names for the levels
I They have class "factor" making them (a)

print nicely and (b) maintain consistency
I A factor can also be ordered (class
"ordered"), signifying that there is a natural
sort order on the levels

I In model specifications, factors play a
fundamental role by indicating that a variable
should be treated as a classification rather than
as a quantitative variable (similar to a CLASS
statement in SAS)
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The factor function

I This is typically used when read.table gets it
wrong,

I e.g. group codes read as numeric
I or read as factors, but with levels in the wrong

order (e.g. c("rare", "medium",

"well-done") sorted alphabetically.)
I Notice that there is a slightly confusing use of
levels and labels arguments:

I levels are the value codes on input
I labels are the value codes on output (and

becomes the levels of the resulting factor)
I The levels of a factor is shown by the levels()

function.
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Working with Dates

I Dates are usually read as character or factor
variables

I Use the as.Date function to convert them to
objects of class "Date"

I If data are not in the default format
(yyyy-mm-dd) you need to supply a format
specification

> as.Date("11/3-1959",format="%d/%m-%Y")

[1] "1959-03-11"
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Working with Dates

I Computing the differences between Date

objects gives an object of class "difftime",
which is number of days between the two dates:
> as.numeric(as.Date("2007-5-25")-

as.Date("1959-3-11"),"days")

[1] 17607

I In the Epi package is a function that converts
dates to calendar years with decimals:
> as.Date("1952-07-14")

[1] "1952-07-14"

> cal.yr( as.Date("1952-07-14") )

[1] 1952.533

attr(,"class")

[1] "cal.yr" "numeric"
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Basic graphics

The plot() function is a generic function,
producing different plots for different types of
arguments. For instance, plot(x) produces:

I a plot of observation index against the
observations, when x is a numeric variable

I a bar plot of category frequencies, when x is a
factor variable

I a time series plot (interconnected observations)
when x is a time series

I a set of diagnostic plots, when x is a fitted
regression model

I . . .
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Basic graphics

Similarly, the plot(x,y) produces:

I a scatter plot of x is a numeric variable

I a bar plot of category frequencies, when x is a
factor variable
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Basic graphics
Examples:

x <- c(0,1,2,1,2,2,1,1,3,3)

plot(x)

plot(factor(x))

plot(ts(x)) # ts() defines x as time series

y <- c(0,1,3,1,2,1,0,1,4,3)

plot(x,y)

plot(factor(x),y)
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Basic graphics

More simple plots:

I hist(x) produces a histogram

I barplot(x) produces a bar plot (useful when
x contains counts – often one uses
barplot(table(x)))

I boxplot(y x) produces a box plot of y by
levels of a (factor) variable x.
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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)

or
Some time alive (“at least this long”)
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Examples of time-to-event measurements

I Time from diagnosis of cancer to death.

I Time from randomisation to death in a cancer
clinical trial

I Time from HIV infection to AIDS.

I Time from marriage to 1st child birth.

I Time from marriage to divorce.

I Time to re-offending after being released from
jail
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Ordered by
date of entry

Most likely
the order in
your
database.
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Timescale
changed to
“Time since
diagnosis”.

Time since diagnosis

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

Rates and Survival (surv-rate) 49/ 220

Patients
ordered by
survival
time.
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Survival
times
grouped into
bands of
survival.
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Patients
ordered by
survival
status within
each band.
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13

10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535

Life-table estimator.
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of
diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S (t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

F (t) is the cumulative risk of death before time t .
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Intensity or rate

P {event in (t , t + h] | alive at t} /h

=
F (t + h)− F (t)

S (t)× h

= − S (t + h)− S (t)

S (t)h
−→
h→0
− dlogS (t)

dt

= λ(t)

This is the intensity or hazard function for the
distribution. Characterizes the survival distribution
as does f or F .

Theoretical counterpart of a rate.
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Relationships

− dlogS (t)

dt
= λ(t)

m

S (t) = exp

(
−
∫ t

0

λ(u) du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(s) ds is called the integrated
intensity. Not an intensity, it is dimensionless.

λ(t) = − dlog(S (t))

dt
= −S

′(t)

S (t)
=

F ′(t)

1− F (t)
=

f (t)

S (t)
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Rate and survival

S (t) = exp

(
−
∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)

S (t)

Survival is a cumulative measure, the rate is an
instantaneous measure.

Note: A cumulative measure requires an origin!

. . . it is always survival since some timepoint.
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Observed survival and rate

I Survival studies: Observation of (right
censored) survival time:

X = min(T ,Z ), δ = 1{X = T}

— sometimes conditional on T > t0
(left truncation, delayed entry).

I Epidemiological studies:
Observation of (components of) a rate:

D/Y

D : no. events, Y no of person-years, in a
prespecified time-frame.
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Empirical rates for individuals

I At the individual level we introduce the
empirical rate: (d , y),
— number of events (d ∈ {0, 1}) during y risk
time.

I A person contributes several observations of
(d , y), with associated covariate values.

I Empirical rates are responses in survival
analysis.

I The timescale t is a covariate — varies within
each individual:
t : age, time since diagnosis, calendar time.

I Don’t confuse with y — difference between
two points on any timescale we may choose.
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Empirical
rates by
calendar
time.
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Empirical
rates by
time since
diagnosis.

Time since diagnosis
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Statistical inference: Likelihood

Two things needed:

I Data — what did we actually observe
Follow-up for each person:
Entry time, exit time, exit status, covariates

I Model — how was data generated
Rates as a function of time:
Probability machinery that generated data

Likelihood is the probability of observing the data,
assuming the model is correct.

Maximum likelihood estimation is choosing
parameters of the model that makes the likelihood
maximal.
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Likelihood from one person

The likelihood from several empirical rates from one
individual is a product of conditional probabilities:

P {event at t4|t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (d , y)
— y = ti − ti−1 and mostly d = 0.

ti is the timescale (covariate).
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Poisson likelihood

The likelihood contributions from follow-up of one
individual:

dt log
(
λ(t)

)
− λ(t)yt , t = t1, . . . , tn

is also the log-likelihood from several independent
Poisson observations with mean λ(t)yt , i.e.
log-mean log

(
λ(t)

)
+ log(yt)

Analysis of the rates, (λ) can be based on a Poisson
model with log-link applied to empirical rates where:

I d is the response variable.
I log(λ) is modelled by covariates
I log(y) is the offset variable.
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Likelihood for follow-up of many persons

Adding empirical rates over the follow-up of persons:

D =
∑

d Y =
∑

y ⇒ D log(λ)− λY

I Persons are assumed independent

I Contribution from the same person are
conditionally independent, hence give
separate contributions to the log-likelihood.

I Therefore equivalent to likelihood for
independent Poisson variates

I No need to correct for dependent observations;
the likelihood is a product.
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Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, λ, the
probability of observing 7 deaths in the course of
500 person-years:

P {D = 7,Y = 500|λ} = λDeλY ×K

= λ7eλ500 ×K

= L(λ|data)

Best guess of λ is where this function is as large as
possible.

Confidence interval is where it is not too far from
the maximum
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Likelihood function
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Likelihood function
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Confidence interval for a rate

A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ)± 1.96/

√
D

Take the exponential to get the confidence interval
for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf
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Example

Suppose we have 17 deaths during 843.6 years of
follow-up.

The rate is computed as:

λ̂ = D/Y = 17/843.7 = 0.0201 = 20.1 per 1000 years

The confidence interval is computed as:

λ̂
×
÷ erf = 20.1

×
÷ exp(1.96/

√
D) = (12.5, 32.4)

per 1000 person-years.
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Ratio of two rates

If we have observations two rates λ1 and λ0, based
on (D1,Y1) and (D0,Y0), the variance of the
difference of the log-rates, the log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)

︸ ︷︷ ︸
error factor
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Example

Suppose we in group 0 have 17 deaths during 843.6
years of follow-up in one group, and in group 1 have
28 deaths during 632.3 years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(17/843.7) = 0.0443/0.0201 = 2.198

The 95% confidence interval is computed as:

R̂R
×
÷ erf = 2.198

×
÷ exp

(
1.96

√
1/17 + 1/28

)

= 2.198
×
÷ 1.837 = (1.20, 4.02)
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Example using R

Poisson likelihood, for one rate,
based on 17 events in 843.7 PY:

library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068
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Example using R

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)
ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525

You do it!
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Representation of
follow-up data

Modern Demographic
Methods in Epidemiology
with R
23 November 2015
University of Melbourne
http://BendixCarstensen/AdvCoh/Melb-2015

time-split

Follow-up and rates

I Follow-up studies:

I D — events, deaths
I Y — person-years
I λ = D/Y rates

I Rates differ between persons.

I Rates differ within persons:

I By age
I By calendar time
I By disease duration
I . . .

I Multiple timescales.

I Multiple states (little boxes — later)
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Stratification by age

If follow-up is rather short, age at entry is OK for
age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:
No. of events, D , and Risk time, Y .

Age-scale
35 40 45 50

Follow-up
Two e1 5 3

One u4 3
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d , y)

Follow-up data for each individual must therefore
have (at least) three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

t0 t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

t0 t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(event at tx|entry t2) + 1 log(λ)− λy3
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Dividing time into bands:

If we want to put D and Y into intervals on the
timescale we must know:

Origin: The date where the time scale is 0:

I Age — 0 at date of birth

I Disease duration — 0 at date of diagnosis

I Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

I 1-year classes? 5-year classes?

I Equal length?

Aim: Separate rate in each interval
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Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

I Age bands: 10-years intervals of current age.

I Split Y for every subject accordingly

I Treat each segment as a separate unit of
observation.

I Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Timescales

I A timescale is a variable that varies
deterministically within each person during
follow-up:

I Age
I Calendar time
I Time since treatment
I Time since relapse

I All timescales advance at the same pace
(1 year per year . . . )

I Note: Cumulative exposure is not a timescale.
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Follow-up on several timescales

I The risk-time is the same on all timescales

I Only need the entry point on each time scale:
I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

I Response variable in analysis of rates:

(d , y) (event, duration)

I Covariates in analysis of rates:
I timescales
I other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1

2 640 2 1896.23 1 1945.77 20 1964.37 1

3 3425 1 1886.97 2 1955.18 0 1956.59 1

4 4017 2 1936.81 2 1957.61 0 1992.14 2

...

Timescales of interest:

I Age
I Calendar time
I Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 3 20 23 20 512.59 23
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> plot( thL, lwd=3 )
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Lexis diagram

> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast], grid=T )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )Representation of follow-up data (time-split) 92/ 220

Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
...
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plot( spl2, c(1,3), col="black", lwd=2 )

age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Likelihood for a piecewise constant rate

I This setup is for a situation where it is assumed
that rates are constant in each of the intervals.

I Each observation in the dataset contributes a
term to a “Poisson” likelihood.

I Models can include fixed covariates, as well as
the timescales (the left end-points of the
intervals) as continuous variables.

I Rates are assumed to vary by timescales:
I continuously
I non-linearly

I Rates can vary along several timescales
simultaneously.
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Where is (dpi , ypi) in the split data?
Likelihood is dpi log(λpi)− λpiypi
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1
...

— and what are covariates for the rates?
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Analysis of results

I dpi — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

I ypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

I Covariates are:
I timescales (age, period, time in study)
I other variables for this person (constant or

assumed constant in each interval).

I Model rates using the covariates in glm:
— no difference between time-scales and other
covariates.
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Survival analysis

I Response variable: Time to event, T

I Censoring time, Z

I We observe (min(T ,Z ), δ = 1{T < Z}).

I This gives time a special status, and mixes the
response variable (risk)time with the covariate
time(scale).

I Originates from clinical trials where everyone
enters at time 0, and therefore Y = T −0 = T
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The life table method

The simplest analysis is by the “life-table method”:

interval alive dead cens.
i ni di li pi

1 77 5 2 5/(77− 2/2)= 0.066
2 70 7 4 7/(70− 4/2)= 0.103
3 59 8 1 8/(59− 1/2)= 0.137

pi = P {death in interval i} = 1− di/(ni − li/2)

S (t) = (1− p1)× · · · × (1− pt)
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Population life table, DK 1997–98

Men Women

a S(a) λ(a) E[`res(a)] S(a) λ(a) E[`res(a)]

0 1.00000 567 73.68 1.00000 474 78.65
1 0.99433 67 73.10 0.99526 47 78.02
2 0.99366 38 72.15 0.99479 21 77.06
3 0.99329 25 71.18 0.99458 14 76.08
4 0.99304 25 70.19 0.99444 14 75.09
5 0.99279 21 69.21 0.99430 11 74.10
6 0.99258 17 68.23 0.99419 6 73.11
7 0.99242 14 67.24 0.99413 3 72.11
8 0.99227 15 66.25 0.99410 6 71.11
9 0.99213 14 65.26 0.99404 9 70.12

10 0.99199 17 64.26 0.99395 17 69.12
11 0.99181 19 63.28 0.99378 15 68.14
12 0.99162 16 62.29 0.99363 11 67.15
13 0.99147 18 61.30 0.99352 14 66.15
14 0.99129 25 60.31 0.99338 11 65.16
15 0.99104 45 59.32 0.99327 10 64.17
16 0.99059 50 58.35 0.99317 18 63.18
17 0.99009 52 57.38 0.99299 29 62.19
18 0.98957 85 56.41 0.99270 35 61.21
19 0.98873 79 55.46 0.99235 30 60.23
20 0.98795 70 54.50 0.99205 35 59.24
21 0.98726 71 53.54 0.99170 31 58.27
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Danish life tables 1997−1998

log2[mortality per 105 (40−85 years)]

Men: −14.289 + 0.135 age

Women: −14.923 + 0.135 age
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Observations for the lifetable
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Life table is based on
person-years and deaths
accumulated in a short period.

Age-specific rates —
cross-sectional!

Survival function:

S (t) = e−
∫ t

0
λ(a) da = e−

∑t
0 λ(a)

— assumes stability of rates to be
interpretable for actual persons.
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This is a Lexis diagram.
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Observations for the lifetable
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Life table approach

individual.

I The population experience:
D : Deaths (events).
Y : Person-years (risk time).

I The classical lifetable analysis compiles these
for prespecified intervals of age, and computes
age-specific mortality rates.

I Data are collected crossectionally, but
interpreted longitudinally.

I The rates are the basic building bocks — used
for construction of:

I RRs
I cumulative measures (survival and risk)
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Summary

I Follow-up studies observe time to event
I — in the form of empirical rates, (d , y) for

small interval
I each interval (empirical rate) has covariates

attached
I each interval contribute d log(λ)− λy
I — like a Poisson observation d with mean λy
I identical covariates: pool obervations to
D =

∑
D ,Y =

∑
y

I — like a Poisson obervation D with mean λY
I the result is an estimate of the rate λ
I from a model where rates are constant within

intervals — but varies between intervals.
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Classical estimators:
Kaplan-Meier
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km-na

The Kaplan-Meier Method

I The most common method of estimating the
survival function.

I A non-parametric method.

I Divides time into small intervals where the
intervals are defined by the unique times of
failure (death).

I Based on conditional probabilities as we are
interested in the probability a subject surviving
the next time interval given that they have
survived so far.
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Example of KM Survival Curve from BMJ

BMJ 1998;316:1935-1938

Kaplan-Meier curve from an RCT of patients with
pancreatic cancer
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Kaplan–Meier method illustrated

(• = failure and × = censored):

-

Time
× • × ×•

50N = 49 46

61.0Cumulative
survival

probability

I Steps caused by multiplying by
(1− 1/49) and (1− 1/46) respectively

I Late entry can also be dealt with
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Using R: Surv()

library( survival )
data( lung )
head( lung, 3 )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

with( lung, Surv( time, status==2 ) )[1:10]

[1] 306 455 1010+ 210 883 1022+ 310 361 218 166

( s.km <- survfit( Surv( time, status==2 ) ~ 1 , data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228 165 310 285 363

plot( s.km )
abline( v=310, h=0.5, col="red" )
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cox

The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals
contribute to (some of) the range of t .

I Conceptually it is less clear — t is but a
covariate that varies within each individual.
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Cox-likelihood

The partial likelihood for the regression parameters:

`(β) =
∑

death times

log

(
exdeathβ∑
i∈Rt

exiβ

)

I This is David Cox’s invention.

I Extremely efficient from a computational point
of view.

I The baseline hazard is bypassed (profiled out).
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Proportional Hazards model

I The baseline hazard rate, λ0(t), is the hazard
rate when all the covariates are 0.

I The form of the above equation means that
covariates act multiplicatively on the baseline
hazard rate.

I Time is a covariate (albeit with special status).

I The baseline hazard is a function of time and
thus varies with time.

I No assumption about the shape of the
underlying hazard function.

I — but you will never see the shape. . .

The Cox model (cox) 116/ 220

Interpreting Regression Coefficients

I If xj is binary exp(βj ) is the estimated hazard
ratio for subjects corresponding to xj = 1
compared to those where xj = 0.

I If xj is continuous exp(βj ) is the estimated
increase/decrease in the hazard rate for a unit
change in xj .

I With more than one covariate interpretation is
similar, i.e. exp(βj ) is the hazard ratio for
subjects who only differ with respect to
covariate xj .
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Fitting a Cox- model in R

library( survival )
data(bladder)
bladder <- subset( bladder, enum<2 )
head( bladder)

id rx number size stop event enum
1 1 1 1 3 1 0 1
5 2 1 2 1 4 0 1
9 3 1 1 1 7 0 1
13 4 1 5 1 10 0 1
17 5 1 4 1 6 1 1
21 6 1 1 1 14 0 1
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Fitting a Cox-model in R

c0 <- coxph( Surv(stop,event) ~ number + size, data=bladder )
c0

Call:
coxph(formula = Surv(stop, event) ~ number + size, data = bladder)

coef exp(coef) se(coef) z p
number 0.2049 1.2274 0.0704 2.91 0.0036
size 0.0613 1.0633 0.1033 0.59 0.5525

Likelihood ratio test=7.04 on 2 df, p=0.0296
n= 85, number of events= 47
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Plotting the base survival in R

plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )

The plot.coxph plots the survival curve for a
person with an average covariate value

— which is not the average survival for the
population considered. . .

— and not necessarily meaningful
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Plotting the base survival in R

You can plot the survival curve for specific values of
the covariates, using the newdata= argument:

plot( survfit(c0) )
lines( survfit(c0), conf.int=F, lwd=3 )
lines( survfit(c0, newdata=data.frame(number=1,size=1)),

lwd=2, col="limegreen" )
text( par("usr")[2]*0.98, 1.00, "number=1,size=1",

col="limegreen", font=2, adj=1 )
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Who needs the Cox-model
anyway?
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WntCma

The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals
contribute to (some of) the range of t .

I Conceptually it is less clear — t is but a
covariate that varies within individual.
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Cox-likelihood

The (partial) log-likelihood for the regression
parameters:

`(β) =
∑

death times

log

(
eηdeath∑
i∈Rt

eηi

)

is also a profile likelihood in the model where
observation time has been subdivided in small pieces
(empirical rates) and each small piece provided with
its own parameter:

log
(
λ(t , x )

)
= log

(
λ0(t)

)
+ x ′β = αt + η
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The Cox-likelihood as profile likelihood

I Regression parameters describing the effect of
covariates (other than the chosen underlying
time scale).

I One parameter per death time to describe the
effect of time (i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+β1x1i+· · ·+βpxpi = αt+ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs
I Insert in likelihood, now only a function of data

and βs
I Turns out to be Cox’s partial likelihood
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I Suppose the time scale has been divided into
small intervals with at most one death in each.

I Assume w.l.o.g. the ys in the empirical rates
all are 1.

I Log-likelihood contributions that contain
information on a specific time-scale parameter
αt will be from:

I the (only) empirical rate (1, 1) with the death
at time t .

I all other empirical rates (0, 1) from those who
were at risk at time t .
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Note: There is one contribution from each person
at risk to this part of the log-likelihood:

`t(αt , β) =
∑

i∈Rt

di log(λi(t))− λi(t)yi

=
∑

i∈Rt

{
di(αt + ηi)− eαt+ηi

}

= αt + ηdeath − eαt

∑

i∈Rt

eηi

where ηdeath is the linear predictor for the person
that died.
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The derivative w.r.t. αt is:

Dαt
`(αt , β) = 1−eαt

∑

i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for
αt , we get the profile likelihood (with αt “profiled
out”):

log

(
1∑

i∈Rt
eηi

)
+ηdeath−1 = log

(
eηdeath∑
i∈Rt

eηi

)
−1

which is the same as the contribution from time t
to Cox’s partial likelihood.
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely,

I modelling one covariate, the time-scale, with
one parameter per distinct value,

I profiling these parameters out and maximizing
the profile likelihood,

I regression parameters are the same as in the
full model with all the interval-specific
parameters

I Subsequently, one may recover the effect of the
timescale by smoothing an estimate of the
cumulative sum of these.
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Sensible modelling

Replace the αts by a parmetric function f (t) with a
limited number of parameters, for example:

I Piecewise constant

I Splines (linear, quadratic or cubic)

I Fractional polynomials

Use Poisson modelling software on a dataset of
empirical rates for small intervals (ys).
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Splitting the dataset

I The Poisson approach needs a dataset of
empirical rates with small values of y .

I Larger than the original: each individual
contributes many empirical rates. From each
empirical rate we get:

I Poisson-response d
I Risk time y
I Covariate value for the timescale

(time since entry, current age, current date, . . . )
I other covariates
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Example: Mayo Clinic lung cancer
> library( survival ) ; library( Epi )
> data( lung )
> head( lung )
inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0
> Lx <- Lexis( exit=list( tfd=time), exit.status=(status==2), data=lung )
NOTE: entry is assumed to be 0 on the tfd timescale.
> summary( Lx, scale=365.25 )
Transitions:

To
From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 63 165 228 165 190.54 228

> Sx <- splitLexis( Lx, "tfd", breaks=c(0,unique(Lx$time)) )
> summary( Sx, scale=365.25 )
Transitions:

To
From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 19857 165 20022 165 190.54 228Who needs the Cox-model anyway? (WntCma) 133/ 220

Mayo clinic lung cancer data

Smoothing by natural splines with 5 parameters,
knots at 0, 25, 100, 500, 1000 days:
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crv-mod

Testis cancer
Testis cancer in Denmark:

> options( show.signif.stars=FALSE )
> library( Epi )
> data( testisDK )
> str( testisDK )

'data.frame': 4860 obs. of 4 variables:
$ A: num 0 1 2 3 4 5 6 7 8 9 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: num 1 1 0 1 0 0 0 0 0 0 ...
$ Y: num 39650 36943 34588 33267 32614 ...

> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33
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Cases, PY and rates
> stat.table( list(A=floor(A/10)*10,
+ P=floor(P/10)*10),
+ list( D=sum(D),
+ Y=sum(Y/1000),
+ rate=ratio(D,Y,10^5) ),
+ margins=TRUE, data=testisDK )

------------------------------------------------------------------------
--------------------------------P--------------------------------

A 1940 1950 1960 1970 1980 1990 Total
------------------------------------------------------------------------
0 10.00 7.00 16.00 18.00 9.00 10.00 70.00

2604.66 4037.31 3884.97 3820.88 3070.87 2165.54 19584.22
0.38 0.17 0.41 0.47 0.29 0.46 0.36

10 13.00 27.00 37.00 72.00 97.00 75.00 321.00
2135.73 3505.19 4004.13 3906.08 3847.40 2260.97 19659.48

0.61 0.77 0.92 1.84 2.52 3.32 1.63

20 124.00 221.00 280.00 535.00 724.00 557.00 2441.00
2225.55 2923.22 3401.65 4028.57 3941.18 2824.58 19344.74

5.57 7.56 8.23 13.28 18.37 19.72 12.62

30 149.00 288.00 377.00 624.00 771.00 744.00 2953.00
2195.23 3058.81 2856.20 3410.58 3968.81 2728.35 18217.97

6.79 9.42 13.20 18.30 19.43 27.27 16.21

40 95.00 198.00 230.00 334.00 432.00 360.00 1649.00
1874.92 2980.15 2986.83 2823.11 3322.59 2757.72 16745.30

5.07 6.64 7.70 11.83 13.00 13.05 9.85

50 40.00 79.00 140.00 151.00 193.00 155.00 758.00
1442.85 2426.54 2796.60 2813.32 2635.00 2069.18 14183.49

2.77 3.26 5.01 5.37 7.32 7.49 5.34

60 29.00 43.00 54.00 83.00 82.00 44.00 335.00
1041.94 1711.79 2055.08 2358.05 2357.28 1564.98 11089.13

2.78 2.51 2.63 3.52 3.48 2.81 3.02

70 18.00 26.00 35.00 41.00 40.00 32.00 192.00
537.62 967.88 1136.06 1336.95 1538.02 1100.86 6617.39
3.35 2.69 3.08 3.07 2.60 2.91 2.90

80 7.00 9.00 13.00 19.00 18.00 21.00 87.00
133.57 261.61 346.26 423.50 504.20 414.61 2083.75
5.24 3.44 3.75 4.49 3.57 5.06 4.18

Total 485.00 898.00 1182.00 1877.00 2366.00 1998.00 8806.00
14192.04 21872.50 23467.78 24921.03 25185.34 17886.80 127525.49

3.42 4.11 5.04 7.53 9.39 11.17 6.91
------------------------------------------------------------------------
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Linear effects in glm
How do rates depend on age?

> ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -9.7755 0.0207 -472.3164 0 -9.8160 -9.7349
A 0.0055 0.0005 11.3926 0 0.0045 0.0064

> round( ci.exp( ml ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0001 0.0001 0.0001
A 1.0055 1.0046 1.0064

Linear increase of log-rates by age
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Linear effects in glm

> nd <- data.frame( A=15:60, Y=10^5 )
> pr <- ci.pred( ml, newdata=nd )
> head( pr )

Estimate 2.5% 97.5%
1 6.170105 5.991630 6.353896
2 6.204034 6.028525 6.384652
3 6.238149 6.065547 6.415662
4 6.272452 6.102689 6.446937
5 6.306943 6.139944 6.478485
6 6.341624 6.177301 6.510319

> matplot( nd$A, pr,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Linear effects in glm

> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -9.7755 0.0207 -472.3164 0 -9.8160 -9.7349
A 0.0055 0.0005 11.3926 0 0.0045 0.0064

> Cl <- cbind( 1, nd$A )
> head( Cl )

[,1] [,2]
[1,] 1 15
[2,] 1 16
[3,] 1 17
[4,] 1 18
[5,] 1 19
[6,] 1 20

> matplot( nd$A, ci.exp( ml, ctr.mat=Cl ),
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Linear effects in glm
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> matplot( nd$A, pr,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Linear effects in glm
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> matplot( nd$A, ci.exp( ml, ctr.mat=Cl )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Quadratic effects in glm

How do rates depend on age?

> mq <- glm( D ~ A + I(A^2),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( mq ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -12.3656 0.0596 -207.3611 0 -12.4825 -12.2487
A 0.1806 0.0033 54.8290 0 0.1741 0.1871
I(A^2) -0.0023 0.0000 -53.7006 0 -0.0024 -0.0022

> round( ci.exp( mq ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0000 0.0000 0.0000
A 1.1979 1.1902 1.2057
I(A^2) 0.9977 0.9976 0.9978
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Quadratic effect in glm

> round( ci.lin( mq ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -12.3656 0.0596 -207.3611 0 -12.4825 -12.2487
A 0.1806 0.0033 54.8290 0 0.1741 0.1871
I(A^2) -0.0023 0.0000 -53.7006 0 -0.0024 -0.0022

> Cq <- cbind( 1, 15:60, (15:60)^2 )
> head( Cq, 4 )

[,1] [,2] [,3]
[1,] 1 15 225
[2,] 1 16 256
[3,] 1 17 289
[4,] 1 18 324

> matplot( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Quadratic effect in glm
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> matplot( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
> matlines( nd$A, ci.exp( ml, ctr.mat=Cl )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Spline effects in glm

> library( splines )
> ms <- glm( D ~ Ns(A,knots=seq(15,65,10)),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( ms ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.548 7.650 9.551
Ns(A, knots = seq(15, 65, 10))2 5.706 4.998 6.514
Ns(A, knots = seq(15, 65, 10))3 1.002 0.890 1.128
Ns(A, knots = seq(15, 65, 10))4 14.402 11.896 17.436
Ns(A, knots = seq(15, 65, 10))5 0.466 0.429 0.505

> aa <- 15:65
> As <- Ns( aa, knots=seq(15,65,10) )
> head( As )

1 2 3 4 5
[1,] 0.0000000000 0 0.00000000 0.00000000 0.00000000
[2,] 0.0001666667 0 -0.02527011 0.07581034 -0.05054022
[3,] 0.0013333333 0 -0.05003313 0.15009940 -0.10006626
[4,] 0.0045000000 0 -0.07378197 0.22134590 -0.14756393
[5,] 0.0106666667 0 -0.09600952 0.28802857 -0.19201905
[6,] 0.0208333333 0 -0.11620871 0.34862613 -0.23241742
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Spline effects in glm
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> matplot( aa, ci.exp( ms, ctr.mat=cbind(1,As) )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
> matlines( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )

Multiple time scales and continuous rates (crv-mod) 146/ 220

Adding a linear period effect
> msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P,
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( msp ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -58.105 1.444 -40.229 0.000 -60.935 -55.274
Ns(A, knots = seq(15, 65, 10))1 2.120 0.057 37.444 0.000 2.009 2.231
Ns(A, knots = seq(15, 65, 10))2 1.700 0.068 25.157 0.000 1.567 1.832
Ns(A, knots = seq(15, 65, 10))3 0.007 0.060 0.110 0.913 -0.112 0.125
Ns(A, knots = seq(15, 65, 10))4 2.596 0.097 26.631 0.000 2.405 2.787
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.748 0.000 -0.861 -0.698
P 0.024 0.001 32.761 0.000 0.023 0.025
> Ca <- cbind( 1, Ns( aa, knots=seq(15,65,10) ), 1970 )
> head( Ca )

1 2 3 4 5
[1,] 1 0.0000000000 0 0.00000000 0.00000000 0.00000000 1970
[2,] 1 0.0001666667 0 -0.02527011 0.07581034 -0.05054022 1970
[3,] 1 0.0013333333 0 -0.05003313 0.15009940 -0.10006626 1970
[4,] 1 0.0045000000 0 -0.07378197 0.22134590 -0.14756393 1970
[5,] 1 0.0106666667 0 -0.09600952 0.28802857 -0.19201905 1970
[6,] 1 0.0208333333 0 -0.11620871 0.34862613 -0.23241742 1970
> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )Multiple time scales and continuous rates (crv-mod) 147/ 220

Adding a linear period effect
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> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
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Adding a linear period effect
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> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
> matlines( nd$A, ci.pred( ms, newdata=nd ),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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The period effect
> round( ci.lin( msp ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -58.105 1.444 -40.229 0.000 -60.935 -55.274
Ns(A, knots = seq(15, 65, 10))1 2.120 0.057 37.444 0.000 2.009 2.231
Ns(A, knots = seq(15, 65, 10))2 1.700 0.068 25.157 0.000 1.567 1.832
Ns(A, knots = seq(15, 65, 10))3 0.007 0.060 0.110 0.913 -0.112 0.125
Ns(A, knots = seq(15, 65, 10))4 2.596 0.097 26.631 0.000 2.405 2.787
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.748 0.000 -0.861 -0.698
P 0.024 0.001 32.761 0.000 0.023 0.025
> pp <- seq(1945,1995,0.2)
> Cp <- cbind( pp ) - 1970
> head( Cp )

pp
[1,] -25.0
[2,] -24.8
[3,] -24.6
[4,] -24.4
[5,] -24.2
[6,] -24.0
> ci.exp( msp, subset="P" )
exp(Est.) 2.5% 97.5%

P 1.024235 1.022769 1.025704
> matplot( pp, ci.exp( msp, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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Period effect
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> matplot( pp, ci.exp( msp, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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A quadratic period effect
> mspq <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( mspq ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.356 7.478 9.337
Ns(A, knots = seq(15, 65, 10))2 5.513 4.829 6.295
Ns(A, knots = seq(15, 65, 10))3 1.006 0.894 1.133
Ns(A, knots = seq(15, 65, 10))4 13.439 11.101 16.269
Ns(A, knots = seq(15, 65, 10))5 0.458 0.422 0.497
P 2.189 1.457 3.291
I(P^2) 1.000 1.000 1.000
> Cq <- cbind( pp-1970, pp^2-1970^2 )
> head( Cq )

[,1] [,2]
[1,] -25.0 -97875.00
[2,] -24.8 -97096.96
[3,] -24.6 -96318.84
[4,] -24.4 -95540.64
[5,] -24.2 -94762.36
[6,] -24.0 -93984.00
> ci.exp( mspq, subset="P" )

exp(Est.) 2.5% 97.5%
P 2.1893078 1.4566021 3.2905821
I(P^2) 0.9998075 0.9997042 0.9999107
> matplot( pp, ci.exp( mspq, subset="P", ctr.mat=Cq ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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A quadratic period effect
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> matplot( pp, ci.exp( mspq, subset="P", ctr.mat=Cq ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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A spline period effect

Because we have the age-effect with the rate
dimension, the period effect is a RR

> msps <- glm( D ~ Ns(A,knots=seq(15,65,10)) +
+ Ns(P,knots=seq(1950,1990,10),ref=1970),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( msps ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.327 7.452 9.305
Ns(A, knots = seq(15, 65, 10))2 5.528 4.842 6.312
Ns(A, knots = seq(15, 65, 10))3 1.007 0.894 1.133
Ns(A, knots = seq(15, 65, 10))4 13.447 11.107 16.279
Ns(A, knots = seq(15, 65, 10))5 0.458 0.422 0.497
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)1 1.711 1.526 1.918
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)2 2.190 2.028 2.364
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)3 3.222 2.835 3.661
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)4 2.299 2.149 2.459
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A spline period effect

> Cp <- Ns( pp, knots=seq(1950,1990,10),ref=1970)
> head( Cp, 4 )

1 2 3 4
[1,] -0.6666667 0.0142689462 -0.5428068 0.3618712
[2,] -0.6666667 0.0091980207 -0.5275941 0.3517294
[3,] -0.6666667 0.0041270951 -0.5123813 0.3415875
[4,] -0.6666667 -0.0009438304 -0.4971685 0.3314457

> ci.exp( msps, subset="P" )

exp(Est.) 2.5% 97.5%
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)1 1.710808 1.525946 1.918065
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)2 2.189650 2.027898 2.364303
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)3 3.221563 2.835171 3.660614
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)4 2.298946 2.149148 2.459186

> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Period effect

> par( mfrow=c(1,2) )
> matplot( aa, ci.pred( msps, newdata=data.frame(A=aa,P=1970,Y=10^5) ),
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", xlab="Date", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Age and period effect
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Period effect

> par( mfrow=c(1,2) )
> matplot( aa, ci.pred( msps, newdata=data.frame(A=aa,P=1970,Y=10^5) ),
+ log="y", xlab="Age",
+ ylim=c(2,20), xlim=c(15,65),
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", xlab="Date",
+ ylim=c(2,20)/sqrt(2*20), xlim=c(15,65)+1930,
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Age and period effect with ci.exp

I In rate models there is always one term with
the rate dimension — usually age

I But it must refer to a specific reference value
for all other variables (P).

I All parameters must be used in computing
rates, at some reference value(s).

I For the “other” variables, report the RR
relative to the reference point.

I Only parameters relevant for the variable (P)
used.

I Contrast matrix is a difference between
(splines at) the prediction points and the
reference point.
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Likelihood for multistate
follow-up

Modern Demographic
Methods in Epidemiology
with R
23 November 2015
University of Melbourne
http://BendixCarstensen/AdvCoh/Melb-2015

ms-lik

Likelihood for transition through states

A −→ B −→ C −→
I given start of observation in A at time t0
I transitions at times tB and tC
I survival in C till (at least) time tx :

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

I Product of likelihood contributions for each
transition
— each one as for a survival model
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Likelihood contributions reflected in Lexis object

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

lex.id time lex.dur lex.Cst lex.Xst
1 t_0 t_B - t_0 A B
1 t_B t_C - t_B B C
1 t_C t_x - t_C C C
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Competing risks

But you may die from more than one cause
(or move to more than one state):

Alive

Cause A

Cause B

Cause C

�
�
�
�
�
��3

-

Q
Q
Q
Q
Q
QQs

λA

λB

λC
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Cause-specific intensities

λA(t) = limh→0
P {death from cause A in (t , t + h] | alive at t}

h

λB(t) = limh→0
P {death from cause B in (t , t + h] | alive at t}

h

λC (t) = limh→0
P {death from cause C in (t , t + h] | alive at t}

h

Total mortality rate:

λTotal(t) = limh→0
P {death from any cause in (t , t + h] | alive at t}

h
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Cause-specific intensities

For small h, P {2 events in (t , t + h]} ≈ 0, so:

P {death from any cause in (t , t + h] | alive at t}

= P {death from cause A in (t , t + h] | alive at t}+

P {death from cause B in (t , t + h] | alive at t}+

P {death from cause C in (t , t + h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC (t)

Intensities are additive,
if they all refer to the
same risk set, in this case “Alive”.
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Likelihood for competing risks

Data:
Y - person years in “Alive”
DA - deaths from cause A
DB - deaths from cause B
DC - deaths from cause C

Now, assume for a start that transition rates
between states are constant.
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Likelihood for competing risks

A survivor contributes to the log-likelihood:

log(P {Survival for a time of y}) = −(λA+λB+λC )y

A death from cause A contributes an additional
log(λA), from cause B an additional log(λB) etc.

The total log-likelihood is then:

`(λA, λB , λC ) =DAlog(λA) + DB log(λB) + DC log(λC )

− (λA + λB + λC )Y

=[DAlog(λA)− λAY ]+

[DB log(λB)− λBY ]+

[DC log(λC )− λCY ]
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Components of the likelihood

The log-likelihood is made up of three contributions:
I one for cause A,

I one for cause B and

I one for cause C

Deaths are the cause-specific deaths,

but the person-years are the same in all
contributions.

The person-years appear once for each transition
out of a state.
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Likelihood for multiple states

I Product of likelihoods for each transition
— each one as for a survival model

I conditional on being alive at (observed) entry
to current state

I Risk time is the risk time in the current
(“From”, lex.Cst) state

I Events are transitions to the “To” state
(lex.Xst)

I All other transitions out of “From” are treated
as censorings (but they are not)

I Fit models separately for each transition or
jointly for all
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Time varying rates:

I The same type of analysis as with a constant
rates, but data must be

I split in intervals sufficiently small to justify an
assumption of constant rate (intensity),

I the model should allow for a separate rate for
each interval,

I but constrained to follow model with a smooth
effect of the time-scale values allocated to each
interval.
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Practical implications

I Empirical rates ((d , y) from each individual)
will be the same for all analyses except for
those where deaths occur.

I Analysis of cause A:
I Contributions (1, y) only for those intervals where

a cause A death occurs.
I Intervals with cause B or C deaths (or no deaths)

contribute only (0, y)
treated as censorings.
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original expanded
------------------------------- ---------------------
id time cause xx d.A d.B d.C id time dd xx Tr
1 1 B 0.50 0 1 0 1 1 0 0.50 A
2 1 NA 1.00 0 0 0 2 1 0 1.00 A
3 8 B -1.74 0 1 0 3 8 0 -1.74 A
4 3 A -0.55 1 0 0 4 3 1 -0.55 A
5 7 NA -0.58 0 0 0 5 7 0 -0.58 A
6 7 C -0.04 0 0 1 6 7 0 -0.04 A

1 1 1 0.50 B
2 1 0 1.00 B
3 8 1 -1.74 B
4 3 0 -0.55 B
5 7 0 -0.58 B
6 7 0 -0.04 B

1 1 0 0.50 C
2 1 0 1.00 C
3 8 0 -1.74 C
4 3 0 -0.55 C
5 7 0 -0.58 C
6 7 1 -0.04 C

. . . accomplished by stack.Lexis
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Lexis objects (data frame)

I Represents the follow-up

I lex.dur contains the total time at risk for
(any) event

I lex.Cst is the state in which this time is spent

I lex.Xst is the state to which a transition
occurs
— if no transition, the same as lex.Cst.

This is used for modelling of single transitions
between states — and multiple transitions with no
two originating in the same state.
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stacked.Lexis objects (data frame)

I Represents the likelihood contributions

I lex.dur contains the total time at risk for
(any) event

I lex.Tr is the transition to which the record
contributes

I lex.Fail is the event (failure) indicator for
the transition in question.

This is used for joint modelling of all transition in a
multistate set-up.

Particularly with several rates originating in the
same state (competing risks).
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Implemented in the stack.Lexis function:

> library( Epi )
> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> dml <- Lexis( entry = list(Per = dodm,
+ Age = dodm-dobth,
+ DMdur = 0 ),
+ exit = list(Per = dox ),
+ exit.status = factor(!is.na(dodth),
+ labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml, cut = dml$doins,
+ new.state = "Ins",
+ precursor = "DM" )
> summary( dmi )

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996

> boxes( dmi, boxpos = list(x=c(20,20,80),
+ y=c(80,20,50)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.1 )

Likelihood for multistate follow-up (ms-lik) 177/ 220



DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499

1,694
(36.9)

2,048
(44.6)

451
(53.8)

DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499

DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499
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Implemented in the stack.Lexis function:
> options( digits=3, width=200 )
> st.dmi <- stack( dmi )
> print( st.dmi[1:6,], row.names=F )
Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1999 58.7 0 11.080 DM DM DM->Ins FALSE 1 F 1940 1999 NA NA NA 2010
2003 64.1 0 6.689 DM DM DM->Ins FALSE 2 M 1939 2003 NA 2007 NA 2010
2005 86.3 0 5.446 DM DM DM->Ins FALSE 3 F 1918 2005 NA NA NA 2010
2009 44.0 0 0.736 DM DM DM->Ins FALSE 4 F 1965 2009 NA NA NA 2010
2009 75.8 0 1.344 DM DM DM->Ins FALSE 5 M 1933 2009 NA NA NA 2010
2008 80.0 0 2.037 DM Dead DM->Ins FALSE 6 F 1928 2008 2010 NA NA 2010
> str( st.dmi )
Classes 'stacked.Lexis' and 'data.frame': 21589 obs. of 16 variables:
$ Per : num 1999 2003 2005 2009 2009 ...
$ Age : num 58.7 64.1 86.3 44 75.8 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur : num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 3 1 1 3 1 ...
$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM->Dead",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth : num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "breaks")=List of 3
..$ Per : NULL
..$ Age : NULL
..$ DMdur: NULL
- attr(*, "time.scales")= chr "Per" "Age" "DMdur"
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Implemented in the stack.Lexis function:

> print( subset( dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins 15 M 1944 2003 NA NA 2005 2010
2005 60.9 2.8 4.643 Ins Ins 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins 28 F 1925 1999 2008 2001 2007 2008
2007 82.4 8.7 0.977 Ins Dead 28 F 1925 1999 2008 2001 2007 2008

> print( subset( st.dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead DM->Ins FALSE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Ins TRUE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Ins TRUE 28 F 1925 1999 2008 2001 2007 2008
1997 59.4 0.0 0.890 DM Dead DM->Dead TRUE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Dead FALSE 28 F 1925 1999 2008 2001 2007 2008
2005 60.9 2.8 4.643 Ins Ins Ins->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
2007 82.4 8.7 0.977 Ins Dead Ins->Dead TRUE 28 F 1925 1999 2008 2001 2007 2008
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Analysis of rates in multistate models

I Interactions between all covariates (including
time) and state (lex.Cst):
⇔ separate analyses of all transition rates.

I Only interaction between state (lex.Cst) and
time(scales):
⇔ same covariate effects for all causes
transitions, but separate baseline hazards —
“stratified model”.

I Main effect of state only (lex.Cst):
⇔ proportional hazards

I No effect of state:
⇔ identical baseline hazards — hardly ever
relevant.
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Analysis approaches and data
representation

I Lexis objects represents the precise follow-up
in the cohort, in states and along timescales

I — used for analysis of single transition rates.

I stacked.Lexis objects represents
contributions to the total likelihood

I — used for joint analysis of (all) rates in a
multistate setup

I . . . which is the case if you want to specify
common effects between different transitions.
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Assumptions in competing risks

“Classical” way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three
variables:
TA, TB and TC , representing times to death from
each of the three causes.
But at most one of these is observed.

Often it is stated that these must be assumed
independent in order to make the likelihood
machinery work

1. It is not necessary.
2. Independence can never be assessed from data.
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An account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp.
203–215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein
Putter:
Competing risks in epidemiology: possibilities and
pitfalls,

International Journal of Epidemiology ; 2012: pp. 1–10

Contains examples where both dependent and
independent “cause specific survival times” gives rise
to the same set of cause specific rates.
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Lifetime risk

Modern Demographic
Methods in Epidemiology
with R
23 November 2015
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DK-lung

Competing risk interpretation

The problems with competing risk models only
comes when estimated intensities (rates) are used to
produce probability statements.

Classical set-up in cancer-registries:

Well Lung cancer-λ

Common statement:

P {Lung cancer before age 75} = 1− e−Λ(75)

This is not quite right.
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How the world really looks

Well

Lung cancer

Dead

�
�
�
�
��3

?
Q
Q
Q
Q
QQs

λ

µ

ν

Illness-death model, mortality of lung cancer
patients (ν) not relevant here, we only want to find
out how many pass through “Lung cancer”
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How many get lung cancer before age a?
I

P {Lung cancer before age 75} 6= 1− e−Λ(75)

the r.h.s. does not take the possibility of death
prior to lung cancer into account.

I 1− e−Λ(75) often stated as the probability of
lung cancer before age 75, assuming all other
acuses of death absent.

I Lung cancer rates are however observed in a
mortal population.

I If all other causes of death were absent, this
would assume that lung cancer rates remained
the same.
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How it really is:

P {Lung cancer diagnosis before age a}

=

∫ a

0

P {Lung cancer at age u} du

=

∫ a

0

P {Lung cancer in age (u, u + du] | alive at u}
×P {alive at u without lung cancer} du

=

∫ a

0

λ(u)exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du
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Probability of lungcancer

The rates are easily plotted for inspection in R:

matplot( age, 1000*cbind( D/Y, lung/Y ),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per 1000 person-years" )
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The probablility that a person contracts lung cancer
before age a is:

∫ a

0

λ(u) exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du

=

∫ a

0

λ(u) exp

(
−
(
M(u) + Λ(u)

))
du

M(u) is the cumulative mortality rate.

Λ(u) is the cumulative lung cancer incidence rate.
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R-commands needed to do the calculations:

cr.death <- cumsum( D/Y )
cr.lung <- cumsum( lung/Y )
p.simple <- 1 - exp( -cr.lung )
p.lung <- cumsum( lung/Y *

exp( -(cr.death+cr.lung) ) )
matlines( age, 100*cbind( cr.lung, p.simple, p.lung ),

type="l", lty=1, lwd=2*c(2,2,3),
col=c("black","blue","red") )
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Assumptions

I The calculation and the statement “6% of
Danish males will get lung cancer” assumess
that the lung cancer rates and the mortality
rates in the file apply to a cohort of men.

I But they are cross-sectional rates, so the
assumption is one of steady state of:

1. mortality rates (which is dubious)
2. lung cancer incidence rates (which is appalling).

I However, the machinery can be applied to any
set of rates for competing risks, regardless of
how they were estimated.
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lifelost

Life expectancy

The expected lifetime (at birth) is the variable age
(a) integrated with respect to the distribution of
age at death:

EL =

∫ ∞

0

af (a) da

where f is the density of the distribution of lifetimes.

Simplest computed as the area under the survival
curve:

EL =

∫ ∞

0

S (a) da
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Life expectancy at age a

Use the conditional survival function, given alive at
age a

P(Survive till t |alive at a) = S (t)/S (a)

Life expectancy at age a:

EL(a) =

∫ ∞

a

S (t)/S (a) dt

— the area under the conditional survival function.
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Lifetime lost

— due to a disease is the difference between the
expected residual lifetime for a diseased person and
a non-diseased (well) person at the same age:

LL(a) =

∫ ∞

a

SWell(u)/SWell(a)−SDiseased(u)/SDiseased(a) du

Note that the survival for a “well” person, SWell(a)
must be defined:

I includes the possibility to become diseased
(increase mortality)

I or assumes immunity to the disease
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Lifetime lost using rates

I age-specific mortality rates λ(a)

I survival function S (a) = exp(−
∫ a

0 λ(u) du)

I residual lifetime EL(a) =
∫∞
a S (u) du)

I do for “well” and “dis”

I life lost at age a: LL(a) = ELwell(a)−ELdis(a)
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Lifetime lost in practice

I Compute mortality rates at age midpoints of
small intervals (1/10 year long, say):
0.05, 0.15, 0.25, . . . — λ(a), lambda

I Compute the integral by summing λ(a)× 0.1
cumsum(lambda*0.1) — Λ(a)

I Compute survival function as exp of minus this
S <- exp(-cumsum(lambda*0.1))

I Expected life time at age 40, say, is then the
integral of the conditionl survival:
sum(S[400:1000]/S[400])*0.1

I Compute both for well and dis, and subtract.
I — now you do the practical. . .
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ms-rep

Multistate models

I Outcomes are transitions between states, with
times

I Covariates are measurements and timescales

I Models describe the single transition rates

I Results are:

I Description of rates — how do they depend time
etc.

I Prediction of state occupancy:
What is the probability that a person is in a given
state at a given time?

I This illustrates the latter.
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Diabetes patient mortality

> library(Epi)
> data(DMlate)
> dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ),
+ exit = list(Per=dox),
+ exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.

> summary(dml)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
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. . . subdivided by insulin status

Split follow-up at insulin,
introduce a new timescale and
split non-precursor states:

> dmi <- cutLexis( dml, cut = dml$doins,
+ pre = "DM",
+ new.state = "Ins",
+ new.scale = "t.Ins",
+ split.states = TRUE )
> summary( dmi )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996

> boxes( dmi, boxpos=list(x=c(20,20,80,80),y=c(80,20,80,20)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.2 )
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Split the follow in 3-month intervals for modelling

> Si <- splitLexis( dmi, 0:60/4, "DMdur" )
> summary( Si )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 184986 1694 2048 0 188728 3742 45885.49 9899
Ins 0 34707 0 451 35158 451 8387.77 1791
Sum 184986 36401 2048 451 223886 4193 54273.27 9996

> summary( dmi )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996
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Define knots for spline modelling of the rates:
> nk <- 4
> ( ai.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
27.68241 49.61893 61.88364 75.56211
> ( ad.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
63.61875 74.98700 81.38501 89.26831
> ( di.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )
12.5% 37.5% 62.5% 87.5%
1.50 4.25 7.00 10.50
> ( dd.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
0.3778234 1.9582478 4.3370979 8.0232717
> ( td.kn <- with( subset(Si,lex.Xst=="Dead(Ins)"),
+ quantile( t.Ins+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
0.1759069 1.0095825 2.7939767 6.3579740
> library( splines )
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Fit Poisson models to transition rates

> DM.Ins <- glm( (lex.Xst=="Ins") ~ Ns( Age , knots=ai.kn ) +
+ Ns( DMdur, knots=di.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM") )
> DM.Dead <- glm( (lex.Xst=="Dead") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM") )
> Ins.Dead <- glm( (lex.Xst=="Dead(Ins)") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ Ns( t.Ins, knots=td.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="Ins") )
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Put the fitted models into an object representing
the transitions

> Tr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = DM.Dead ),
+ "Ins" = list( "Dead(Ins)" = Ins.Dead ) )
> lapply( Tr, names )

$DM
[1] "Ins" "Dead"

$Ins
[1] "Dead(Ins)"
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Define an initial object
— note the combination of select= and NULL

which ensures that the relevant attributes from the
Lexis object Si are carried over to ini (using
Si[NULL,1:9] will lose essential attributes )

> ini <- subset(Si,select=1:9)[NULL,]
> ini[1:2,"lex.Cst"] <- "DM"
> ini[1:2,"Per"] <- 1995
> ini[1:2,"Age"] <- 60
> ini[1:2,"DMdur"] <- 5
> ini[1:2,"sex"] <- c("M","F")
> ini

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 NA 1995 60 5 NA NA DM <NA> M
2 NA 1995 60 5 NA NA DM <NA> F
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Simulate 10,000 of each sex using the estimated
models in Tr:

> system.time(
+ simL <- simLexis( Tr, ini, time.pts=seq(0,11,0.5), N=10000 ) )

user system elapsed
28.347 0.096 28.441

> summary( simL )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 8919 6071 5010 0 20000 11081 150535.86 20000
Ins 0 4328 0 1743 6071 1743 33223.09 6071
Sum 8919 10399 5010 1743 26071 12824 183758.95 20000

> subset( simL, lex.id < 3 )

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex cens
1 1 1995.000 60.00000 5.000000 NA 11.000000 DM DM M 2006
2 2 1995.000 60.00000 5.000000 NA 4.303086 DM Ins M 2006
3 2 1999.303 64.30309 9.303086 0 6.696914 Ins Ins M 2006
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We now have a dataframe (Lexis object) with
simulated follow-up of 10,000 men and 10,000
women.

We then find the number of persons in each state at
a specified set of times.
> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.1), from=1995, time.scale="Per" )
> nSt

State
when DM Ins Dead Dead(Ins)
1995 10000 0 0 0
1995.1 9950 18 32 0
1995.2 9900 41 59 0
1995.3 9843 69 86 2
1995.4 9802 80 116 2
1995.5 9757 93 147 3
1995.6 9694 115 187 4
1995.7 9644 137 215 4
1995.8 9589 165 242 4
1995.9 9535 191 269 5
1996 9479 220 293 8
1996.1 9411 252 323 14
1996.2 9345 286 354 15
1996.3 9280 318 384 18
1996.4 9196 363 421 20
1996.5 9147 388 444 21
1996.6 9065 444 469 22
1996.7 8996 486 494 24
1996.8 8910 528 532 30
1996.9 8830 575 565 30
1997 8741 625 601 33
1997.1 8672 663 628 37
1997.2 8595 711 655 39
1997.3 8518 757 680 45
1997.4 8451 789 712 48
1997.5 8371 828 747 54
1997.6 8275 888 779 58
1997.7 8193 931 812 64
1997.8 8113 976 844 67
1997.9 8013 1042 872 73
1998 7938 1084 903 75
1998.1 7846 1141 934 79
1998.2 7774 1177 961 88
1998.3 7701 1206 992 101
1998.4 7599 1275 1018 108
1998.5 7505 1338 1041 116
1998.6 7420 1390 1066 124
1998.7 7331 1438 1093 138
1998.8 7246 1495 1113 146
1998.9 7155 1549 1142 154
1999 7083 1589 1168 160
1999.1 6984 1644 1204 168
1999.2 6900 1682 1240 178
1999.3 6822 1726 1262 190
1999.4 6732 1772 1292 204
1999.5 6646 1809 1323 222
1999.6 6578 1845 1344 233
1999.7 6514 1875 1366 245
1999.8 6438 1924 1388 250
1999.9 6375 1948 1418 259
2000 6308 1983 1439 270
2000.1 6240 2013 1468 279
2000.2 6167 2045 1496 292
2000.3 6099 2075 1523 303
2000.4 6030 2108 1546 316
2000.5 5977 2135 1564 324
2000.6 5925 2152 1587 336
2000.7 5884 2164 1602 350
2000.8 5827 2182 1627 364
2000.9 5776 2201 1648 375
2001 5717 2220 1679 384
2001.1 5653 2236 1709 402
2001.2 5597 2250 1740 413
2001.3 5531 2270 1773 426
2001.4 5483 2289 1793 435
2001.5 5436 2297 1813 454
2001.6 5394 2304 1835 467
2001.7 5342 2318 1859 481
2001.8 5297 2326 1885 492
2001.9 5250 2341 1909 500
2002 5215 2349 1924 512
2002.1 5166 2358 1948 528
2002.2 5129 2368 1965 538
2002.3 5086 2362 1993 559
2002.4 5022 2381 2028 569
2002.5 4980 2382 2052 586
2002.6 4922 2386 2091 601
2002.7 4874 2391 2115 620
2002.8 4831 2395 2139 635
2002.9 4792 2398 2160 650
2003 4754 2404 2179 663
2003.1 4722 2402 2198 678
2003.2 4691 2398 2217 694
2003.3 4650 2404 2242 704
2003.4 4617 2407 2261 715
2003.5 4587 2408 2278 727
2003.6 4551 2409 2297 743
2003.7 4514 2409 2318 759
2003.8 4478 2404 2338 780
2003.9 4442 2398 2360 800
2004 4409 2393 2384 814
2004.1 4384 2389 2396 831
2004.2 4342 2393 2421 844
2004.3 4316 2372 2441 871
2004.4 4284 2365 2456 895
2004.5 4243 2362 2485 910
2004.6 4214 2358 2504 924
2004.7 4179 2361 2524 936
2004.8 4148 2355 2545 952
2004.9 4116 2357 2565 962
2005 4081 2348 2589 982
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Show the cumulative prevalences in a different order
than that of the state-level ordering and plot them
using all defaults:

> pp <- pState( nSt, perm=c(1,2,4,3) )
> head( pp )

State
when DM Ins Dead(Ins) Dead
1995 1.0000 1.0000 1.0000 1
1995.1 0.9950 0.9968 0.9968 1
1995.2 0.9900 0.9941 0.9941 1
1995.3 0.9843 0.9912 0.9914 1
1995.4 0.9802 0.9882 0.9884 1
1995.5 0.9757 0.9850 0.9853 1

> plot( pp )
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We can show the results in an clearer way, buy
choosing colors wiser:

> clr <- c("orange2","forestgreen")
> par( las=1, mar=c(3,3,3,3) )
> plot( pp, col=clr[c(2,1,1,2)] )
> lines( as.numeric(rownames(pp)), pp[,2], lwd=2 )
> mtext( "60 year old male, diagnosed 1995", side=3, line=2.5, adj=0 )
> mtext( "Survival curve", side=3, line=1.5, adj=0 )
> mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1] )
> mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[2] )
> axis( side=4 )
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We could also use a Cox-model for the mortality
rates assuming the two mortality rates to be
proportional:

When we fit a Cox-model, lex.dur must be used in
the Surv() function, and the I() construction
must be used when specifying intermediate states as
covariates, since factors with levels not present in
the data will create NAs in the parameter vector
returned by coxph, which in return will crash the
simulation machinery.
> library( survival )
> Cox.Dead <- coxph( Surv( DMdur, DMdur+lex.dur,
+ lex.Xst %in% c("Dead(Ins)","Dead")) ~
+ Ns( Age-DMdur, knots=ad.kn ) +
+ I(lex.Cst=="Ins") +
+ I(Per-2000) + sex,
+ data = Si )
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> Cr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = Cox.Dead ),
+ "Ins" = list( "Dead(Ins)" = Cox.Dead ) )
> simL <- simLexis( Cr, ini, time.pts=seq(0,11,0.2), N=10000 )
> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.2), from=1995, time.scale="Per" )
> pp <- pState( nSt, perm=c(1,2,4,3) )
> plot( pp )
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Now your turn. . .
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