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Plan of course
Mixture of lectures and demos — approximate times.
http://BendixCarstensen.com/AdvCoh/IBC2014

9:00–10:00 Introdution to survival and rates:

I Basic concepts
I Non-parametric and parametric models
I Practical estimation

10:00–11:00 Likelihood for and representation of multistate
observations

I Data representation and overview
I Modles and reporting of rates

11:20–11:50 Simulation in multistate models.

12:15–13:30 A thorougly worked example:
Danish DM patients mortality
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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)

or
Some time alive (“at least this long”)
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Examples of time-to-event measurements

I Time from diagnosis of cancer to death.

I Time from randomisation to death in a cancer
clinical trial

I Time from HIV infection to AIDS.

I Time from marriage to 1st child birth.

I Time from marriage to divorce.

I Time to re-offending after being released from
jail
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Ordered by
date of entry

Most likely
the order in
your
database.
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Timescale
changed to
“Time since
diagnosis”.

Time since diagnosis
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Patients
ordered by
survival
time.

Time since diagnosis
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Survival
times
grouped into
bands of
survival.

Year of follow−up
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Patients
ordered by
survival
status within
each band.

Year of follow−up
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Survival after Cervix cancer

Stage I Stage II

Year n d l n d l

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13

10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535

Life-table estimator: p̂i = di/(ni − li/2)
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Life table estimators

I Classical lifetable estimator:

I true probability of death in the ith interval is pi
I number of the li censored that are dead is pi li/2
I pi = (di + pi li/2)/ni ⇔ pi = di/(ni − li/2)

I Modified liftetable estimator:

I person years in interval of length `i :
`i(ni − di/2− li/2)

I rate is di/`i(ni − di/2− li/2)
I culmulative rate is `idi/`i(ni − di/2− li/2)
I pi = 1− exp

(
−di/(ni − di/2− li/2)

)
I Both cases: S (t) =

∏i=t
i=0(1− pi)
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of
diagnosis.

Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S (t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

Note that the life-table estimator(s) estimates the
distribution of the survival times. No restrictions on
the relationship between pis in different intervals.
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Intensity or rate

P {event in (t , t + h] | alive at t} /h

=
F (t + h)− F (t)

S (t)× h

= − S (t + h)− S (t)

S (t)h
−→
h→0
− dlogS (t)

dt

= λ(t)

This is the intensity or hazard function for the
distribution. Characterizes the survival distribution
as does f or F .

Theoretical counterpart of a rate.
Rates and Survival (surv-rate) 13/ 149



Relationships

− dlogS (t)

dt
= λ(t)

m

S (t) = exp

(
−
∫ t

0

λ(u) du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(u) dy is called

integrated intensity or cumulative rate
Not an intensity, it is dimensionless.

λ(t) = − dlog(S (t))

dt
= −S

′(t)

S (t)
=

F ′(t)

1− F (t)
=

f (t)

S (t)
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Rate and survival

S (t) = exp

(
−
∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)

S (t)

Survival is a cumulative measure,
the rate is an instantaneous measure.

Note:
A cumulative measure requires an origin!
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Observed survival and rate

I Survival studies:
Observe (right censored) survival time:

X = min(T ,Z ), δ = 1{X = T}

— sometimes conditional on T > t0
(left truncated).

I Epidemiological studies:
Observe (components of) a rate:

D/Y

D : no. events, Y no of person-years, in a
prespecified time-frame.
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Empirical rates for individuals

I At the individual level we introduce the
empirical rate: (d , y),
— no. events (d ∈ {0, 1}) during y risk time.

I A person may contribute several observations
of (dt , yt)

I Indexed by t - timescale(s) and other covariates
I Empirical rates are responses in survival

analysis — note it’s bivariate.
I The timescale is a covariate — varies across

empirical rates from one individual:
Age, calendar time, time since diagnosis.

I Time at risk, follow-up time, y is part of the
response.
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Empirical
rates by
calendar
time.

. . . but each
of these also
has time
since
diagnosis
and age
included. Calendar time
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Empirical
rates by
time since
diagnosis.

. . . but each
of these also
has calendar
time and age
included.

Time since diagnosis
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Likelihood from one person

. . . across several intervals (empirical rates) is a
product of conditional probabilities:

P {event at t4|t0} = P {event at t4| alive at t3} ×
P {survive (t2, t3)| alive at t2} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t0, t1)| alive at t0}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (di , yi)
— yi = ti − ti−1 and mostly di = 0.

ti is the timescale (covariate).
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Likelihood for an empirical rate

I Rate constant in (small) interval.

I π = 1− e−λy is the death probability

I then:

L(λ) = P {d events during y time } = πd(1− π)1−d

= (1− e−λy)d(e−λy)1−d

=

(
1− e−λy

e−λy

)d

(e−λy) ≈ (λy)de−λy

since the first term is equal to eλy − 1 ≈ λy .

I `(λ) ∝ d log(λ)− λy
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“Poisson” likelihood

I Log-likelihood contributions from one
individual: ∑

t

(dt log(λt)− λtyt)

I the same as the log-likelihood from several
independent Poisson observations, dt , with
mean λtyt , i.e. log-mean:

log
(
E(dt)

)
= log

(
λt
)

+ log(yt)

Rates and Survival (surv-rate) 22/ 149



“Poisson” likelihood

I Log-likelihood contributions from one
individual: ∑

t

(dt log(λt)− λtyt)

I the same as the log-likelihood from several
independent Poisson observations, dt , with
mean λtyt , i.e. log-mean:

log
(
E(dt)

)
= log

(
λt
)

+ log(yt)

Rates and Survival (surv-rate) 22/ 149



“Poisson” likelihood

I Muliplicative model for rates, log(λt) = Xtβ:

I Poisson observations, dt , with mean λtyt , i.e.:

log
(
E(dt)

)
= log

(
λt
)

+ log(yt)

= Xtβ + log(yt)

I Analysis of the rates, (λt) can be based on a
Poisson model with log-link applied to
empirical rates where:

I dt is the response variable.
I log(yt) is the offset variable.
I Xt is the design matrix for describing rates in

interval t
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Likelihood for follow-up of many subjects

Adding empirical rates over the follow-up of persons:

D =
∑

d Y =
∑

y ⇒ D log(λ)− λY

I Persons are assumed independent

I Contribution from the same person are
conditionally independent, hence give separate
contributions to the log-likelihood.
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The log-likelihood is maximal for:

d`(λ)

dλ
=

D

λ
− Y = 0 ⇔ λ̂ =

D

Y

Information about λ:

`(λ|D ,Y ) = D log(λ)− λY , `′λ = D/λ− Y ,

`′′λ = −D/λ2

so I(λ̂) = D/λ̂2 = Y 2/D , hence var(λ̂) = D/Y 2

Standard error of a rate:
√
D/Y .
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The log-likelihood is maximal for:

d`(λ)

dλ
=

D

λ
− Y = 0 ⇔ λ̂ =

D

Y

Information about θ = log(λ):

`(θ|D ,Y ) = Dθ − eθY , `′θ = D − eθY ,

`′′θ = −eθY

so I(θ̂) = eθ̂Y = λ̂Y = D , hence var(θ̂) = 1/D

Standard error of log-rate: 1/
√
D .

Note that this only depends on the no. events, not
on the follow-up time.
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Modelling a constant rate with glm

> D <- 12
> Y <- 1276.3/1000
> m0 <- glm( D ~ 1, offset=log(Y), family=poisson )
> m1 <- glm( D/Y ~ 1, weights=Y, family=poisson )
> m2 <- glm( D/Y ~ 1, weights=Y, family=poisson(link=identity) )
> library( Epi )
> round( rbind( ci.lin( m0, E=T )[,c(1,2,5:7)],
+ ci.lin( m1, E=T )[,c(1,2,5:7)],
+ ci.lin( m2 )[,c(1,2,NA,5:6)] ), 3 )

Estimate StdErr exp(Est.) 2.5% 97.5%
[1,] 2.241 0.289 9.402 5.340 16.556
[2,] 2.241 0.289 9.402 5.340 16.556
[3,] 9.402 2.714 NA 4.082 14.722

> round( c( 1/sqrt(D), sqrt(D)/Y ) , 3 )

[1] 0.289 2.714
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Traditional survival analysis

Response variable: Time to event, T

Censoring at time Z

Observation
(
min(T ,Z ), δ = 1{T < Z}

)
.

Gives time a special status, because it mixes up:

I the response variable (risk)time

I the covariate time(scale).

Originates from clinical trials where everyone enters
at time 0.
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The life table method

The simplest analysis is by the “life-table method”:

interval alive dead cens.
i ni di li pi

1 77 5 2 5/(77− 2/2)= 0.066
2 70 7 4 7/(70− 4/2)= 0.103
3 59 8 1 8/(59− 1/2)= 0.137

pi = P {death in interval i} = 1− di/(ni − li/2)

S (t) = (1− p1)× · · · × (1− pt)
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Population life table, DK 1997–98

Men Women

a S(a) λ(a) E[`res(a)] S(a) λ(a) E[`res(a)]

0 1.00000 567 73.68 1.00000 474 78.65
1 0.99433 67 73.10 0.99526 47 78.02
2 0.99366 38 72.15 0.99479 21 77.06
3 0.99329 25 71.18 0.99458 14 76.08
4 0.99304 25 70.19 0.99444 14 75.09
5 0.99279 21 69.21 0.99430 11 74.10
6 0.99258 17 68.23 0.99419 6 73.11
7 0.99242 14 67.24 0.99413 3 72.11
8 0.99227 15 66.25 0.99410 6 71.11
9 0.99213 14 65.26 0.99404 9 70.12

10 0.99199 17 64.26 0.99395 17 69.12
11 0.99181 19 63.28 0.99378 15 68.14
12 0.99162 16 62.29 0.99363 11 67.15
13 0.99147 18 61.30 0.99352 14 66.15
14 0.99129 25 60.31 0.99338 11 65.16
15 0.99104 45 59.32 0.99327 10 64.17
16 0.99059 50 58.35 0.99317 18 63.18
17 0.99009 52 57.38 0.99299 29 62.19
18 0.98957 85 56.41 0.99270 35 61.21
19 0.98873 79 55.46 0.99235 30 60.23
20 0.98795 70 54.50 0.99205 35 59.24
21 0.98726 71 53.54 0.99170 31 58.27
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log2[mortality per 105 (40−85 years)]

Men: −14.289 + 0.135 age

Women: −14.923 + 0.135 age
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Swedish life tables 1997−99

log2[mortality per 105 (40−85 years)]

Men: −15.418 + 0.145 age

Women: −16.152 + 0.145 age
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Denmark Males Females

log2

(
λ(a)

)
−14.244 + 0.135 age −14.877 + 0.135 age

Doubling time 1/0.135 = 7.41 years
M/F rate-ratio 2−14.244+14.877 = 20.633 = 1.55
Age-difference (−14.244 + 14.877)/0.135 = 4.69 years

Sweden: Males Females

log2

(
λ(a)

)
−15.453 + 0.146 age −16.204 + 0.146 age

Doubling time 1/0.146 = 6.85 years
M/F rate-ratio 2−15.453+16.204 = 20.751 = 1.68
Age-difference (−15.453 + 16.204)/0.146 = 5.14 years
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Observations for the lifetable
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cross-sectional!

Survival function:

S (t) = e−
∫ t

0
λ(a) da = e−

∑t
0 λ(a)

— assumes stability of rates to be
interpretable for actual persons.

cross-sectional ←→ longitudinal
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Life table approach

I The observation of interest is not the survival
time of the individual.

I It is the population experience:

D : Deaths (events).
Y : Person-years (risk time).

I The classical lifetable analysis compiles these
for prespecified intervals of age, and computes
age-specific mortality rates.

I Data are collected crossectionally, but
interpreted longitudinally.
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Summary

I Likelihood for a constant rate is proportional to
a Poisson likelihood

I Subdividing follow-up in small intervals does
not alter the likelihood

I Likelihood contribution from one person is a
product of conditionally independent terms;
one for each interval

I Assuming constant rate in very small intervals
effectively allows rates to vary along different
timescales

I Flexible shapes of the rates allowed
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The proportional hazards model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals
contribute to (some of) the range of t .

I Conceptually it is less clear — t is but a
covariate that varies within individual.
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Cox-likelihood

The partial likelihood for the regression parameters:

`(β) =
∑

death times

log

(
eηdeath∑
i∈Rt

eηi

)
is also a profile likelihood in the model where
observation time has been subdivided in small pieces
(empirical rates) and each small piece provided with
its own parameter:

log
(
λ(t , x )

)
= log

(
λ0(t)

)
+ x ′β = αt + η
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The Cox-likelihood as profile likelihood

Suppose the time scale has been divided into small
intervals with at most one death in each —
empirical rates (dt , yt)

Assume w.l.o.g. that the ys all are 1.

Log-likelihood contributions that contain
information on a specific time-scale parameter αt

will be from:

I the (only) empirical rate (1, 1) with the death
at time t .

I all other empirical rates (0, 1) from those who
were at risk at time t .
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Note: There is one contribution from each person
at risk to this part of the log-likelihood (and exactly
one is dead):

`t(αt , β) =
∑
i∈Rt

di log(λi(t))− λi(t)yi

=
∑
i∈Rt

{
di(αt + ηi)− eαt+ηi

}
= αt + ηdeath − eαt

∑
i∈Rt

eηi

where ηdeath is the linear predictor for the person
that died at t .
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The derivative w.r.t. αt is:

Dαt
`(αt , β) = 1−eαt

∑
i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for
αt , we get the profile likelihood (with αt “profiled
out”):

log

(
1∑

i∈Rt
eηi

)
+ηdeath−1 = log

(
eηdeath∑
i∈Rt

eηi

)
−1

. . . which is the same as the contribution from time
t to Cox’s partial likelihood.
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time as finely as possible,

I modelling one covariate, the time-scale, with
one parameter per distinct value,

I profiling these parameters out, and only
maximizing the profile likelihood

Subsequently, one may recover the effect of the
timescale by smoothing an estimate of the
cumulative sum of these.
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Sensible modelling

Replace the αts by a parmetric function f (t) with a
limited number of parameters, for example:

I Piecewise constant

I Splines (linear, quadratic or cubic)

I Fractional polynomials

Use Poisson modelling software on a dataset of
empirical rates for small intervals (ys).

. . . but the data set is going to be quite large.
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Splitting the dataset

The Poisson approach needs a dataset of empirical
rates with small values of y .

Larger than the original: each individual contributes
many empirical rates.

From each empirical rate we get:

I Poisson-response d

I Risk time y

I Covariate value for the timescale (time since
entry, current age, current date, . . . )

I other covariates
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Example: Mayo Clinic lung cancer

Code is in lung-ex.R.

> options( width=120 )
> library( survival )
> library( Epi )
> data( lung )
> head( lung )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0
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Example: Mayo Clinic lung cancer

> Lx <- Lexis( exit=list( tfd=time+runif(nrow(lung),-0.5,0.5)),
+ exit.status=(status==2),
+ data=lung )

NOTE: entry is assumed to be 0 on the tfd timescale.

> summary( Lx, scale=365.25 )

Transitions:
To

From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 63 165 228 165 190.53 228

> head( Lx )

tfd lex.dur lex.Cst lex.Xst lex.id inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 0 305.8516 FALSE TRUE 1 3 306 2 74 1 1 90 100 1175 NA
2 0 455.1188 FALSE TRUE 2 3 455 2 68 1 0 90 90 1225 15
3 0 1010.3961 FALSE FALSE 3 3 1010 1 56 1 0 90 90 NA 15
4 0 209.7926 FALSE TRUE 4 5 210 2 57 1 1 90 60 1150 11
5 0 882.6279 FALSE TRUE 5 1 883 2 60 1 0 100 90 NA 0
6 0 1021.5707 FALSE FALSE 6 12 1022 1 74 1 1 50 80 513 0
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Example: Mayo Clinic lung cancer

> Sx <- splitLexis( Lx, "tfd", breaks=c(0,unique(exit(Lx))) )
> summary( Sx, scale=365.25 )

Transitions:
To

From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 25941 165 26106 165 190.53 228

> subset( Sx, lex.id==96 )

lex.id tfd lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
11844 96 0.000000 4.95782724 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11845 96 4.957827 5.72230893 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11846 96 10.680136 0.49538575 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11847 96 11.175522 0.09471063 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11848 96 11.270233 0.99979856 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11849 96 12.270031 0.64096619 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11850 96 12.910997 0.12029712 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11851 96 13.031294 1.84800876 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11852 96 14.879303 11.54554087 FALSE FALSE 12 30 2 72 1 2 80 60 288 7
11853 96 26.424844 3.20993281 FALSE TRUE 12 30 2 72 1 2 80 60 288 7
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Example: Mayo Clinic lung cancer

> c1 <- coxph( Surv(time,status==2) ~ sex + pat.karno, data=lung )
> c2 <- coxph( Surv(tfd,tfd+lex.dur,lex.Xst==TRUE) ~ sex + pat.karno, data=Lx )
> p1 <- glm( lex.Xst ~ factor(tfd) + sex + pat.karno,
+ offset = log(lex.dur), family=poisson,
+ data=Sx )
> p2 <- glm( lex.Xst ~ ns(tfd,df=6) + sex + pat.karno,
+ offset = log(lex.dur), family=poisson,
+ data=Sx )
> p3 <- glm( lex.Xst ~ ns(tfd,df=2) + sex + pat.karno,
+ offset = log(lex.dur), family=poisson,
+ data=Sx )
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Example: Mayo Clinic lung cancer

. . . better to allocate knots explicitly:

> k7 <- c( 0, quantile( rep(Sx$tfd,Sx$lex.Xst), (1:7-0.5)/7 ) )
> k3 <- c( 0, quantile( rep(Sx$tfd,Sx$lex.Xst), (1:3-0.5)/3 ) )
> xtabs( lex.Xst ~ cut(tfd,breaks=c(k7,Inf)), data=Sx )

cut(tfd, breaks = c(k7, Inf))
(0,46.5] (46.5,111] (111,176] (176,225] (225,308] (308,429] (429,646] (646,Inf]

11 24 23 24 23 23 24 12

> xtabs( lex.Xst ~ cut(tfd,breaks=c(k3,Inf)), data=Sx )

cut(tfd, breaks = c(k3, Inf))
(0,91.7] (91.7,225] (225,468] (468,Inf]

27 55 54 28

> p2 <- glm( lex.Xst ~ Ns(tfd,knots=k7) + sex + pat.karno,
+ offset = log(lex.dur), family=poisson,
+ data=Sx )
> p3 <- glm( lex.Xst ~ Ns(tfd,knots=k3) + sex + pat.karno,
+ offset = log(lex.dur), family=poisson,
+ data=Sx )
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Example: Mayo Clinic lung cancer

> ee <- rbind( ci.exp( c1 ), ci.exp( c2 ),
+ ci.exp( p1, subset=c("sex","pat") ),
+ ci.exp( p2, subset=c("sex","pat") ),
+ ci.exp( p3, subset=c("sex","pat") ) )
> wh <- 1:5*2
> round( cbind( ee[wh-1,], ee[wh,] ), 4 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sex 0.5909 0.4244 0.8226 0.9801 0.9693 0.9909
sex 0.5915 0.4249 0.8235 0.9800 0.9693 0.9909
sex 0.5915 0.4249 0.8235 0.9800 0.9693 0.9909
sex 0.5926 0.4256 0.8252 0.9798 0.9691 0.9907
sex 0.5914 0.4248 0.8233 0.9797 0.9691 0.9906
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Example: Mayo Clinic lung cancer

> range( Sx$tfd )

[1] 0.000 1010.396

> nd <- data.frame( tfd=0:1000, lex.dur=36525,
+ pat.karno=80, sex=1 )
> pr2 <- predict( p2, newdata=nd, se.fit=TRUE, type="link" )
> pr3 <- predict( p3, newdata=nd, se.fit=TRUE, type="link" )
> pr2 <- exp( cbind(pr2$fit,pr2$se.fit) %*% ci.mat() )
> pr3 <- exp( cbind(pr3$fit,pr3$se.fit) %*% ci.mat() )
> matplot( nd$tfd, cbind( pr2, pr3 ),
+ type="l", lty=1, lwd=c(4,1,1), col=rep(c("blue","red"),each=3),
+ log="y", xlab="Days since diagnosis",
+ ylab="Rate per 100 PY (Man, Karnofsky 80)" )
> rug( k7, lwd=2, col="blue", ticksize=0.04 )
> rug( k3, lwd=4, col="red" , ticksize=0.02 )
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Example: Mayo Clinic lung cancer
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The baseline hazard and survival functions

Using a parametric function to model the baseline
hazard gives the possibility to plot this with
confidence intervals for a given set of covariate
values, x0

The survival function in a multiplicative Poisson
model has the form:

S (t) = exp
(
−
∑
τ<t

exp(g(τ) + x ′0γ)
)

This is just a non-linear function of the parameters
in the model, g and γ. So the variance can be
computed using the δ-method.
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δ-method for survival function

1. Select timepoints ti (fairly close).

2. Get estimates of log-rates f (ti) = g(ti) + x ′0γ
for these points:

f̂ (ti) = B β̂

where β is the total parameter vector in the
model.

3. Variance-covariance matrix of β̂: Σ̂.

4. Variance-covariance of f̂ (ti): BΣB′.

5. Transformation to the rates is the
coordinate-wise exponential function, with
derivative diag

[
exp
(
f̂ (ti)

)]
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6. Variance-covariance matrix of the rates at the
points ti :

diag(ef̂ (ti))B Σ̂B′ diag(ef̂ (ti))′

7. Transformation to cumulative hazard (` is
interval length):

`×


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0




ef̂ (t1))

ef̂ (t2))

ef̂ (t3))

ef̂ (t4))

 = L


ef̂ (t1))

ef̂ (t2))

ef̂ (t3))

ef̂ (t4))
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8. Variance-covariance matrix for the cumulative
hazard is:

L diag(ef̂ (ti))B Σ̂B′ diag(ef̂ (ti))′L′

This is all implemented in the ci.cum() function in
Epi.
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Mayo clinic lung cancer data

Smoothing by natural splines with 7 parameters;
knots at 0, 25, 75, 150, 250, 500, 1000 days
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Summary

I All methods rely on some subdivision of the
timescale(s):

I Cox-modelling at the datapoints, implicitly in the
algorithm

I Poisson on an explicit pre-analysis division of data

I Based on the same form of the likelihood

I Poisson modelling gives easier access to the
baseline hazard(s)

I Cox modelling is much faster, but misses the
baseline hazard.
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Follow-up and rates

I Follow-up studies:

I D — events, deaths
I Y — person-years
I λ = D/Y rates

I Rates differ between persons.

I Rates differ within persons:

I By age
I By calendar time
I By disease duration
I . . .

I Multiple timescales.

I Multiple states (little boxes — later)
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Stratification by age

If follow-up is rather short, age at entry is OK for
age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:
No. of events, D , and Risk time, Y .

Age-scale
35 40 45 50

Follow-up
Two e1 5 3

One u4 3
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d , y)

Follow-up data for each individual must therefore
have (at least) three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
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y d

t0 t1 t2 t3

y1 y2 y3

Probability log-Likelihood

P(event t3|entry t0) d log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(event t3|entry t2) + d log(λ)− λy3
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
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y ed = 0

t0 t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3

Representation of follow-up (FU-rep) 65/ 149



y ud = 1

t0 t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(event at tx|entry t2) + 1 log(λ)− λy3
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Dividing time into bands:

If we want to put D and Y into intervals on the
timescale we must know:

Origin: The date where the time scale is 0:

I Age — 0 at date of birth

I Disease duration — 0 at date of diagnosis

I Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

I 1-year classes? 5-year classes?

I Equal length?

Aim: Separate rate in each interval
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Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

I Age bands: 10-years intervals of current age.

I Split Y for every subject accordingly

I Treat each segment as a separate unit of
observation.

I Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Timescales

I A timescale is a variable that varies
deterministically within each person during
follow-up:

I Age
I Calendar time
I Time since treatment
I Time since relapse

I All timescales advance at the same pace
(1 year per year . . . )

I Note: Cumulative exposure is not a timescale.
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Follow-up on several timescales

I The risk-time is the same on all timescales

I Only need the entry point on each time scale:
I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

I Response variable in analysis of rates:

(d , y) (event, duration)

I Covariates in analysis of rates:
I timescales
I other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1

2 640 2 1896.23 1 1945.77 20 1964.37 1

3 3425 1 1886.97 2 1955.18 0 1956.59 1

4 4017 2 1936.81 2 1957.61 0 1992.14 2

...

Timescales of interest:

I Age
I Calendar time
I Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 3 20 23 20 512.59 23
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> plot( thL, lwd=3 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
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plot( spl2, c(1,3), col="black", lwd=2 )

age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Likelihood for a constant rate

I This setup is for a situation where it is assumed
that rates are constant in each of the intervals.

I Each observation in the dataset contributes a
term to a “Poisson” likelihood.

I Rates can vary along several timescales
simultaneously.

I Models can include fixed covariates, as well as
the timescales (the left end-points of the
intervals) as continuous variables.
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Analysis of results

I dpi — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

I ypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

I Covariates are:

I timescales (age, period, time in study)
I other variables for this person (constant or

assumed constant in each interval).

I Model rates using the covariates in glm:
— no difference between time-scales and other
covariates.
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Likelihood for multistate
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Likelihood for transition through states

A −→ B −→ C −→
I given start of observation in A at time t0
I transitions at times tB and tC
I survival in C till (at least) time tx :

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

I Product of likelihoods for each transition
— each one as for a survival model
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Competing risks

But you may die from more than one cause
(or move to more than one state):

Alive

Cause A

Cause B

Cause C

�
�
�
�
�
��3

-

Q
Q
Q
Q
Q
QQs

λA

λB

λC
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Cause-specific intensities

λA(t) = limh→0
P {death from cause A in (t , t + h] | alive at t}

h

λB(t) = limh→0
P {death from cause B in (t , t + h] | alive at t}

h

λC (t) = limh→0
P {death from cause C in (t , t + h] | alive at t}

h

Total mortality rate:

λTotal(t) = limh→0
P {death from any cause in (t , t + h] | alive at t}

h
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Cause-specific intensities

For small h, P {2 events in (t , t + h]} ≈ 0, so:

P {death from any cause in (t , t + h] | alive at t}

= P {death from cause A in (t , t + h] | alive at t}+

P {death from cause B in (t , t + h] | alive at t}+

P {death from cause C in (t , t + h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC (t)

Intensities are additive,
if they all refer to the
same risk set, in this case “Alive”.
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P {death from cause B in (t , t + h] | alive at t}+

P {death from cause C in (t , t + h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC (t)
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Likelihood for multistate follow-up (ms-lik) 87/ 149



Likelihood for competing risks

Data:
Y - person years in “Alive”
DA - deaths from cause A
DB - deaths from cause B
DC - deaths from cause C

Now, assume for a start that transition rates
between states are constant.
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Likelihood for competing risks

A survivor contributes to the log-likelihood:

log(P {Survival for a time of y}) = −(λA+λB+λC )y

A death from cause A contributes an additional
log(λA), from cause B an additional log(λB) etc.

The total log-likelihood is then:

`(λA, λB , λC ) =DAlog(λA) + DB log(λB) + DC log(λC )

− (λA + λB + λC )Y

=[DAlog(λA)− λAY ]+

[DB log(λB)− λBY ]+

[DC log(λC )− λCY ]
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Components of the likelihood

The log-likelihood is made up of three contributions:
I one for cause A,

I one for cause B and

I one for cause C

Deaths are the cause-specific deaths,

but the person-years are the same in all
contributions.
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Likelihood for multiple states

I Product of likelihoods for each transition
— each one as for a survival model

I conditional on being alive at (observed) entry
to current state

I Risk time is the risk time in the current
(“From”) state

I Events are transitions to the “To” state

I All other transitions out of “From” are treated
as censorings (but they are not)

I Fit models separately for each transition or
jointly for all
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Time varying rates:

I The same type of analysis as with a constant
rates, but data must be

I split time in intervals sufficiently small to justify
an assumption of constant rate (intensity)

I allow for a separate rate for each interval

I but constrained to follow model with a smooth
effect of the time-scale values allocated to each
interval.
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Practical implications

I Empirical rates ((d , y) from each individual)
will be the same for all analyses except for
those where deaths occur.

I Analysis of cause A:
I Contributions (1, y) only for those intervals where

a cause A death occurs.
I Intervals with cause B or C deaths (or no deaths)

contribute only (0, y)
treated as censorings.
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original expanded
------------------------------- ---------------------
id time cause xx d.A d.B d.C id time dd xx Tr
1 1 B 0.50 0 1 0 1 1 0 0.50 A
2 1 NA 1.00 0 0 0 2 1 0 1.00 A
3 8 B -1.74 0 1 0 3 8 0 -1.74 A
4 3 A -0.55 1 0 0 4 3 1 -0.55 A
5 7 NA -0.58 0 0 0 5 7 0 -0.58 A
6 7 C -0.04 0 0 1 6 7 0 -0.04 A

1 1 1 0.50 B
2 1 0 1.00 B
3 8 1 -1.74 B
4 3 0 -0.55 B
5 7 0 -0.58 B
6 7 0 -0.04 B

1 1 0 0.50 C
2 1 0 1.00 C
3 8 0 -1.74 C
4 3 0 -0.55 C
5 7 0 -0.58 C
6 7 1 -0.04 C

. . . accomplished by stack.Lexis
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Lexis objects (data frame)

I Represents the follow-up

I lex.dur contains the total time at risk for
(any) event

I lex.Cst is the state in which this time is spent

I lex.Xst is the state to which a transition
occurs
— if none, the same as lex.Cst.

This is used for modelling of single transitions
between states — and multiple transitions with no
two originating in the same state.
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stacked.Lexis objects (data frame)

I Represents the likelihood contributions

I lex.dur contains the total time at risk for
(any) event

I lex.Tr is the transition to which the record
contributes

I lex.Fail is the event (failure) indicator for
the transition in question.

This is used for joint modelling of all transition in a
multistate set-up. Particularly with several rates
oriinating in the same state.
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Implemented in the stack.Lexis function:

> library( Epi )
> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> dml <- Lexis( entry = list(Per = dodm,
+ Age = dodm-dobth,
+ DMdur = 0 ),
+ exit = list(Per = dox ),
+ exit.status = factor(!is.na(dodth),
+ labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml, cut = dml$doins,
+ new.state = "Ins",
+ precursor = "DM" )
> summary( dmi )

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996

> boxes( dmi, boxpos = list(x=c(20,20,80),
+ y=c(80,20,50)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.1 )
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DM
45,885.5

9,899          6,157

Ins
8,387.8

97          1,340

Dead
0          2,499
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Implemented in the stack.Lexis function:

> options( digits=3, width=200 )
> st.dmi <- stack( dmi )
> print( st.dmi[1:6,], row.names=F )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1999 58.7 0 11.080 DM DM DM->Ins FALSE 1 F 1940 1999 NA NA NA 2010
2003 64.1 0 6.689 DM DM DM->Ins FALSE 2 M 1939 2003 NA 2007 NA 2010
2005 86.3 0 5.446 DM DM DM->Ins FALSE 3 F 1918 2005 NA NA NA 2010
2009 44.0 0 0.736 DM DM DM->Ins FALSE 4 F 1965 2009 NA NA NA 2010
2009 75.8 0 1.344 DM DM DM->Ins FALSE 5 M 1933 2009 NA NA NA 2010
2008 80.0 0 2.037 DM Dead DM->Ins FALSE 6 F 1928 2008 2010 NA NA 2010

> str( st.dmi )

Classes ’stacked.Lexis’ and ’data.frame’: 21589 obs. of 16 variables:
$ Per : num 1999 2003 2005 2009 2009 ...
$ Age : num 58.7 64.1 86.3 44 75.8 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur : num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 3 1 1 3 1 ...
$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM->Dead",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth : num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "breaks")=List of 3
..$ Per : NULL
..$ Age : NULL
..$ DMdur: NULL
- attr(*, "time.scales")= chr "Per" "Age" "DMdur"
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Implemented in the stack.Lexis function:

> print( subset( dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins 15 M 1944 2003 NA NA 2005 2010
2005 60.9 2.8 4.643 Ins Ins 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins 28 F 1925 1999 2008 2001 2007 2008
2007 82.4 8.7 0.977 Ins Dead 28 F 1925 1999 2008 2001 2007 2008

> print( subset( st.dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead DM->Ins FALSE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Ins TRUE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Ins TRUE 28 F 1925 1999 2008 2001 2007 2008
1997 59.4 0.0 0.890 DM Dead DM->Dead TRUE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Dead FALSE 28 F 1925 1999 2008 2001 2007 2008
2005 60.9 2.8 4.643 Ins Ins Ins->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
2007 82.4 8.7 0.977 Ins Dead Ins->Dead TRUE 28 F 1925 1999 2008 2001 2007 2008
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Analysis of rates in multistate models

I Interactions between all covariates (including
time) and state (lex.Cst):
⇒ separate analyses of all transition rates.

I Only interaction between state (lex.Cst) and
time(scales):
⇒ same covariate effects for all causes
transitions, but separate baseline hazards —
“stratified model”.

I Main effect of state only (lex.Cst):
⇒ proportional hazards

I No effect of state:
⇒ identical baseline hazards — hardly ever
relevant.
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Analysis approaches and data
representation

I Lexis objects represents the precise follow-up
in the cohort, in states and along timescales

I — used for analysis of single transition rates.

I stacked.Lexis objects represents
contributions to the total likelihood

I — used for joint analysis of (all) rates in a
multistate setup

I . . . which is the case if you want to specify
common effects between different transitions.
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Assumptions in competing risks

“Classical” way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three
variables:
TA, TB and TC , representing times to death from
each of the three causes.
But at most one of these is observed.

Often it is stated that these must be assumed
independent in order to make the likelihood
machinery work

1. It is not necessary.
2. Independence can never be assessed from data.
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An account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp.
203–215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein
Putter:
Competing risks in epidemiology: possibilities and
pitfalls,

International Journal of Epidemiology ; 2012: pp. 1–10

Contains examples where both dependent and
independent “cause specific survival times” gives rise
to the same set of cause specific rates.
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Competing risk interpretation

The problems with competing risk models only
comes when estimated intensities (rates) are used to
produce probability statements.

Classical set-up in cancer-registries:

Well Lung cancer-λ

Common statement:

P {Lung cancer before age 75} = 1− e−Λ(75)

This is not quite right.
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How the world really looks

Well

Lung cancer

Dead

�
�
�
�
�
�3

?

Q
Q
Q
Q
Q
Qs

λ

µ

ν

Illness-death model, mortality of lung cancer
patients (ν) not relevant here, we only want to find
out how many pass through “Lung cancer”
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How many get lung cancer before age a?
I

P {Lung cancer before age 75} 6= 1− e−Λ(75)

the r.h.s. does not take the possibility of death
prior to lung cancer into account.

I 1− e−Λ(75) often stated as the probability of
lung cancer before age 75, assuming all other
acuses of death absent.

I Lung cancer rates are however observed in a
mortal population.

I If all other causes of death were absent, this
would assume that lung cancer rates remained
the same.
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How it really is:

P {Lung cancer diagnosis before age a}

=

∫ a

0

P {Lung cancer at age u} du

=

∫ a

0

P {Lung cancer in age (u, u + du] | alive at u}

×P {alive at u without lung cancer} du

=

∫ a

0

λ(u)exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du
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Probability of lungcancer

The rates are easily plotted for inspection in R:

matplot( age, 1000*cbind( D/Y, lung/Y ),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per 1000 person-years" )
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The probablility that a person contracts lung cancer
before age a is:∫ a

0

λ(u) exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du

=

∫ a

0

λ(u) exp

(
−
(
M(u) + Λ(u)

))
du

M(u) is the cumulative mortality rate.

Λ(u) is the cumulative lung cancer incidence rate.
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R-commands needed to do the calculations:

cr.death <- cumsum( D/Y )
cr.lung <- cumsum( lung/Y )
p.simple <- 1 - exp( -cr.lung )
p.lung <- cumsum( lung/Y *

exp( -(cr.death+cr.lung) ) )
matlines( age, 100*cbind( cr.lung, p.simple, p.lung ),

type="l", lty=1, lwd=2*c(2,2,3),
col=c("black","blue","red") )
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Assumptions

I The calculation and the statement “6% of
Danish males will get lung cancer” assumess
that the lung cancer rates and the mortality
rates in the file apply to a cohort of men.

I But they are cross-sectional rates, so the
assumption is one of steady state of:

1. mortality rates (which is dubious)
2. lung cancer incidence rates (which is appalling).

I However, the machinery can be applied to any
set of rates for competing risks, regardless of
how they were estimated.
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Computational aspects of fitting models
I Cox model:

I Only one timescale
I Each person contributes one (or very few) records
I Computationally simple, because time (risk /

covariate) is profiled out in the estimation
I Partial model, invariant under monotone

transformation of the timescale
I Poisson modelling:

I Many records per person
I Very large datasets
I Any number of timescales
I Timeconsuming due to the large data sets
I Full modelling of the rates as continuous functions

of timescales

I Both are based on the same type of likelihood:
small intervals with constant rate
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Historical aspects

Whitehead J: Fitting Cox’s regression model to
survival data using GLIM. Applied Statistics,
29(3):268–275, 1980.[?]1

Set up tables of event counts and person-years,
classified by event times and covariate patterns.

Even with moderate datasets this can be large,
albeit smaller than some 100 separate records per
person.

1Recall Keiding’s law: “Any result was published earlier than you
think, even if you take Keiding’s law into account.”
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Computational practicalities

Early 1980s: Fitting of Poisson models on datasets
with 50,000 records were out of the question.
In particular with 100+ parameters.

Computationally feasible approaches to cohort
studies were:

I Cox modelling — thanks to computational
elegance.

I Time-splitting and tabulation in broad intervals
before modelling.
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The tabulation legacy (curse)

The computational need for tabulation has
influenced thinking in epidemiology / demography:

I Life-tables in 1-year intervals.

I Rates are regarded in 5-year age by period
intervals. Used for analysis of mortality and
incidence rates based on registers.
Age-period-cohort models with one parameter
per level of the age/period factor.

I Yet, survival analysis is largely based on “time
to event” methods (Kaplan-Meier, Cox), even
from cancer registries — only one timescale.
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Representation of follow-up
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Age at entry as covariate

t : time since entry
e: age at entry
a = e + t : current age

log
(
λ(a, t)

)
= f (t) + βe = (f (t)− βt) + βa

Immaterial whether a or e is used as (log)-linear
covariate as long as t is in the model.

In a Cox-model with time since entry as time-scale,
only the baseline hazard will change if age at entry is
replaced by current age (a time-dependent variable).
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“Controlling for age”

Including age at entry:

I Linear effect.

I Grouped variable.

I Parametric function.

— still only controls for the linear effect of current
age.
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Non-linear effects of time-scales

Arbitrary effects of the three variables t , a and e:
Genuine extension of the model.

log
(
λ(a, t , xi)

)
= f (t) + g(a) + h(e) + ηi

Three quantities can be arbitrarily moved between
the three functions:

f̃ (t) = f (a) − µa − µe + γt

g̃(a) = g(p) + µa − γa
h̃(e) = h(c) + µa + γe

because t − a + e = 0.
How many timescales in this model?
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“Controlling for age”

— is not a well defined statement.

I Mostly it means that age at entry is included
in the model.

I But ideally one would check whether there
were non-linear effects of age at entry and
current age.

I Requires modelling of multiple timescales.

I . . . and test of which ones are the relevant ones

⇒ splitting follow-up and modelling the timescales
explicitly.

An worked example is in [?].
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Several timescales: Caveat

As an example, consider:
t : time since entry
e: age at entry
a = e + t : current age

The relation: a = t + e must hold for all units of
analysis.

In general:
The difference between two time-scales must be
constant within individuals.
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Time dependent variable (new state)

How does relapse influence the mortality?

λ(t) = λ0(t)exp
(
1{relapse}(t)× β

)
i.e. when remission occurs, mortality increase by eβ.

Transplant Relapse

Dead

-

@
@@R

�
��	

λ

µTr µRel

What transitions are modelled here?
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Time-dependent variable

Transplant Relapse

Dead

-

@
@R

�
�	

λ

µTr µRel

If we take

1{Relapse}(t)

as time-dependent variable,
we assume that µr and µRel
are proportional on the
same timescale — no
disease duration! — and λ
is not modelled at all.

Fullt pobability statements require also modellng if
the realpse rate λ
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Stratified model

A popular version of the Cox-model allowing for
non-proportionality is the stratified model:

λ(t , x ) = λs(t)× exp(x ′β)

where s refers to levels of a factor S .

I This is but a completely general interaction
between the factor S and the chosen timescale.

I A better approach to interactions would be to
specify a clinically founded form of interaction,
so that test for interaction is against a specific
(and sensible) alternative.
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Time varying coefficients

This is a concept introduced by letting (some of)
the parameters depend on time:

λ(t , x ) = λ0 × exp
(
x ′β(t)

)
I This is also an interaction, but restricted:

The effect of a covariate is linear for any value
of t .

I If the covariate is a factor, then we just have a
reparametrization of the stratified model.
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Poisson modelling of interactions

When interactions are needed (or desired):

I use the familiar terminology of interaction as
known from (generalized) linear models.

I use clinical judgement of which interactions are
relevant.

I use clinical judgement of which forms of
interaction are relevant.

I are interactions with time of special interest?
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Poisson model for time-split data

I Clarifies the destinction between (risk) time as
response variable and time(scales) as
covariates.

I Multiple timescales easily handled.

I Smooth hazard rates by standard methods.

I More credible estimates of survival functions.

I Sensible modelling of interactions between
timescales and other variables — for example
states

I Interactions are called interactions.
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A more complicated multistate model
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State probabilities

How do we get from rates to probabilities:

I 1: Analytical calculations:

I immensely complicated formulae
I computationally fast (once implemented)
I difficult to generalize

I 2: Simulation of persons’ histories

I conceptually simple
I computationally not quite simple
I easy to generalize

I In the example the analytical option is
effectively intractable
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Simulation of a survival time

I For a rate function λ(t), Λ(t) =
∫ t

0 λ(s) ds :

S (t) = exp
(
−Λ(t)

)
I Simulate a survival probability u ∈ [0, 1]:

u = S (t) ⇔ Λ(t) = −log(u)

I Knowledge of Λ(t) makes it easy to find a
survival time.
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Simulation of a survival time

Simulated random variate: u:

u = 0.853 ⇔ −log(u) = 0.159

Look up 0.159 in the
table of the cumulative rates Λ(t):

time Lambda
...
1.2 0.131
1.3 0.151
1.4 0.165
1.5 0.181
...

Linear interpolation gives:

t = 1.3+0.1×(0.159−0.151)/(0.165−0.151) = 1.357
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Simulation of one survival time

I Cumulative rates as a function of time

I Obtained from a model for the mortality rates:

I Cox-model:
Cumulative incidence directly — the Breslow
estimator

I Poisson model:
Estimated incidence rates cumulated

I . . .

I Simulate survival probability

I Invert to time by look-up in table
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Simulation in a multistate model
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I Simulate a “survival time” for each possible
transition out of a state.

I The smallest of these is the transition time.

I Choose the corresponding transition type as
transition.

Simulation of follow-up (sim-Lexis) 138/ 149



Simulation in a multistate model
DN

1,706.4
309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

22 (1.3)

48 (2.8)

64 (3.8)

39 (3.2)

98 (8.0)

25 (23.0)

14 (10.1)

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

I Simulate a “survival time” for each possible
transition out of a state.

I The smallest of these is the transition time.

I Choose the corresponding transition type as
transition.

Simulation of follow-up (sim-Lexis) 138/ 149



Simulation in a multistate model
DN

1,706.4
309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

22 (1.3)

48 (2.8)

64 (3.8)

39 (3.2)

98 (8.0)

25 (23.0)

14 (10.1)

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

I Simulate a “survival time” for each possible
transition out of a state.

I The smallest of these is the transition time.

I Choose the corresponding transition type as
transition.

Simulation of follow-up (sim-Lexis) 138/ 149



Simulation in a multistate model
DN

1,706.4
309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

22 (1.3)

48 (2.8)

64 (3.8)

39 (3.2)

98 (8.0)

25 (23.0)

14 (10.1)

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

DN
1,706.4

309          175

CVD
1,219.4

234          119

ESRD(CVD)
108.6

0          14

ESRD
138.8

0          34

Dead(CVD)
0          98

Dead(ESRD(CVD))
0          25

Dead(ESRD)
0          14

Dead(DN)
0          64

I Simulate a “survival time” for each possible
transition out of a state.

I The smallest of these is the transition time.

I Choose the corresponding transition type as
transition.

Simulation of follow-up (sim-Lexis) 138/ 149



Multiple timescales

I The simulation just needs the cumulative rate
(or survival function) for a person entering a
state

I Therefore multiple timescales are easily
accommodated, they just appear as variables in
the model

I The tricky thing is to update the time-scales
at every transition

I That is why a Lexis object is needed — the
timescales are defined in the object
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Transition object are glms
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Tr <- list( "DN" = list( "Dead(DN)" = E1d,
"CVD" = E1c,
"ESRD" = E1e ),
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Construction of the glms

E1d <- glm( lex.Xst %in% c("Dead(DN)","Dead(CVD)") ~
Ns( age, kn=a.kn ) +
Ns( dur, kn=d.kn ) +
Ns( tfn, kn=n.kn ) +
(...) +
I(lex.Cst=="CVD"),

offset = log(lex.dur),
family = poisson,

data = subset( S5, lex.Cst %in% c("DN","CVD") ) )

E1c <- update( E1d, (lex.Xst=="CVD") ~ .,
data = subset( S5, lex.Cst=="DN" ) )
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simLexis

Input required:

I A Lexis object representing the initial state of
the persons to be simulated.
(lex.dur and lex.Xst will be ignored.)

I A transition object with the estimated Poisson
models collected in a list of lists.

Output produced:

I A Lexis object with simulated event histories.

I Use nState to count how many persons in
each state at different times.
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Using simLexis

Put one record a new Lexis object (init, say).
representing a person with the desired covariates.

Must have same structure as the one used for
estimation:

init <- subset( S5, FALSE,
select=c(timeScales(S5),"lex.Cst",

"dm.type","sex","hba1c",
"sys.bt","tchol","alb",
"smoke","bmi","gfr","hmgb",
"ins.kg") )

init[1,"sex"] <- "M"
init[1,"age"] <- 60
...

sim1 <- simLexis( Tr1, init,
time.pts=seq(0,25,0.2),
N=500 ) )
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Output from simLexis

> summary( sim1 )

Transitions:
To

From DN CVD ES(CVD) ES Dead(CVD) Dead(ES(CVD)) Dead(ES) Dead(DN)
DN 212 81 0 145 0 0 0 62
CVD 0 50 7 0 24 0 0 0
ESRD(CVD) 0 0 3 0 0 4 0 0
ESRD 0 0 0 70 0 0 75 0
Sum 212 131 10 215 24 4 75 62

Transitions:
To

From Records: Events: Risk time: Persons:
DN 500 288 9245.95 500
CVD 81 31 667.90 81
ESRD(CVD) 7 4 45.72 7
ESRD 145 75 891.11 145
Sum 733 398 10850.67 500
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Using a simulated Lexis object

nw1 <- pState( nState( sim1,
at = seq(0,15,0.1),
from = 60,
time.scale = "age" ),

perm = c(1:4,7:5,8) ) )
head( pState )
when DN CVD ES(CVD) ES Dead(ES) Dead(ES(CVD)) Dead(CVD) Dead(DN)
60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
60.1 0.9983 0.9986 0.9986 0.9997 0.9997 0.9997 0.9997 1
60.2 0.9954 0.9964 0.9964 0.9990 0.9990 0.9990 0.9990 1
60.3 0.9933 0.9947 0.9947 0.9981 0.9981 0.9981 0.9982 1
60.4 0.9912 0.9929 0.9929 0.9973 0.9973 0.9973 0.9974 1
60.5 0.9894 0.9913 0.9913 0.9964 0.9964 0.9964 0.9965 1

plot( pState )
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Simulated probabilities
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How many persons should you simulate?

I All probabilities have the same denominator —
the initial number of persons in the simulation,
N , say.

I Thus, any probability will be of the form
p = x/N

I For small probabilities we have that:

s.e.
(
log(p̂)

)
= (1− p)/

√
Np(1− p)

I So c.i. of the form p
×
÷ erf where:

erf = exp
(
1.96× (1− p)/

√
Np(1− p)

)
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erf = exp
(
1.96× (1− p)/

√
Np(1− p)

)
Simulation of follow-up (sim-Lexis) 147/ 149



How many persons should you simulate?

I All probabilities have the same denominator —
the initial number of persons in the simulation,
N , say.

I Thus, any probability will be of the form
p = x/N

I For small probabilities we have that:

s.e.
(
log(p̂)

)
= (1− p)/

√
Np(1− p)

I So c.i. of the form p
×
÷ erf where:

erf = exp
(
1.96× (1− p)/

√
Np(1− p)

)
Simulation of follow-up (sim-Lexis) 147/ 149



How many persons should you simulate?

I All probabilities have the same denominator —
the initial number of persons in the simulation,
N , say.

I Thus, any probability will be of the form
p = x/N

I For small probabilities we have that:

s.e.
(
log(p̂)

)
= (1− p)/

√
Np(1− p)

I So c.i. of the form p
×
÷ erf where:

erf = exp
(
1.96× (1− p)/

√
Np(1− p)

)
Simulation of follow-up (sim-Lexis) 147/ 149



How many persons should you simulate?

I All probabilities have the same denominator —
the initial number of persons in the simulation,
N , say.

I Thus, any probability will be of the form
p = x/N

I For small probabilities we have that:

s.e.
(
log(p̂)

)
= (1− p)/

√
Np(1− p)

I So c.i. of the form p
×
÷ erf where:

erf = exp
(
1.96× (1− p)/

√
Np(1− p)

)
Simulation of follow-up (sim-Lexis) 147/ 149



Precision of simulated probabilities
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Your turn: the sim-Lexis exercise / demo
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Multistate model overview

I Clarify what the relevant states are

I Allows proper estimation of transition rates

I — and relationships between them

I Separate model for each transition (arrow)

I The usual survival methodology to compute
probabilities breaks down

I Simulation allows estimation of cumulative
probabilities:

I Estimate transition rates (as usual)
I Simulate probabilities (not as usual)
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