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Preface

This workshop will provide an introduction to basic epidemiological data manipulation in
population-based studies illustrated by prevalence and mortality measures

� The target audience is young epidemiologists starting work in diabetes epidemiological
research

� The prerequisites are

1. (desirable, but not necessary) a basic knowledge of R,

2. a working installation of R (latest version, 4.4.3)

3. a working installation of the latest version of the Epi package (2.59)

4. a working installation of the latest version of the popEpi package (0.4.12)

� The format of the workshop will be short lectures closely aligned with the topics in the
exercises. The exercises will be run in between the short lectures.

� The mood of the workshop will be relaxed, encouraging participants to ask questions
and bring forward problems they consider relevant for the workshop. Fortunately, there
will be the rest of the IDEG to interact.

Program of workshop

Each item on the program is a short(ish) lecture followed by computer practicals in R. The
timing of the items is approximate.

Thursday, April 3rd, 2025

10:15�10:20 Welcome and introdiction
10:20�10:40 Prevalence: tables
10:40�11:00 Prevalence: probability models
11:00�11:10 Mortality: concepts
11:10�11:30 Mortality: models for age
11:30�11:45 Mortality: models for duration
11:45�12:00 Mortality and survival

Practicalities

Exercises are given in green, and mostly the solutions will be included in this document too.
You can get the exercise code chunks from the workshop website
http://bendixcarstensen.com/AdvCoh/courses/IDEG2025/R

In the exercises a certain R-lingo will be used, in particular:

�<-� is pronounced �gets�

�fun(x)� is pronounced �fun of x��so when you hear �fun of. . . �, you type �fun( )� and
place the cursor between the brackets

If you want to know about the Rfunction funk, just type ?funk

http://bendixcarstensen.com/AdvCoh/courses/IDEG2025/R


Chapter 1

Prevalence

. . . is the fraction of a population that su�er a particular condition, diabetes for example.
In this exercise we will use data from the 2023 National Health Interview Survey, a copy is

available at https://bendixcarstensen.com/AdvCoh/courses/IDEG2025/data/?F=1 the
data is the .csv �le and the explanation of variables is the .pdf �le.
The data set consists of persons interviewed, and this exercise is using information on age,

sex and diabetes status.
You can learn more about the NHIS at https://www.cdc.gov/nchs/nhis/index.html

First load the R-packages needed:

> library(Epi)
> library(popEpi)
> library(survival)
> library(tidyverse)

R Epi popEpi
4.4.2 2.59 0.4.12

1.1 Data

Read the NHIS data�it is in .csv format so use read.csv, you need the header=TRUE to
indicate that the �rst line of data is the variable names:

> nhis <- read.csv(
+ "https://bendixcarstensen.com/AdvCoh/courses/IDEG2025/data/NHIS_IDEG.csv",
+ header = TRUE)

> str(nhis)

'data.frame': 29522 obs. of 10 variables:
$ HHX : chr "H029691" "H028812" "H045277" "H021192" ...
$ WTFA_A : num 7371 3147 10808 4662 10930 ...
$ SEX_A : int 1 1 1 2 2 2 2 1 2 1 ...
$ AGEP_A : int 67 73 48 42 50 46 36 44 80 61 ...
$ EDUCP_A : int 1 8 5 9 7 8 8 10 8 1 ...
$ DIBEV_A : int 2 1 2 2 2 2 2 2 2 2 ...
$ DIBAGETC_A : int NA 61 NA NA NA NA NA NA NA NA ...
$ DIFYRSTC1_A: int NA 12 NA NA NA NA NA NA NA NA ...
$ DIBTYPE_A : int NA 2 NA NA NA NA NA NA NA NA ...
$ BMICAT_A : int 3 3 4 3 2 3 2 4 4 3 ...

2
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> newn <- tolower(gsub("_A", "", names(nhis)))
> cbind(names(nhis), newn)

newn
[1,] "HHX" "hhx"
[2,] "WTFA_A" "wtfa"
[3,] "SEX_A" "sex"
[4,] "AGEP_A" "agep"
[5,] "EDUCP_A" "educp"
[6,] "DIBEV_A" "dibev"
[7,] "DIBAGETC_A" "dibagetc"
[8,] "DIFYRSTC1_A" "difyrstc1"
[9,] "DIBTYPE_A" "dibtype"

[10,] "BMICAT_A" "bmicat"

> names(nhis) <- newn
> str(nhis)

'data.frame': 29522 obs. of 10 variables:
$ hhx : chr "H029691" "H028812" "H045277" "H021192" ...
$ wtfa : num 7371 3147 10808 4662 10930 ...
$ sex : int 1 1 1 2 2 2 2 1 2 1 ...
$ agep : int 67 73 48 42 50 46 36 44 80 61 ...
$ educp : int 1 8 5 9 7 8 8 10 8 1 ...
$ dibev : int 2 1 2 2 2 2 2 2 2 2 ...
$ dibagetc : int NA 61 NA NA NA NA NA NA NA NA ...
$ difyrstc1: int NA 12 NA NA NA NA NA NA NA NA ...
$ dibtype : int NA 2 NA NA NA NA NA NA NA NA ...
$ bmicat : int 3 3 4 3 2 3 2 4 4 3 ...

code explained: The variable names are a bit awkward, so we de�ne a set of new ones by
removing the _A and turning all to lower case. We use cbind to show the old and the new
names juxtaposed before we replace the old with the new names. This is safer than using
one of the rename functions, partly because we do not rely on our own correct typing of old
and new names.

We also de�ne category labels for readable tables

> nhis <- mutate(nhis, dibev = factor(dibev, labels = c("Y","N","R","U")),
+ dibtype = factor(dibtype, labels = c("T1","T2","O","O","O")),
+ agr = cut(agep, seq(0, 100, 10), right = FALSE),
+ sex = factor(sex, labels = c("M","W","U","U")))
> str(nhis)

'data.frame': 29522 obs. of 11 variables:
$ hhx : chr "H029691" "H028812" "H045277" "H021192" ...
$ wtfa : num 7371 3147 10808 4662 10930 ...
$ sex : Factor w/ 3 levels "M","W","U": 1 1 1 2 2 2 2 1 2 1 ...
$ agep : int 67 73 48 42 50 46 36 44 80 61 ...
$ educp : int 1 8 5 9 7 8 8 10 8 1 ...
$ dibev : Factor w/ 4 levels "Y","N","R","U": 2 1 2 2 2 2 2 2 2 2 ...
$ dibagetc : int NA 61 NA NA NA NA NA NA NA NA ...
$ difyrstc1: int NA 12 NA NA NA NA NA NA NA NA ...
$ dibtype : Factor w/ 3 levels "T1","T2","O": NA 2 NA NA NA NA NA NA NA NA ...
$ bmicat : int 3 3 4 3 2 3 2 4 4 3 ...
$ agr : Factor w/ 10 levels "[0,10)","[10,20)",..: 7 8 5 5 6 5 4 5 9 7 ...
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code explained: mutate (re)de�nes variables in the data frame. Here we use factor to
attach labels to the numerical variables dibev (ever diabetes) and dibtype (type of
diabetes). The function cut groups the agep variable; the result is saved in a new variable,
agr. sex is de�ned as having three levels, Man, Woman, Unknown�note that the original
coding has 4 levels; the two last levels are combined as U.

1.2 Tables

Tabulate the diabetes status, and compute the prevalence of diabetes among those who have
replied either yes or no:

> (tb <- with(nhis, table(dibev, exclude = NULL)))

dibev
Y N R U

3294 26195 23 10

> tb["Y"] / (tb["Y"] + tb["N"]) * 100

Y
11.17027

code explained: The function with makes any variable mentioned after nhis refer to a
variable in the nhis data frame. Putting brackets around an assignment will print the
assigned value.
The square brackets (�[ ]�) are used for indexing of tables (and arrays), so [1:2, ]

selects the two �rst rows, [, 1:2] selects the two �rst columns (type 1 and type 2 diabetes)
and [, "N"] selects the column labeled "N".
The result is multiplied by 100 to get percentages.

A brief overview of persons' age (agr) and whether the person has diabetes or
not�age-speci�c prevalence of diabetes:

> with(nhis, table(Age = agr,
+ Diabetes = dibev,
+ exclude = NULL)) |> addmargins() -> diab
> diab

Diabetes
Age Y N R U Sum

[0,10) 0 0 0 0 0
[10,20) 3 426 0 0 429
[20,30) 44 3308 1 0 3353
[30,40) 132 4534 0 1 4667
[40,50) 281 3863 4 1 4149
[50,60) 528 3953 4 0 4485
[60,70) 976 4596 5 1 5578
[70,80) 920 3556 5 3 4484
[80,90) 408 1899 1 4 2312
[90,100) 2 60 3 0 65
Sum 3294 26195 23 10 29522



1.2 Tables Prevalence 5

code explained: table makes a table of agr versus dibev. addmargins is then by |>

applied to the result forming margins. Also, note that the assignment operator can be used
both ways: �<-� and �->�. One could argue that the latter is more logical: �rst do the
calculations, then assign.

We see that there are persons in the dataset with unknown diabetes status, so we compute
the prevalence only among persons with known diabetes status:

> (diab <- addmargins(diab[, 1:2], 2))

Diabetes
Age Y N Sum

[0,10) 0 0 0
[10,20) 3 426 429
[20,30) 44 3308 3352
[30,40) 132 4534 4666
[40,50) 281 3863 4144
[50,60) 528 3953 4481
[60,70) 976 4596 5572
[70,80) 920 3556 4476
[80,90) 408 1899 2307
[90,100) 2 60 62
Sum 3294 26195 29489

> cbind(round(diab[,"Y"] / diab[,"Sum"] * 100, 1))

[,1]
[0,10) NaN
[10,20) 0.7
[20,30) 1.3
[30,40) 2.8
[40,50) 6.8
[50,60) 11.8
[60,70) 17.5
[70,80) 20.6
[80,90) 17.7
[90,100) 3.2
Sum 11.2

code explained: addmargins puts margins on a table, in this case named �Sum�. We refer
to colums of the table by the names, a way to make the code readable, using 1 and 3 would
work equally well but be unreadable.

It would be useful to see the prevalence of type 1 and type 2 diabetes separately, so make a
table of dibtype versus agr�remember to consider the orientation of the table.

> with(nhis, table(agr, dibtype, exclude = NULL)) |> addmargins() -> dtyp
> dtyp

dibtype
agr T1 T2 O <NA> Sum

[0,10) 0 0 0 0 0
[10,20) 0 2 1 426 429
[20,30) 23 15 6 3309 3353
[30,40) 36 80 16 4535 4667
[40,50) 21 236 24 3868 4149
[50,60) 43 447 38 3957 4485
[60,70) 73 849 54 4602 5578
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[70,80) 49 818 53 3564 4484
[80,90) 24 341 43 1904 2312
[90,100) 0 1 1 63 65
Sum 269 2789 236 26228 29522

code explained: Using exclude=NULL causes the table to include NAs as a valid
category. The default is to omit observations with NA in any of the tabulation variables.

In order to get the prevalences, divide the two �rst columns with the last:

> round(100 * dtyp[, 1:2] / dtyp[, "Sum"], 1)

dibtype
agr T1 T2

[0,10)
[10,20) 0.0 0.5
[20,30) 0.7 0.4
[30,40) 0.8 1.7
[40,50) 0.5 5.7
[50,60) 1.0 10.0
[60,70) 1.3 15.2
[70,80) 1.1 18.2
[80,90) 1.0 14.7
[90,100) 0.0 1.5
Sum 0.9 9.4

What do you conclude about the prevalence of (known) T1 and T2 diabetes?

1.3 Probability

Above we de�ned prevalence as the fraction of a population that su�ered from a given
disease. In probabilistic terms prevalence can be formulated as the probability that a
randomly selected person has the disease. This opens the possibility of statistical modeling to
address the question on how the prevalence of diabetes depends on age and sex, for example.
First restrict the dataset to those with known diabetes status and sex.

> nh <- subset(nhis, dibev %in% c("Y", "N") & sex %in% c("M", "W"))
> str(nh)

'data.frame': 29483 obs. of 11 variables:
$ hhx : chr "H029691" "H028812" "H045277" "H021192" ...
$ wtfa : num 7371 3147 10808 4662 10930 ...
$ sex : Factor w/ 3 levels "M","W","U": 1 1 1 2 2 2 2 1 2 1 ...
$ agep : int 67 73 48 42 50 46 36 44 80 61 ...
$ educp : int 1 8 5 9 7 8 8 10 8 1 ...
$ dibev : Factor w/ 4 levels "Y","N","R","U": 2 1 2 2 2 2 2 2 2 2 ...
$ dibagetc : int NA 61 NA NA NA NA NA NA NA NA ...
$ difyrstc1: int NA 12 NA NA NA NA NA NA NA NA ...
$ dibtype : Factor w/ 3 levels "T1","T2","O": NA 2 NA NA NA NA NA NA NA NA ...
$ bmicat : int 3 3 4 3 2 3 2 4 4 3 ...
$ agr : Factor w/ 10 levels "[0,10)","[10,20)",..: 7 8 5 5 6 5 4 5 9 7 ...

code explained: Here we used subset; another possibility would be filter from the
tidyverse package. Note the %in% operator used to select speci�c values of dibev and sex.
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Then we can model the presence of diabetes with a binomial regression model (the default is
logistic regression):

> ma <- glm((dibev == "Y") ~ Ns(agep, knots = seq(30, 90,, 4)),
+ family = binomial,
+ data = nh)
> da <- data.frame(agep = 10:95)
> head(pa <- ci.pred(ma, da) * 100)

Estimate 2.5% 97.5%
1 0.4034395 0.2770811 0.5870824
2 0.4375991 0.3041219 0.6292888
3 0.4746372 0.3337856 0.6745235
4 0.5147940 0.3663231 0.7230036
5 0.5583292 0.4020088 0.7749616
6 0.6055237 0.4411424 0.8306467

> matshade(da[,"agep"], pa, plot = TRUE, lwd = 3, ylim = c(0, 25), yaxs = "i")

20 40 60 80
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10

15

20

25

x

y

Figure 1.1: Prevalence of diabetes in the NHIS. ../graph/prev-both
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code explained: The response variable in a binomial regression model can be either
numerical (0/1) or logical (FALSE/TRUE), but using a logical expression makes it clearer what
outcome is modeled, namely P{TRUE}.
Ns is a function that represents a quantitative argument (here agep) as a restricted cubic

spline, a function which is 3rd degree polynomials between each pair of the given knots,
smoothly joined together, and linear at the ends. The resulting parameters do not have any
interpretation, we need to make predictions for select values of the quantitative variable.
The predicted probabilities with con�dence intervals are derived by ci.pred.
matshade is a function that draws a curve with a shaded area to represent a con�dence

interval. The �rst argument is the x-values, the second argument is a matrix with 3
columns: (estimate, lower, upper).

Annotate the axes with sensible labels (xlab=).

Fit the model separately for men and women, and draw the estimated prevalences in the same
plot.

> Ma <- glm((dibev == "Y") ~ Ns(agep, knots = seq(30, 90,, 4)),
+ family = binomial,
+ data = subset(nh, sex == "M"))
> Wa <- update(Ma, data = subset(nh, sex == "W"))
> pM <- ci.pred(Ma, da)
> pW <- ci.pred(Wa, da)
> mw <- ci.ratio(pM, pW)

code explained: glm �ts the same logistic regression model as above, but now only for
men, using subset. The same model can be �tted for women using update, a function that
does the same as for Ma except for those parameters given. In this case only data=.
ci.pred returns the �tted values (that is prevalences) from the two models as functions of

ages as given in da.
Since the two models are �tted to separate datasets the two sets of predictions are

independent, hence we can use ci.ratio to compute the ratio of the predicted prevalences
and its standard error.

> par(mar = c(3,3,1,3))
> matshade(da$agep, cbind(pM, pW) * 100, col = c("blue", "red"),
+ plot = TRUE, lwd = 3, ylim = c(0, 25), yaxs = "i",
+ xlab = "Age (years)", ylab = "Prevalence of diabetes (%)")
> axis(side = 1, at = seq(15, 95, 5), labels = NA, tcl = -0.3)
> axis(side = 1, at = seq(10, 90,10), labels = NA, tcl = -0.5)
> #
> matshade(da$agep, mw * 5, lwd =3)
> lines(c(10,100), c(5,5))
> axis(side = 4, at = c(1, 1.5, 2) * 5, labels = c(1, 1.5, 2))
> axis(side = 4, at = seq(0.8, 2, 0.1) * 5, labels = NA, tcl = -0.3)

code explained: The �rst matshade draws the prevalences for men and women with
shaded con�dence intervals; cbind(pM, pW) puts the predictions side-by-side in a 6-column
matrix, so matshade plots two curves with shadows. plot=TRUE starts a new plot. The
axis(side=1 statements adds tick marks to the x-axis.
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Figure 1.2: Prevalence of diabetes in the NHIS. Red is women, blue is men, the black curve and

the scale on the right is the ratio of prevalences among men versus women ../graph/prev-m-w

The second matshade adds to the plot, namely the M/W prevalence ratio � multiplied
by 5 so that the M/W ratio of 1 is at 5% on the prevalence scale.
The axis(side=4 adds a new axis at the r.h.s. where the M/W ratio is 1, 1.5 and 2, the

second adds some tick marks.

What do you conclude from the graph?



Chapter 2

Mortality and survival

> library(Epi)
> library(popEpi)
> library(survival)
> library(tidyverse)

R Epi popEpi
4.4.2 2.59 0.4.12

2.1 Concepts

A mortality rate is the �force of mortality�, the rate with which deaths occur. It includes a
time aspect�how long have people been at risk. In practice we need to known how many
persons for how long time (the risk time or �person-years�) and how many deaths (events)
have occurred.
At the individual level we need to know how long time a person has been at risk of dying,

and whether the person is dead at the end of the risk time. A person's risk time can only be
included if the person would be counted as dead if dying during that time.
At the theoretical level we need a precise (probabilistic) de�nition of mortality: a mortality

rate is de�ned as a conditional probability of death�conditional on being alive at a given
time t�divided by the length of the risk interval, h:

λ(t) = P{event in (t, t+ h] | alive at t} /h

�formally the limit of this as h gets smaller and smaller:

λ(t) = lim
h→0

P{event in (t, t+ h] | alive at t} /h

The t here is the timescale�when the person is at risk; the h is the risk time�how long the
person has been at risk. The rate has dimension time−1�events per time.
The mortality is a function of t, but one possibility for this function is that it is constant,

the same at all times, λ(t) = λ ∀t.

10
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2.2 Data

Get the DMlate data; data on a random sample of 10,000 persons the Danish diabetes
register, of which we take a convenience sample of 2000:

> data(DMlate)
> set.seed(1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> rownames(DMlate) <- 1:2000
> str(DMlate)

'data.frame': 2000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 1 1 1 1 1 ...
$ dobth: num 1964 1944 1957 1952 1952 ...
$ dodm : num 2003 2006 2008 2007 2003 ...
$ dodth: num NA NA NA NA NA NA NA NA NA NA ...
$ dooad: num NA 2006 NA 2007 2006 ...
$ doins: num NA NA NA 2008 NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

> head(DMlate)

sex dobth dodm dodth dooad doins dox
1 F 1963.591 2003.481 NA NA NA 2009.997
2 M 1944.127 2005.644 NA 2005.778 NA 2009.997
3 F 1956.790 2007.886 NA NA NA 2009.997
4 M 1952.355 2006.969 NA 2006.969 2008.026 2009.997
5 M 1952.240 2003.361 NA 2005.852 NA 2009.997
6 M 1978.758 2001.948 NA NA 2001.967 2009.997

code explained: set.seed sets the seed for the random number generator, so that the
sequence of random numbers generated and used in sample will always be the same (also
across di�erent computers). The function sample returns a random sample of the �rst
argument. The rownames are renamed for convenience.

How are the dates coded? (Use ?DMlate)
The patients have been at risk of dying from date of diagnosis of diabetes, dodm, till the end

of the register coverage or death, dox.
What is the total risk time among the 2000 patients (remember to state the units)?

> (y <- with(DMlate, sum(dox - dodm)))

[1] 10742.34

Approximately how long time per person?
How many deaths are there in total?

> (d <- with(DMlate, sum(!is.na(dodth))))

[1] 479

What is the overall mortality rate? (remember the scale).

> d / y

[1] 0.04458991

This is per 1 person-year, the rate per 100 person-years is

> d / y * 100

[1] 4.458991

so 4.5% per year.
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2.3 Mortality by age

It is a bit of bold assumption to assume that mortality is constant over time. It likely
depends on age. We can make a table of the mortality rates by age category:

> tt <- xtabs(cbind(D = !is.na(dodth),
+ Y = dox - dodm) ~
+ agr,
+ data = mutate(DMlate,
+ agr = cut(dodm - dobth,
+ seq(0, 100, 10),
+ right = FALSE)))
> tt

agr D Y
[0,10) 0.00000 104.37235
[10,20) 1.00000 146.11088
[20,30) 0.00000 271.86037
[30,40) 3.00000 710.50513
[40,50) 14.00000 1503.36208
[50,60) 55.00000 2323.28268
[60,70) 99.00000 2942.04244
[70,80) 188.00000 2027.45517
[80,90) 98.00000 660.26557
[90,100) 21.00000 53.08419

> cbind(mort = tt[, "D"] / tt[, "Y"] * 100)

mort
[0,10) 0.0000000
[10,20) 0.6844117
[20,30) 0.0000000
[30,40) 0.4222348
[40,50) 0.9312461
[50,60) 2.3673400
[60,70) 3.3650092
[70,80) 9.2727081
[80,90) 14.8425125
[90,100) 39.5598019

code explained: xtabs sums the �rst argument (left hand side of formula, cbind(...),
D, deaths and Y, person-years) in categories of the right hand side, age. age is de�ned in the
mutate function, by using cut that classi�es a continuous variable. (dodm-dobth)

Does the mortality rate depend on age?
Note that we could have written:

> cbind(tt[, 1] / tt[, 2] * 100)

[,1]
[0,10) 0.0000000
[10,20) 0.6844117
[20,30) 0.0000000
[30,40) 0.4222348
[40,50) 0.9312461
[50,60) 2.3673400
[60,70) 3.3650092
[70,80) 9.2727081
[80,90) 14.8425125
[90,100) 39.5598019
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but it would not have been as readable, you would have to backtrack the code to see what the
1st resp. 2nd columns were.

NOTE: It is only the secondary purpose of programming to get things right, the primary

purpose is to demonstrate that you actually did with data what you claim to have done.

2.4 Age and age is not the same

What we have done is to classify follow-up (deaths and risk time) by the age at diagnosis. It
would be more relevant to classify the follow-up by current age (also called attained age)�the
age of the person as it changes during follow-up.
Now this would require that the follow-up for each person be classi�ed according to current

age, so persons would potentially contribute follow-up in more than one age class.

2.4.1 Current age

That is a bit of a book-keeping exercise, but there is a tool for this; the Lexis machinery.
Set up the follow-up data as a Lexis data frame, de�ning age as a timescale:

> Lx <- Lexis(entry = list(age = dodm - dobth),
+ exit = list(age = dox - dobth),
+ exit.status = factor(!is.na(dodth), labels = c("Alive","Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "Alive" for all.
NOTE: Dropping 1 rows with duration of follow up < tol

> subset(DMlate, near(dodm, dox))

sex dobth dodm dodth dooad doins dox
1895 F 1936.067 1996.984 1996.984 NA NA 1996.984

> summary(Lx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 1521 478 1999 478 10742.34 1999

> head(Lx)

lex.id age lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
1 39.89 6.52 Alive Alive F 1963.59 2003.48 NA NA NA 2010
2 61.52 4.35 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
3 51.10 2.11 Alive Alive F 1956.79 2007.89 NA NA NA 2010
4 54.61 3.03 Alive Alive M 1952.35 2006.97 NA 2006.97 2008.03 2010
5 51.12 6.64 Alive Alive M 1952.24 2003.36 NA 2005.85 NA 2010
6 23.19 8.05 Alive Alive M 1978.76 2001.95 NA NA 2001.97 2010

code explained: Lexis takes the data frame (here DMlate) and adds some variables that
describes the follow-up: person id, lex.id; the timescale, age�age at start of follow-up; the
risk time, lex.dur, the name of the current state the person is in,lex.Cst; the state the
person eXits to after lex.dur risk time.
A number of attributes are also de�ned by Lexis.
The summary produces an overview of the follow-up.
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It is still the same dataset, but amended with some extra variables.
What does str(Lx) tell you?
We can now subdivide the follow-up taking advantage of the Lexis structure:

> Sx <- splitLexis(Lx, breaks = seq(0, 100, 5))
> summary(Lx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 1521 478 1999 478 10742.34 1999

> summary(Sx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 3656 478 4134 478 10742.34 1999

code explained: seq generates a sequence of equidistant numbers, and splitLexis

subdivides the follow-up in 5-year age-classes, so now age in the split datset represents
current age.
The two summary statements demonstrates that the follow-up (events and risk time) is the

same, but distributed over a larger number of records in Sx.

We can then use xtabs to tabulate deaths and person-time by current age:

> tt <- xtabs(cbind(D = lex.Xst == "Dead",
+ Y = lex.dur) ~
+ I(floor(age / 5) * 5),
+ data = Sx)
> tt

I(floor(age/5) * 5) D Y
0 0.000000 13.258727
5 0.000000 44.838467
10 0.000000 81.636550
15 1.000000 65.104038
20 0.000000 75.470910
25 0.000000 97.076660
30 0.000000 203.124572
35 2.000000 281.568104
40 3.000000 448.275838
45 6.000000 654.642710
50 6.000000 879.850787
55 22.000000 1189.978097
60 33.000000 1318.171116
65 47.000000 1463.942505
70 67.000000 1396.142368
75 88.000000 1168.071184
80 87.000000 789.472964
85 66.000000 404.648871
90 39.000000 131.465435
95 10.000000 34.629021
100 1.000000 0.971937

> (rt <- cbind(mort = tt[, "D"] / tt[, "Y"] * 100))
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mort
0 0.0000000
5 0.0000000
10 0.0000000
15 1.5360030
20 0.0000000
25 0.0000000
30 0.0000000
35 0.7103077
40 0.6692308
45 0.9165305
50 0.6819338
55 1.8487735
60 2.5034686
65 3.2105086
70 4.7989375
75 7.5337874
80 11.0200101
85 16.3104372
90 29.6655924
95 28.8775127
100 102.8873239

We can show these mortality rates graphically:

> plot(rownames(tt), rt, log ="y", type = "o", xlab = "Age", pch = 16)

code explained: The log="y" de�nes a logarithmic y-axis, type="o" requests that lines
and points are overplotted, and pch=16 de�nes the plotting symbol as a blob.

The plot is a bit misleading, because the assumption underlying the calculations as that the
mortality rates are constant in each interval, so we really have a step-function for mortality

> plot(rownames(tt), rt, log ="y", type = "s", xlab = "Age")
> points(rownames(tt), rt, pch = 16)

code explained: The type="s" makes a step function of the curve instead of just
connecting the points. The points command adds the points as blobs (pch=16).

2.5 Smooth model for age

From the plot we see that the curve is ragged; this would be even worse if we did the exercise
in, say, 1-year classes. So far we estimated 21 parameters (one per 5 year age class), and
estimating 101 would be even worse. But the assumption of constant rates in 5 year intervals
is a bit coarse, 1 year would be a more reasonable approximation. But highly unrealistic that
wee would need 101 parameters to describe mortality by age.
The solution is to put a parametric restriction on mortality rates in the 1-year classes,

basically using the left endpoint of the intervals as a quantitative (metric, continuous)
variable.
This parametric modeling also has the advantage that we do not need to tabulate data, we

can directly �t a model for age to the split data.
Split the follow-up in Lx in 1-year intervals with splitLexis:
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Figure 2.1: Mortality rates among Danish diabetes patients by current age.../graph/mort-morta

> Sx <- splitLexis(Lx, breaks = 0:100, time.scale = "age")
> summary(Lx)
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 1521 478 1999 478 10742.34 1999

> summary(Sx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 12201 478 12679 478 10742.34 1999

We see that instead of 2000 records as in Lx we now have some 13,000 records, but the same
risk time. We see that the follow-up of person (lex.id) 2 has been split in 5 records, and
person 3 in 3 records. And we see that the variable age now represents the current age�it
changes as the person ages.

> subset(Lx, lex.id %in% 2:3)
lex.id age lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox

2 61.52 4.35 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
3 51.10 2.11 Alive Alive F 1956.79 2007.89 NA NA NA 2010
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Figure 2.2: Mortality rates among Danish diabetes patients by current age, showing constant

rates in 5-year classes ../graph/mort-mortas

> subset(Sx, lex.id %in% 2:3)

lex.id age lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
2 61.52 0.48 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 62.00 1.00 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 63.00 1.00 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 64.00 1.00 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 65.00 0.87 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
3 51.10 0.90 Alive Alive F 1956.79 2007.89 NA NA NA 2010
3 52.00 1.00 Alive Alive F 1956.79 2007.89 NA NA NA 2010
3 53.00 0.21 Alive Alive F 1956.79 2007.89 NA NA NA 2010

The Lexis machinery allows a simple way of modeling the mortality rates:

> mL <- glmLexis(Sx, ~ Ns(age, knots = seq(40, 80, 10)))

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for the transition:
Alive->Dead
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code explained: glmLexis �ts a rate model using the events and person time as response
and in this case age as explanatory variable. It uses the Lexis structure of Sx to �nd the
outcome variables. It is designed to

The corresponding Poisson regression with glm would be:

> mP <- glm((lex.Xst == "Dead") ~ Ns(age, knots = seq(40, 80, 10)),
+ offset = log(lex.dur),
+ family = poisson,
+ data = Sx)
> round(cbind(ci.exp(mL),
+ ci.exp(mP)), 4)

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 0.0056 0.0032 0.0097 0.0056 0.0032 0.0097
Ns(age, knots = seq(40, 80, 10))1 3.9144 1.7492 8.7598 3.9144 1.7490 8.7608
Ns(age, knots = seq(40, 80, 10))2 6.2849 3.7176 10.6249 6.2849 3.7173 10.6258
Ns(age, knots = seq(40, 80, 10))3 18.3976 7.0794 47.8107 18.3976 7.0743 47.8456
Ns(age, knots = seq(40, 80, 10))4 13.2045 7.7908 22.3800 13.2045 7.7907 22.3803

The small di�erences are because the two methods use di�erent algorithms.
But the parameter estimates are pretty useless; we need predicted rates.

2.6 Predicted mortality rates

With a model for how the mortality depends on age we can tease out the predicted rates and
show how they look as a functions of age.
To that end is needed a prediction data frame (we call it nd for new data)�a data frame

with all explanatory variables in the model set to values we want predictions for:

> nd <- data.frame(age = 30:95)
> pr.rates <- ci.pred(mL, nd) * 100
> head(pr.rates)

Estimate 2.5% 97.5%
1 0.3582582 0.1275648 1.0061469
2 0.3743926 0.1413134 0.9919077
3 0.3912537 0.1563451 0.9791130
4 0.4088741 0.1727125 0.9679558
5 0.4272881 0.1904434 0.9586845
6 0.4465314 0.2095274 0.9516190

The risk time (in the variable lex.dur) is in units of years, so the units of the predicted rates
is years−1, a bit awkward, so we multiply by 100 to get the mortality rate in units per 100
PY:

> matshade(nd$age, pr.rates, plot = TRUE, log = "y", lwd = 3,
+ xlab = "Attained age", ylab = "Mortality rate per 100 PY")

2.7 Duration of diabetes

We will now explore how mortality depend on time since diabetes diagnosis:
Set up a di�erent Lexis object, but now with time from diagnosis of diabetes as time scale:
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Figure 2.3: Mortality rates among Danish diabetes patients by attained age.

../graph/mort-mortaspl

> Lx <- Lexis(entry = list(tfd = dodm - dodm),
+ exit = list(tfd = dox - dodm),
+ exit.status = factor(!is.na(dodth), labels = c("Alive", "Dead")),
+ data = DMlate)

NOTE: entry.status has been set to "Alive" for all.
NOTE: Dropping 1 rows with duration of follow up < tol

> summary(Lx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 1521 478 1999 478 10742.34 1999

> head(Lx)

lex.id tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
1 0 6.52 Alive Alive F 1963.59 2003.48 NA NA NA 2010
2 0 4.35 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
3 0 2.11 Alive Alive F 1956.79 2007.89 NA NA NA 2010
4 0 3.03 Alive Alive M 1952.35 2006.97 NA 2006.97 2008.03 2010
5 0 6.64 Alive Alive M 1952.24 2003.36 NA 2005.85 NA 2010
6 0 8.05 Alive Alive M 1978.76 2001.95 NA NA 2001.97 2010
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code explained: If we want time from diabetes as the timescale (call it tfd), we must
subtract date of diabetes (dodm) from the dates of entry and exit. We see that all persons
are coded 0 for tfd�because follow-up starts at 0 after diagnosis of diabetes

Now split follow-up in intervals of 0.5 years:

> Sx <- splitLexis(Lx, breaks = seq(0, 20, 0.5))
> summary(Lx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 1521 478 1999 478 10742.34 1999

> summary(Sx)

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 22020 478 22498 478 10742.34 1999

We see that instead of 1999 records as in Lx we now have some 22,000 records, but again the
same risk time and number of events. We see that the follow-up of person (lex.id) 3 has
been split in 5 records, but still with a total of 2.11 person-years:

> subset(Lx, lex.id %in% 2:3)

lex.id tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
2 0 4.35 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
3 0 2.11 Alive Alive F 1956.79 2007.89 NA NA NA 2010

> subset(Sx, lex.id %in% 2:3)

lex.id tfd lex.dur lex.Cst lex.Xst sex dobth dodm dodth dooad doins dox
2 0.0 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 0.5 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 1.0 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 1.5 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 2.0 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 2.5 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 3.0 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 3.5 0.50 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
2 4.0 0.35 Alive Alive M 1944.13 2005.64 NA 2005.78 NA 2010
3 0.0 0.50 Alive Alive F 1956.79 2007.89 NA NA NA 2010
3 0.5 0.50 Alive Alive F 1956.79 2007.89 NA NA NA 2010
3 1.0 0.50 Alive Alive F 1956.79 2007.89 NA NA NA 2010
3 1.5 0.50 Alive Alive F 1956.79 2007.89 NA NA NA 2010
3 2.0 0.11 Alive Alive F 1956.79 2007.89 NA NA NA 2010

As we saw for age, the Lexis machinery allows a simple way of modeling the mortality rates
as a function of time from diagnosis:

> tL <- glmLexis(Sx, ~ Ns(tfd, knots = c(0, 1, 3, 6, 10)))

stats::glm Poisson analysis of Lexis object Sx with log link:
Rates for the transition:
Alive->Dead

As before, derive the predicted mortality rates and plot the mortality, but now as a function
of time since diagnosis:
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> nd <- data.frame(tfd = seq(0, 12, 0.2))
> pr.rates <- ci.pred(tL, nd)
> head(pr.rates)

Estimate 2.5% 97.5%
1 0.06056585 0.04788313 0.07660781
2 0.05424695 0.04494245 0.06547778
3 0.04879401 0.04150913 0.05735739
4 0.04426341 0.03771416 0.05194997
5 0.04066812 0.03413191 0.04845600
6 0.03800474 0.03132808 0.04610433

code explained: The prediction data frame nd must have one column for each of the
explanatory variables in the model, in this case only one, tfd.

The risk time (in the variable lex.dur) is in units of years, so the units of the predicted rates
is years−1, a bit awkward, so we multiply by 100 to get units per 100 PY:

> matshade(nd$tfd, pr.rates * 100,
+ plot = TRUE, log = "y", lwd = 3,
+ xlab = "Time since DM diagnosis",
+ ylab = "Mortality rate per 100 PY")

The curve shows a well-known phenomenon with high mortality at diagnosis and a decline
during the initial time (approx. 2 years). This is most likely because newly diagnosed persons
have an over-representation of frail persons with a high mortality that contribute to a high
initial mortality. As these are removed from the population, the mortality declines, and
eventually increases by age / duration.

2.8 Survival after diabetes

The data frame DMlate is follow-up of a random sample of diabetes patients from the date of
diagnosis of diabetes, so it would be natural to ask for the survival probability as a function of
time from diagnosis. The link between the mortality, λ(t) and the origin t = 0 on one hand
and the survival function S(t) on the other hand is

S(t) = exp
(
−
∫ t

0

λ(u) du
)

So it is straight forward to derive the survival function by numerical integration of the
mortality in pr.rates[,1]

> head(cbind(nd, pr.rates))

tfd Estimate 2.5% 97.5%
1 0.0 0.06056585 0.04788313 0.07660781
2 0.2 0.05424695 0.04494245 0.06547778
3 0.4 0.04879401 0.04150913 0.05735739
4 0.6 0.04426341 0.03771416 0.05194997
5 0.8 0.04066812 0.03413191 0.04845600
6 1.0 0.03800474 0.03132808 0.04610433

> surv <- exp(-cumsum(pr.rates[, 1]) * 0.2)
> plot(nd$tfd, surv, type = "l", ylim = c(0,1))
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Figure 2.4: Mortality rates among Danish diabetes patients by time from diagnosis.

../graph/mort-mortdspl

code explained: The integral in the formula for the survival function is numerically
approximated by the cumulative sum of the rates (in pr.rates) multiplied by the interval
width�the area under the mortality curve.

The tricky thing is however to get a con�dence interval for the survival function�it is quite
convoluted. Fortunately this has been implemented in the function ci.surv. For comparison
we overlay the Kaplan-Meier estimate of the survival function:

> matshade(nd$tfd, ci.surv(tL, nd), plot = TRUE,
+ lwd = 2, ylim = c(0.5,1), yaxs = "i",
+ xlab = "Time since diagnosis (years)",
+ ylab = "Survival probability")

NOTE: interval length chosen from as tfd[2] - tfd[1]

> lines(survfit(Surv(dox - dodm, !is.na(dodth)) ~ 1, data = Lx), col = "red")

From the graph we see that the two estimates are almost indistinguishable, but the
parametric estimate is more credible as a clear result from a proper statistical model.
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Figure 2.5: Survival of Danish diabetes patients. Thick line and gray shade is based on the para-

metric mortality function, the thin red lines are the Kaplan-Meier estimator.../graph/mort-surv

A thorough exposition of this type of analysis is in the document �Who needs the Cox
model anyway?� at https://bendixcarstensen.com/WntCma.pdf. The document also
explains the relationship between the Cox-model and the Poisson-model�how the Cox-model
is a special case of the Poisson model.

https://bendixcarstensen.com/WntCma.pdf
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