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Survival data

Persons enter the study at some date.
Persons exit at a later date, either dead or alive.

Observation:

Actual time span to death (“event”)
or

Some time alive (“at least this long")
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Examples of time-to-event measurements

» Time from diagnosis of cancer to death.
» Time from randomisation to death in a cancer clinical trial

Time from HIV infection to AIDS.
Time from marriage to 1st child birth.

v

v

Time from marriage to divorce.

v

Time to re-offending after being released from jail

v
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Each line a ———
person =———

Each blob a —
death

Study ended at T
31 Dec. 2003 =

T
1993 1995 1997 1999 2001 2003
Calendar time
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Ordered by date
of entry

Most likely the
order in your
database.

T T
1993 1995 1997 1999 2001 2003
Calendar time
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Timescale
changed to
“Time since

diagnosis”.
T T T T T T
0 2 4 6 8 10
Time since diagnosis
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Patients ordered
by survival time.
T T T T T T
0 2 4 6 8 10
Time since diagnosis
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Survival times =
grouped into =
bands of

survival.

Year of follow-up
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Patients ordered
by survival
status within
each band.

I

Year of follow-up
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Survival after Cervix cancer

Stage | Stage |l
Year N D L N D
1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6

Estimated risk in year 1 for Stage | women is 5/107.5 = 0.0465
Estimated 1 year survival is 1 — 0.0465 = 0.9535
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S(t) = P {survival at least till ¢}
P{T >t} =1-P{T <t}=1-F(1)

F(t) is the cumulative risk of death before time t.
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Intensity or rate
P {event in (¢,t + h] | alive at t} /h

F(t+h)— F(t)

S(t) x h
S +h)=8(k)  dlogS(t)
- S(t)h et

= A?)
This is the intensity or hazard function for the distribution.
Characterizes the survival distribution as does f or F.

Theoretical counterpart of a rate.

Rates and Survival (surv-rate) 12/ 124

Relationships
dlogS(t)
—a -0
! t
S(t) = exp (—/0 A(u) du) = exp (—A(1))

A(t) = [/ A(s)ds is called the integrated intensity. Not an
intensity, it is dimensionless.

s = JeBSO)_ SO _ P s
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Rate and survival

S(1) = exp (— /0 A(s) ds) A1) = i((tt;

Survival is a cumulative measure, the rate is an instantaneous
measure.

Note: A cumulative measure requires an origin!

... 1t is always survival since some timepoint.
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Observed survival and rate

» Survival studies: Observation of (right censored) survival
time:
X =min(T,7), d=1H{X=T}
— sometimes conditional on T > ¢,
(left truncation, delayed entry).
» Epidemiological studies:
Observation of (components of) a rate:

DY

D: no. events, Y no of person-years, in a prespecified
time-frame.
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Empirical rates for individuals

» At the individual level we introduce the
empirical rate: (d,y),
— number of events (d € {0,1}) during y risk time.

» A person contributes several observations of (d, y), with
associated covariate values.

» Empirical rates are responses in survival analysis.

» The timescale t is a covariate — varies within each individual:
t: age, time since diagnosis, calendar time.

» Don’t confuse with y — difference between two points on any
timescale we may choose.
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Empirical rates =
by =
calendar time. .

[ T T T T T T T T T T 1
1993 1995 1997 1999 2001 2003

Calendar time
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Empirical rates
by

time since
diagnosis. =

Time since diagnosis
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Statistical inference: Likelihood
Two things needed:

» Data — what did we actually observe
Follow-up for each person:
Entry time, exit time, exit status, covariates
» Model — how was data generated
Rates as a function of time:
Probability machinery that generated data

Likelihood is the probability of observing the data, assuming the

model is correct.

Maximum likelihood estimation is choosing parameters of the

model that makes the likelihood maximal.
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Likelihood from one person

The likelihood from several empirical rates from one individual is a

product of conditional probabilities:

P {event at #|ty} = P {survive (%, t;)| alive at #} x
P {survive (t, t,)| alive at t; } x
P {survive (1, t3)| alive at t} X
P {event at 4| alive at 3}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (d, y)
— y =1t; — t;,_1 and mostly d = 0.

t; is the timescale (covariate).
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Poisson likelihood

The log-likelihood contributions from follow-up of one individual:
dlog(A(1)) — Ay, t=t,..., 1t

is also the log-likelihood from several independent Poisson
observations with mean A(t)y;, i.e. log-mean log(\(¢)) + log(y:)

Analysis of the rates, (\) can be based on a Poisson model with
log-link applied to empirical rates where:

» d is the response variable.
» log(\) is modelled by covariates
» log(y) is the offset variable.
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Likelihood for follow-up of many persons

Adding empirical rates over the follow-up of persons:
D=)d Y=)y = Dlogh)—AY

» Persons are assumed independent

» Contribution from the same person are conditionally
independent, hence give separate contributions to the
log-likelihood.

» Therefore equivalent to likelihood for independent Poisson
variates

» No need to correct for dependent observations; the likelihood
is a product.
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Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, A, the probability of
observing 7 deaths in the course of 500 person-years:

P{D =77V =500\ = Al xK
A7eA5OO < K
= L(\|data)

Best guess of A is where this function is as large as possible.

Confidence interval is where it is not too far from the maximum
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Likelihood function

2e-17 —

0e+00 —

| | | | | |
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Likelihood function

0.0 —

-0.5

-1.0

Log-likelihood ratio
AR
(&)
|

-3.0

| | | | | | |
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Confidence interval for a rate

A 95% confidence interval for the log of a rate is:
0 +1.96/v'D = log(\) &+ 1.96/v D

Take the exponential to get the confidence interval for the rate:

A % exp(1.96/VD)

error factor,erf
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Example

Suppose we have 17 deaths during 843.6 years of follow-up.

The rate is computed as:
A=D/Y =17/843.7 = 0.0201 = 20.1 per 1000 years

The confidence interval is computed as:
AZerf=20.17%exp(1.96/VD) = (12.5,32.4)

per 1000 person-years.

Rates and Survival (surv-rate) 26/ 124

Ratio of two rates

If we have observations two rates \; and )y, based on (Dy, Y7) and
(Do, Yp), the variance of the difference of the log-rates, the
log(RR), is:
var(log(RR)) = wvar(log(A1/Xo))
var(log(\1)) + var(log(Ag))
= 1/Dy+1/Dy
As before a 95% c.i. for the RR is then:

. 1 1
X 1.964/ — + —
RR eXp( 96 D1+D0)

A\

'
error factor
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Example

Suppose we in group 0 have 17 deaths during 843.6 years of
follow-up in one group, and in group 1 have 28 deaths during 632.3
years.

The rate-ratio is computed as:

RR = Ai/Ao = (D1/Y1)/(Dy/ Yo)
— (28/632.3)/(17/843.7) = 0.0443/0.0201 = 2.198

The 95% confidence interval is computed as:
RR = erf = 2.198 % exp(1.961/1/17 + 1/28)
— 2198 * 1.837 = (1.20,4.02)
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Example using R

Poisson likelihood, for one rate,
based on 17 events in 843.7 PY:

library( Epi )

D <- 17 ; Y <- 843.7

ml <- glm( D ~ 1, offset=1og(Y/1000), family=poisson)
ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR:

D <- ¢(17,28) ; Y <- ¢(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=1og(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%

(Intercept) 20.149342 12.526051 32.412130
Rates aggllrvival (surv-rate) 2.197728 1.202971 4.015068
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Example using R

Poisson likelihood, two rates, or one rate and RR:

D <- ¢(17,28) ; Y <- ¢(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=1og(Y/1000), family=poisson)

ci.exp( m2 )
exp(Est.) 2.5% 97.5Y%
(Intercept) 20.149342 12.526051 32.412130
ggl 2.197728 1.202971 4.015068
m3 <- gim( D ~ gg - 1, offset=1og(Y/1000), family=poisson)
ci.exp( m3 )
exp(Est.) 2.5% 97.5%

gg0 20.14934 12.52605 32.41213
ggl 44.28278 30.57545 64.13525
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Follow-up and rates

» Follow-up studies:

» D — events, deaths
» Y — person-years

» A= D/Y rates
» Rates differ between persons.
» Rates differ within persons:

» By age
» By calendar time
» By disease duration

> ..

» Multiple timescales.
» Multiple states (little boxes — later)

Representation of follow-up data (time-split) 31/ 124

Stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:
No. of events, D, and Risk time, Y.

One |L|i.

Follow-up T 1l 5 3 5
WO [ T

Age-scale 35 40 45 50
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d,y)

Follow-up data for each individual must therefore have (at least)
three variables:

Date of entry entry date variable
Date of exit exit  date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
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Represen

. y d
tlo t 5) 1‘«
n Y2 Y3
Probability log-Likelihood
P(d at t|entry 1)) dlog(\) — Ay

= P(surv ty — ti|entry 1)
X P(surv t; — tlentry #;)
x P(d at t|entry 1)

tation of follow-up data (time-split)

=0log(A) — An
+ 0log(A\) — Ay
+ dlog(\) — \ys
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Represen

, y 50
b t 5 t
I t O
n Y2 Y3
Probability log-Likelihood
P(surv ty — t|entry ) 0log(A) — Ay

= P(surv ty — ti|entry i)
X P(surv t; — tylentry t)
X P(surv ty — t|entry )

tation of follow-up data (time-split)

=0log(A) — Ay
+0 1()&;(‘>\) — )\3/2
+0log(A\) — Ays
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Represen

, y i
t t 5) tx
I } { ]
(1 Y2 Y3
Probability log-Likelihood
P(event at t|entry ty) Llog(A) — Ay

= P(surv ty — t|entry %)
X P(surv t; — tylentry t)
x P(event at t|entry 1)

tation of follow-up data (time-split)

=0log(\) — Ay
+0log(A) — A
+1log(A) — Ays
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Dividing time into bands:

If we want to put D and Y into intervals on the timescale we must

know:

Origin: The date where the time scale is 0:

» Age — 0 at date of birth

» Disease duration — 0 at date of diagnosis

» Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

» 1-year classes? 5-year classes?

» Equal length?

Aim: Separate rate in each interval

Representation of follow-up data (time-split)
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Example: cohort with 3 persons:

Id Bdate Entry

» Age bands: 10-years intervals of current age.

Exit
1 14/07/1952 04/08/1965 27/06/1997
2 01/04/1954 08/09/1972 23/05/1995
3 10/06/1987 23/12/1991 24/07/1998

= O =

» Split Y for every subject accordingly

» Treat each segment as a separate unit of observation.

» Keep track of exit status in each interval.

Representation of follow-up data (time-split)
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12
Status at exit: Dead Alive Dead
Y 31.89 22.70 6.58

D 1 0 1

Representation of follow-up data (time-split)
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subj. 1 subj. 2 subj. 3 >

Age Y D Y D Y D Y D

O- 000 O 000 O 546 0] 546 O

10- 694 0 156 0 1.12 1| 862 1

20- 10.00 O 1000 O 0.00 0]20.00 O

30- 10.00 O 10.00 O 0.00 0/]20.00 O

40- 495 1 114 0 000 O] 6.09 1

> 3189 1 2270 0 658 1|60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int
1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 O 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?

Representation of follow-up data (time-split)
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Timescales

» Age

» Calendar time
» Time since treatment

» A timescale is a variable that varies deterministically within
each person during follow-up:

» Time since relapse

» All timescales advance at the same pace
(1 year per year ...)

» Note: Cumulative exposure is not a timescale.
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Follow-up on several timescales

The risk-time is the same on all timescales
Only need the entry point on each time scale:

» Age at entry.
» Date of entry.
» Time since treatment at entry.
— if time of treatment is the entry, this is O for all.

v

v

v

Response variable in analysis of rates:

(d,y) (event, duration)

v

Covariates in analysis of rates:

» timescales
» other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )
id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1
2 640 2 1896.23 1 1945.77 20 1964.37 1
3 3425 1 1886.97 2 1955.18 0 1956.59 1
4 4017 2 1936.81 2 1957.61 0 1992.14 2

Timescales of interest:

» Age
» Calendar time
» Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,

+ tfi =0 ),

+ exit = 1list( per = exitdat ),

+ exit.status = as.numeric(exitstat==1),

+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age

per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 O 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
> summary( thL )
Transitions:
To
From O 1 Records: Events: Risk time: Persons:
03 20 23 20 512.59 23
Representation of follow-up data (time-split) 46/ 124
» % w0 » 0
age
> plot( thL, lwd=3 )
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Lexis diagram )
EINLEITUNG
R * IN DIE
o THEORIE
#+ = DER
2% + BEVOLKERUNGSSTATISTIK
g - + VON
£
19‘40 19‘50 19‘60 19‘70 19‘80 19‘90 20‘00
" STRASSBURG
KARL JL TRCBXER ‘
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80

704

60

50—

age

40

30

204

10

+ +

1930

> plot( thL, 2:1, lwd=5, col=c("red","blue") [thL$contrast],

+
+

T T
1940 1950

T
1960
per

T
1970

T
1980

T
1990

2000

grid=TRUE, 1lty.grid=1, col.grid=gray(0.7),

x1im=1930+c (0,70)

, xaxs="i"

, ylim=

10+c(0,70), yaxs="i",

Represetapoinftfsiowtlildat? ¢thye pohg (NA, 3) [thL$lex.Xst+1] ,1wd=3, cex=1.5 )

las=1

)
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Splitting follow-up time

> spll <- splitLexis( thL, breaks=seq(0,100,20),

> time.scale="age" )

> round(spll,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat vo]

1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8

2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8

3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8

4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8

5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8

6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2

7 20.8 1957.6 0.0 19.2 0 0 4017 2  1936.8 2 1957.6

8 40.0 1976.8 19.2 15.3 0 0 4017 2  1936.8 2 1957.6
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Split on another timescale

> spl2 <- splitLexis( spll, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1)
lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injg¢

1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 19

2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 19

3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 19

4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 19

5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 19

6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 19

7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 19

8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 19

9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 14

10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 19

11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 14

12 3 69.2 1956.2 1.0 0.4 0 13425 1 1887.0 2 14

13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 14

14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 19

15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 19

16 4 40.0 1976.8 19.2 0.8 0 0 4017 2  1936.8 2 14
Represeﬂt?ﬁion of follovsAup@Qa 81!11%&?]31’.)6 20.0 14.5 0 0 4017 2 1936.8 52 124 14




. / age tfi lex.dur lex.Cst lex.Xst
7 22.2 0.0 1.0 0 0
23.2 1.0 4.0 0 0
ol | 27.2 5.0  12.8 0 0
( 40.0 17.8 2.2 0 0
/ //// 42.2 20.0  17.8 0 0
8 //7/ / 60.0 37.8 0.2 0 1
1/ /
|7
0 0 2 3 4 s e 70
tfi
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Likelihood for a piecewise constant rate
» This setup is for a situation where it is assumed that rates are
constant in each of the intervals.
» Each observation in the dataset contributes a term to a
“Poisson” likelihood.
» Models can include fixed covariates, as well as the timescales
(the left end-points of the intervals) as continuous variables.
» Rates are assumed to vary by timescales:
» continuously
» non-linearly
» Rates can vary along several timescales simultaneously.
Representation of follow-up data (time-split) 53/ 124

Where is (d,;, y,;) in the split data?
Likelihood is d;log(Api) — ApiYpi

> round( spl2, 1)

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1

— and what are covariates for the rates?
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Analysis of results

» d,; — events in the variable: lex.Xst:
In the model as response: lex.Xst==

> Yypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).
» Covariates are:
» timescales (age, period, time in study)
» other variables for this person (constant or assumed constant in each
interval).
» Model rates using the covariates in glm:
— no difference between time-scales and other covariates.

Representation of follow-up data (time-split) 55/ 124

Classical estimators: Kaplan-Meier
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The Kaplan-Meier Method

» The most common method of estimating the survival function.
» A non-parametric method.

» Divides time into small intervals where the intervals are defined
by the unique times of failure (death).

» Based on conditional probabilities as we are interested in the
probability a subject surviving the next time interval given that
they have survived so far.

Classical estimators: Kaplan-Meier (km-na) 56/ 124




Kaplan—Meier method illustrated

(e = failure and x = censored):

N= 50 49 46
H-P oD+
Time
Cumulative 1.0
survival —\—
probability
» Steps caused by multiplying by
(1 —1/49) and (1 — 1/46) respectively
» Late entry can also be dealt with
Classical estimators: Kaplan-Meier (km-na) 57/ 124

Using R: Surv()

library( survival )
data( lung )
head( lung, 3 )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

with( lung, Surv( time, status==2 ) )[1:10]
[1] 306 455 1010+ 210 883 1022+ 310 361 218 166
( s.km <- survfit( Surv( time, status==2 ) ~ 1 , data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL

228 165 310 285 363
plot( s.km )
abline( v=310, h=0.5, col="red" )
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Who needs the Cox-model
anyway”?

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi: :Lexis
21 September 2016
FRIAS, Freiburg

http://BendixCarstensen/AdvCoh/courses/Frias-2016

A look at the Cox model

A(t,z) = Xo(t) x exp(2'f)
A model for the rate as a function of ¢ and z.

The covariate ¢ has a special status:

v

Computationally, because all individuals contribute to (some
of) the range of ¢.

> ...the scale along which time is split (the risk sets)

v

Conceptually £ is just a covariate that varies within individual.

v

Cox's approach profiles (%) out from the model
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The Cox-likelihood as profile likelihood

» One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

10g<)‘(t7 xl)) = log(AO(t» + Bz + -+ 5p$pi =0+,
» Profile likelihood:

» Derive estimates of a; as function of data and [s

— assuming constant rate between death times
» Insert in likelihood, now only a function of data and [s
» Turns out to be Cox’s partial likelihood
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The Cox-likelihood: mechanics of computing
» The likelihood is computed by suming over risk-sets:

endeath
l(n) = 1 S
(n) Et: og (2 em)

1€R

» this is essentially splitting follow-up time at event- (and
censoring) times

v

... repeatedly in every cycle of the iteration
...simplified by not keeping track of risk time
... but only works along one time scale

v

v
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log()\(t, xz)) = 1og()\0(t)) + Brxi + -+ Bpxp = oy + 1,

Suppose the time scale has been divided into small intervals
with at most one death in each:

Empirical rates: (d;, y;) — each t has at most one d;; = 0.
Assume w.l.o.g. the ys in the empirical rates all are 1.

Log-likelihood contributions that contain information on a
specific time-scale parameter a; will be from:

v

v

v

v

» the (only) empirical rate (1, 1) with the death at time ¢.
» all other empirical rates (0, 1) from those who were at risk at time ¢.
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Note: There is one contribution from each person at risk to this
part of the log-likelihood:

li(ay, B) = Z dilog(Ai(?)) — Ai(t)y:

1€ER

= Z {dz (Oét + 7%) eO"J””}
1€ER,

= Qt + Tdeath — et Z el

1€R,

where 7geath is the linear predictor for the person that died.

Who needs the Cox-model anyway? (KMCox) 65/ 124

The derivative w.r.t. oy Is:

1
Datgt(ata 6) =1—e™ el = () - M= S
ieth D ier, €

If this estimate is fed back into the log-likelihood for «;, we get the
profile likelihood (with a; “profiled out”):

1 endeath
log (ZieRt em) T Teearn — 1 = log (ZieRt em) !

which is the same as the contribution from time ¢ to Cox’s partial
likelihood.
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Splitting the dataset a priori

» The Poisson approach needs a dataset of empirical rates (d, y)
with suitably small values of y.

— each individual contributes many empirical rates

(one per risk-set contribution in Cox-modelling)

From each empirical rate we get:

» Poisson-response d
» Risk time y — log(y) as offset
» Covariate value for the timescale
(time since entry, current age, current date, ...)
» other covariates

Contributions not independent, but likelihood is a product
» Same likelihood as for independent Poisson variates
» Modelling is by standard glm Poisson
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v

v

v

v




Example: Mayo Clinic lung cancer

v

Survival after lung cancer

v

Covariates:

» Age at diagnosis

» Sex

» Time since diagnosis
Cox model
Split data:

» Poisson model, time as factor
» Poisson model, time as spline

v

v
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Mayo Clinic
lung cancer
60 year old woman

Survival

0.0

T T T 1
0 200 400 600 800
Days since diagnosis
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Example: Mayo Clinic lung cancer |

> library( survival )

> library( Epi )

> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be O on the tfe timescale.
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Example: Mayo Clinic lung cancer |l

> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),

+ method="breslow", eps=10"-8, iter.max=25, data=Lung )

> Lung.s <- splitLexis( Lung,

+ breaks=c (0, sort (unique (Lung$time))),

+ time.scale="tfe" )

> Lung.S <- splitLexis( Lung,

+ breaks=c (0, sort (unique (Lung$time [Lung$lex.Xst=="Dead"])))
+ time.scale="tfe" )

> summary( Lung.s )

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> summary( Lung.S )
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Example: Mayo Clinic lung cancer llI

Transitions:
To
From Alive Dead Records: Events: Risk time: Persons:
Alive 15916 165 16081 165 69593 228

> subset( Lung.s, lex.id==96 )[,1:11]

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog

9235 96 O 5 Alive Alive 12 30 2 72 1 2
9236 96 5 6 Alive Alive 12 30 2 72 1 2
9237 96 11 1 Alive Alive 12 30 2 72 1 2
9238 96 12 1 Alive Alive 12 30 2 72 1 2
9239 96 13 2 Alive Alive 12 30 2 72 1 2
9240 96 15 11 Alive Alive 12 30 2 72 1 2
9241 96 26 4 Alive Dead 12 30 2 72 1 2
> nlevels( factor( Lung.s$tfe ) )
[1] 186
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Example: Mayo Clinic lung cancer IV
> system.time (
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )
+ )

user system elapsed
10.905 0.016 10.919

> length( coef(mLs.pois.fc) )

[1] 188

> system.time(

+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),

offset = log(lex.dur),
family=poisson, data=Lung.S, eps=10"-8, maxit=25 )

+ + +
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Example: Mayo Clinic lung cancer V

user system elapsed
3.286 0.012  3.297

> length( coef (mLS.pois.fc) )
(1] 142

> t.kn <- ¢(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +

+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer VI

user system elapsed
0.177 0.000 0.176

ests <-

rbind( ci.exp(mL.cox),
ci.exp(mLs.pois.fc,subset=c("age", "sex")),
ci.exp(mLS.pois.fc,subset=c("age", "sex")),
ci.exp(mLs.pois.sp,subset=c("age", "sex")) )

cmp <- cbind( ests[c(1,3,5,7) ,1,

ests[c(1,3,5,7)+1,] )
rownames ( cmp ) <- c("Cox","Poisson-factor", "Poisson-factor (D)","Poisson-spling
colnames( cmp )[c(1,4)] <- c("age","sex")

VV+V+++ etV

> round( cmp, 7 )
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Example: Mayo Clinic lung cancer VIl

age 2.5% 97.5% sex 2.5% 97.5%
Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor (D) 1.017332 0.9991211 1.035874 0.5984794 0.4310150 0.8310094
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +

+ age + factor( sex ),

+ offset = log(lex.dur),

+ family=poisson, data=Lung.s, eps=10"-8, maxit=25 )

CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )

Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
survP <- exp(-rbind(0,Lambda))

vV VVvyVv

Code and output for the entire example avaiable in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is
Taking the life-table approach ad absurdum by:

» dividing time very finely and
modeling one covariate, the time-scale, with one parameter per
distinct value.

the model for the time scale is really with exchangeable
time-intervals.

= difficult to access the baseline hazard (which looks terrible)

v

v

v

= uninitiated tempted to show survival curves where irrelevant

v
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Models of this world

» Replace the a;s by a parametric function f(¢) with a limited
number of parameters, for example:
» Piecewise constant
» Splines (linear, quadratic or cubic)
» Fractional polynomials
» the two latter brings model into “this world™:

» smoothly varying rates
» parametric closed form representation of baseline hazard
» finite no. of parameters

» Makes it really easy to use rates directly in calculations of

» expected residual life time
» state occupancy probabilities in multistate models

> ..
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Likelihood for multistate follow-up
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Likelihood for transition through states

A—B—C—
» given start of observation in A at time %
» transitions at times ¢g and ¢
» survival in C till (at least) time t,:

L = P{survive ) — tp in A}
x P{transition A — B at | alive in A}
x P{survive tg — tc in B | entered B at t3}
x P{transition B — C at t¢| alive in B}

x P{survive t¢ — t, in C | entered C at t¢}

» Product of likelihood contributions for each transition
— each one as for a survival model
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Likelihood contributions reflected in Lexis object

L = P{survive {y — tp in A}
x P{transition A — B at | alive in A}
x P{survive tg — to in B | entered B at t3}
x P{transition B — C at t¢| alive in B}
x P{survive t¢ — t, in C | entered C at {¢}

lex.id time lex.dur 1lex.Cst 1lex.Xst
1 t_0 t_B-t_0 A B
1 t_B t_C-t_B B C
1 t_C t_x-t_C ¢ C

constant rate in interval = log-likelihood term is Poisson:
dlog(A) — Ay = (lex.Xst! =1lex.Cst) x log(A) — A X lex.dur
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Competing risks

But you may die from more than one cause
(move to one of more possible states):

Cause A
-

Alive —_— Cause B

x
Cause C
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Cause-specific intensities

P {death from cause A in (¢,¢ + h] | alive at ¢}

AA(t) = hmh%o

h
Ap(t) = hmh%OP {death from cause Bliln (t,t+ h] | alive at ¢}
Aolt) = hmh%OP {death from cause C iiln (t,t+ h] | alive at t}

Total mortality rate:

P {death from any cause in (¢,¢ + h] | alive at ¢}
h

Aotal (1) = limp_0
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Cause-specific intensities
For small h, P {2 events in (¢, + h]} =~ 0, so:

P {death from any cause in (¢,t + h] | alive at t}

= P {death from cause A in (t,t+ h] | alive at t} +
P {death from cause B in (¢,t + h] | alive at ¢} +
P {death from cause C in (¢, ¢+ h] | alive at ¢}
)

— /\Total(t) = )\A(t + /\B(t) + Ac(t)

Intensities are additive,
if they all refer to the
same risk set, in this case “Alive”.
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Likelihood for competing risks

Data:

Y - person years in “Alive”
Dy - deaths from cause A
Dp - deaths from cause B
De - deaths from cause C

Now, assume for a start that transition rates between states are
constant.
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Likelihood for competing risks

A survivor contributes to the log-likelihood:
log(P {Survival for a time of y}) = —(Aa+ Ag+ A¢)y

A death from cause A contributes an additional log(\4), from
cause B an additional log(Ap) etc.

The total log-likelihood is then:

(A4, Mg, A¢) =Dalog(A4) + Dplog(Ap) + Delog(Ae)
— (M +Ap+A0)Y
:[DAlog()\A) — M Y]—I—
[Dglog(Ag) — Ap Y]+
[Delog(Ao) — Ac Y]
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Components of the likelihood

The log-likelihood is made up of three contributions:
» one for cause A,

» one for cause B and
» one for cause C

Deaths are the cause-specific deaths,
but the person-years are the same in all contributions.

The person-years appear once for each transition out of a state.
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Likelihood for multiple states

» Product of likelihoods for each transition
— each one as for a survival model

» conditional on being alive at (observed) entry to current state

» Risk time is the risk time in the current (“From”, lex.Cst)
state

» Events are transitions to the “To" state (lex.Xst)

» All other transitions out of “From” are treated as censorings
(but they are not)

» Fit models separately for each transition or jointly for all
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Time varying rates:

v

The same type of analysis as with a constant rates

» ...but data must be split in intervals sufficiently small to
justify an assumption of constant rate (intensity),

the model should allow for a separate rate for each interval,

v

but these can be constrained to follow model with a smooth
effect of the time-scale values allocated to each interval.

v
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Practical implications

» Empirical rates ((d, y) from each individual) will be the same
for all analyses except for those where deaths occur.
» Analysis of cause A:

» Contributions (1, ) only for those intervals where a cause A death
occeurs.

» Intervals with cause B or C deaths (or no deaths) contribute only
(0, y) — treated as censorings.
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original expanded
id time cause xx d.A id time dd XX T
B 0.50 0 0.50
NA 1.00 0 1.00
B -1.74 0 -1.74
A -0.55 1 -0.55
NA -0.58 0 -0.58
C -0.04 0 -0.04

0.50
1.00
-1.74
-0.55
-0.58
-0.04

0.50
1.00
-1.74
-0.55
-0.58
-0.04

NP WN -
~N~NWOoo

OB WNF OUIRWNE OO WN -
NNWOR R NNWO R N0
~FO0O00O0 OO0OORORr OOROOO
QOO WEWWWmE =xmmmsH

...accomplished by stack.Lexis
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Lexis objects (data frame)

» Represents the follow-up
» lex.dur contains the total time at risk for (any) event
» lex.Cst is the state in which this time is spent

» lex.Xst is the state to which a transition occurs
— if no transition, the same as lex.Cst.

This is used for modelling of single transitions between states —
and multiple transitions with no two originating in the same state.
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stacked.Lexis objects (data frame)

Represents the likelihood contributions

v

v

lex.dur contains the total time at risk for (any) event

v

lex.Tr is the transition to which the record contributes

lex.Fail is the event (failure) indicator for the transition in
question.

v

This is used for joint modelling of all transition in a multistate
set-up.

Particularly with several rates originating in the same state
(competing risks).
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Implemented in the stack.Lexis function:

> library( Epi )
> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923
> dml <- Lexis( entry = list(Per = dodm,
Age = dodm-dobth,
DMdur = 0 ),

list(Per = dox ),
factor(!is.na(dodth),

labels=c("DM", "Dead")),
DMlate )

exit
exit.status

+ + + + + +

data

NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml,

+
+
> summary( dmi )

Transitions:
To

From DM Ins Dead Records:

new.st
precur

DM 6157 1694 2048
Ins 0 1340 451
Sum 6157 3034 2499

> boxes( dmi,
+

+ scale.R=1000,

boxpos
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cut = dml$doins,

ate
sor

9899
1791
11690

"Tns n’
HDMH )

Events:
3742

451

4193

Risk time:
45885.49
8387.77
54273.27

= list(x=c(20,20,80),

y=c(80,20,50)),

show.BE=TRUE, hmult=1.2,

Persons:
9899
1791
9996

wmult=1.

1

)
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DM

9,899

45,885.5
6,157

1,694
(36.9)

Ins
8,387.8

97 1,340

Likelihood for multistate follow-up (ms-1ik)

2,048
(44.6)

451
(53.8)

0

Dead
2,499
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Implemented in the stack.Lexis function:

> options( digits=3, width=200 )
> st.dmi <- stack( dmi )

> print( st.dmi[1:6,],

Per Age DMdur
1999 58.
2003 64.
2005 86.
2009 44.
2009 75.
2008 80.

O 00O W
[eNeoNoNoNoNe]

> str( st.dmi )

Classes 'stacked.
Per : num
Age ! num
DMdur : num
lex.dur : num
lex.Cst :
lex.Xst

€ H P hH PP

leellhooﬁor]m%?ss’c;[;;follo%/ ugéigtf&}. W/ 3

Acrd

row.names=F )

lex.dur lex.Cst lex.Xst

11.080
.689
.446
.736
.344
.037

N = OOoO®

Lexis'

58.7 64.1 86.3 44 75.8 ...
0000000000O0 ...

11.08

Factor w/ 3 levels
Factor w/ 3 levels

DM
DM
DM
DM
DM
DM

and 'data.frame':

DM
DM
DM
DM
DM
Dead

lex.Tr
DM->Ins
DM->Ins
DM->Ins
DM->Ins
DM->Ins
DM->Ins

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

21589 obs. of
1999 2003 2005 2009 2009 ...

6.689 5.446 0.736 1.344 ...

IIDMII , IIInSlI , IlDeadIl .
lIDMIl , IIInSlI s IlDeadIl .

111
111

levels "DM->Ins","DM->Dead",
ITQE BATQE FATQR BFATQRE BATQE EAT QF‘

OO WN -

lex.Fail lex.id sex

mETMmET

dobth

16 variables:

1
1
1

= e

=W

= e

= e

=W

= e

1940
1939
1918
1965
1933
1928

dodm d
1999
2003
2005
2009
2009
2008

$8/12¢

a




Implemented in the stack.Lexis function:

> print( subset( dmi, lex.id }inj ¢(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm dodth dooad doins

1997 59.4 0.0 0.890 DM Dead 13 M 1938 1997 1998 NA NA

2003 58.1 0.0 2.804 DM Ins 15 M 1944 2003 NA NA 2005
2005 60.9 2.8 4.643 Ins Ins 15 M 1944 2003 NA NA 2005
1999 73.7 0.0 8.701 DM Ins 28 F 1925 1999 2008 2001 2007
2007 82.4 8.7 0.977 Ins Dead 28 F 1925 1999 2008 2001 2007 1

> print( subset( st.dmi, lex.id /inj, ¢(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm

1997 569.4 0.0 0.890 DM Dead DM->Imns FALSE 13 M 1938 1997
2003 58.1 0.0 2.804 DM Ins DM->Ims TRUE 15 M 1944 2003
1999 73.7 0.0 8.701 DM Ins DM->Ims TRUE 28 F 1925 1999
1997 59.4 0.0 0.890 DM Dead DM->Dead TRUE 13 M 1938 1997
2003 58.1 0.0 2.804 DM Ins DM->Dead FALSE 15 M 1944 2003
1999 73.7 0.0 8.701 DM Ins DM->Dead FALSE 28 F 1925 1999
2005 60.9 2.8 4.643 Ins Ins Ins->Dead FALSE 15 M 1944 2003
2007 82.4 8.7 0.977 Ins Dead Ins->Dead TRUE 28 F 1925 1999
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Analysis of rates in multistate models

» Interactions between all covariates (including time) and state
(lex.Cst):
& separate analyses of all transition rates.

> Only interaction between state (lex.Cst) and time(scales):
<> same covariate effects for all causes transitions, but
separate baseline hazards — “stratified model".

» Main effect of state only (1ex.Cst):
& proportional hazards

» No effect of state:
& identical baseline hazards — hardly ever relevant.
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Analysis approaches and data representation

» Lexis objects represents the precise follow-up in the cohort, in
states and along timescales

v

— used for analysis of single transition rates.

v

stacked.Lexis objects represents contributions to the total
likelihood

— used for joint analysis of (all) rates in a multistate setup

v

v

... which is the case if you want to specify common effects
between different transitions.
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Assumptions in competing risks
“Classical” way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three variables:

T4, Tp and T, representing times to death from each of the three
causes.

But at most one of these is observed.

Often it is stated that these must be assumed independent in order
to make the likelihood machinery work

1. It is not necessary.
2. Independence can never be assessed from data.
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An account of these problems is given in:

PK Andersen, SZ Abildstrgm & S Rosthgj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp. 203-215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein Putter:
Competing risks in epidemiology: possibilities and pitfalls,
International Journal of Epidemiology; 2012: pp. 1-10

Contains examples where both dependent and independent “cause
specific survival times” gives rise to the same set of cause specific
rates.
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Multistate models

» Outcomes are transitions between states, with times
Covariates are measurements and timescales

>
» Models describe the single transition rates
» Results are:
» Description of rates — how do they depend time etc.
» Prediction of state occupancy:
What is the probability that a person is in a given state at a given
time?
» This illustrates the latter.

Reporting a multistate model (ms-rep) 104/ 124

Diabetes patient mortality

> library(Epi)
> data(DMlate)

> dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ),

+ exit = list(Per=dox),
+ exit.status = factor(!is.na(dodth),labels=c("DM", "Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.

> summary (dml)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
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... subdivided by insulin status

Split follow-up at insulin, introduce a new timescale and split
non-precursor states:

> dmi <- cutLexis( dml, cut = dml$doins,

+ pre = HDMH’

+ new.state = "Ins",

+ new.scale = "t.Ins",

+ split.states = TRUE )

> summary( dmi )

Transitions:

To

From DM 1Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742  45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193  54273.27 9996

> boxes( dmi, boxpos=list(x=c(20,20,80,80),y=c(80,20,80,20)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.2 )
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Split the follow in 3-month intervals for modelling

> Si <- splitlLexis( dmi, 0:60/4, "DMdur" )
> summary( Si )

Transitions:
To
From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 184986 1694 2048 0 188728 3742 45885.49 9899
Ins 0 34707 0 451 35158 451 8387.77 1791
Sum 184986 36401 2048 451 223886 4193 54273.27 9996

> summary( dmi )

Transitions:
To
From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996
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Define knots for spline modelling of the rates:

> nk <- 4
> ( ai.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( Agetlex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
27.68241 49.61893 61.88364 75.56211

> ( ad.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
63.61875 74.98700 81.38501 89.26831

> ( di.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
1.50 4.25 7.00 10.50

> ( dd.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )
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Fit Poisson models to transition rates

> DM.Ins <- glm( (lex.Xst=="Ins") ~ Ns( Age , knots=ai.kn ) +

+ Ns( DMdur, knots=di.kn ) +

+ I(Per-2000) + sex,

+ family=poisson, offset=log(lex.dur),

+ data = subset(Si,lex.Cst=="DM") )

> DM.Dead <- glm( (lex.Xst=="Dead") ~ Ns( Age , knots=ad.kn ) +

+ Ns( DMdur, knots=dd.kn ) +

+ I(Per-2000) + sex,

+ family=poisson, offset=log(lex.dur),

+ data = subset(Si,lex.Cst=="DM") )

> Ins.Dead <- glm( (lex.Xst=="Dead(Ins)") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ Ns( t.Ins, knots=td.kn ) +
+ I(Per-2000) + sex,

+ family=poisson, offset=log(lex.dur),

+ data = subset(Si,lex.Cst=="Ins") )
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Put the fitted models into an object representing the transitions

> Tr <- 1list( "DM" = list( "Ins" = DM. Ins,
+ "Dead" = DM.Dead ),
+ "Ins" = list( "Dead(Ins)" = Ins.Dead ) )
> lapply( Tr, names )
$DM
[1] "IIIS" "Dead"
$Ins
[1] "Dead(Imns)"
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Define an initial object

— note the combination of select= and NULL which ensures that
the relevant attributes from the Lexis object Si are carried over to
ini (using Si[NULL,1:9] will lose essential attributes )

ini <- subset(Si,select=1:9) [NULL,]
ini[1:2,"lex.Cst"] <- "DM"
ini[1:2,"Per"] <- 1995
ini[1:2,"Age"] <- 60
ini[1:2,"DMdur"] <- 5

ini [1:2, ”SeX”] <- C(HMH, "F”)

ini

VVVVVVYV

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 NA 1995 60 5 NA NA DM <NA> M
2 NA 1995 60 5 NA NA DM <NA> F
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Simulate 10,000 of each sex using the estimated models in Tr:

> system.t

ime(

+ simL <- simLexis( Tr, ini, time.pts=seq(0,11,0.5), N=10000 ) )

user system elapsed

25.111

0.100

25.208

> summary( simL )

Transition
To

From DM

DM 8817

Ins 0

Sum 8817

s:

Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
6167 5016 0 20000 11183 150485.05 20000
4456 0 1711 6167 1711 33773.71 6167

10623 5016 1711 26167 12894 184258.76 20000

> subset( simL, lex.id < 3 )

lex.id Per Age DMdur t.Ins 1lex.dur lex.Cst lex.Xst se
1 1 1995.000 60.00000 5.00000 NA 1.050103 DM Dead
2 2 1995.000 60.00000 5.00000 NA 6.118532 DM Ins
3 2 2001.119 66.11853 11.11853 0 2.324054 Ins Dead(Ins)
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M 2006
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We now have a dataframe (Lexis object) with simulated follow-up
of 10,000 men and 10,000 women.

We then find the number of persons in each state at a specified set

of times.

> nSt <- nState( subset(simL,sex=="M"),

+
> nSt

St
when

1995 1
1995.
1995.
1995.
1995.
1995.
1995.
1995.
1995.

O~NOOUTPWN -

Reporting alr%%&a‘tgmodg’%éyrep)
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ate
DM
0000
9950
9904
9847
9801
9749
9692
9645
9588

at=seq(0,10,0.1), from=1995, time.scale="Per" )

Ins Dead Dead(Ins)

0 0 0
24 26 0
40 56 0
72 81 0
92 105 2

115 134 2
140 165 3
167 184 4
192 214 6
211 245 7
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Show the cumulative prevalences in a different order than that of
the state-level ordering and plot them using all defaults:

> pp <- pState(

> head( pp

St
when

1995
1995.
1995.
1995.
1995.
1995.

GO WN =
[eNoNoNeoNeN

> plot( pp
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)

ate
DM
.0000
.9950
.9904
.9847
.9801
.9749

)

nSt, perm=c(1,2,4,3) )

Ins Dead(Ins) Dead
1.0000 1.0000 1
0.9974 0.9974 1
0.9944 0.9944 1
0.9919 0.9919 1
0.9893 0.9895 1
0.9864 0.9866 1
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We can show the results in an clearer way, buy choosing colors
wiser:

clr <- c("orange2","forestgreen")

par( las=1, mar=c(3,3,3,3) )

plot( pp, col=clr[c(2,1,1,2)] )

lines( as.numeric(rownames(pp)), ppl,2], 1lwd=2 )

mtext( "60 year old male, diagnosed 1995", side=3, line=2.5, adj=0 )

mtext( "Survival curve", side=3, line=1.5, adj=0 )

mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1] )
mtext ( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[2] )

axis( side=4 )

VVVVVVYVYVYV
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We could also use a Cox-model for the mortality rates assuming the
two mortality rates to be proportional:

When we fit a Cox-model, 1lex.dur must be used in the Surv()
function, and the I() construction must be used when specifying
intermediate states as covariates, since factors with levels not
present in the data will create NAs in the parameter vector returned
by coxph, which in return will crash the simulation machinery.

> library( survival )
> Cox.Dead <- coxph( Surv( DMdur, DMdur+lex.dur,

+ lex.Xst J}inJ), c("Dead(Ins)", "Dead")) ~
+ Ns( Age-DMdur, knots=ad.kn ) +
+ I(lex.Cst=="Ins") +
+ I(Per-2000) + sex,
+ data = Si )
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> Cr <- 1list( "DM" = list( "Ins" = DM. Ins,
+ "Dead" = Cox.Dead ),
+ "Ins" = list( "Dead(Ins)" = Cox.Dead ) )

> simL <- simLexis( Cr, ini, time.pts=seq(0,11,0.2), N=10000 )

> nSt <- nState( subset(simL,sex=="M"),

+ at=seq(0,10,0.2), from=1995, time.scale="Per" )
> pp <- pState( nSt, perm=c(1,2,4,3) )

> plot( pp )
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Now your turn...
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