Practice in analysis of multistate models using Epi::Lexis

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark & Department of Biostatistics, University of Copenhagen bxc@steno.dk http://BendixCarstensen.com

FRIAS, Freiburg, 21 September 2016

http://BendixCarstensen/AdvCoh/courses/Frias-2016

Rates and Survival

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis 21 September 2016 FRIAS, Freiburg http://BendixCarstensen/AdvCoh/courses/Frias-2016

Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:

Actual time span to death ("event")

or Some time alive ("at least this long")

Examples of time-to-event measurements

- Time from diagnosis of cancer to death.
- ▶ Time from randomisation to death in a cancer clinical trial
- ► Time from HIV infection to AIDS.
- Time from marriage to 1st child birth.
- Time from marriage to divorce.
- ► Time to re-offending after being released from jail

Each line a person

Each blob a death

Study ended at 31 Dec. 2003

Ordered by date of entry

Most likely the order in your database.

Timescale changed to "Time since diagnosis".

Patients ordered by survival time.

Survival times grouped into bands of survival.

Patients ordered by survival status within each band.

Survival after Cervix cancer

	Stage I			Stage II		
Year	N	D	L	N	D	L
1 2 3 4 5 6 7 8 9	110 100 86 72 61 54 42 33 28 24	5 7 3 0 2 3 0 0 1	5 7 7 8 7 10 6 5 4 8	234 207 169 129 105 85 73 62 49 34	24 27 31 17 6 5 3 2 4	$3 \\ 11 \\ 9 \\ 7 \\ 13 \\ 6 \\ 6 \\ 10 \\ 13 \\ 6$

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465Estimated 1 year survival is 1 - 0.0465 = 0.9535

Rates and iferitable estimator.

Survival function

Persons enter at time 0:

Date of birth, date of randomization, date of diagnosis.

How long do they survive?

Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

$$S(t) = P \{ \text{survival at least till } t \}$$

= P { T > t } = 1 - P { T ≤ t } = 1 - F(t)

F(t) is the cumulative risk of death before time t.

Intensity or rate

$$P \{ \text{event in } (t, t+h] \mid \text{alive at } t \} / h$$

$$= \frac{F(t+h) - F(t)}{S(t) \times h}$$

$$= -\frac{S(t+h) - S(t)}{S(t)h} \xrightarrow[h \to 0]{} - \frac{\text{dlog}S(t)}{\text{d}t}$$

$$= \lambda(t)$$

This is the **intensity** or **hazard function** for the distribution. Characterizes the survival distribution as does f or F. Theoretical counterpart of a **rate**.

Rates and Survival (surv-rate)

Relationships

$$-\frac{\mathrm{dlog}S(t)}{\mathrm{d}t} = \lambda(t)$$

$$\Im$$

$$S(t) = \exp\left(-\int_0^t \lambda(u) \,\mathrm{d}u\right) = \exp\left(-\Lambda(t)\right)$$

 $\Lambda(t) = \int_0^t \lambda(s) \, ds$ is called the **integrated intensity**. Not an intensity, it is dimensionless.

$$\lambda(t) = -\frac{d\log(S(t))}{dt} = -\frac{S'(t)}{S(t)} = \frac{F'(t)}{1 - F(t)} = \frac{f(t)}{S(t)}$$

Rate and survival

$$S(t) = \exp\left(-\int_0^t \lambda(s) \,\mathrm{d}s\right) \qquad \lambda(t) = \frac{S'(t)}{S(t)}$$

Survival is a *cumulative* measure, the rate is an *instantaneous* measure.

- Note: A cumulative measure requires an origin!
- ... it is always survival **since** some timepoint.

Observed survival and rate

Survival studies: Observation of (right censored) survival time:

$$X = \min(T, Z), \quad \delta = 1\{X = T\}$$

— sometimes conditional on $T > t_0$ (left truncation, delayed entry).

Epidemiological studies:
 Observation of (components of) a rate:

$D/\,Y$

 $D{:}$ no. events, Y no of person-years, in a prespecified time-frame.

Empirical rates for individuals

At the *individual* level we introduce the empirical rate: (d, y),

— number of events $(d \in \{0,1\})$ during y risk time.

- ► A person contributes several observations of (*d*, *y*), with associated covariate values.
- Empirical rates are **responses** in survival analysis.
- The timescale t is a covariate varies within each individual:
 t: age, time since diagnosis, calendar time.
- Don't confuse with y difference between two points on any timescale we may choose.

Empirical rates by calendar time.

Rates and Survival (surv-rate)

by

Statistical inference: Likelihood

Two things needed:

- Data what did we actually observe Follow-up for each person: Entry time, exit time, exit status, covariates
- Model how was data generated Rates as a function of time: Probability machinery that generated data
- **Likelihood** is the probability of observing the data, assuming the model is correct.
- **Maximum likelihood** estimation is choosing parameters of the model that makes the likelihood maximal.

Likelihood from one person

The likelihood from several empirical rates from one individual is a product of conditional probabilities:

$$P \{ \text{event at } t_4 | t_0 \} = P \{ \text{survive } (t_0, t_1) | \text{ alive at } t_0 \} \times \\P \{ \text{survive } (t_1, t_2) | \text{ alive at } t_1 \} \times \\P \{ \text{survive } (t_2, t_3) | \text{ alive at } t_2 \} \times \\P \{ \text{event at } t_4 | \text{ alive at } t_3 \}$$

Log-likelihood from one individual is a sum of terms. Each term refers to one empirical rate (d, y)— $y = t_i - t_{i-1}$ and mostly d = 0.

 t_i is the timescale (covariate).

Poisson likelihood

The log-likelihood contributions from follow-up of **one** individual:

$$d_t \log(\lambda(t)) - \lambda(t)y_t, \quad t = t_1, \dots, t_n$$

is also the log-likelihood from several independent Poisson observations with mean $\lambda(t)y_t$, i.e. log-mean $\log(\lambda(t)) + \log(y_t)$

Analysis of the rates, (λ) can be based on a Poisson model with log-link applied to empirical rates where:

- d is the response variable.
- $\log(\lambda)$ is modelled by covariates
- log(y) is the offset variable.

Likelihood for follow-up of many persons

Adding empirical rates over the follow-up of persons:

$$D = \sum d \qquad Y = \sum y \quad \Rightarrow \quad D\log(\lambda) - \lambda Y$$

- Persons are assumed independent
- Contribution from the same person are conditionally independent, hence give separate contributions to the log-likelihood.
- Therefore equivalent to likelihood for independent Poisson variates
- No need to correct for dependent observations; the likelihood is a product.

Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, λ , the probability of observing 7 deaths in the course of 500 person-years:

$$P \{D = 7, Y = 500 | \lambda\} = \lambda^{D} e^{\lambda Y} \times K$$
$$= \lambda^{7} e^{\lambda 500} \times K$$
$$= L(\lambda | data)$$

Best guess of λ is where this function is as large as possible. Confidence interval is where it is not too far from the maximum

Likelihood function

24/124

Likelihood function

Confidence interval for a rate

A 95% confidence interval for the log of a rate is:

$$\hat{\theta} \pm 1.96/\sqrt{D} = \log(\lambda) \pm 1.96/\sqrt{D}$$

Take the exponential to get the confidence interval for the rate:

 $\lambda \stackrel{\times}{\div} \exp(1.96/\sqrt{D})$

error factor,erf

Example

Suppose we have 17 deaths during 843.6 years of follow-up. The rate is computed as:

$$\hat{\lambda} = D/Y = 17/843.7 = 0.0201 = 20.1$$
 per 1000 years

The confidence interval is computed as:

$$\hat{\lambda} \stackrel{\times}{\div} \operatorname{erf} = 20.1 \stackrel{\times}{\div} \exp(1.96/\sqrt{D}) = (12.5, 32.4)$$

per 1000 person-years.

Ratio of two rates

If we have observations two rates λ_1 and λ_0 , based on (D_1, Y_1) and (D_0, Y_0) , the variance of the difference of the log-rates, the $\log(RR)$, is:

$$\operatorname{var}(\log(\mathrm{RR})) = \operatorname{var}(\log(\lambda_1/\lambda_0))$$
$$= \operatorname{var}(\log(\lambda_1)) + \operatorname{var}(\log(\lambda_0))$$
$$= 1/D_1 + 1/D_0$$

As before a 95% c.i. for the ${\rm RR}$ is then:

$$\operatorname{RR} \stackrel{\times}{\div} \underbrace{\exp\left(1.96\sqrt{\frac{1}{D_1} + \frac{1}{D_0}}\right)}_{\text{error factor}}$$

Example

Suppose we in group 0 have 17 deaths during 843.6 years of follow-up in one group, and in group 1 have 28 deaths during 632.3 years.

The rate-ratio is computed as:

RR =
$$\hat{\lambda}_1/\hat{\lambda}_0 = (D_1/Y_1)/(D_0/Y_0)$$

= $(28/632.3)/(17/843.7) = 0.0443/0.0201 = 2.198$

The 95% confidence interval is computed as:

$$\hat{\text{RR}} \stackrel{\times}{\div} \text{erf} = 2.198 \stackrel{\times}{\div} \exp(1.96\sqrt{1/17 + 1/28}) \\ = 2.198 \stackrel{\times}{\div} 1.837 = (1.20, 4.02)$$

Example using R

Poisson likelihood, for one rate, based on 17 events in 843.7 PY:

```
library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )</pre>
```

exp(Est.) 2.5% 97.5% (Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR :

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm(D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp(m2)</pre>

exp(Est.) 2.5% 97.5% (Intercept) 20.149342 12.526051 32.412130 Rates aggs Irvival (surv-rate) 2.197728 1.202971 4.015068

Example using R

Poisson likelihood, two rates, or one rate and RR:

```
D <- c(17, 28); Y <- c(843.7, 632.3); gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp(m2)
           exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068
m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)</pre>
ci.exp(m3)
   exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525
```

Representation of follow-up data

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis 21 September 2016 FRIAS, Freiburg http://BendixCarstensen/AdvCoh/courses/Frias-2016

Follow-up and rates

- Follow-up studies:
 - D events, deaths
 - ► *Y* person-years
 - $\blacktriangleright \ \lambda = D/Y \text{ rates}$
- Rates differ between persons.
- Rates differ within persons:
 - By age
 - By calendar time
 - By disease duration
 - ▶ ...
- Multiple timescales.
- Multiple states (little boxes later)

Stratification by age

If follow-up is rather short, age at entry is OK for age-stratification. If follow-up is long, use stratification by categories of **current age**, both for: No. of events D and Pick time. V

No. of events, D, and Risk time, Y.

Representation of follow-up data

A cohort or follow-up study records: **Events** and **Risk time**.

The outcome is thus **bivariate**: (d, y)

Follow-up **data** for each individual must therefore have (at least) three variables:

Specific for each type of outcome.

Dividing time into bands:

If we want to put D and Y into intervals on the timescale we must know:

Origin: The date where the time scale is 0:

- ► Age 0 at date of birth
- Disease duration 0 at date of diagnosis
- Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

- ▶ 1-year classes? 5-year classes?
- Equal length?

Aim: Separate rate in each interval

Example: cohort with 3 persons:

- Id Bdate Entry Exit St 1 14/07/1952 04/08/1965 27/06/1997 1 2 01/04/1954 08/09/1972 23/05/1995 0 3 10/06/1987 23/12/1991 24/07/1998 1
 - ► Age bands: 10-years intervals of current age.
 - ► Split *Y* for every subject accordingly
 - Treat each segment as a separate unit of observation.
 - Keep track of exit status in each interval.

Splitting the follow up

	subj. 1	subj. 2	subj. 3
Age at E ntry:	13.06	18.44	4.54
Age at e X it:	44.95	41.14	11.12
S tatus at exit:	Dead	Alive	Dead
Y	31.89	22.70	6.58
D	1	0	1

		su	bj. 1	su	bj. 2	. 3	$ \sum$		
	Age	Y	D	Y	D	Y	D	Y	D
-									
	0—	0.00	0	0.00	0	5.46	0	5.46	0
	10–	6.94	0	1.56	0	1.12	1	8.62	1
	20-	10.00	0	10.00	0	0.00	0	20.00	0
	30-	10.00	0	10.00	0	0.00	0	20.00	0
	40-	4.95	1	1.14	0	0.00	0	6.09	1
-									
	\sum	31.89	1	22.70	0	6.58	1	60.17	2

Splitting the follow-up

Bdate	Entry	Exit	St	risk	int
14/07/1952	03/08/1965	14/07/1972	0	6.9432	10
14/07/1952	14/07/1972	14/07/1982	0	10.0000	20
14/07/1952	14/07/1982	14/07/1992	0	10.0000	30
14/07/1952	14/07/1992	27/06/1997	1	4.9528	40
01/04/1954	08/09/1972	01/04/1974	0	1.5606	10
01/04/1954	01/04/1974	31/03/1984	0	10.0000	20
01/04/1954	31/03/1984	01/04/1994	0	10.0000	30
01/04/1954	01/04/1994	23/05/1995	0	1.1417	40
10/06/1987	23/12/1991	09/06/1997	0	5.4634	0
10/06/1987	09/06/1997	24/07/1998	1	1.1211	10
	Bdate 14/07/1952 14/07/1952 14/07/1952 14/07/1952 01/04/1954 01/04/1954 01/04/1954 01/04/1954 10/06/1987 10/06/1987	BdateEntry14/07/195203/08/196514/07/195214/07/197214/07/195214/07/198214/07/195214/07/199201/04/195408/09/197201/04/195401/04/197401/04/195431/03/198401/04/195401/04/199410/06/198723/12/199110/06/198709/06/1997	BdateEntryExit14/07/195203/08/196514/07/197214/07/195214/07/197214/07/198214/07/195214/07/198214/07/199214/07/195214/07/199227/06/199701/04/195408/09/197201/04/197401/04/195401/04/197431/03/198401/04/195431/03/198401/04/199401/04/195401/04/199423/05/199510/06/198723/12/199109/06/199710/06/198709/06/199724/07/1998	BdateEntryExitSt14/07/195203/08/196514/07/1972014/07/195214/07/197214/07/1982014/07/195214/07/198214/07/1992014/07/195214/07/199227/06/1997101/04/195408/09/197201/04/1974001/04/195401/04/197431/03/1984001/04/195431/03/198401/04/1994001/04/195401/04/199423/05/1995010/06/198723/12/199109/06/1997010/06/198709/06/199724/07/19981	BdateEntryExitStrisk14/07/195203/08/196514/07/197206.943214/07/195214/07/197214/07/1982010.000014/07/195214/07/198214/07/1992010.000014/07/195214/07/199227/06/199714.952801/04/195408/09/197201/04/197401.560601/04/195401/04/197431/03/1984010.000001/04/195431/03/198401/04/1994010.000001/04/195431/03/198401/04/1994010.000001/04/195401/04/199423/05/199501.141710/06/198723/12/199109/06/199705.463410/06/198709/06/199724/07/199811.1211

Keeping track of calendar time too?

Timescales

- A timescale is a variable that varies deterministically within each person during follow-up:
 - Age
 - Calendar time
 - Time since treatment
 - Time since relapse
- All timescales advance at the same pace (1 year per year ...)
- ▶ Note: Cumulative exposure is **not** a timescale.

Follow-up on several timescales

- The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- ▶ Response variable in analysis of rates:

(d, y) (event, duration)

- Covariates in analysis of rates:
 - timescales
 - other (fixed) measurements

Follow-up data in Epi — Lexis objects

A follow-up study:

> round(th, 2)												
id	sex	birthdat	contrast	injecdat	volume	exitdat	exitstat					
1	2	1916.61	1	1938.79	22	1976.79	1					
640	2	1896.23	1	1945.77	20	1964.37	1					
3425	1	1886.97	2	1955.18	0	1956.59	1					
4017	2	1936.81	2	1957.61	0	1992.14	2					
	round id 1 640 3425 4017	round(th id sex 1 2 640 2 3425 1 4017 2	<pre>round(th, 2) id sex birthdat 1 2 1916.61 640 2 1896.23 3425 1 1886.97 4017 2 1936.81</pre>	round(th, 2) id sex birthdat contrast 1 2 1916.61 1 640 2 1896.23 1 3425 1 1886.97 2 4017 2 1936.81 2	<pre>round(th, 2) id sex birthdat contrast injecdat 1 2 1916.61 1 1938.79 640 2 1896.23 1 1945.77 3425 1 1886.97 2 1955.18 4017 2 1936.81 2 1957.61</pre>	round(th, 2) id sex birthdat contrast injecdat volume 1 2 1916.61 1 1938.79 22 640 2 1896.23 1 1945.77 20 3425 1 1886.97 2 1955.18 0 4017 2 1936.81 2 1957.61 0	round(th, 2) id sex birthdat contrast injecdat volume exitdat 1 2 1916.61 1 1938.79 22 1976.79 640 2 1896.23 1 1945.77 20 1964.37 3425 1 1886.97 2 1955.18 0 1956.59 4017 2 1936.81 2 1957.61 0 1992.14					

Timescales of interest:

Age

. . .

- Calendar time
- Time since injection

Representation of follow-up data (time-split)

Definition of Lexis **object**

entry is defined on three timescales, but exit is only defined on one timescale: Follow-up time is the same on all timescales:

exitdat - injecdat

The looks of a Lexis object

```
> thL[.1:9]
            per tfi lex.dur lex.Cst lex.Xst lex.id
    age
1 22 18 1938 79
                   0
                       37.99
2 49.54 1945.77
                   0
                      18.59
                                                   2
                                   0
                                                   3
3 68.20 1955.18
                  0 1.40
                                   0
4 20.80 1957.61
                   0
                    34.52
                                   0
                                            0
                                                   4
. . .
> summary( thL )
Transitions:
     To
       1 Records:
                    Events:
                              Risk time:
From O
                                           Persons:
   0 3 20
                23
                          20
                                  512.59
                                                 23
```


> plot(thL, lwd=3)

Lexis diagram

b.

EINLEITUNG

IN DIE

THEORIE

BEVÖLKERUNGSSTATISTIK

DR. DER STAATSWISSERSKAATTEN UND DER FRILOSOPHIL 0. PROFESSIONEN STATISTIK IN DONDAT.

> STRASSBURG KARLJ. TRÜBNER 1875.

Representation of follow-up data (time-split)

> plot(thL, 2:1, lwd=5, col=c("red","blue")[thL\$contrast], + grid=TRUE, lty.grid=1, col.grid=gray(0.7), + xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1) Representation(wtbl/pat2(thepoth=c(NA,3)[thL\$lex.Xst+1],lwd=3, cex=1.5)

Splitting follow-up time

> >	spl1	<- spl:	itLex:	is(thL,	breaks=: time.sca	seq(0,100 ale="age'),20); ')	,				
> round(spl1,1)												
	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	injecdat	vol
1	22.2	1938.8	0.0	17.8	0	0	1	2	1916.6	1	1938.8	
2	40.0	1956.6	17.8	20.0	0	0	1	2	1916.6	1	1938.8	
3	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	1938.8	
4	49.5	1945.8	0.0	10.5	0	0	640	2	1896.2	1	1945.8	
5	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	1945.8	
6	68.2	1955.2	0.0	1.4	0	1	3425	1	1887.0	2	1955.2	
7	20.8	1957.6	0.0	19.2	0	0	4017	2	1936.8	2	1957.6	
8	40.0	1976.8	19.2	15.3	0	0	4017	2	1936.8	2	1957.6	

. . .

Split on another timescale

> round(spl2, 1)

	lex.id	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast	inje
1	1	22.2	1938.8	0.0	1.0	0	0	1	2	1916.6	1	19
2	1	23.2	1939.8	1.0	4.0	0	0	1	2	1916.6	1	19
3	1	27.2	1943.8	5.0	12.8	0	0	1	2	1916.6	1	19
4	1	40.0	1956.6	17.8	2.2	0	0	1	2	1916.6	1	19
5	1	42.2	1958.8	20.0	17.8	0	0	1	2	1916.6	1	19
6	1	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1	19
7	2	49.5	1945.8	0.0	1.0	0	0	640	2	1896.2	1	19
8	2	50.5	1946.8	1.0	4.0	0	0	640	2	1896.2	1	19
9	2	54.5	1950.8	5.0	5.5	0	0	640	2	1896.2	1	19
10	2	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1	19
11	3	68.2	1955.2	0.0	1.0	0	0	3425	1	1887.0	2	19
12	3	69.2	1956.2	1.0	0.4	0	1	3425	1	1887.0	2	19
13	4	20.8	1957.6	0.0	1.0	0	0	4017	2	1936.8	2	19
14	4	21.8	1958.6	1.0	4.0	0	0	4017	2	1936.8	2	19
15	4	25.8	1962.6	5.0	14.2	0	0	4017	2	1936.8	2	19
16	4	40.0	1976.8	19.2	0.8	0	0	4017	2	1936.8	2	19
Represent 7tio	on of follow	p 4 Ωa 8 i	im19777t)6	20.0	14.5	0	0	4017	2	1936.8	52	124 19

age	tfi	lex.dur	lex.Cst	lex.Xst
22.2	0.0	1.0	0	0
23.2	1.0	4.0	0	0
27.2	5.0	12.8	0	0
40.0	17.8	2.2	0	0
42.2	20.0	17.8	0	0
60.0	37.8	0.2	0	1

Representation of follow-up data (time-split)

Likelihood for a piecewise constant rate

- This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- Each observation in the dataset contributes a term to a "Poisson" likelihood.
- Models can include fixed covariates, as well as the timescales (the left end-points of the intervals) as continuous variables.
- ▶ Rates are assumed to vary by timescales:
 - continuously
 - non-linearly
- Rates can vary along several timescales simultaneously.

Where is (d_{pi}, y_{pi}) in the split data? Likelihood is $d_{pi} \log(\lambda_{pi}) - \lambda_{pi} y_{pi}$

>	> round(spl2, 1)										
	lex.id	age	per	tfi	lex.dur	lex.Cst	lex.Xst	id	sex	birthdat	contrast
1	1	22.2	1938.8	0.0	1.0	0	0	1	2	1916.6	1
2	1	23.2	1939.8	1.0	4.0	0	0	1	2	1916.6	1
3	1	27.2	1943.8	5.0	12.8	0	0	1	2	1916.6	1
4	1	40.0	1956.6	17.8	2.2	0	0	1	2	1916.6	1
5	1	42.2	1958.8	20.0	17.8	0	0	1	2	1916.6	1
6	1	60.0	1976.6	37.8	0.2	0	1	1	2	1916.6	1
7	2	49.5	1945.8	0.0	1.0	0	0	640	2	1896.2	1
8	2	50.5	1946.8	1.0	4.0	0	0	640	2	1896.2	1
9	2	54.5	1950.8	5.0	5.5	0	0	640	2	1896.2	1
10) 2	60.0	1956.2	10.5	8.1	0	1	640	2	1896.2	1

. . .

— and what are **covariates** for the rates?

Analysis of results

- d_{pi} events in the variable: lex.Xst:
 In the model as response: lex.Xst==1
- y_{pi} risk time: lex.dur (duration):
 In the model as offset log(y), log(lex.dur).
- Covariates are:
 - timescales (age, period, time in study)
 - other variables for this person (constant or *assumed* constant in each interval).
- Model rates using the covariates in glm:
 - no difference between time-scales and other covariates.

Classical estimators: Kaplan-Meier

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis 21 September 2016 FRIAS, Freiburg http://BendixCarstensen/AdvCoh/courses/Frias-2016

The Kaplan-Meier Method

- ▶ The most common method of estimating the survival function.
- A non-parametric method.
- Divides time into small intervals where the intervals are defined by the unique times of failure (death).
- Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.

Kaplan–Meier method illustrated

(• = failure and \times = censored): N = 50 49 46 Time Cumulative 1.0⁴ survival probability

- Steps caused by multiplying by (1-1/49) and (1-1/46) respectively
- Late entry can also be dealt with

Using R: Surv()

library(survival)
data(lung)
head(lung, 3)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss 3 306 2 74 1175 90 100 NA 1 1 2 2 1225 3 455 68 1 90 90 15 3 3 1010 1 56 1 0 90 15 90 NA with(lung, Surv(time, status==2))[1:10] [1] 306 455 1010+ 210 883 1022+ 310 361 218 166 (s.km <- survfit(Surv(time, status==2) ~ 1 , data=lung))</pre> Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung) events median 0.95LCL 0.95UCL n 228 165310 285 363 plot(s.km) abline(v=310. h=0.5. col="red") Classical estimators: Kaplan-Meier (km-na)

58/124

Who needs the Cox-model anyway?

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis 21 September 2016 FRIAS, Freiburg http://BendixCarstensen/AdvCoh/courses/Frias-2016

A look at the Cox model

$$\lambda(t, x) = \lambda_0(t) \times \exp(x'\beta)$$

A model for the rate as a function of t and x.

The covariate t has a special status:

- Computationally, because all individuals contribute to (some of) the range of t.
- ... the scale along which time is split (the risk sets)
- ► Conceptually *t* is just a covariate that varies within individual.
- Cox's approach profiles $\lambda_0(t)$ out from the model

The Cox-likelihood as profile likelihood

 One parameter per death time to describe the effect of time (i.e. the chosen timescale).

 $\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$

- Profile likelihood:
 - Derive estimates of α_t as function of data and β s
 - assuming constant rate between death times
 - Insert in likelihood, now only a function of data and β s
 - Turns out to be Cox's partial likelihood

The Cox-likelihood: mechanics of computing

▶ The likelihood is computed by suming over risk-sets:

$$\ell(\eta) = \sum_{t} \log\left(\frac{\mathrm{e}^{\eta_{\mathsf{death}}}}{\sum_{i \in \mathcal{R}_{t}} \mathrm{e}^{\eta_{i}}}\right)$$

- this is essentially splitting follow-up time at event- (and censoring) times
- ... repeatedly in every cycle of the iteration
- ... simplified by not keeping track of risk time
- ... but only works along one time scale

$$\log(\lambda(t, x_i)) = \log(\lambda_0(t)) + \beta_1 x_{1i} + \dots + \beta_p x_{pi} = \alpha_t + \eta_i$$

- Suppose the time scale has been divided into small intervals with at most one death in each:
- Empirical rates: (d_{it}, y_{it}) each t has at most one $d_{it} = 0$.
- Assume w.l.o.g. the ys in the empirical rates all are 1.
- Log-likelihood contributions that contain information on a specific time-scale parameter α_t will be from:
 - the (only) empirical rate (1,1) with the death at time t.
 - all other empirical rates (0,1) from those who were at risk at time t.

Note: There is one contribution from each person at risk to this part of the log-likelihood:

$$egin{aligned} & t_t(lpha_t,eta) \; = \; \sum_{i\in\mathcal{R}_t} d_i \log(\lambda_i(t)) - \lambda_i(t) y_i \ & = \; \sum_{i\in\mathcal{R}_t} \left\{ d_i(lpha_t+\eta_i) - \mathrm{e}^{lpha_t+\eta_i}
ight\} \ & = \; lpha_t + \eta_{\mathsf{death}} - \mathrm{e}^{lpha_t} \sum_{i\in\mathcal{R}_t} \mathrm{e}^{\eta_i} \end{aligned}$$

where η_{death} is the linear predictor for the person that died.

l

The derivative w.r.t. α_t is:

$$D_{\alpha_t}\ell_t(\alpha_t,\beta) = 1 - e^{\alpha_t} \sum_{i \in \mathcal{R}_t} e^{\eta_i} = 0 \quad \Leftrightarrow \quad e^{\alpha_t} = \frac{1}{\sum_{i \in \mathcal{R}_t} e^{\eta_i}}$$

If this estimate is fed back into the log-likelihood for α_t , we get the **profile likelihood** (with α_t "profiled out"):

$$\log\left(\frac{1}{\sum_{i\in\mathcal{R}_t} e^{\eta_i}}\right) + \eta_{\mathsf{death}} - 1 = \log\left(\frac{e^{\eta_{\mathsf{death}}}}{\sum_{i\in\mathcal{R}_t} e^{\eta_i}}\right) - 1$$

which is the same as the contribution from time t to Cox's partial likelihood.

Splitting the dataset a priori

- The Poisson approach needs a dataset of empirical rates (d, y) with suitably small values of y.
- each individual contributes many empirical rates
- (one per risk-set contribution in Cox-modelling)
- From each empirical rate we get:
 - Poisson-response d
 - Risk time $y \to \log(y)$ as offset
 - Covariate value for the timescale (time since entry, current age, current date, ...)
 - other covariates
- Contributions not independent, but likelihood is a product
- Same likelihood as for independent Poisson variates
- Modelling is by standard glm Poisson
Example: Mayo Clinic lung cancer

- Survival after lung cancer
- Covariates:
 - Age at diagnosis
 - Sex
 - Time since diagnosis
- Cox model
- Split data:
 - Poisson model, time as factor
 - Poisson model, time as spline

Mayo Clinic lung cancer 60 year old woman

Example: Mayo Clinic lung cancer I

NOTE: entry.status has been set to "Alive" for all. NOTE: entry is assumed to be 0 on the tfe timescale.

Example: Mayo Clinic lung cancer II

```
> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~</pre>
                    age + factor( sex ),
+
                    method="breslow", eps=10^-8, iter.max=25, data=Lung )
+
> Lung.s <- splitLexis( Lung,</pre>
                         breaks=c(0, sort(unique(Lung$time))),
+
                         time.scale="tfe" )
+
> Lung.S <- splitLexis( Lung,</pre>
                         breaks=c(0,sort(unique(Lung$time[Lung$tex.Xst=="Dead"])))
+
+
                         time.scale="tfe")
> summarv( Lung.s )
Transitions:
     То
From
        Alive Dead Records: Events: Risk time:
                                                     Persons:
  Alive 19857 165
                        20022
                                    165
                                             69593
                                                          228
> summarv( Lung.S )
```

Example: Mayo Clinic lung cancer III

Transitions:

To From Alive Dead Records: Events: Risk time: Persons: Alive 15916 165 16081 165 69593 228

> subset(Lung.s, lex.id==96)[,1:11]

	lex.id	tfe	lex.dur	lex.Cst	lex.Xst	inst	time	status	age	sex	ph.ecog
9235	96	0	5	Alive	Alive	12	30	2	72	1	2
9236	96	5	6	Alive	Alive	12	30	2	72	1	2
9237	96	11	1	Alive	Alive	12	30	2	72	1	2
9238	96	12	1	Alive	Alive	12	30	2	72	1	2
9239	96	13	2	Alive	Alive	12	30	2	72	1	2
9240	96	15	11	Alive	Alive	12	30	2	72	1	2
9241	96	26	4	Alive	Dead	12	30	2	72	1	2

> nlevels(factor(Lung.s\$tfe))

[1] 186

Example: Mayo Clinic lung cancer IV

```
> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
                                 age + factor( sex ).
+
                                 offset = log(lex.dur),
+
                      family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+
+
  user
        system elapsed
10,905 0,016 10,919
> length( coef(mLs.pois.fc) )
[1] 188
> svstem.time(
+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ -1 + factor( tfe ) +
                                 age + factor( sex ),
+
                                 offset = log(lex.dur).
+
                      family=poisson, data=Lung.S, eps=10<sup>-8</sup>, maxit=25)
+
+
```

Example: Mayo Clinic lung cancer V

user system elapsed 3.286 0.012 3.297

```
> length( coef(mLS.pois.fc) )
```

[1] 142

```
> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe.knots=t.kn) )
```

```
[1] 20022 4
```

Example: Mayo Clinic lung cancer VI

system elapsed user 0.177 0.000 0.176 > ests <-+ rbind(ci.exp(mL.cox), ci.exp(mLs.pois.fc,subset=c("age","sex")), + ci.exp(mLS.pois.fc,subset=c("age","sex")), + ci.exp(mLs.pois.sp,subset=c("age","sex"))) + > cmp <- cbind(ests[c(1,3,5,7) .]. ests[c(1.3.5.7)+1.7]) + > rownames(cmp) <- c("Cox", "Poisson-factor", "Poisson-factor (D)", "Poisson-spling")</pre> > colnames(cmp)[c(1,4)] <- c("age","sex")</pre>

> round(cmp, 7)

Example: Mayo Clinic lung cancer VII

	age	2.5%	97.5%	sex	2.5%	97.5%
Cox	1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487
Poisson-factor	1.017158	0.9989388	1.035710	0.5989574	0.4313720	0.8316487
Poisson-factor (D)	1.017332	0.9991211	1.035874	0.5984794	0.4310150	0.8310094
Poisson-spline	1.016189	0.9980329	1.034676	0.5998287	0.4319932	0.8328707

Who needs the Cox-model anyway? (KMCox)

Who needs the Cox-model anyway? (KMCox)

Deriving the survival function

```
> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))</pre>
```

Code and output for the entire example avaiable in http://bendixcarstensen.com/AdvCoh/WNtCMa/

What the Cox-model really is

Taking the life-table approach *ad absurdum* by:

- dividing time very finely and
- modeling one covariate, the time-scale, with one parameter per distinct value.
- the model for the time scale is really with exchangeable time-intervals.
- \blacktriangleright \Rightarrow difficult to access the baseline hazard (which looks terrible)
- ${\scriptstyle \blacktriangleright}$ \Rightarrow uninitiated tempted to show survival curves where irrelevant

Models of this world

- Replace the α_t s by a parametric function f(t) with a limited number of parameters, for example:
 - Piecewise constant
 - Splines (linear, quadratic or cubic)
 - Fractional polynomials
- the two latter brings model into "this world":
 - smoothly varying rates
 - parametric closed form representation of baseline hazard
 - finite no. of parameters
- Makes it really easy to use rates directly in calculations of
 - expected residual life time
 - state occupancy probabilities in multistate models

•

Likelihood for multistate follow-up

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis 21 September 2016 FRIAS, Freiburg http://BendixCarstensen/AdvCoh/courses/Frias-2016

Likelihood for transition through states

 $\textbf{A} \longrightarrow \textbf{B} \longrightarrow \textbf{C} \longrightarrow$

- given start of observation in **A** at time t_0
- transitions at times t_B and t_C
- survival in **C** till (at least) time t_x :

 $L = P\{\text{survive } t_0 \to t_B \text{ in } \mathbf{A}\} \\ \times P\{\text{transition } \mathbf{A} \to \mathbf{B} \text{ at } t_B | \text{ alive in } \mathbf{A}\} \\ \times P\{\text{survive } t_B \to t_C \text{ in } \mathbf{B} | \text{ entered } \mathbf{B} \text{ at } t_B\} \\ \times P\{\text{transition } \mathbf{B} \to \mathbf{C} \text{ at } t_C | \text{ alive in } \mathbf{B}\} \\ \times P\{\text{survive } t_C \to t_x \text{ in } \mathbf{C} | \text{ entered } \mathbf{C} \text{ at } t_C\} \end{cases}$

Product of likelihood contributions for each transition
 — each one as for a survival model

Likelihood contributions reflected in Lexis object

$$L = P\{\text{survive } t_0 \to t_B \text{ in } \mathbf{A}\} \\ \times P\{\text{transition } \mathbf{A} \to \mathbf{B} \text{ at } t_B | \text{ alive in } \mathbf{A}\} \\ \times P\{\text{survive } t_B \to t_C \text{ in } \mathbf{B} | \text{ entered } \mathbf{B} \text{ at } t_B\} \\ \times P\{\text{transition } \mathbf{B} \to \mathbf{C} \text{ at } t_C | \text{ alive in } \mathbf{B}\} \\ \times P\{\text{survive } t_C \to t_x \text{ in } \mathbf{C} | \text{ entered } \mathbf{C} \text{ at } t_C\} \end{cases}$$

 $\begin{array}{cccc} \texttt{lex.id time} & \texttt{lex.dur} & \texttt{lex.Cst} & \texttt{lex.Xst} \\ \texttt{1} & \texttt{t_0} & \texttt{t_B-t_0} & \texttt{A} & \texttt{B} \\ \texttt{1} & \texttt{t_B} & \texttt{t_C-t_B} & \texttt{B} & \texttt{C} \\ \texttt{1} & \texttt{t_C} & \texttt{t_x-t_C} & \texttt{C} & \texttt{C} \end{array}$

 $\begin{array}{l} \text{constant rate in interval} \Rightarrow \text{log-likelihood term is Poisson:} \\ d \text{log}(\lambda) - \lambda y = (\texttt{lex.Xst!} = \texttt{lex.Cst}) \times \log(\lambda) - \lambda \times \texttt{lex.dur} \end{array}$

Competing risks

But you may die from more than one cause (move to one of more possible states):

Cause-specific intensities

$$\lambda_{A}(t) = \lim_{h \to 0} \frac{P \{\text{death from cause A in } (t, t+h] \mid \text{alive at } t\}}{h}$$

$$\lambda_{B}(t) = \lim_{h \to 0} \frac{P \{\text{death from cause B in } (t, t+h] \mid \text{alive at } t\}}{h}$$

$$\lambda_{C}(t) = \lim_{h \to 0} \frac{P \{\text{death from cause C in } (t, t+h] \mid \text{alive at } t\}}{h}$$

Total mortality rate:

$$\lambda_{\mathsf{Total}}(t) = \lim_{h \to 0} \frac{P\{\mathsf{death from any cause in } (t, t+h] \mid \mathsf{alive at } t\}}{h}$$

Cause-specific intensities

For small h, P {2 events in (t, t+h]} ≈ 0 , so:

P {death from any cause in (t, t + h] | alive at t}

= $P \{ \text{death from cause A in } (t, t+h] \mid \text{alive at } t \} + P \{ \text{death from cause B in } (t, t+h] \mid \text{alive at } t \} + P \{ \text{death from cause C in } (t, t+h] \mid \text{alive at } t \}$

$$\implies \qquad \lambda_{\text{Total}}(t) = \lambda_A(t) + \lambda_B(t) + \lambda_C(t)$$

Intensities are additive, if they all refer to the same risk set, in this case "Alive".

Likelihood for competing risks

Data:

- Y person years in "Alive"
- D_A deaths from cause A
- D_B deaths from cause B
- D_C deaths from cause C

Now, assume for a start that transition rates between states are constant.

Likelihood for competing risks

A survivor contributes to the log-likelihood:

 $\log(P \{ Survival \text{ for a time of } y \}) = -(\lambda_A + \lambda_B + \lambda_C)y$

A death from cause **A** contributes an additional $\log(\lambda_A)$, from cause **B** an additional $\log(\lambda_B)$ etc.

The total log-likelihood is then:

$$\ell(\lambda_A, \lambda_B, \lambda_C) = D_A \log(\lambda_A) + D_B \log(\lambda_B) + D_C \log(\lambda_C) - (\lambda_A + \lambda_B + \lambda_C) Y = [D_A \log(\lambda_A) - \lambda_A Y] + [D_B \log(\lambda_B) - \lambda_B Y] + [D_C \log(\lambda_C) - \lambda_C Y]$$

Components of the likelihood

The log-likelihood is made up of three contributions:

- ▶ one for cause A,
- one for cause B and
- one for cause C

Deaths are the cause-specific deaths,

but the **person-years** are the same in all contributions.

The person-years appear once for each transition **out** of a state.

Likelihood for multiple states

- Product of likelihoods for each transition
 each one as for a survival model
- **conditional** on being alive at (observed) entry to current state
- Risk time is the risk time in the current ("From", lex.Cst) state
- **Events** are transitions to the "To" state (lex.Xst)
- All other transitions out of "From" are treated as censorings (but they are not)
- Fit models separately for each transition or jointly for all

Time varying rates:

- The same type of analysis as with a constant rates
- ... but data must be split in intervals sufficiently small to justify an assumption of constant rate (intensity),
- the model should allow for a separate rate for each interval,
- but these can be constrained to follow model with a smooth effect of the time-scale values allocated to each interval.

Practical implications

- Empirical rates ((d, y) from each individual) will be the same for all analyses except for those where deaths occur.
- Analysis of cause **A**:
 - \blacktriangleright Contributions (1,y) only for those intervals where a cause ${\bf A}$ death occurs.
 - ► Intervals with cause B or C deaths (or no deaths) contribute only (0, y) — treated as censorings.

original	expanded
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	id time dd xx Tr 1 1 0 0.50 A 2 1 0 1.00 A 3 8 0 -1.74 A 4 3 1 -0.55 A 5 7 0 -0.58 A 6 7 0 -0.04 A
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

... accomplished by stack.Lexis

Lexis objects (data frame)

- Represents the follow-up
- lex.dur contains the total time at risk for (any) event
- > lex.Cst is the state in which this time is spent
- lex.Xst is the state to which a transition occurs
 if no transition, the same as lex.Cst.

This is used for modelling of single transitions between states — and multiple transitions with no two originating in the same state.

stacked.Lexis objects (data frame)

- Represents the likelihood contributions
- lex.dur contains the total time at risk for (any) event
- lex.Tr is the transition to which the record contributes
- lex.Fail is the event (failure) indicator for the transition in question.

This is used for joint modelling of **all** transition in a multistate set-up.

Particularly with several rates originating in the **same** state (competing risks).

> library(Epi)
> data(DMlate)

> head(DMlate)

	sex	dobth	dodm	dodth	dooad	doins	dox
50185	F	1940.256	1998.917	NA	NA	NA	2009.997
307563	М	1939.218	2003.309	NA	2007.446	NA	2009.997
294104	F	1918.301	2004.552	NA	NA	NA	2009.997
336439	F	1965.225	2009.261	NA	NA	NA	2009.997
245651	М	1932.877	2008.653	NA	NA	NA	2009.997
216824	F	1927.870	2007.886	2009.923	NA	NA	2009.923
> dml · + + + + + + +	<- Le	exis(entr ex: exit.statu dau	ry = list DI it = list us = facto ta = DMlas	(Per = doo Age = doo Mdur = 0) (Per = doo pr(!is.nat labels= te)	dm, dm-dobth,), x), (dodth), =c("DM","1	Dead"))),

NOTE: entry.status has been set to "DM" for all.

```
> dmi <- cutLexis( dml, cut = dml$doins,</pre>
+
                new.state = "Ins".
                precursor = "DM" )
+
> summary( dmi )
Transitions:
    То
From
       DM Ins Dead Records: Events: Risk time: Persons:
  DM
     6157 1694 2048
                        9899
                                3742 45885,49
                                                    9899
  Tns
        0 1340 451 1791 451 8387.77 1791
 Sum 6157 3034 2499
                      11690 4193 54273.27 9996
> boxes( dmi, boxpos = list(x=c(20, 20, 80)),
                          v=c(80,20,50)).
+
             scale.R=1000. show.BE=TRUE. hmult=1.2. wmult=1.1 )
+
```



```
> options( digits=3, width=200 )
> st.dmi <- stack( dmi )
> print( st.dmi[1:6,], row.names=F )
```

Per	Age	DMdur	lex.dur	lex.Cst	lex.Xst	lex.Tr	lex.Fail	lex.id	sex	dobth	dodm	do
1999	58.7	0	11.080	DM	DM	DM->Ins	FALSE	1	F	1940	1999	
2003	64.1	0	6.689	DM	DM	DM->Ins	FALSE	2	М	1939	2003	
2005	86.3	0	5.446	DM	DM	DM->Ins	FALSE	3	F	1918	2005	
2009	44.0	0	0.736	DM	DM	DM->Ins	FALSE	4	F	1965	2009	
2009	75.8	0	1.344	DM	DM	DM->Ins	FALSE	5	М	1933	2009	
2008	80.0	0	2.037	DM	Dead	DM->Ins	FALSE	6	F	1928	2008	2

```
> str( st.dmi )
```

	Clas	sses 's	stad	cked.	Lexis	' and	'da	ta.fr	ame':	21589) obs	. of	16	δī	<i>v</i> ari	ab	les	3:		
	\$ F	Per	:	num	1999	2003	200!	5 200	9 200	9										
	\$ <i>I</i>	Age	:	\mathtt{num}	58.7	64.1	86.3	3 44	75.8											
	\$ I	DMdur	:	num	0 0	0 0 0	0 0	0 0	0											
	\$]	lex.dur	: :	num	11.0	8 6.6	89 5	.446	0.736	1.344	L									
	\$]	lex.Cst	: :	Fact	or w/	3 le	vels	"DM"	,"Ins	","Dea	.d": :	111	L 1	1	1 1	. 1	1	1		
	\$ 1	lex.Xst	: :	Fact	or w/	3 le	vels	"DM"	,"Ins	","Dea	.d": :	111	L 1	1	3 1	. 1	3	1		
Likeliho	sodfor]	lex, Tr	ollow-i	Fact	or w/	3 le	vels	"DM-	>Ins"	,"DM->	Dead	",:	: 1	1	1 1	. 1	1	1	1 1	$\frac{1}{98/124}$
2	\$ 1	lov Fai	1.	logi	E A T	כד דע	ו קד ו		FAIG		ነፍ ፍለነ	SE.								50, 12.

> print(subset(dmi,	lex.id %in% c(13,15,28)),				row.names=FALSE)					
	Per	Age	DMdur	lex.dur	lex.Cst	lex.Xst	lex.id	sex	dobth	dodm	dodth	dooad	doins	
	1997	59.4	0.0	0.890	DM	Dead	13	М	1938	1997	1998	NA	NA	
	2003	58.1	0.0	2.804	DM	Ins	15	М	1944	2003	NA	NA	2005	
	2005	60.9	2.8	4.643	Ins	Ins	15	М	1944	2003	NA	NA	2005	
	1999	73.7	0.0	8.701	DM	Ins	28	F	1925	1999	2008	2001	2007	
	2007	82.4	8.7	0.977	Ins	Dead	28	F	1925	1999	2008	2001	2007	

> print(subset(st.dmi, lex.id %in% c(13,15,28)), row.names=FALSE)

Per	Age	DMdur	lex.dur	lex.Cst	lex.Xst	lex.Tr	lex.Fail	lex.id	sex	dobth	dodm
1997	59.4	0.0	0.890	DM	Dead	DM->Ins	FALSE	13	М	1938	1997
2003	58.1	0.0	2.804	DM	Ins	DM->Ins	TRUE	15	М	1944	2003
1999	73.7	0.0	8.701	DM	lns	DM->Ins	TRUE	28	F	1925	1999
1997	59.4	0.0	0.890	DM	Dead	DM->Dead	TRUE	13	М	1938	1997
2003	58.1	0.0	2.804	DM	Ins	DM->Dead	FALSE	15	М	1944	2003
1999	73.7	0.0	8.701	DM	Ins	DM->Dead	FALSE	28	F	1925	1999
2005	60.9	2.8	4.643	Ins	Ins	Ins->Dead	FALSE	15	М	1944	2003
2007	82.4	8.7	0.977	Ins	Dead	Ins->Dead	TRUE	28	F	1925	1999

Analysis of rates in multistate models

Interactions between all covariates (including time) and state (lex.Cst):

 \Leftrightarrow separate analyses of all transition rates.

- Only interaction between state (lex.Cst) and time(scales):
 ⇔ same covariate effects for all causes transitions, but separate baseline hazards "stratified model".
- ▶ Main effect of state only (lex.Cst):
 ⇔ proportional hazards
- No effect of state:

 \Leftrightarrow identical baseline hazards — hardly ever relevant.

Analysis approaches and data representation

- Lexis objects represents the precise follow-up in the cohort, in states and along timescales
- used for analysis of single transition rates.
- stacked.Lexis objects represents contributions to the total
 likelihood
- used for joint analysis of (all) rates in a multistate setup
- ... which is the case if you want to specify common effects between different transitions.
Assumptions in competing risks

"Classical" way of looking at survival data: description of the distribution of time to death.

For competing risks that would require three variables:

 T_A , T_B and T_C , representing times to death from each of the three causes.

But at most one of these is observed.

Often it is stated that these must be assumed independent in order to make the likelihood machinery work

1. It is not necessary.

2. Independence can never be assessed from data.

An account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj: **Competing risks as a multistate model**, *Statistical Methods in Medical Research*; **11**, 2002: pp. 203–215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein Putter: **Competing risks in epidemiology: possibilities and pitfalls**, *International Journal of Epidemiology*; 2012: pp. 1–10

Contains examples where both dependent and independent "cause specific survival times" gives rise to the same set of cause specific rates.

Reporting a multistate model

Bendix Carstensen

Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis 21 September 2016 FRIAS, Freiburg http://BendixCarstensen/AdvCoh/courses/Frias-2016

Multistate models

- Outcomes are transitions between states, with times
- Covariates are measurements and timescales
- Models describe the single transition rates
- Results are:
 - Description of rates how do they depend time etc.
 - Prediction of state occupancy: What is the probability that a person is in a given state at a given time?
- This illustrates the latter.

Diabetes patient mortality

NOTE: entry.status has been set to "DM" for all.

> summary(dml)

Transitions: To From DM Dead Records: Events: Risk time: Persons: DM 7497 2499 9996 2499 54273.27 9996

... subdivided by insulin status

Split follow-up at insulin, introduce a new timescale and split non-precursor states:

```
> dmi <- cutLexis( dml, cut = dml$doins.</pre>
                        pre = "DM",
+
                  new.state = "Ins".
+
                  new.scale = "t.Ins".
+
               split.states = TRUE )
+
> summary( dmi )
Transitions:
     To
From
        DM
           Ins Dead Dead(Ins) Records: Events: Risk time:
                                                              Persons:
  MC
      6157 1694 2048
                             0
                                    9899
                                             3742
                                                    45885.49
                                                                  9899
  Tns
        0 1340
                   0
                           451
                                    1791
                                             451
                                                     8387.77
                                                                  1791
  Sum 6157 3034 2048
                           451
                                   11690
                                             4193
                                                    54273.27
                                                                  9996
> boxes( dmi, boxpos=list(x=c(20,20,80,80),y=c(80,20,80,20)),
              scale.R=1000. show.BE=TRUE. hmult=1.2. wmult=1.2 )
+
```


Split the follow in 3-month intervals for modelling

```
> Si <- splitLexis( dmi, 0:60/4, "DMdur" )
> summary( Si )
```

Transitions: То Ins Dead Dead(Ins) Records: Events: Risk time: From DM Persons: DM 184986 1694 2048 0 188728 3742 45885.49 9899 Tns 0 34707 0 451 35158 451 8387.77 1791 Sum 184986 36401 2048 451 223886 4193 54273.27 9996 > summarv(dmi) Transitions: То From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons: DM 6157 1694 2048 9899 3742 45885.49 0 9899 0 1340 Ins 451 1791 451 8387.77 1791 0 Sum 6157 3034 2048 451 11690 4193 54273.27 9996

Define knots for spline modelling of the rates:

```
> nk < -4
    > ( ai.kn <- with( subset(Si.lex.Xst=="Ins").</pre>
                         quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )
    +
       12.5% 37.5% 62.5% 87.5%
    27.68241 49.61893 61.88364 75.56211
    > ( ad.kn <- with( subset(Si,lex.Xst=="Dead"),</pre>
                         quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )
    +
       12.5% 37.5% 62.5% 87.5%
    63.61875 74.98700 81.38501 89.26831
    > ( di.kn <- with( subset(Si,lex.Xst=="Ins"),</pre>
                         quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )
    +
    12.5% 37.5% 62.5% 87.5%
     1.50 4.25 7.00 10.50
    > ( dd.kn <- with( subset(Si,lex.Xst=="Dead"),</pre>
                         quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )
    +
12.5% 37.5% 62.5% 87.5%
Reporting a multistic model (mesrep)
0.3778234 1.9582478 4.3370979 8.0232717
```

```
109/ 124
```

Fit Poisson models to transition rates

```
> DM.Ins <- glm( (lex.Xst=="Ins") ~ Ns( Age , knots=ai.kn ) +
                                     Ns( DMdur, knots=di,kn ) +
+
                                     I(Per-2000) + sex.
+
                 family=poisson, offset=log(lex.dur),
+
                 data = subset(Si.lex.Cst=="DM") )
+
> DM.Dead <- glm( (lex.Xst=="Dead") ~ Ns( Age , knots=ad.kn ) +
                                       Ns( DMdur, knots=dd.kn ) +
+
                                       I(Per-2000) + sex.
+
                  familv=poisson, offset=log(lex.dur).
+
                  data = subset(Si.lex.Cst=="DM") )
+
  Ins.Dead <- glm( (lex.Xst=="Dead(Ins)") ~ Ns( Age , knots=ad.kn ) +</pre>
>
                                             Ns( DMdur, knots=dd.kn ) +
+
                                             Ns( t.Ins, knots=td.kn ) +
+
                                              I(Per-2000) + sex.
+
                   family=poisson, offset=log(lex.dur),
+
                   data = subset(Si.lex.Cst=="Ins") )
+
```

Put the fitted models into an object representing the transitions

```
> Tr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = DM.Dead ),
+ "Ins" = list( "Dead(Ins)" = Ins.Dead ) )
> lapply( Tr, names )
$DM
[1] "Ins" "Dead"
$Ins
```

[1] "Dead(Ins)"

Define an initial object

— note the combination of select= and NULL which ensures that the relevant attributes from the Lexis object Si are carried over to ini (using Si[NULL,1:9] will lose essential attributes)

```
> ini <- subset(Si,select=1:9)[NULL,]</pre>
> ini[1:2,"lex.Cst"] <- "DM"</pre>
> ini[1:2,"Per"] <- 1995
> ini[1:2,"Age"] <- 60
> ini[1:2."DMdur"] <- 5</pre>
> ini[1:2."sex"] <- c("M"."F")</pre>
> ini
  lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1
      NA 1995 60
                      5
                            NA
                                    NA
                                             DM
                                                   <NA>
                                                          М
2
      NA 1995
               60
                      5
                            NA
                                    NA
                                             DM
                                                   <NA>
                                                          F
```

Simulate 10,000 of each sex using the estimated models in Tr:

```
> system.time(
+ simL <- simLexis( Tr, ini, time.pts=seq(0,11,0.5). N=10000 ) )
        system elapsed
  user
 25.111
        0.100 25.208
> summary( simL )
Transitions:
    То
From
       DM
          Ins Dead Dead(Ins) Records: Events: Risk time:
                                                            Persons:
     8817 6167 5016
                                           11183
 DM
                            0
                                  20000
                                                 150485.05
                                                               20000
        0
          4456 0
                         1711
                                   6167
                                           1711 33773.71
                                                                6167
  Tns
                                           12894 184258.76
  Sum 8817 10623 5016
                         1711
                                  26167
                                                               20000
> subset( simL, lex.id < 3 )</pre>
  lex.id
             Per
                     Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex cens
1
      1 1995.000 60.00000 5.00000
                                     NA 1.050103
                                                     DM
                                                             Dead
                                                                   M 2006
23
      2 1995.000 60.00000 5.00000
                                     NA 6.118532
                                                     DM
                                                              Ins
                                                                   M 2006
                                      0 2.324054
      2 2001.119 66.11853 11.11853
                                                    Ins Dead(Ins)
                                                                   M 2006
```

We now have a dataframe (Lexis object) with simulated follow-up of 10,000 men and 10,000 women.

We then find the number of persons in each state at a specified set of times.

```
> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.1), from=1995, time.scale="Per" )
> nSt
```

	State				
	when	DM	lns	Dead	Dead(Ins)
	1995	10000	0	0	0
	1995.1	9950	24	26	0
	1995.2	9904	40	56	0
	1995.3	9847	72	81	0
	1995.4	9801	92	105	2
	1995.5	9749	115	134	2
	1995.6	9692	140	165	3
	1995.7	9645	167	184	4
	1995.8	9588	192	214	6
Reporti	ing a 1995 at 9n	nod 9537rep)	211	245	7
	1006	0/00	725	260	0

Show the cumulative prevalences in a different order than that of the state-level ordering and plot them using all defaults:

```
> pp <- pState( nSt, perm=c(1,2,4.3) )
> head( pp )
       State
                   Ins Dead(Ins) Dead
when
             DM
  1995
         1,0000 1,0000
                         1.0000
                                    1
  1995.1 0.9950 0.9974
                       0.9974
  1995.2 0.9904 0.9944 0.9944
                                    1
  1995.3 0.9847 0.9919
                      0.9919
  1995.4 0.9801 0.9893
                       0.9895
                                    1
  1995.5 0.9749 0.9864
                         0.9866
                                    1
```

> plot(pp)

Reporting a multistate model (ms-rep)

We can show the results in an clearer way, buy choosing colors wiser:

```
> clr <- c("orange2","forestgreen")
> par( las=1, mar=c(3,3,3,3) )
> plot( pp, col=clr[c(2,1,1,2)] )
> lines( as.numeric(rownames(pp)), pp[,2], lwd=2 )
> mtext( "60 year old male, diagnosed 1995", side=3, line=2.5, adj=0 )
> mtext( "Survival curve", side=3, line=1.5, adj=0 )
> mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1] )
> mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[2] )
> axis( side=4 )
```


We could also use a Cox-model for the mortality rates assuming the two mortality rates to be proportional:

When we fit a Cox-model, lex.dur must be used in the Surv() function, and the I() construction must be used when specifying intermediate states as covariates, since factors with levels not present in the data will create NAs in the parameter vector returned by coxph, which in return will crash the simulation machinery.

Reporting a multistate model (ms-rep)

Reporting a multistate model (ms-rep)

Now your turn...

References