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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)

or
Some time alive (“at least this long”)
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Examples of time-to-event measurements

I Time from diagnosis of cancer to death.

I Time from randomisation to death in a cancer clinical trial

I Time from HIV infection to AIDS.

I Time from marriage to 1st child birth.

I Time from marriage to divorce.

I Time to re-offending after being released from jail
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Each line a
person

Each blob a
death

Study ended at
31 Dec. 2003
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Ordered by date
of entry

Most likely the
order in your
database.
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Timescale
changed to
“Time since
diagnosis”.

Time since diagnosis
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Patients ordered
by survival time.

Time since diagnosis
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Survival times
grouped into
bands of
survival.

Year of follow−up
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Patients ordered
by survival
status within
each band.

Year of follow−up
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13

10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535
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Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S (t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

F (t) is the cumulative risk of death before time t .

Rates and Survival (surv-rate) 11/ 124



Intensity or rate

P {event in (t , t + h] | alive at t} /h

=
F (t + h)− F (t)

S (t)× h

= − S (t + h)− S (t)

S (t)h
−→
h→0
− dlogS (t)

dt

= λ(t)

This is the intensity or hazard function for the distribution.
Characterizes the survival distribution as does f or F .

Theoretical counterpart of a rate.
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Relationships

− dlogS (t)

dt
= λ(t)

m

S (t) = exp

(
−
∫ t

0

λ(u) du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(s) ds is called the integrated intensity. Not an
intensity, it is dimensionless.

λ(t) = − dlog(S (t))

dt
= −S

′(t)

S (t)
=

F ′(t)

1− F (t)
=

f (t)

S (t)
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Rate and survival

S (t) = exp

(
−
∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)

S (t)

Survival is a cumulative measure, the rate is an instantaneous
measure.

Note: A cumulative measure requires an origin!

. . . it is always survival since some timepoint.
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Observed survival and rate

I Survival studies: Observation of (right censored) survival
time:

X = min(T ,Z ), δ = 1{X = T}
— sometimes conditional on T > t0
(left truncation, delayed entry).

I Epidemiological studies:
Observation of (components of) a rate:

D/Y

D : no. events, Y no of person-years, in a prespecified
time-frame.
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Empirical rates for individuals

I At the individual level we introduce the
empirical rate: (d , y),
— number of events (d ∈ {0, 1}) during y risk time.

I A person contributes several observations of (d , y), with
associated covariate values.

I Empirical rates are responses in survival analysis.

I The timescale t is a covariate — varies within each individual:
t : age, time since diagnosis, calendar time.

I Don’t confuse with y — difference between two points on any
timescale we may choose.

Rates and Survival (surv-rate) 16/ 124



Empirical rates
by
calendar time.
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Empirical rates
by
time since
diagnosis.

Time since diagnosis
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Statistical inference: Likelihood

Two things needed:

I Data — what did we actually observe
Follow-up for each person:
Entry time, exit time, exit status, covariates

I Model — how was data generated
Rates as a function of time:
Probability machinery that generated data

Likelihood is the probability of observing the data, assuming the
model is correct.

Maximum likelihood estimation is choosing parameters of the
model that makes the likelihood maximal.
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Likelihood from one person

The likelihood from several empirical rates from one individual is a
product of conditional probabilities:

P {event at t4|t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (d , y)
— y = ti − ti−1 and mostly d = 0.

ti is the timescale (covariate).
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Poisson likelihood

The log-likelihood contributions from follow-up of one individual:

dt log
(
λ(t)

)
− λ(t)yt , t = t1, . . . , tn

is also the log-likelihood from several independent Poisson
observations with mean λ(t)yt , i.e. log-mean log

(
λ(t)

)
+ log(yt)

Analysis of the rates, (λ) can be based on a Poisson model with
log-link applied to empirical rates where:

I d is the response variable.

I log(λ) is modelled by covariates

I log(y) is the offset variable.

Rates and Survival (surv-rate) 21/ 124



Likelihood for follow-up of many persons

Adding empirical rates over the follow-up of persons:

D =
∑

d Y =
∑

y ⇒ D log(λ)− λY

I Persons are assumed independent
I Contribution from the same person are conditionally

independent, hence give separate contributions to the
log-likelihood.

I Therefore equivalent to likelihood for independent Poisson
variates

I No need to correct for dependent observations; the likelihood
is a product.
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Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, λ, the probability of
observing 7 deaths in the course of 500 person-years:

P {D = 7,Y = 500|λ} = λDeλY ×K

= λ7eλ500 ×K

= L(λ|data)

Best guess of λ is where this function is as large as possible.

Confidence interval is where it is not too far from the maximum
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Likelihood function
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Likelihood function

0.5 1.0 2.0 5.0 10.0 20.0 50.0

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Rate parameter, λ (per 1000)

Lo
g−

lik
el

ih
oo

d 
ra

tio

Rates and Survival (surv-rate) 24/ 124



Confidence interval for a rate

A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ)± 1.96/

√
D

Take the exponential to get the confidence interval for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf
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Example

Suppose we have 17 deaths during 843.6 years of follow-up.

The rate is computed as:

λ̂ = D/Y = 17/843.7 = 0.0201 = 20.1 per 1000 years

The confidence interval is computed as:

λ̂
×
÷ erf = 20.1

×
÷ exp(1.96/

√
D) = (12.5, 32.4)

per 1000 person-years.
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Ratio of two rates

If we have observations two rates λ1 and λ0, based on (D1,Y1) and
(D0,Y0), the variance of the difference of the log-rates, the
log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)
︸ ︷︷ ︸

error factor

Rates and Survival (surv-rate) 27/ 124



Example

Suppose we in group 0 have 17 deaths during 843.6 years of
follow-up in one group, and in group 1 have 28 deaths during 632.3
years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(17/843.7) = 0.0443/0.0201 = 2.198

The 95% confidence interval is computed as:

R̂R
×
÷ erf = 2.198

×
÷ exp

(
1.96

√
1/17 + 1/28

)
= 2.198

×
÷ 1.837 = (1.20, 4.02)
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Example using R

Poisson likelihood, for one rate,
based on 17 events in 843.7 PY:

library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068Rates and Survival (surv-rate) 29/ 124



Example using R

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)
ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525
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Follow-up and rates

I Follow-up studies:
I D — events, deaths
I Y — person-years
I λ = D/Y rates

I Rates differ between persons.
I Rates differ within persons:

I By age
I By calendar time
I By disease duration
I . . .

I Multiple timescales.
I Multiple states (little boxes — later)
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Stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:
No. of events, D , and Risk time, Y .

Age-scale
35 40 45 50

Follow-up
Two e1 5 3

One u4 3
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d , y)

Follow-up data for each individual must therefore have (at least)
three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

t0 t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

t0 t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy

= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1
×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2
×P(event at tx|entry t2) + 1 log(λ)− λy3

Representation of follow-up data (time-split) 36/ 124



Dividing time into bands:

If we want to put D and Y into intervals on the timescale we must
know:

Origin: The date where the time scale is 0:

I Age — 0 at date of birth
I Disease duration — 0 at date of diagnosis
I Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

I 1-year classes? 5-year classes?
I Equal length?

Aim: Separate rate in each interval
Representation of follow-up data (time-split) 37/ 124



Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

I Age bands: 10-years intervals of current age.

I Split Y for every subject accordingly

I Treat each segment as a separate unit of observation.

I Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Timescales

I A timescale is a variable that varies deterministically within
each person during follow-up:

I Age
I Calendar time
I Time since treatment
I Time since relapse

I All timescales advance at the same pace
(1 year per year . . . )

I Note: Cumulative exposure is not a timescale.
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Follow-up on several timescales

I The risk-time is the same on all timescales
I Only need the entry point on each time scale:

I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

I Response variable in analysis of rates:

(d , y) (event, duration)

I Covariates in analysis of rates:
I timescales
I other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1

2 640 2 1896.23 1 1945.77 20 1964.37 1

3 3425 1 1886.97 2 1955.18 0 1956.59 1

4 4017 2 1936.81 2 1957.61 0 1992.14 2

...

Timescales of interest:

I Age
I Calendar time
I Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 3 20 23 20 512.59 23
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> plot( thL, lwd=3 )
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Lexis diagram

> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast], grid=T )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )Representation of follow-up data (time-split) 49/ 124



Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
...
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age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Likelihood for a piecewise constant rate

I This setup is for a situation where it is assumed that rates are
constant in each of the intervals.

I Each observation in the dataset contributes a term to a
“Poisson” likelihood.

I Models can include fixed covariates, as well as the timescales
(the left end-points of the intervals) as continuous variables.

I Rates are assumed to vary by timescales:

I continuously
I non-linearly

I Rates can vary along several timescales simultaneously.
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Where is (dpi , ypi) in the split data?
Likelihood is dpi log(λpi)− λpiypi

> round( spl2, 1 )
lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast

1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1
...

— and what are covariates for the rates?
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Analysis of results

I dpi — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

I ypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

I Covariates are:
I timescales (age, period, time in study)
I other variables for this person (constant or assumed constant in each

interval).

I Model rates using the covariates in glm:
— no difference between time-scales and other covariates.
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The Kaplan-Meier Method

I The most common method of estimating the survival function.

I A non-parametric method.

I Divides time into small intervals where the intervals are defined
by the unique times of failure (death).

I Based on conditional probabilities as we are interested in the
probability a subject surviving the next time interval given that
they have survived so far.
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Kaplan–Meier method illustrated

(• = failure and × = censored):

-

Time
× • × ×•

50N = 49 46

61.0Cumulative
survival

probability

I Steps caused by multiplying by
(1− 1/49) and (1− 1/46) respectively

I Late entry can also be dealt with
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Using R: Surv()

library( survival )
data( lung )
head( lung, 3 )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

with( lung, Surv( time, status==2 ) )[1:10]

[1] 306 455 1010+ 210 883 1022+ 310 361 218 166

( s.km <- survfit( Surv( time, status==2 ) ~ 1 , data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228 165 310 285 363

plot( s.km )
abline( v=310, h=0.5, col="red" )
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A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals contribute to (some
of) the range of t .

I . . . the scale along which time is split (the risk sets)

I Conceptually t is just a covariate that varies within individual.

I Cox’s approach profiles λ0(t) out from the model
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood
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The Cox-likelihood: mechanics of computing

I The likelihood is computed by suming over risk-sets:

`(η) =
∑
t

log

(
eηdeath∑
i∈Rt

eηi

)
I this is essentially splitting follow-up time at event- (and

censoring) times

I . . . repeatedly in every cycle of the iteration

I . . . simplified by not keeping track of risk time

I . . . but only works along one time scale
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log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Suppose the time scale has been divided into small intervals
with at most one death in each:

I Empirical rates: (dit , yit) — each t has at most one dit = 0.

I Assume w.l.o.g. the ys in the empirical rates all are 1.

I Log-likelihood contributions that contain information on a
specific time-scale parameter αt will be from:

I the (only) empirical rate (1, 1) with the death at time t .
I all other empirical rates (0, 1) from those who were at risk at time t .
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Note: There is one contribution from each person at risk to this
part of the log-likelihood:

`t(αt , β) =
∑
i∈Rt

di log(λi(t))− λi(t)yi

=
∑
i∈Rt

{
di(αt + ηi)− eαt+ηi

}
= αt + ηdeath − eαt

∑
i∈Rt

eηi

where ηdeath is the linear predictor for the person that died.
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The derivative w.r.t. αt is:

Dαt
`t(αt , β) = 1− eαt

∑
i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for αt , we get the
profile likelihood (with αt “profiled out”):

log

(
1∑

i∈Rt
eηi

)
+ ηdeath − 1 = log

(
eηdeath∑
i∈Rt

eηi

)
− 1

which is the same as the contribution from time t to Cox’s partial
likelihood.
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Splitting the dataset a priori

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y → log(y) as offset
I Covariate value for the timescale

(time since entry, current age, current date, . . . )
I other covariates

I Contributions not independent, but likelihood is a product
I Same likelihood as for independent Poisson variates
I Modelling is by standard glm Poisson
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Example: Mayo Clinic lung cancer

I Survival after lung cancer

I Covariates:

I Age at diagnosis
I Sex
I Time since diagnosis

I Cox model

I Split data:

I Poisson model, time as factor
I Poisson model, time as spline
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Example: Mayo Clinic lung cancer I

> library( survival )
> library( Epi )
> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
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Example: Mayo Clinic lung cancer II
> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", eps=10^-8, iter.max=25, data=Lung )
> Lung.s <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time))),
+ time.scale="tfe" )
> Lung.S <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time[Lung$lex.Xst=="Dead"]))),
+ time.scale="tfe" )
> summary( Lung.s )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> summary( Lung.S )
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Example: Mayo Clinic lung cancer III
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 15916 165 16081 165 69593 228

> subset( Lung.s, lex.id==96 )[,1:11]

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog
9235 96 0 5 Alive Alive 12 30 2 72 1 2
9236 96 5 6 Alive Alive 12 30 2 72 1 2
9237 96 11 1 Alive Alive 12 30 2 72 1 2
9238 96 12 1 Alive Alive 12 30 2 72 1 2
9239 96 13 2 Alive Alive 12 30 2 72 1 2
9240 96 15 11 Alive Alive 12 30 2 72 1 2
9241 96 26 4 Alive Dead 12 30 2 72 1 2

> nlevels( factor( Lung.s$tfe ) )

[1] 186
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Example: Mayo Clinic lung cancer IV
> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )

user system elapsed
10.905 0.016 10.919

> length( coef(mLs.pois.fc) )

[1] 188

> system.time(
+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.S, eps=10^-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer V
user system elapsed
3.286 0.012 3.297

> length( coef(mLS.pois.fc) )

[1] 142

> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer VI
user system elapsed
0.177 0.000 0.176

> ests <-
+ rbind( ci.exp(mL.cox),
+ ci.exp(mLs.pois.fc,subset=c("age","sex")),
+ ci.exp(mLS.pois.fc,subset=c("age","sex")),
+ ci.exp(mLs.pois.sp,subset=c("age","sex")) )
> cmp <- cbind( ests[c(1,3,5,7) ,],
+ ests[c(1,3,5,7)+1,] )
> rownames( cmp ) <- c("Cox","Poisson-factor","Poisson-factor (D)","Poisson-spline")
> colnames( cmp )[c(1,4)] <- c("age","sex")

> round( cmp, 7 )
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Example: Mayo Clinic lung cancer VII
age 2.5% 97.5% sex 2.5% 97.5%

Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor (D) 1.017332 0.9991211 1.035874 0.5984794 0.4310150 0.8310094
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707
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Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))

Code and output for the entire example avaiable in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely and

I modeling one covariate, the time-scale, with one parameter per
distinct value.

I the model for the time scale is really with exchangeable
time-intervals.

I ⇒ difficult to access the baseline hazard (which looks terrible)

I ⇒ uninitiated tempted to show survival curves where irrelevant
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Models of this world

I Replace the αts by a parametric function f (t) with a limited
number of parameters, for example:

I Piecewise constant
I Splines (linear, quadratic or cubic)
I Fractional polynomials

I the two latter brings model into “this world”:
I smoothly varying rates
I parametric closed form representation of baseline hazard
I finite no. of parameters

I Makes it really easy to use rates directly in calculations of
I expected residual life time
I state occupancy probabilities in multistate models
I . . .
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Likelihood for transition through states

A −→ B −→ C −→
I given start of observation in A at time t0
I transitions at times tB and tC
I survival in C till (at least) time tx :

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

I Product of likelihood contributions for each transition
— each one as for a survival model
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Likelihood contributions reflected in Lexis object

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

lex.id time lex.dur lex.Cst lex.Xst
1 t_0 t_B-t_0 A B
1 t_B t_C-t_B B C
1 t_C t_x-t_C C C

constant rate in interval ⇒ log-likelihood term is Poisson:
d log(λ)− λy = (lex.Xst! =lex.Cst)× log(λ)− λ× lex.dur
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Competing risks

But you may die from more than one cause
(move to one of more possible states):

Alive

Cause A

Cause B

Cause C

�
�
�
�
�
��3

-

Q
Q
Q
Q
Q
QQs

λA

λB

λC
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Cause-specific intensities

λA(t) = limh→0
P {death from cause A in (t , t + h] | alive at t}

h

λB(t) = limh→0
P {death from cause B in (t , t + h] | alive at t}

h

λC (t) = limh→0
P {death from cause C in (t , t + h] | alive at t}

h

Total mortality rate:

λTotal(t) = limh→0
P {death from any cause in (t , t + h] | alive at t}

h
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Cause-specific intensities

For small h, P {2 events in (t , t + h]} ≈ 0, so:

P {death from any cause in (t , t + h] | alive at t}

= P {death from cause A in (t , t + h] | alive at t}+

P {death from cause B in (t , t + h] | alive at t}+

P {death from cause C in (t , t + h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC (t)

Intensities are additive,
if they all refer to the
same risk set, in this case “Alive”.
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Likelihood for competing risks

Data:
Y - person years in “Alive”
DA - deaths from cause A
DB - deaths from cause B
DC - deaths from cause C

Now, assume for a start that transition rates between states are
constant.
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Likelihood for competing risks

A survivor contributes to the log-likelihood:

log(P {Survival for a time of y}) = −(λA + λB + λC )y

A death from cause A contributes an additional log(λA), from
cause B an additional log(λB) etc.

The total log-likelihood is then:

`(λA, λB , λC ) =DAlog(λA) + DB log(λB) + DC log(λC )

− (λA + λB + λC )Y

=[DAlog(λA)− λAY ]+

[DB log(λB)− λBY ]+

[DC log(λC )− λCY ]
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Components of the likelihood

The log-likelihood is made up of three contributions:
I one for cause A,

I one for cause B and

I one for cause C

Deaths are the cause-specific deaths,

but the person-years are the same in all contributions.

The person-years appear once for each transition out of a state.
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Likelihood for multiple states

I Product of likelihoods for each transition
— each one as for a survival model

I conditional on being alive at (observed) entry to current state

I Risk time is the risk time in the current (“From”, lex.Cst)
state

I Events are transitions to the “To” state (lex.Xst)

I All other transitions out of “From” are treated as censorings
(but they are not)

I Fit models separately for each transition or jointly for all
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Time varying rates:

I The same type of analysis as with a constant rates

I . . . but data must be split in intervals sufficiently small to
justify an assumption of constant rate (intensity),

I the model should allow for a separate rate for each interval,

I but these can be constrained to follow model with a smooth
effect of the time-scale values allocated to each interval.
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Practical implications

I Empirical rates ((d , y) from each individual) will be the same
for all analyses except for those where deaths occur.

I Analysis of cause A:

I Contributions (1, y) only for those intervals where a cause A death
occurs.

I Intervals with cause B or C deaths (or no deaths) contribute only
(0, y) — treated as censorings.
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original expanded
------------------------------- ---------------------
id time cause xx d.A d.B d.C id time dd xx Tr
1 1 B 0.50 0 1 0 1 1 0 0.50 A
2 1 NA 1.00 0 0 0 2 1 0 1.00 A
3 8 B -1.74 0 1 0 3 8 0 -1.74 A
4 3 A -0.55 1 0 0 4 3 1 -0.55 A
5 7 NA -0.58 0 0 0 5 7 0 -0.58 A
6 7 C -0.04 0 0 1 6 7 0 -0.04 A

1 1 1 0.50 B
2 1 0 1.00 B
3 8 1 -1.74 B
4 3 0 -0.55 B
5 7 0 -0.58 B
6 7 0 -0.04 B

1 1 0 0.50 C
2 1 0 1.00 C
3 8 0 -1.74 C
4 3 0 -0.55 C
5 7 0 -0.58 C
6 7 1 -0.04 C

. . . accomplished by stack.Lexis
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Lexis objects (data frame)

I Represents the follow-up

I lex.dur contains the total time at risk for (any) event

I lex.Cst is the state in which this time is spent

I lex.Xst is the state to which a transition occurs
— if no transition, the same as lex.Cst.

This is used for modelling of single transitions between states —
and multiple transitions with no two originating in the same state.
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stacked.Lexis objects (data frame)

I Represents the likelihood contributions

I lex.dur contains the total time at risk for (any) event

I lex.Tr is the transition to which the record contributes

I lex.Fail is the event (failure) indicator for the transition in
question.

This is used for joint modelling of all transition in a multistate
set-up.

Particularly with several rates originating in the same state
(competing risks).
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Implemented in the stack.Lexis function:

> library( Epi )
> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> dml <- Lexis( entry = list(Per = dodm,
+ Age = dodm-dobth,
+ DMdur = 0 ),
+ exit = list(Per = dox ),
+ exit.status = factor(!is.na(dodth),
+ labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml, cut = dml$doins,
+ new.state = "Ins",
+ precursor = "DM" )
> summary( dmi )

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996

> boxes( dmi, boxpos = list(x=c(20,20,80),
+ y=c(80,20,50)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.1 )
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Implemented in the stack.Lexis function:

> options( digits=3, width=200 )
> st.dmi <- stack( dmi )
> print( st.dmi[1:6,], row.names=F )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1999 58.7 0 11.080 DM DM DM->Ins FALSE 1 F 1940 1999 NA NA NA 2010
2003 64.1 0 6.689 DM DM DM->Ins FALSE 2 M 1939 2003 NA 2007 NA 2010
2005 86.3 0 5.446 DM DM DM->Ins FALSE 3 F 1918 2005 NA NA NA 2010
2009 44.0 0 0.736 DM DM DM->Ins FALSE 4 F 1965 2009 NA NA NA 2010
2009 75.8 0 1.344 DM DM DM->Ins FALSE 5 M 1933 2009 NA NA NA 2010
2008 80.0 0 2.037 DM Dead DM->Ins FALSE 6 F 1928 2008 2010 NA NA 2010

> str( st.dmi )

Classes 'stacked.Lexis' and 'data.frame': 21589 obs. of 16 variables:
$ Per : num 1999 2003 2005 2009 2009 ...
$ Age : num 58.7 64.1 86.3 44 75.8 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur : num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 3 1 1 3 1 ...
$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM->Dead",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth : num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "breaks")=List of 3
..$ Per : NULL
..$ Age : NULL
..$ DMdur: NULL
- attr(*, "time.scales")= chr "Per" "Age" "DMdur"
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Implemented in the stack.Lexis function:

> print( subset( dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins 15 M 1944 2003 NA NA 2005 2010
2005 60.9 2.8 4.643 Ins Ins 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins 28 F 1925 1999 2008 2001 2007 2008
2007 82.4 8.7 0.977 Ins Dead 28 F 1925 1999 2008 2001 2007 2008

> print( subset( st.dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead DM->Ins FALSE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Ins TRUE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Ins TRUE 28 F 1925 1999 2008 2001 2007 2008
1997 59.4 0.0 0.890 DM Dead DM->Dead TRUE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Dead FALSE 28 F 1925 1999 2008 2001 2007 2008
2005 60.9 2.8 4.643 Ins Ins Ins->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
2007 82.4 8.7 0.977 Ins Dead Ins->Dead TRUE 28 F 1925 1999 2008 2001 2007 2008
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Analysis of rates in multistate models

I Interactions between all covariates (including time) and state
(lex.Cst):
⇔ separate analyses of all transition rates.

I Only interaction between state (lex.Cst) and time(scales):
⇔ same covariate effects for all causes transitions, but
separate baseline hazards — “stratified model”.

I Main effect of state only (lex.Cst):
⇔ proportional hazards

I No effect of state:
⇔ identical baseline hazards — hardly ever relevant.
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Analysis approaches and data representation

I Lexis objects represents the precise follow-up in the cohort, in
states and along timescales

I — used for analysis of single transition rates.

I stacked.Lexis objects represents contributions to the total
likelihood

I — used for joint analysis of (all) rates in a multistate setup

I . . . which is the case if you want to specify common effects
between different transitions.
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Assumptions in competing risks

“Classical” way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three variables:
TA, TB and TC , representing times to death from each of the three
causes.
But at most one of these is observed.

Often it is stated that these must be assumed independent in order
to make the likelihood machinery work

1. It is not necessary.

2. Independence can never be assessed from data.
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An account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp. 203–215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein Putter:
Competing risks in epidemiology: possibilities and pitfalls,

International Journal of Epidemiology ; 2012: pp. 1–10

Contains examples where both dependent and independent “cause
specific survival times” gives rise to the same set of cause specific
rates.
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Reporting a multistate model

Bendix Carstensen
Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis

21 September 2016
FRIAS, Freiburg

http://BendixCarstensen/AdvCoh/courses/Frias-2016
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Multistate models

I Outcomes are transitions between states, with times

I Covariates are measurements and timescales

I Models describe the single transition rates

I Results are:

I Description of rates — how do they depend time etc.
I Prediction of state occupancy:

What is the probability that a person is in a given state at a given
time?

I This illustrates the latter.
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Diabetes patient mortality

> library(Epi)
> data(DMlate)
> dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ),
+ exit = list(Per=dox),
+ exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.

> summary(dml)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
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. . . subdivided by insulin status

Split follow-up at insulin, introduce a new timescale and split
non-precursor states:

> dmi <- cutLexis( dml, cut = dml$doins,
+ pre = "DM",
+ new.state = "Ins",
+ new.scale = "t.Ins",
+ split.states = TRUE )
> summary( dmi )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996

> boxes( dmi, boxpos=list(x=c(20,20,80,80),y=c(80,20,80,20)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.2 )
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Split the follow in 3-month intervals for modelling

> Si <- splitLexis( dmi, 0:60/4, "DMdur" )
> summary( Si )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 184986 1694 2048 0 188728 3742 45885.49 9899
Ins 0 34707 0 451 35158 451 8387.77 1791
Sum 184986 36401 2048 451 223886 4193 54273.27 9996

> summary( dmi )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996
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Define knots for spline modelling of the rates:

> nk <- 4
> ( ai.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
27.68241 49.61893 61.88364 75.56211

> ( ad.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
63.61875 74.98700 81.38501 89.26831

> ( di.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
1.50 4.25 7.00 10.50

> ( dd.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
0.3778234 1.9582478 4.3370979 8.0232717

> ( td.kn <- with( subset(Si,lex.Xst=="Dead(Ins)"),
+ quantile( t.Ins+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
0.1759069 1.0095825 2.7939767 6.3579740

> library( splines )
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Fit Poisson models to transition rates

> DM.Ins <- glm( (lex.Xst=="Ins") ~ Ns( Age , knots=ai.kn ) +
+ Ns( DMdur, knots=di.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM") )
> DM.Dead <- glm( (lex.Xst=="Dead") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM") )
> Ins.Dead <- glm( (lex.Xst=="Dead(Ins)") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ Ns( t.Ins, knots=td.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="Ins") )
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Put the fitted models into an object representing the transitions

> Tr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = DM.Dead ),
+ "Ins" = list( "Dead(Ins)" = Ins.Dead ) )
> lapply( Tr, names )

$DM
[1] "Ins" "Dead"

$Ins
[1] "Dead(Ins)"
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Define an initial object
— note the combination of select= and NULL which ensures that
the relevant attributes from the Lexis object Si are carried over to
ini (using Si[NULL,1:9] will lose essential attributes )

> ini <- subset(Si,select=1:9)[NULL,]
> ini[1:2,"lex.Cst"] <- "DM"
> ini[1:2,"Per"] <- 1995
> ini[1:2,"Age"] <- 60
> ini[1:2,"DMdur"] <- 5
> ini[1:2,"sex"] <- c("M","F")
> ini

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 NA 1995 60 5 NA NA DM <NA> M
2 NA 1995 60 5 NA NA DM <NA> F
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Simulate 10,000 of each sex using the estimated models in Tr:

> system.time(
+ simL <- simLexis( Tr, ini, time.pts=seq(0,11,0.5), N=10000 ) )

user system elapsed
25.111 0.100 25.208

> summary( simL )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 8817 6167 5016 0 20000 11183 150485.05 20000
Ins 0 4456 0 1711 6167 1711 33773.71 6167
Sum 8817 10623 5016 1711 26167 12894 184258.76 20000

> subset( simL, lex.id < 3 )

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex cens
1 1 1995.000 60.00000 5.00000 NA 1.050103 DM Dead M 2006
2 2 1995.000 60.00000 5.00000 NA 6.118532 DM Ins M 2006
3 2 2001.119 66.11853 11.11853 0 2.324054 Ins Dead(Ins) M 2006
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We now have a dataframe (Lexis object) with simulated follow-up
of 10,000 men and 10,000 women.

We then find the number of persons in each state at a specified set
of times.

> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.1), from=1995, time.scale="Per" )
> nSt

State
when DM Ins Dead Dead(Ins)
1995 10000 0 0 0
1995.1 9950 24 26 0
1995.2 9904 40 56 0
1995.3 9847 72 81 0
1995.4 9801 92 105 2
1995.5 9749 115 134 2
1995.6 9692 140 165 3
1995.7 9645 167 184 4
1995.8 9588 192 214 6
1995.9 9537 211 245 7
1996 9488 235 269 8
1996.1 9406 282 304 8
1996.2 9350 312 324 14
1996.3 9277 349 359 15
1996.4 9199 393 391 17
1996.5 9137 431 413 19
1996.6 9080 459 439 22
1996.7 9007 500 470 23
1996.8 8939 542 491 28
1996.9 8875 566 526 33
1997 8800 608 554 38
1997.1 8702 661 592 45
1997.2 8616 713 618 53
1997.3 8521 763 655 61
1997.4 8423 812 702 63
1997.5 8335 861 735 69
1997.6 8231 927 769 73
1997.7 8152 973 797 78
1997.8 8065 1020 831 84
1997.9 7997 1057 857 89
1998 7905 1111 890 94
1998.1 7812 1173 917 98
1998.2 7731 1230 934 105
1998.3 7662 1274 953 111
1998.4 7582 1321 978 119
1998.5 7493 1363 1012 132
1998.6 7416 1407 1040 137
1998.7 7315 1468 1075 142
1998.8 7229 1518 1100 153
1998.9 7148 1569 1127 156
1999 7068 1615 1153 164
1999.1 6997 1642 1180 181
1999.2 6915 1679 1214 192
1999.3 6845 1720 1239 196
1999.4 6767 1755 1270 208
1999.5 6695 1791 1295 219
1999.6 6622 1829 1318 231
1999.7 6564 1855 1338 243
1999.8 6488 1892 1368 252
1999.9 6418 1917 1403 262
2000 6352 1939 1435 274
2000.1 6280 1976 1458 286
2000.2 6208 2005 1487 300
2000.3 6140 2043 1509 308
2000.4 6054 2078 1546 322
2000.5 5994 2098 1574 334
2000.6 5943 2111 1598 348
2000.7 5892 2132 1620 356
2000.8 5844 2147 1641 368
2000.9 5776 2168 1678 378
2001 5719 2191 1704 386
2001.1 5666 2210 1725 399
2001.2 5614 2230 1744 412
2001.3 5555 2253 1771 421
2001.4 5503 2261 1798 438
2001.5 5448 2277 1823 452
2001.6 5402 2296 1836 466
2001.7 5359 2298 1862 481
2001.8 5308 2308 1885 499
2001.9 5255 2318 1919 508
2002 5208 2335 1939 518
2002.1 5166 2355 1955 524
2002.2 5125 2360 1981 534
2002.3 5081 2372 2003 544
2002.4 5044 2377 2022 557
2002.5 4992 2384 2053 571
2002.6 4961 2384 2069 586
2002.7 4915 2388 2095 602
2002.8 4885 2391 2111 613
2002.9 4836 2391 2142 631
2003 4796 2399 2163 642
2003.1 4762 2399 2182 657
2003.2 4722 2400 2203 675
2003.3 4679 2401 2235 685
2003.4 4637 2400 2260 703
2003.5 4598 2400 2277 725
2003.6 4568 2385 2296 751
2003.7 4533 2391 2313 763
2003.8 4487 2396 2340 777
2003.9 4458 2397 2357 788
2004 4424 2388 2380 808
2004.1 4387 2383 2402 828
2004.2 4357 2373 2423 847
2004.3 4328 2363 2439 870
2004.4 4301 2360 2457 882
2004.5 4274 2359 2470 897
2004.6 4235 2353 2496 916
2004.7 4204 2345 2516 935
2004.8 4174 2344 2535 947
2004.9 4139 2337 2558 966
2005 4105 2331 2579 985
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Show the cumulative prevalences in a different order than that of
the state-level ordering and plot them using all defaults:

> pp <- pState( nSt, perm=c(1,2,4,3) )
> head( pp )

State
when DM Ins Dead(Ins) Dead
1995 1.0000 1.0000 1.0000 1
1995.1 0.9950 0.9974 0.9974 1
1995.2 0.9904 0.9944 0.9944 1
1995.3 0.9847 0.9919 0.9919 1
1995.4 0.9801 0.9893 0.9895 1
1995.5 0.9749 0.9864 0.9866 1

> plot( pp )
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We can show the results in an clearer way, buy choosing colors
wiser:

> clr <- c("orange2","forestgreen")
> par( las=1, mar=c(3,3,3,3) )
> plot( pp, col=clr[c(2,1,1,2)] )
> lines( as.numeric(rownames(pp)), pp[,2], lwd=2 )
> mtext( "60 year old male, diagnosed 1995", side=3, line=2.5, adj=0 )
> mtext( "Survival curve", side=3, line=1.5, adj=0 )
> mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1] )
> mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[2] )
> axis( side=4 )

Reporting a multistate model (ms-rep) 117/ 124



1996 1998 2000 2002 2004
0.0

0.2

0.4

0.6

0.8

1.0

Time

P
ro

ba
bi

lit
y

60 year old male, diagnosed 1995
Survival curve
DM, no insulin   DM, InsulinDM, no insulin

0.0

0.2

0.4

0.6

0.8

1.0

Reporting a multistate model (ms-rep) 118/ 124



We could also use a Cox-model for the mortality rates assuming the
two mortality rates to be proportional:

When we fit a Cox-model, lex.dur must be used in the Surv()

function, and the I() construction must be used when specifying
intermediate states as covariates, since factors with levels not
present in the data will create NAs in the parameter vector returned
by coxph, which in return will crash the simulation machinery.

> library( survival )
> Cox.Dead <- coxph( Surv( DMdur, DMdur+lex.dur,
+ lex.Xst %in% c("Dead(Ins)","Dead")) ~
+ Ns( Age-DMdur, knots=ad.kn ) +
+ I(lex.Cst=="Ins") +
+ I(Per-2000) + sex,
+ data = Si )
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> Cr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = Cox.Dead ),
+ "Ins" = list( "Dead(Ins)" = Cox.Dead ) )
> simL <- simLexis( Cr, ini, time.pts=seq(0,11,0.2), N=10000 )
> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.2), from=1995, time.scale="Per" )
> pp <- pState( nSt, perm=c(1,2,4,3) )
> plot( pp )
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Now your turn. . .
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