
Practice in analysis of multistate
models using

Epi::Lexis in

Univerity of Aberdeen, Scotland
August 2017

http://bendixcarstensen.com/AdvCoh/courses/Aberdeen-2017

Version 1.1

Compiled Friday 4th August, 2017, 10:56
from: /home/bendix/teach/AdvCoh/courses/Aberdeen.2017/pracs/pracs.tex

Bendix Carstensen Steno Diabetes Center Copenhagen, Gentofte, Denmark
& Dept. of Biostatistics, University of Copenhagen, Denmark
b@bxc.dk

http://BendixCarstensen.com

http://bendixcarstensen.com/AdvCoh/courses/Aberdeen-2017
mailto:b@bxc.dk
http://BendixCarstensen.com


Contents

1 Introduction 1
1.1 Computing prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Statistical prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Exercises 2
2.1 Renal complications: Time-dependent variables and multiple states . . . . . 2

2.1.1 The renal failure dataset . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Splitting the follow-up time . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Prediction in a multistate model . . . . . . . . . . . . . . . . . . . . . 7

2.2 Time-splitting, time-scales and SMR: Diabetes in Denmark . . . . . . . . . . 11
2.2.1 SMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Solutions 17
3.1 Renal complications: Time-dependent variables and multiple states . . . . . 17

3.1.1 The renal failure dataset . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Splitting the follow-up time . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Prediction in a multistate model . . . . . . . . . . . . . . . . . . . . . 28

3.2 Time-splitting, time-scales and SMR: Diabetes in Denmark . . . . . . . . . . 37
3.2.1 SMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ii



Chapter 1

Introduction

There are two practicals in this document. This first one, “Renal complications:
Time-dependent variables and multiple states” is the main one. The second,
“Time-splitting, time-scales and SMR: Diabetes in Denmark” is based on routine data and
highlights the use of several time scales in modeling of rates.

Both exercises also has a solution-version in the following chapter, but you are
encouraged to try to keep to the exercise text and code.

1.1 Computing prerequisites

The practicals assume that you have an up to date version of R (3.4.1) as well as the last
version of the Epi package (2.16), the following should work and give you the relevant
information:

> install.packages( "Epi" )
> library( Epi )
> sessionInfo()

Also, you will need to access a dataset from the website so you might want to download the
file; the file is
http://bendixcarstensen.com/AdvCoh/courses/Aberdeen-2017/renal.Rda

In the tutorial I shall assume that you are familiar with the following commands in R:

• glm, including the offset= argument

• update for models

• predict, and the wrapper ci.pred from the Epi package.

1.2 Statistical prerequisites

I will assume that you are familiar with the usual likelihood machinery and the theory of
generalized linear models.

And of course the basic probability theory underlying calculation of demographic rates
and probabilities derived from these.
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Chapter 2

Exercises

2.1 Renal complications: Time-dependent variables

and multiple states

The following practical exercise is based on the data from paper:

P Hovind, L Tarnow, P Rossing, B Carstensen, and HH Parving: Improved survival in
patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy.
Kidney Int, 66(3):1180–1186, Sept 2004.

You can find a .pdf-version of the paper here:
http://BendixCarstensen.com/~bxc/AdvCoh/papers/Hovind.2004.pdf

2.1.1 The renal failure dataset

The dataset renal.dta contains data on follow up of 125 patients from Steno Diabetes
Center. They enter the study when they are diagnosed with nephrotic range albuminuria
(NRA). This is a condition where the levels of albumin in the urine is exceeds a certain
level as a sign of kidney disease. The levels may however drop as a consequence of
treatment, this is called remission. Patients exit the study at death or kidney failure
(dialysis or transplant).

Table 2.1: Variables in renal.dta.

id Patient id
sex M / F
dob Date of birth
doe Date of entry into the study (2.5 years after NRA)
dor Date of remission. Missing if no remission has occurred
dox Date of exit from study

event Exit status: 0: censored, 1: death, 2: end stage renal disease,
ESRD (kidney failure) and 3: Kidney transplant.

1. The dataset is available at the course website as renal.Rda:
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library( Epi ) ; clear()
load( url("http://BendixCarstensen.com/AdvCoh/courses/Frias-2016/data/renal.Rda") )
# load( "renal.Rda" )
str( renal )
head( renal )

Here we shall only be interested in the combined event 1, 2 or 3.

2. Use the Lexis function to declare the data as survival data with age, calendar time
and time since entry into the study as timescales. Note that any coding of event > 0
will be labeled “ESRD”, i.e. renal death (death of kidney (transplant or dialysis), or
person).

Note that you must make sure that the “alive” state (here NRA) is the first, as Lexis

assumes that everyone starts in this state (unless of course entry.status is
specified).

Lr <- Lexis( entry = list( per=doe,
age=doe-dob,
tfi=0 ),

exit = list( per=dox ),
exit.status = factor( event>0, labels=c("NRA","ESRD") ),

data = renal )
str( Lr )
summary( Lr )

3. Visualize the data in a Lexis-diagram, using the plot method for Lexis objects.
What do you see?

plot( Lr, col="black", lwd=3 )

4. (Optional, not crucial to the rest of the exercise. Now try to produce a slightly more
fancy Lexis diagram. Note that we have a x-axis of 40 years, and a y-axis of 80 years,
so when specifying the output file adjust the total width of the plot so that the use
mai to specifiy the margins of the plot leaves a plotting area twice as high as wide.
You will want to consult the maning of the argument mai to the function par.

# pdf( "lexis-fancy.pdf", height=80/5+1, width=40/5+1 )
# x11( height=80/5+1, width=40/5+1 )
par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lr, 1:2, col=c("blue","red")[Lr$sex], lwd=3, grid=0:20*5,

xlab="Calendar time", ylab="Age",
xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

# dev.off()

5. Make a Cox-regression analysis with the variables sex and age at entry into the study,
using time since entry to the study as time scale.

Give the hazard ratio between males and females and between two persons who differ
10 years in age at entry. Give the 95% confidence intervals for this as well.
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library( survival )
mc <- coxph( Surv( lex.dur, lex.Xst=="ESRD" ) ~

I(age/10) + sex, data=Lr )
summary( mc )

6. The main focus of the paper was to assess whether occurrence of remission (return to
a lower level of albumin excretion, an indication of kidney recovery) influences
mortality.

“Remission” is a time-dependent variable which is initially 0, but takes the value 1
when remission occurs. In order to handle this, each person who see a remission must
have two records:

• One record for the time before remission, where entry is doe, exit is dor,
remission is 0, and event is 0.

• One record for the time after remission, where entry is dor, exit is dox, remission
is 1, and event is 0 or 1 according to whether the person had an event at dox.

This is accomplished using the cutLexis function on the Lexis object. You must
declare the “NRA” state as a precursor state, i.e. a state that is less severe than
“Rem” in the sense that a person who see a remission will stay in the “Rem” state
unless he goes to the “ESRD” state.

Lc <- cutLexis( Lr, cut = Lr$dor, # where to cut follow up
timescale = "per", # the timescale that "dor" refers to
new.state = "Rem", # name of the new state

precursor.states = "NRA" ) # which states are less severe
summary( Lc )

List records for a few select persons from Lr and from Lc to see how the cut has
worked.

7. Show how the states are connected and the number of transitions between them by
using boxes. This is an interactive command that requires you to click in the graph
window:

boxes( Lc )

Alternatively you can let R try to place the boxes for you, and even compute rates
(in this case in units of events per 100 PY):

boxes( Lc, boxpos=TRUE, scale.R=100, show.BE=TRUE )

How many transitions are there from remission to death?

8. (Optional: Not relevant for the remainder of the exercise.) Now make a Lexis
diagram where different colouring is used for different segments of the follow-up —
you should be able to count the 8 transitions from “Rem” to “ESRD”.



Exercises 2.1 Renal complications: Time-dependent variables and multiple states 5

par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lc, col=c("red","limegreen")[(Lc$lex.Cst=="Rem")+1],

xlab="Calendar time", ylab="Age",
lwd=3, grid=0:20*5, xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

points( Lc, pch=c(NA,16)[(Lc$lex.Xst=="ESRD")+1],
col=c("red","limegreen")[(Lc$lex.Cst=="Rem")+1])

points( Lc, pch=c(NA,1)[(Lc$lex.Xst=="ESRD")+1],
col="black", lwd=2 )

9. Make a Cox-regression of mortality (i.e. endpoint “ESRD”) with sex, age at entry and
remission as explanatory variables, and using time since entry as timescale.

Remember to include lex.Cst as time-dependent variable, and to indicate that each
recort represbts follow-up from tfi to tfi+lex.dur. Note the use of the Lexis

variables lex.dur (risk time), lex.Xst (exit status) and lex.Cst (current status).

m1 <- coxph( Surv( tfi, tfi+lex.dur, lex.Xst=="ESRD" ) ~
sex + I((doe-dob-50)/10) + (lex.Cst=="Rem"), data=Lc )

summary( m1 )

10. What is the relation between the rate of ESRD between persons in remission and
persons not?

11. What is the assumption about the two rates of remission? Refer to the figure with
the three boxes you just made. (??).

2.1.2 Splitting the follow-up time

In order to explore the effect of remission on the rate of ESRD, we will split the data
further into small pieces of follow-up. To this end we use the function splitLexis. The
rates can then be modeled using a Poisson-model, and the shape of the underlying rates be
explored. Furthermore, we can allow effects of both time since NRA and current age. To
this end we will use splines, so we need the splines package, too.

12. First, split the follow-up time every month after entry, and make sure that the
number of events and risk time is the same as before (use summary):

sLc <- splitLexis( Lc, "tfi", breaks=seq(0,30,1/12) )
summary( Lc )
summary(sLc )

13. Now try to fit the Poisson-model corresponding to the Cox-model we fitted
previously. The function ns() produces a model matrix corresponding to a piecewise
cubic function, modeling the baseline hazard explicitly (think of the ns terms as the
baseline hazard that is not visible in the Cox-model).

The outcome is 1 or 0 according to whether an event occurred or not, but sine a
Poisson variate by definition is numerical, R will automatically coerce (change) a
logical value to numeric; FALSE as 0 and TRUE as 1, so we can conveniently write:
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library( splines )
mp <- glm( lex.Xst=="ESRD" ~ ns( tfi, df=4 ) +

sex + I((doe-dob-40)/10) + (lex.Cst=="Rem"),
offset = log(lex.dur),
family = poisson,
data = sLc )

summary( mp )

The ns function places knots at the quantiles of the variable, which may not be the
most logica as the information is contained in the events, so the natural placement of
knots would be at the quantiles of the event times. The Ns function in the Epi
package automatically takes the smallest and the largest of the knots as boundary
knots — the nuber of parameters is one less then the number of knots, so we use 5
knots:

t.kn <- with( subset( sLc, lex.Xst=="ESRD"),
quantile( tfi+lex.dur, 0:4/5 ) )

mp <- glm( lex.Xst=="ESRD" ~ Ns( tfi, knots=t.kn ) +
sex + I((doe-dob-40)/10) + (lex.Cst=="Rem"),

offset = log(lex.dur),
family = poisson,
data = sLc )

summary( mp )

14. You can extract the parameters from the models using ci.lin or ci.exp try:

ci.lin( mp )
ci.exp( mp )
ci.exp( mp, subset=c("sex","dob","Cst"), pval=TRUE )

Compare with the estimates from the Cox-model. Use:

ci.exp( m1 )
ci.exp( mp, subset=c("sex","dob","Cst") )
ci.exp( mp, subset=c("sex","dob","Cst") ) / ci.exp( m1 )

What do you conclude about the models?

15. You can visualize the spline term using termplot, try:

termplot( mp, terms=1 )

. . . which is not a terribly informative plot

16. termplot does not give you the absolute level of the underlying rates because it
bypasses the intercept. If you explicitly include the intercept in the baseline split you
can use Termplot from the Epi package to get estimates on the rate scale for a
reference person (in units of events per 100 years):

mP <- glm( lex.Xst=="ESRD" ~ -1 + Ns( tfi, knots=t.kn, intercept=TRUE ) +
sex + I((doe-dob-40)/10) + (lex.Cst=="Rem"),

offset = log(lex.dur/100),
family = poisson,
data = sLc )

Termplot( mP, terms=1 )
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How would you describe this rate function in plain words? And what is the scale of
the y-axis.

Annotate the axes of the plot accordingly — consult the help page of Termplot.

17. Apart from the baseline timescale, time since NRA, time since remission might be of
interest in describing the mortality rate. However this is only relevant for persons
who actually have a remission, so start by checking how many events there are in this
group:

summary( sLc )

How many go in remission, and how many deaths are in this group?

18. With this rather limited number of events we can certainly not expect to be able to
model anything more complicated than a linear trend with time since remission. Two
parameters on 8 events is actually pretty far-fetched.

The variable we want to have in the model is current date (per) minus date of
remission (dor): per-dor), but only positive values of it. This can be fixed by using
pmax(), but we must also deal with all those who have missing values, so we use the
construct:

pmax( per-dor, 0, na.rm=TRUE )

Make sure that you understand what goes on here.

19. We can now expand the model with this variable:

sLc <- transform( sLc, tfr = pmax( (per-dor)/10, 0, na.rm=TRUE ) )
mPx <- glm( lex.Xst=="ESRD" ~ -1 + Ns( tfi, knots=t.kn, intercept=TRUE ) +

sex + I((age-tfi-40)/10) + (lex.Cst=="Rem") + tfr,
offset = log(lex.dur/100),
family = poisson,
data = sLc )

round( ci.exp( mPx ), 3 )
Termplot( mPx, terms=1 )

20. Is the effect significant? Can a substantial effect of time since remission be ruled out?

21. What is the test of this parameter traditionally called? What is the null and what is
the alternative of this test?

2.1.3 Prediction in a multistate model

This part of the practical is about making proper statements about the survival and the
disease probabilities. But in order to do this we must know not only how the occurrence of
remission influences the rate of death/ESRD, but we must also model the occurrence rate
of remission itself.

The following exercise will be quite similar to the example in the help file for simLexis
(which you should read now!).
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22. The rates of ESRD were modelled by a Poisson model with effects of age and time
since NRA — in the model mp. But in the modelling of the remission rates transition
from “NRA” to “Rem”, the number of events is rather small, so we restrict the
variables in this model to only time since NRA and sex. Also remember, only the
records that relate to the “NRA” state can be used:

mr <- glm( lex.Xst=="Rem" ~ ns( tfi, knots=t.kn ) + sex,
offset = log(lex.dur),
family = poisson,
data = subset( sLc, lex.Cst=="NRA" ) )

ci.exp( mr, pval=TRUE )

23. If we want to predict the probability of being in each of the three states using these
estimated rates, we can either do analytical calculations of the probabilities from the
estimated rates, or we can simulate the life course through a model using the
estimated rates. That will give a simulated cohort (in the form of a Lexis object),
and we can then just count the number of persons in each state at each of a set of
time points.

This is accomplished using the function simLexis. The input to this is the initial
status of the persons whose life-course we shall simulate, and the transition rates in
suitable form:

• Suppose we want predictions for men aged 50 at NRA. The input is in the form
of a Lexis object (where lex.dur and lex.Xst will be ignored). Note that in
order to carry over the time.scales and the time.since attributes, we
construct the input object using subset to select columns, and NULL to select
rows (see the example in the help file for simLexis):

inL <- subset( sLc, select=1:11 )[NULL,]
str( inL )
timeScales(inL)
inL[1,"lex.id"] <- 1
inL[1,"per"] <- 2000
inL[1,"age"] <- 50
inL[1,"tfi"] <- 0
inL[1,"lex.Cst"] <- "NRA"
inL[1,"lex.Xst"] <- NA
inL[1,"lex.dur"] <- NA
inL[1,"sex"] <- "M"
inL[1,"doe"] <- 2000
inL[1,"dob"] <- 1950
inL

• The other input for the simulation is the transitions, which is a list with an
element for each transient state (that is “NRA” and “Rem”), each of which is
again a list with names equal to the states that can be reached from the
transient state. The content of the list will be glm objects, in this case the
models we just fitted, describing the transition rates:

Tr <- list( "NRA" = list( "Rem" = mr,
"ESRD" = mp ),

"Rem" = list( "ESRD" = mp ) )
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With this as input we can now generate a cohort, using N=10 to simulate life course
of 10 persons (with identical starting values):

( iL <- simLexis( Tr, inL, N=10 ) )
summary( iL )

24. Now generate the life course of 10,000 persons, and look at the summary. The
system.time command is jus to tell you how long it took, you may want to start
with 1000 just to see how long that takes.

system.time(
sM <- simLexis( Tr, inL, N=10000 ) )
summary( sM )

Why are there so many ESRD-events in the resulting data set?

25. Now we want to count how many persons are present in each state at each time for
the first 10 years after entry (which is at age 50). This can be done by using nState:

nSt <- nState( sM, at=seq(0,10,0.1), from=50, time.scale="age" )
head( nSt )

26. Once we have the counts of persons in each state at the designated time points, we
compute the cumulative fraction over the states, arranged in order given by perm:

pp <- pState( nSt, perm=1:3 )
head( pp )
tail( pp )

27. Try to plot the cumulative probabilities using the plot method for pState objects:

plot( pp )

28. A quantity of particular interest would be how many patients actually get a
remission. This is not deductible from the plot just shown, because those who get
ESRD are not subdivided according to whether they have a remission prior to ESRD.

The simplest way to doctor that is to modify the simulated object (sM in the above
notation), so that those exiting to “ESRD” from “Rem” are counted in a separate
state. We must also change the formal set of levels of lex.Cst:

xM <- transform( sM, lex.Xst = factor( ifelse( lex.Xst=="ESRD" & lex.Cst=="Rem",
"ESRD(Rem)",
as.character(lex.Xst) ),

levels=c("NRA","Rem","ESRD(Rem)","ESRD") ),
lex.Cst = factor( as.character(lex.Cst),

levels=c("NRA","Rem","ESRD(Rem)","ESRD") ) )
summary( sM )
summary( xM )
boxes( xM, boxpos=TRUE, show.BE=TRUE, scale.R=100 )
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29. Having done this, try to compute the number of persons in each of the 4 states, and
the cumulative proportions to be plotted:

xSt <- nState( xM, at=seq(0,10,0.1), from=50, time.scale="age" )
xp <- pState( xSt, perm=1:4 )
head( xp )
plot( xp, col=rev(c("pink","limegreen","forestgreen","red")), xlab="Age" )
lines( as.numeric(rownames(xp)), xp[,"Rem"], lwd=4 )

What is the probability that a 50-year old man with NRA sees a remission from NRA
during the next 10 yezrs?

30. Make the same calculations for a 60-year old woman.

31. Normally you would know that a split of the absorbing “ESRD” state according to
the preceding state and so define this in the cutLexis function, using split.states.
At the same time it is also possible to define a new timescale using new.scale,
defined as time since entry to the new state:

Lc <- cutLexis( Lr, cut = Lr$dor, # where to cut follow up
timescale = "per", # the timescale that "dor" refers to
new.state = "Rem", # name of the new state

precursor.states = "NRA", # which states are less severe
new.scale = "tfr", # define a new timescale as time since Rem

split.states = TRUE ) # subdivide non-precursor states
str( Lc )
# source("/home/bendix/stat/R/lib.src/Epi/pkg/R/summary.Lexis.r")
# summary( Lc, S=T, scale=100 )
summary( Lc )
boxes( Lc, boxpos=list(x=c(20,80,20,80),y=c(80,80,20,20)),

scale.R=100, show.BE=TRUE )
sLc <- splitLexis( Lc, "tfi", breaks=seq(0,30,1/12) )
summary( Lc )
summary( sLc )
head( subset( sLc, lex.id==2 )[,1:8], 8 )
tail( subset( sLc, lex.id==2 )[,1:8], 3 )
( fl <- levels(Lc)[3:4] )
mp <- glm( lex.Xst %in% fl ~ ns( tfi, df=4 ) +

sex + I((age-tfi-40)/10) + (lex.Cst=="Rem"),
offset = log(lex.dur/100),
family = poisson,
data = sLc )

# the timescale tfr must be given some value for time before Rem
sLc$tfr <- pmax( 0, sLc$tfr, na.rm=TRUE )
head( subset( sLc, lex.id==2 )[,1:8], 8 )
mr <- glm( lex.Xst=="Rem" ~ ns( tfi, df=4 ) + sex,

offset = log(lex.dur),
family = poisson,
data = subset( sLc, lex.Cst=="NRA" ) )

ci.exp( mr, pval=TRUE )
inL <- subset( sLc, select=1:10 )[NULL,]
str( inL )
timeScales(inL)
inL[1,"lex.id"] <- 1
inL[1,"per"] <- 2000
inL[1,"age"] <- 50
inL[1,"tfi"] <- 0



Exercises 2.2 Time-splitting, time-scales and SMR: Diabetes in Denmark 11

inL[1,"lex.Cst"] <- "NRA"
inL[1,"lex.Xst"] <- NA
inL[1,"lex.dur"] <- NA
inL[1,"sex"] <- "M"
inL
Tr <- list( "NRA" = list( "Rem" = mr,

"ESRD" = mp ),
"Rem" = list( "ESRD(Rem)" = mp ) )

( iL <- simLexis( Tr, inL, N=10 ) )
summary( iL )
system.time(
sM <- simLexis( Tr, inL, N=10000, t.range=25, n.int=251 ) )
summary( sM )
nSt <- nState( sM, at=seq(0,24,0.1), from=50, time.scale="age" )
head( nSt )
pp <- pState( nSt, perm=c(1,2,4,3) )
head( pp )
tail( pp )
plot( pp )
# Two colors and the corresponding pale ones for the dead states
clr <- c("limegreen","orange")
col2rgb(clr)
cl4 <- cbind(col2rgb(clr),col2rgb(clr)/2+255/2)[,c(1,2,4,3)]
cl4 <- rgb( t(cl4), max=255 )
# Nicer plot
plot( pp, col=cl4, xlab="Age" )
lines( as.numeric(rownames(pp)), pp[,2], lwd=2 )

2.2 Time-splitting, time-scales and SMR: Diabetes in

Denmark

This exercise is using data from the National Danish Diabetes register. There is a random
sample of 10,000 records from this in the Epi package. Actually there are two data sets, we
shall use the one with only cases of diabetes diagnosed after 1995, see the help page for
DMlate.

This is of interest because it is only for these where the data of diagnosis is certain, and
hence for whom we can compute the duration of diabetes during follow-up.

The exercise is about assessing how mortality depends age, calendar time and duration
of diabetes. And how to understand and compute SMR, and assess how it depends on
these factors as well.

1. First load the data and take a look at the data:

> library( Epi )
> data( DMlate )
> str( DMlate )

You can get a more detailed explanation of the data by referring to the help page:

> ?DMlate
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2. Set up the dataset as a Lexis object with age, calendar time and duration of diabetes
as timescales, and date of death as event. Make sure that you know what each of the
arguments to Lexis mean:

> LL <- Lexis( entry = list( A = dodm-dobth,
+ P = dodm,
+ dur = 0 ),
+ exit = list( P = dox ),
+ exit.status = factor( !is.na(dodth),
+ labels=c("Alive","Dead") ),
+ data = DMlate )

Take a look at the first few lines of the resulting dataset using head().

3. Get an overall overview of the mortality by using stat.table to tabulate no. deaths,
person-years and the crude mortality rate by sex.

4. If we want to assess how mortality depends on age, calendar time and duration, we
should split the follow-up along all three time scales. In practice it is sufficient to
split it along one of the time-scales and then just use the value of each of the
time-scales at the left endpoint of the intervals.

Use splitLexis to split the follow-up along the age-axis:

> SL <- splitLexis( LL, breaks=seq(0,125,1/2), time.scale="A" )
> summary( SL )

How many records are now in the dataset? How many person-years? Compare to the
original Lexis-dataset.

5. Now estimate an age-specific mortality curve for men and women separately, using
natural splines:

> library( splines )
> r.m <- glm( (lex.Xst=="Dead") ~ ns( A, df=10 ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> r.f <- update( r.m,
+ data = subset( SL, sex=="F" ) )

Make sure you understand all the components on this modeling statement.

6. Now try to get the estimated rates by using the wrapper function ci.pred that
computes predicted rates and confidence limits for these.

Note that lex.dur is a covariate in the context of prediction; by putting this to 1000
in the prediction dataset we get the rates in units of deaths per 1000 PY:

> nd <- data.frame( A = seq(10,90,0.5),
+ lex.dur = 1000)
> p.m <- ci.pred( r.m, newdata = nd )
> str( p.m )

7. Plot the predicted rates for men and women together - using for example matplot.
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Period and duration effects

8. We now want to model the mortality rates among diabetes patients also including
current date and duration of diabetes. However, we shall not just use the positioning
of knots for the splines as provided by ns, because this is based on the allocating
knots so that the number of observations in the dataset is the same between knots.
The information in a follow-up study is in the number of events, so it would be better
to allocate knots so that number of events were the same between knots.

We take the 5th and 95th percentile of deaths as the boundary knots for age (A) and
calendar time (P), but for duration (dur) where we actually have follow-up from time
0 on the timescale, we use 0 as the first knot.

Therefore, find points (knots) so that the number of events is the same between each
pair. Try this:

> kn.A <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( A+lex.dur, probs=seq(5,95,20)/100 ) )

Take a look at where these points are and make a similar construction for calendar
time (P) and diabetes duration (dur) — remember to add 0 as a knot for the latter.

9. With knots for age, period and duration we can now model mortality rates
(separately for men and women), as functions of age, calendar time and duration of
diabetes. To this end you will need the function Ns from the Epi package (look that
up) to specify a model very simply

> mx <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A ) +
+ Ns( P, kn=kn.P ) +
+ Ns( dur, kn=kn.dur ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )

10. How do these models fit relative to the models with only age as a descriptor of the
rates?

(Hint: Use the anova-function with the argument test="Chisq" to compare the
models.

11. If we want to see the shape of the three effects we can use the type="terms" facility
in the predict.glm that makes predictions separately for each term in the model.
But this does not include the intercept, so if we want prediction of terms that add up
to the total predicted value we must explictly include the intercept in one of the
terms; age, say, thereby making age the term with a rate-dimension and interpretable
as age-specific rates.

This requires that we select reference points for the other terms, period and duration.

This is done by using the intercept and ref arguments to Ns:
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> mm <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A , intercept=TRUE ) - 1 +
+ Ns( P, kn=kn.P , ref=2000 ) +
+ Ns( dur, kn=kn.dur, ref=5 ),
+ offset = log( lex.dur/100 ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )

Check that it actually is the same model, for example by using the deviances from
the two models fitted.

12. Once this is done we can use Termplot, which is a wrapper for termplot. Termplot
gives plots on the rate / resp RR scale, so that we can actually make sens of the plots.

Now make a plot of the three effects in the model:

> Termplot( mx )

What is the interpretation of the three terms in the model?

13. The model we fitted has three time-scales: current age, current date and current
duration of diabetes, so the effects that we report are not immediately interpretable,
as they are (as in any kind of multiple regressions) to be interpreted as “all else equal”
which they are not, as the three time scales advance simultaneously at the same pace.

The reporting would therefore more naturally be only on the mortality scale, but
showing the mortality for persons diagnosed in different ages, using separate displays
for separate years of diagnosis.

This is most easily done using the ci.pred function with the newdata= argument. So
a person diagnosed in age 50 in 1995 will have a mortality measured in cases per 1000
PY as:

> pts <- seq(0,20,1)
> nd <- data.frame( A= 50+pts,
+ P=1995+pts,
+ dur= pts,
+ lex.dur=1000 )
> ci.pred( mm, newdata=nd )

Now take a look at the result from the ci.pred statement and construct prediction
of mortality for men and women diagnosed in a range of ages, say 50, 60, 70, and plot
these together in the same graph.

2.2.1 SMR

The SMR is the Standardized Mortality Ratio, which is the mortality rate-ratio between
the diabetes patients and the general population. In real studies we would subtract the
deaths and the person-years among the diabetes patients from those of the general
population, but since we do not have access to these, we make the comparison to the
general population at large, i.e. also including the diabetes patients.

There are two ways to make the comparison to the population mortality; one is to amend
the diabetes patient dataset with the population mortality dataset, the other (classical) one
is to include the population mortality rates as a fixed variable in the calculations.
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The latter requires that each analytical unit in the diabetes patient dataset is amended
with a variable with the population mortality rate for the corresponding sex, age and
calendar time.

This can be achieved in two ways: Either we just use the current split of follow-up time
and allocate the population mortality rates for some suitably chosen (mid-)point of the
follow-up in each, or we make a second split by date, so that follow-up in the diabetes
patients is in the same classification of age and data as the population mortality table.

14. We will use the former approach, that is in the diabetes dataset to include as an
extra variable the population mortality as available from the data set M.dk.

First create the variables in the diabetes dataset that we need for matching with the
population mortality data, that is age, date and sex at the midpoint of each of the
intervals (or rater at a point 3 months after the left endpoint of the interval — recall
we split the follow-up in 6 month intervals).

We need to have variables of the same type when we merge, so we must transform
the sex variable in M.dk to a factor, and must for each follow-up interval in the SL

data have an age and a period variable that can be used in merging with the
population data.

> str( SL )
> SL$Am <- floor( SL$A+0.25 )
> SL$Pm <- floor( SL$P+0.25 )
> data( M.dk )
> str( M.dk )
> M.dk <- transform( M.dk, Am = A,
+ Pm = P,
+ sex = factor( sex, labels=c("M","F") ) )
> str( M.dk )

Then match the rates from M.dk into SL — sex, Am and Pm are the common variables,
and therefore the match is on these variables:

> SLr <- merge( SL, M.dk[,c("sex","Am","Pm","rate")] )
> dim( SL )
> dim( SLr )

This merge only takes rows that have information from both datasets, hence the
slightly fewer rows in SLr than in SL.

15. Compute the expected number of deaths as the person-time multiplied by the
corresponding population rate, and put it in a new variable. Use stat.table to make
a table of observed, expected and the ratio (SMR) by age (suitably grouped) and sex.

16. Then model the SMR using age and date of diagnosis and diabetes duration as
explanatory variables, including the log-expected-number instead of the
log-person-years as offset, using separate models for men and women. Remember to
exclude those units where no deaths in the population occur (that is where the rate is
0).

Plot the estimates as you did before for the rates, using Termplot. What do the
extracted effects represent now?
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17. Is there any difference between SMR for males and females?

18. Plot the predicted SMR as you did the predicted rates for persons aged 50, 60 and 70
at diagnosis.

19. Try to simplify the model to one with a simple linear effect of date of diagnosis, and
using only knots at 0,1,and 2 years for duration, giving an estimate of the change in
SMR as duration increases beyond 2 years.

20. What are the estimated annual change in SMR by date of diagnosis and by duration
after 2 years?



Chapter 3

Solutions

3.1 Renal complications: Time-dependent variables

and multiple states

The following practical exercise is based on the data from paper:

P Hovind, L Tarnow, P Rossing, B Carstensen, and HH Parving: Improved survival in
patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy.
Kidney Int, 66(3):1180–1186, Sept 2004.

You can find a .pdf-version of the paper here:
http://BendixCarstensen.com/~bxc/AdvCoh/papers/Hovind.2004.pdf

3.1.1 The renal failure dataset

The dataset renal.dta contains data on follow up of 125 patients from Steno Diabetes
Center. They enter the study when they are diagnosed with nephrotic range albuminuria
(NRA). This is a condition where the levels of albumin in the urine is exceeds a certain
level as a sign of kidney disease. The levels may however drop as a consequence of
treatment, this is called remission. Patients exit the study at death or kidney failure
(dialysis or transplant).

Table 3.1: Variables in renal.dta.

id Patient id
sex M / F
dob Date of birth
doe Date of entry into the study (2.5 years after NRA)
dor Date of remission. Missing if no remission has occurred
dox Date of exit from study

event Exit status: 0: censored, 1: death, 2: end stage renal disease,
ESRD (kidney failure) and 3: Kidney transplant

1. The dataset is available at the course website as renal.Rda:

17
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library( Epi ) ; clear()
load( url("http://BendixCarstensen.com/AdvCoh/courses/Frias-2016/renal.Rda") )
# load( "renal.Rda" )
str( renal )

'data.frame': 125 obs. of 7 variables:
$ id : num 17 26 27 33 42 46 47 55 62 64 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 2 1 2 2 1 1 2 1 ...
$ dob : num 1968 1959 1962 1951 1961 ...
$ doe : num 1996 1990 1988 1995 1988 ...
$ dor : num NA 1990 NA 1996 1997 ...
$ dox : num 1997 1996 1993 2004 2004 ...
$ event: num 2 1 3 0 0 2 1 0 2 0 ...

head( renal )

id sex dob doe dor dox event
1 17 M 1967.944 1996.013 NA 1997.094 2
2 26 F 1959.306 1989.535 1989.814 1996.136 1
3 27 F 1962.014 1987.846 NA 1993.239 3
4 33 M 1950.747 1995.243 1995.717 2003.993 0
5 42 F 1961.296 1987.884 1996.650 2003.955 0
6 46 F 1952.374 1983.419 NA 1991.484 2

Here we shall only be interested in the combined event 1, 2 or 3.

2. Use the Lexis function to declare the data as survival data with age, calendar time
and time since entry into the study as timescales. Note that any coding of event > 0
will be labeled “ESRD”, i.e. renal death (death of kidney (transplant or dialysis), or
person).

Note that you must make sure that the “alive” state (here NRA) is the first, as Lexis

assumes that everyone starts in this state (unless of course entry.status is
specified).

Lr <- Lexis( entry = list( per=doe,
age=doe-dob,
tfi=0 ),

exit = list( per=dox ),
exit.status = factor( event>0, labels=c("NRA","ESRD") ),

data = renal )

NOTE: entry.status has been set to "NRA" for all.

str( Lr )

Classes ‘Lexis’ and 'data.frame': 125 obs. of 14 variables:
$ per : num 1996 1990 1988 1995 1988 ...
$ age : num 28.1 30.2 25.8 44.5 26.6 ...
$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur: num 1.08 6.6 5.39 8.75 16.07 ...
$ lex.Cst: Factor w/ 2 levels "NRA","ESRD": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "NRA","ESRD": 2 2 2 1 1 2 2 1 2 1 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : num 17 26 27 33 42 46 47 55 62 64 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 2 1 2 2 1 1 2 1 ...
$ dob : num 1968 1959 1962 1951 1961 ...
$ doe : num 1996 1990 1988 1995 1988 ...
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$ dor : num NA 1990 NA 1996 1997 ...
$ dox : num 1997 1996 1993 2004 2004 ...
$ event : num 2 1 3 0 0 2 1 0 2 0 ...
- attr(*, "time.scales")= chr "per" "age" "tfi"
- attr(*, "time.since")= chr "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: NULL

summary( Lr )

Transitions:
To

From NRA ESRD Records: Events: Risk time: Persons:
NRA 48 77 125 77 1084.67 125

3. Visualize the data in a Lexis-diagram, using the plot method for Lexis objects.
What do you see?

plot( Lr, col="black", lwd=3 )

4. (Optional, not crucial to the rest of the exercise. Now try to produce a slightly more
fancy Lexis diagram. Note that we have a x-axis of 40 years, and a y-axis of 80 years,
so when specifying the output file adjust the total width of the plot so that the use
mai to specifiy the margins of the plot leaves a plotting area twice as high as wide.
You will want to consult the maning of the argument mai to the function par.

# pdf( "lexis-fancy.pdf", height=80/5+1, width=40/5+1 )
# x11( height=80/5+1, width=40/5+1 )
par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lr, 1:2, col=c("blue","red")[Lr$sex], lwd=3, grid=0:20*5,

xlab="Calendar time", ylab="Age",
xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

# dev.off()

5. Make a Cox-regression analysis with the variables sex and age at entry into the study,
using time since entry to the study as time scale.

Give the hazard ratio between males and females and between two persons who differ
10 years in age at entry. Give the 95% confidence intervals for this as well.

library( survival )
mc <- coxph( Surv( lex.dur, lex.Xst=="ESRD" ) ~

I(age/10) + sex, data=Lr )
summary( mc )

Call:
coxph(formula = Surv(lex.dur, lex.Xst == "ESRD") ~ I(age/10) +

sex, data = Lr)

n= 125, number of events= 77

coef exp(coef) se(coef) z Pr(>|z|)
I(age/10) 0.5514 1.7357 0.1402 3.932 8.43e-05
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sexF -0.1817 0.8338 0.2727 -0.666 0.505

exp(coef) exp(-coef) lower .95 upper .95
I(age/10) 1.7357 0.5761 1.3186 2.285
sexF 0.8338 1.1993 0.4886 1.423

Concordance= 0.612 (se = 0.036 )
Rsquare= 0.121 (max possible= 0.994 )
Likelihood ratio test= 16.07 on 2 df, p=0.0003237
Wald test = 16.38 on 2 df, p=0.0002774
Score (logrank) test = 16.77 on 2 df, p=0.0002282

6. The main focus of the paper was to assess whether occurrence of remission (return to
a lower level of albumin excretion, an indication of kidney recovery) influences
mortality.

“Remission” is a time-dependent variable which is initially 0, but takes the value 1
when remission occurs. In order to handle this, each person who see a remission must
have two records:

• One record for the time before remission, where entry is doe, exit is dor,
remission is 0, and event is 0.

• One record for the time after remission, where entry is dor, exit is dox, remission
is 1, and event is 0 or 1 according to whether the person had an event at dox.

This is accomplished using the cutLexis function on the Lexis object. You must
declare the “NRA” state as a precursor state, i.e. a state that is less severe than
“Rem” in the sense that a person who see a remission will stay in the “Rem” state
unless he goes to the “ESRD” state.

Lc <- cutLexis( Lr, cut = Lr$dor, # where to cut follow up
timescale = "per", # the timescale that "dor" refers to
new.state = "Rem", # name of the new state

precursor.states = "NRA" ) # which states are less severe
summary( Lc )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 24 29 69 122 98 824.77 122
Rem 0 24 8 32 8 259.90 32
Sum 24 53 77 154 106 1084.67 125

List records for a few select persons from Lr and from Lc to see how the cut has
worked.

7. Show how the states are connected and the number of transitions between them by
using boxes. This is an interactive command that requires you to click in the graph
window:

boxes( Lc )
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Figure 3.1

Alternatively you can let R try to place the boxes for you, and even compute rates
(in this case in units of events per 100 PY):

boxes( Lc, boxpos=TRUE, scale.R=100, show.BE=TRUE )

How many transitions are there from remission to death?

8. (Optional: Not relevant for the remainder of the exercise.) Now make a Lexis
diagram where different colouring is used for different segments of the follow-up —
you should be able to count the 8 transitions from “Rem” to “ESRD”.

par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 )
plot( Lc, col=c("red","limegreen")[(Lc$lex.Cst=="Rem")+1],

xlab="Calendar time", ylab="Age",
lwd=3, grid=0:20*5, xlim=c(1970,2010), ylim=c(0,80), xaxs="i", yaxs="i", las=1 )

points( Lc, pch=c(NA,16)[(Lc$lex.Xst=="ESRD")+1],
col=c("red","limegreen")[(Lc$lex.Cst=="Rem")+1])

points( Lc, pch=c(NA,1)[(Lc$lex.Xst=="ESRD")+1],
col="black", lwd=2 )

9. Make a Cox-regression of mortality (i.e. endpoint “ESRD”) with sex, age at entry and
remission as explanatory variables, and using time since entry as timescale.
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Figure 3.2: Lexis diagram for the split data, where time after remission is shown in green.

Remember to include lex.Cst as time-dependent variable, and to indicate that each
recort represbts follow-up from tfi to tfi+lex.dur. Note the use of the Lexis

variables lex.dur (risk time), lex.Xst (exit status) and lex.Cst (current status).

m1 <- coxph( Surv( tfi, tfi+lex.dur, lex.Xst=="ESRD" ) ~
sex + I((doe-dob-50)/10) + (lex.Cst=="Rem"), data=Lc )

summary( m1 )

Call:
coxph(formula = Surv(tfi, tfi + lex.dur, lex.Xst == "ESRD") ~

sex + I((doe - dob - 50)/10) + (lex.Cst == "Rem"), data = Lc)

n= 154, number of events= 77

coef exp(coef) se(coef) z Pr(>|z|)
sexF -0.05534 0.94616 0.27500 -0.201 0.840517
I((doe - dob - 50)/10) 0.52190 1.68522 0.13655 3.822 0.000132
lex.Cst == "Rem"TRUE -1.26241 0.28297 0.38483 -3.280 0.001036

exp(coef) exp(-coef) lower .95 upper .95
sexF 0.9462 1.0569 0.5519 1.6220
I((doe - dob - 50)/10) 1.6852 0.5934 1.2895 2.2024
lex.Cst == "Rem"TRUE 0.2830 3.5339 0.1331 0.6016

Concordance= 0.664 (se = 0.036 )
Rsquare= 0.179 (max possible= 0.984 )
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Likelihood ratio test= 30.31 on 3 df, p=1.189e-06
Wald test = 27.07 on 3 df, p=5.683e-06
Score (logrank) test = 29.41 on 3 df, p=1.84e-06

10. What is the relation between the rate of ESRD between persons in remission and
persons not?

11. What is the assumption about the two rates of remission? Refer to the figure with
the three boxes you just made. (??).

3.1.2 Splitting the follow-up time

In order to explore the effect of remission on the rate of ESRD, we will split the data
further into small pieces of follow-up. To this end we use the function splitLexis. The
rates can then be modeled using a Poisson-model, and the shape of the underlying rates be
explored. Furthermore, we can allow effects of both time since NRA and current age. To
this end we will use splines, so we need the splines package, too.

12. First, split the follow-up time every month after entry, and make sure that the
number of events and risk time is the same as before (use summary):

sLc <- splitLexis( Lc, "tfi", breaks=seq(0,30,1/12) )
summary( Lc )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 24 29 69 122 98 824.77 122
Rem 0 24 8 32 8 259.90 32
Sum 24 53 77 154 106 1084.67 125

summary(sLc )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 9854 29 69 9952 98 824.77 122
Rem 0 3139 8 3147 8 259.90 32
Sum 9854 3168 77 13099 106 1084.67 125

13. Now try to fit the Poisson-model corresponding to the Cox-model we fitted
previously. The function ns() produces a model matrix corresponding to a piecewise
cubic function, modeling the baseline hazard explicitly (think of the ns terms as the
baseline hazard that is not visible in the Cox-model).

The outcome is 1 or 0 according to whether an event occurred or not, but sine a
Poisson variate by definition is numerical, R will automatically coerce (change) a
logical value to numeric; FALSE as 0 and TRUE as 1, so we can conveniently write:
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library( splines )
mp <- glm( lex.Xst=="ESRD" ~ ns( tfi, df=4 ) +

sex + I((doe-dob-40)/10) + (lex.Cst=="Rem"),
offset = log(lex.dur),
family = poisson,
data = sLc )

summary( mp )

Call:
glm(formula = lex.Xst == "ESRD" ~ ns(tfi, df = 4) + sex + I((doe -

dob - 40)/10) + (lex.Cst == "Rem"), family = poisson, data = sLc,
offset = log(lex.dur))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.2379 -0.1250 -0.0935 -0.0669 3.7987

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.93862 0.72879 -5.404 6.51e-08
ns(tfi, df = 4)1 2.10754 0.72379 2.912 0.003593
ns(tfi, df = 4)2 1.42695 0.69738 2.046 0.040741
ns(tfi, df = 4)3 3.49151 1.66427 2.098 0.035912
ns(tfi, df = 4)4 2.47260 1.08261 2.284 0.022376
sexF -0.08043 0.27427 -0.293 0.769331
I((doe - dob - 40)/10) 0.53187 0.13714 3.878 0.000105
lex.Cst == "Rem"TRUE -1.27858 0.38530 -3.318 0.000905

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 898.74 on 13098 degrees of freedom
Residual deviance: 853.54 on 13091 degrees of freedom
AIC: 1023.5

Number of Fisher Scoring iterations: 8

The ns function places knots at the quantiles of the variable, which may not be the
most logica as the information is contained in the events, so the natural placement of
knots would be at the quantiles of the event times. The Ns function in the Epi
package automatically takes the smallest and the largest of the knots as boundary
knots — the nuber of parameters is one less then the number of knots, so we use 5
knots:

t.kn <- with( subset( sLc, lex.Xst=="ESRD"),
quantile( tfi+lex.dur, 0:4/5 ) )

mp <- glm( lex.Xst=="ESRD" ~ Ns( tfi, knots=t.kn ) +
sex + I((doe-dob-40)/10) + (lex.Cst=="Rem"),

offset = log(lex.dur),
family = poisson,
data = sLc )

summary( mp )

Call:
glm(formula = lex.Xst == "ESRD" ~ Ns(tfi, knots = t.kn) + sex +

I((doe - dob - 40)/10) + (lex.Cst == "Rem"), family = poisson,
data = sLc, offset = log(lex.dur))

Deviance Residuals:
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Min 1Q Median 3Q Max
-0.2573 -0.1250 -0.0923 -0.0662 3.7779

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.59600 0.51242 -7.018 2.25e-12
Ns(tfi, knots = t.kn)1 1.95218 0.56113 3.479 0.000503
Ns(tfi, knots = t.kn)2 1.10038 0.41479 2.653 0.007982
Ns(tfi, knots = t.kn)3 2.30320 1.27583 1.805 0.071035
Ns(tfi, knots = t.kn)4 1.31387 0.32577 4.033 5.50e-05
sexF -0.06981 0.27476 -0.254 0.799427
I((doe - dob - 40)/10) 0.53114 0.13723 3.871 0.000109
lex.Cst == "Rem"TRUE -1.27896 0.38555 -3.317 0.000909

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 898.74 on 13098 degrees of freedom
Residual deviance: 852.46 on 13091 degrees of freedom
AIC: 1022.5

Number of Fisher Scoring iterations: 8

14. You can extract the parameters from the models using ci.lin or ci.exp try:

ci.lin( mp )

Estimate StdErr z P 2.5%
(Intercept) -3.59600346 0.5124153 -7.0177518 2.254666e-12 -4.6003190
Ns(tfi, knots = t.kn)1 1.95218041 0.5611331 3.4789971 5.032941e-04 0.8523797
Ns(tfi, knots = t.kn)2 1.10038347 0.4147933 2.6528474 7.981594e-03 0.2874034
Ns(tfi, knots = t.kn)3 2.30319625 1.2758310 1.8052518 7.103529e-02 -0.1973866
Ns(tfi, knots = t.kn)4 1.31387392 0.3257688 4.0331480 5.503459e-05 0.6753787
sexF -0.06981245 0.2747561 -0.2540888 7.994269e-01 -0.6083245
I((doe - dob - 40)/10) 0.53114373 0.1372277 3.8705290 1.085995e-04 0.2621824
lex.Cst == "Rem"TRUE -1.27896398 0.3855503 -3.3172430 9.091051e-04 -2.0346287

97.5%
(Intercept) -2.5916879
Ns(tfi, knots = t.kn)1 3.0519811
Ns(tfi, knots = t.kn)2 1.9133635
Ns(tfi, knots = t.kn)3 4.8037791
Ns(tfi, knots = t.kn)4 1.9523691
sexF 0.4686996
I((doe - dob - 40)/10) 0.8001050
lex.Cst == "Rem"TRUE -0.5232993

ci.exp( mp )

exp(Est.) 2.5% 97.5%
(Intercept) 0.02743314 0.01004863 0.07489352
Ns(tfi, knots = t.kn)1 7.04402972 2.34522125 21.15721685
Ns(tfi, knots = t.kn)2 3.00531826 1.33296189 6.77584104
Ns(tfi, knots = t.kn)3 10.00611340 0.82087321 121.97048700
Ns(tfi, knots = t.kn)4 3.72055898 1.96477698 7.04535900
sexF 0.93256870 0.54426203 1.59791487
I((doe - dob - 40)/10) 1.70087654 1.29976361 2.22577473
lex.Cst == "Rem"TRUE 0.27832550 0.13072902 0.59256227

ci.exp( mp, subset=c("sex","dob","Cst"), pval=TRUE )
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exp(Est.) 2.5% 97.5% P
sexF 0.9325687 0.544262 1.5979149 0.7994269292
I((doe - dob - 40)/10) 1.7008765 1.299764 2.2257747 0.0001085995
lex.Cst == "Rem"TRUE 0.2783255 0.130729 0.5925623 0.0009091051

Compare with the estimates from the Cox-model. Use:

ci.exp( m1 )

exp(Est.) 2.5% 97.5%
sexF 0.9461646 0.5519334 1.621985
I((doe - dob - 50)/10) 1.6852196 1.2895097 2.202360
lex.Cst == "Rem"TRUE 0.2829710 0.1330996 0.601599

ci.exp( mp, subset=c("sex","dob","Cst") )

exp(Est.) 2.5% 97.5%
sexF 0.9325687 0.544262 1.5979149
I((doe - dob - 40)/10) 1.7008765 1.299764 2.2257747
lex.Cst == "Rem"TRUE 0.2783255 0.130729 0.5925623

ci.exp( mp, subset=c("sex","dob","Cst") ) / ci.exp( m1 )

exp(Est.) 2.5% 97.5%
sexF 0.9856305 0.9861009 0.9851603
I((doe - dob - 40)/10) 1.0092907 1.0079518 1.0106315
lex.Cst == "Rem"TRUE 0.9835830 0.9821891 0.9849789

What do you conclude about the models?

15. You can visualize the spline term using termplot, try:

termplot( mp, terms=1 )

. . . which is not a terribly informative plot

16. termplot does not give you the absolute level of the underlying rates because it
bypasses the intercept. If you explicitly include the intercept in the baseline split you
can use Termplot from the Epi package to get estimates on the rate scale for a
reference person (in units of events per 100 years):

mP <- glm( lex.Xst=="ESRD" ~ -1 + Ns( tfi, knots=t.kn, intercept=TRUE ) +
sex + I((doe-dob-40)/10) + (lex.Cst=="Rem"),

offset = log(lex.dur/100),
family = poisson,
data = sLc )

Termplot( mP, terms=1 )

How would you describe this rate function in plain words? And what is the scale of
the y-axis.

Annotate the axes of the plot accordingly — consult the help page of Termplot.

17. Apart from the baseline timescale, time since NRA, time since remission might be of
interest in describing the mortality rate. However this is only relevant for persons
who actually have a remission, so start by checking how many events there are in this
group:



Solutions 3.1 Renal complications: Time-dependent variables and multiple states 27

summary( sLc )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 9854 29 69 9952 98 824.77 122
Rem 0 3139 8 3147 8 259.90 32
Sum 9854 3168 77 13099 106 1084.67 125

How many go in remission, and how many deaths are in this group?

18. With this rather limited number of events we can certainly not expect to be able to
model anything more complicated than a linear trend with time since remission. Two
parameters on 8 events is actually pretty far-fetched.

The variable we want to have in the model is current date (per) minus date of
remission (dor): per-dor), but only positive values of it. This can be fixed by using
pmax(), but we must also deal with all those who have missing values, so we use the
construct:

pmax( per-dor, 0, na.rm=TRUE )

Make sure that you understand what goes on here.

19. We can now expand the model with this variable:

sLc <- transform( sLc, tfr = pmax( (per-dor)/10, 0, na.rm=TRUE ) )
mPx <- glm( lex.Xst=="ESRD" ~ -1 + Ns( tfi, knots=t.kn, intercept=TRUE ) +

sex + I((age-tfi-40)/10) + (lex.Cst=="Rem") + tfr,
offset = log(lex.dur/100),
family = poisson,
data = sLc )

round( ci.exp( mPx ), 3 )

exp(Est.) 2.5% 97.5%
Ns(tfi, knots = t.kn, intercept = TRUE)1 4.789 1.466 15.641
Ns(tfi, knots = t.kn, intercept = TRUE)2 17.935 7.985 40.283
Ns(tfi, knots = t.kn, intercept = TRUE)3 5.581 2.649 11.760
Ns(tfi, knots = t.kn, intercept = TRUE)4 51.347 13.438 196.202
Ns(tfi, knots = t.kn, intercept = TRUE)5 6.427 3.368 12.266
sexM 1.079 0.628 1.853
sexF 1.000 1.000 1.000
I((age - tfi - 40)/10) 1.703 1.302 2.229
lex.Cst == "Rem"TRUE 0.310 0.097 0.989
tfr 0.847 0.210 3.412

Termplot( mPx, terms=1 )

20. Is the effect significant? Can a substantial effect of time since remission be ruled out?

21. What is the test of this parameter traditionally called? What is the null and what is
the alternative of this test?
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3.1.3 Prediction in a multistate model

This part of the practical is about making proper statements about the survival and the
disease probabilities. But in order to do this we must know not only how the occurrence of
remission influences the rate of death/ESRD, but we must also model the occurrence rate
of remission itself.

The following exercise will be quite similar to the example in the help file for simLexis
(which you should read now!).

22. The rates of ESRD were modelled by a Poisson model with effects of age and time
since NRA — in the model mp. But in the modelling of the remission rates transition
from “NRA” to “Rem”, the number of events is rather small, so we restrict the
variables in this model to only time since NRA and sex. Also remember, only the
records that relate to the “NRA” state can be used:

mr <- glm( lex.Xst=="Rem" ~ ns( tfi, knots=t.kn ) + sex,
offset = log(lex.dur),
family = poisson,
data = subset( sLc, lex.Cst=="NRA" ) )

ci.exp( mr, pval=TRUE )

exp(Est.) 2.5% 97.5% P
(Intercept) 0.05606873 0.0155421035 0.2022701 1.075954e-05
ns(tfi, knots = t.kn)1 1.56250187 0.1758966092 13.8798132 6.888024e-01
ns(tfi, knots = t.kn)2 0.12621768 0.0105935727 1.5038272 1.015853e-01
ns(tfi, knots = t.kn)3 0.61154986 0.0701435838 5.3318238 6.562519e-01
ns(tfi, knots = t.kn)4 0.97532990 0.0280655093 33.8945715 9.889910e-01
ns(tfi, knots = t.kn)5 0.08049791 0.0004655089 13.9200643 3.378924e-01
ns(tfi, knots = t.kn)6 0.65167781 0.0002104090 2018.3737166 9.168447e-01
sexF 2.64124116 1.2658909206 5.5108657 9.645522e-03

23. If we want to predict the probability of being in each of the three states using these
estimated rates, we can either do analytical calculations of the probabilities from the
estimated rates, or we can simulate the life course through a model using the
estimated rates. That will give a simulated cohort (in the form of a Lexis object),
and we can then just count the number of persons in each state at each of a set of
time points.

This is accomplished using the function simLexis. The input to this is the initial
status of the persons whose life-course we shall simulate, and the transition rates in
suitable form:

• Suppose we want predictions for men aged 50 at NRA. The input is in the form
of a Lexis object (where lex.dur and lex.Xst will be ignored). Note that in
order to carry over the time.scales and the time.since attributes, we
construct the input object using subset to select columns, and NULL to select
rows (see the example in the help file for simLexis):

inL <- subset( sLc, select=1:11 )[NULL,]
str( inL )

Classes ‘Lexis’ and 'data.frame': 0 obs. of 11 variables:
$ lex.id : int
$ per : num
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$ age : num
$ tfi : num
$ lex.dur: num
$ lex.Cst: Factor w/ 3 levels "NRA","Rem","ESRD":
$ lex.Xst: Factor w/ 3 levels "NRA","Rem","ESRD":
$ id : num
$ sex : Factor w/ 2 levels "M","F":
$ dob : num
$ doe : num
- attr(*, "time.scales")= chr "per" "age" "tfi"
- attr(*, "time.since")= chr "" "" ""
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfi: num 0 0.0833 0.1667 0.25 0.3333 ...

timeScales(inL)

[1] "per" "age" "tfi"

inL[1,"lex.id"] <- 1
inL[1,"per"] <- 2000
inL[1,"age"] <- 50
inL[1,"tfi"] <- 0
inL[1,"lex.Cst"] <- "NRA"
inL[1,"lex.Xst"] <- NA
inL[1,"lex.dur"] <- NA
inL[1,"sex"] <- "M"
inL[1,"doe"] <- 2000
inL[1,"dob"] <- 1950
inL

lex.id per age tfi lex.dur lex.Cst lex.Xst id sex dob doe
1 1 2000 50 0 NA NRA <NA> NA M 1950 2000

• The other input for the simulation is the transitions, which is a list with an
element for each transient state (that is “NRA” and “Rem”), each of which is
again a list with names equal to the states that can be reached from the
transient state. The content of the list will be glm objects, in this case the
models we just fitted, describing the transition rates:

Tr <- list( "NRA" = list( "Rem" = mr,
"ESRD" = mp ),

"Rem" = list( "ESRD" = mp ) )

With this as input we can now generate a cohort, using N=10 to simulate life course
of 10 persons (with identical starting values):

( iL <- simLexis( Tr, inL, N=10 ) )

lex.id per age tfi lex.dur lex.Cst lex.Xst id sex dob doe cens
1 1 2000.000 50.00000 0.000000 7.737345 NRA ESRD NA M 1950 2000 2020
2 2 2000.000 50.00000 0.000000 4.404657 NRA ESRD NA M 1950 2000 2020
3 3 2000.000 50.00000 0.000000 7.232948 NRA ESRD NA M 1950 2000 2020
4 4 2000.000 50.00000 0.000000 2.832986 NRA ESRD NA M 1950 2000 2020
5 5 2000.000 50.00000 0.000000 3.845452 NRA Rem NA M 1950 2000 2020
6 5 2003.845 53.84545 3.845452 9.796051 Rem ESRD NA M 1950 2000 2020
7 6 2000.000 50.00000 0.000000 4.167192 NRA ESRD NA M 1950 2000 2020
8 7 2000.000 50.00000 0.000000 4.121140 NRA ESRD NA M 1950 2000 2020
9 8 2000.000 50.00000 0.000000 3.606527 NRA ESRD NA M 1950 2000 2020
10 9 2000.000 50.00000 0.000000 5.458020 NRA ESRD NA M 1950 2000 2020
11 10 2000.000 50.00000 0.000000 3.888843 NRA ESRD NA M 1950 2000 2020
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summary( iL )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 0 1 9 10 10 47.30 10
Rem 0 0 1 1 1 9.80 1
Sum 0 1 10 11 11 57.09 10

24. Now generate the life course of 10,000 persons, and look at the summary. The
system.time command is jus to tell you how long it took, you may want to start
with 1000 just to see how long that takes.

system.time(
sM <- simLexis( Tr, inL, N=10000 ) )

user system elapsed
15.303 0.209 15.513

summary( sM )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 26 1351 8623 10000 9974 56981.23 10000
Rem 0 360 991 1351 991 13318.62 1351
Sum 26 1711 9614 11351 10965 70299.85 10000

Why are there so many ESRD-events in the resulting data set?

25. Now we want to count how many persons are present in each state at each time for
the first 10 years after entry (which is at age 50). This can be done by using nState:

nSt <- nState( sM, at=seq(0,10,0.1), from=50, time.scale="age" )
head( nSt )

State
when NRA Rem ESRD
50 10000 0 0
50.1 9894 60 46
50.2 9810 104 86
50.3 9732 131 137
50.4 9647 167 186
50.5 9581 190 229

26. Once we have the counts of persons in each state at the designated time points, we
compute the cumulative fraction over the states, arranged in order given by perm:

pp <- pState( nSt, perm=1:3 )
head( pp )
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State
when NRA Rem ESRD
50 1.0000 1.0000 1
50.1 0.9894 0.9954 1
50.2 0.9810 0.9914 1
50.3 0.9732 0.9863 1
50.4 0.9647 0.9814 1
50.5 0.9581 0.9771 1

tail( pp )

State
when NRA Rem ESRD
59.5 0.1562 0.2414 1
59.6 0.1524 0.2379 1
59.7 0.1480 0.2331 1
59.8 0.1435 0.2288 1
59.9 0.1395 0.2251 1
60 0.1355 0.2210 1

27. Try to plot the cumulative probabilities using the plot method for pState objects:

plot( pp )
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Figure 3.3: Standard plot of state occupancy probabilities.

28. A quantity of particular interest would be how many patients actually get a
remission. This is not deductible from the plot just shown, because those who get
ESRD are not subdivided according to whether they have a remission prior to ESRD.
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The simplest way to doctor that is to modify the simulated object (sM in the above
notation), so that those exiting to “ESRD” from “Rem” are counted in a separate
state. We must also change the formal set of levels of lex.Cst:

xM <- transform( sM, lex.Xst = factor( ifelse( lex.Xst=="ESRD" & lex.Cst=="Rem",
"ESRD(Rem)",
as.character(lex.Xst) ),

levels=c("NRA","Rem","ESRD(Rem)","ESRD") ),
lex.Cst = factor( as.character(lex.Cst),

levels=c("NRA","Rem","ESRD(Rem)","ESRD") ) )
summary( sM )

Transitions:
To

From NRA Rem ESRD Records: Events: Risk time: Persons:
NRA 26 1351 8623 10000 9974 56981.23 10000
Rem 0 360 991 1351 991 13318.62 1351
Sum 26 1711 9614 11351 10965 70299.85 10000

summary( xM )

Transitions:
To

From NRA Rem ESRD(Rem) ESRD Records: Events: Risk time: Persons:
NRA 26 1351 0 8623 10000 9974 56981.23 10000
Rem 0 360 991 0 1351 991 13318.62 1351
Sum 26 1711 991 8623 11351 10965 70299.85 10000

boxes( xM, boxpos=TRUE, show.BE=TRUE, scale.R=100 )

29. Having done this, try to compute the number of persons in each of the 4 states, and
the cumulative proportions to be plotted:

xSt <- nState( xM, at=seq(0,10,0.1), from=50, time.scale="age" )
xp <- pState( xSt, perm=1:4 )
head( xp )

State
when NRA Rem ESRD(Rem) ESRD
50 1.0000 1.0000 1.0000 1
50.1 0.9894 0.9954 0.9954 1
50.2 0.9810 0.9914 0.9914 1
50.3 0.9732 0.9863 0.9864 1
50.4 0.9647 0.9814 0.9815 1
50.5 0.9581 0.9771 0.9772 1

plot( xp, col=rev(c("pink","limegreen","forestgreen","red")), xlab="Age" )
lines( as.numeric(rownames(xp)), xp[,"Rem"], lwd=4 )

What is the probability that a 50-year old man with NRA sees a remission from NRA
during the next 10 yezrs?

30. Make the same calculations for a 60-year old woman.

31. Normally you would know that a split of the absorbing “ESRD” state according to
the preceding state and so define this in the cutLexis function, using split.states.
At the same time it is also possible to define a new timescale using new.scale,
defined as time since entry to the new state:
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Lc <- cutLexis( Lr, cut = Lr$dor, # where to cut follow up
timescale = "per", # the timescale that "dor" refers to
new.state = "Rem", # name of the new state

precursor.states = "NRA", # which states are less severe
new.scale = "tfr", # define a new timescale as time since Rem

split.states = TRUE ) # subdivide non-precursor states
str( Lc )

Classes ‘Lexis’ and 'data.frame': 154 obs. of 15 variables:
$ per : num 1996 1990 1990 1988 1995 ...
$ age : num 28.1 30.2 30.5 25.8 44.5 ...
$ tfi : num 0 0 0.279 0 0 ...
$ tfr : num NA NA 0 NA NA 0 NA 0 NA NA ...
$ lex.dur: num 1.081 0.279 6.322 5.393 0.473 ...
$ lex.Cst: Factor w/ 4 levels "NRA","Rem","ESRD",..: 1 1 2 1 1 2 1 2 1 1 ...
$ lex.Xst: Factor w/ 4 levels "NRA","Rem","ESRD",..: 3 2 4 3 2 2 2 2 3 3 ...
$ lex.id : int 1 2 2 3 4 4 5 5 6 7 ...
$ id : num 17 26 26 27 33 33 42 42 46 47 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 2 2 1 1 2 2 2 1 ...
$ dob : num 1968 1959 1959 1962 1951 ...
$ doe : num 1996 1990 1990 1988 1995 ...
$ dor : num NA 1990 1990 NA 1996 ...
$ dox : num 1997 1996 1996 1993 2004 ...
$ event : num 2 1 1 3 0 0 0 0 2 1 ...
- attr(*, "time.scales")= chr "per" "age" "tfi" "tfr"
- attr(*, "time.since")= chr "" "" "" "Rem"
- attr(*, "breaks")=List of 4
..$ per: NULL
..$ age: NULL
..$ tfi: NULL
..$ tfr: NULL

# source("/home/bendix/stat/R/lib.src/Epi/pkg/R/summary.Lexis.r")
# summary( Lc, S=T, scale=100 )
summary( Lc )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 24 29 69 0 122 98 824.77 122
Rem 0 24 0 8 32 8 259.90 32
Sum 24 53 69 8 154 106 1084.67 125

boxes( Lc, boxpos=list(x=c(20,80,20,80),y=c(80,80,20,20)),
scale.R=100, show.BE=TRUE )

sLc <- splitLexis( Lc, "tfi", breaks=seq(0,30,1/12) )
summary( Lc )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 24 29 69 0 122 98 824.77 122
Rem 0 24 0 8 32 8 259.90 32
Sum 24 53 69 8 154 106 1084.67 125

summary( sLc )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
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NRA 9854 29 69 0 9952 98 824.77 122
Rem 0 3139 0 8 3147 8 259.90 32
Sum 9854 3168 69 8 13099 106 1084.67 125

head( subset( sLc, lex.id==2 )[,1:8], 8 )

lex.id per age tfi tfr lex.dur lex.Cst lex.Xst
14 2 1989.535 30.22895 0.00000000 NA 0.08333333 NRA NRA
15 2 1989.618 30.31229 0.08333333 NA 0.08333333 NRA NRA
16 2 1989.702 30.39562 0.16666667 NA 0.08333333 NRA NRA
17 2 1989.785 30.47895 0.25000000 NA 0.02891855 NRA Rem
18 2 1989.814 30.50787 0.27891855 0.00000000 0.05441478 Rem Rem
19 2 1989.868 30.56229 0.33333333 0.05441478 0.08333333 Rem Rem
20 2 1989.952 30.64562 0.41666667 0.13774812 0.08333333 Rem Rem
21 2 1990.035 30.72895 0.50000000 0.22108145 0.08333333 Rem Rem

tail( subset( sLc, lex.id==2 )[,1:8], 3 )

lex.id per age tfi tfr lex.dur lex.Cst lex.Xst
92 2 1995.952 36.64562 6.416667 6.137748 0.08333333 Rem Rem
93 2 1996.035 36.72895 6.500000 6.221081 0.08333333 Rem Rem
94 2 1996.118 36.81229 6.583333 6.304415 0.01728268 Rem ESRD(Rem)

( fl <- levels(Lc)[3:4] )

[1] "ESRD" "ESRD(Rem)"

mp <- glm( lex.Xst %in% fl ~ ns( tfi, df=4 ) +
sex + I((age-tfi-40)/10) + (lex.Cst=="Rem"),

offset = log(lex.dur/100),
family = poisson,
data = sLc )

# the timescale tfr must be given some value for time before Rem
sLc$tfr <- pmax( 0, sLc$tfr, na.rm=TRUE )
head( subset( sLc, lex.id==2 )[,1:8], 8 )

lex.id per age tfi tfr lex.dur lex.Cst lex.Xst
14 2 1989.535 30.22895 0.00000000 0.00000000 0.08333333 NRA NRA
15 2 1989.618 30.31229 0.08333333 0.00000000 0.08333333 NRA NRA
16 2 1989.702 30.39562 0.16666667 0.00000000 0.08333333 NRA NRA
17 2 1989.785 30.47895 0.25000000 0.00000000 0.02891855 NRA Rem
18 2 1989.814 30.50787 0.27891855 0.00000000 0.05441478 Rem Rem
19 2 1989.868 30.56229 0.33333333 0.05441478 0.08333333 Rem Rem
20 2 1989.952 30.64562 0.41666667 0.13774812 0.08333333 Rem Rem
21 2 1990.035 30.72895 0.50000000 0.22108145 0.08333333 Rem Rem

mr <- glm( lex.Xst=="Rem" ~ ns( tfi, df=4 ) + sex,
offset = log(lex.dur),
family = poisson,
data = subset( sLc, lex.Cst=="NRA" ) )

ci.exp( mr, pval=TRUE )

exp(Est.) 2.5% 97.5% P
(Intercept) 0.03606128 0.011013035 0.1180797 4.016649e-08
ns(tfi, df = 4)1 0.43778959 0.094970457 2.0180984 2.894125e-01
ns(tfi, df = 4)2 1.15591640 0.112100187 11.9191838 9.031269e-01
ns(tfi, df = 4)3 0.57520635 0.017327786 19.0943229 7.569600e-01
ns(tfi, df = 4)4 0.69162506 0.003446815 138.7788899 8.915761e-01
sexF 2.63407462 1.261956986 5.4980868 9.889849e-03
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inL <- subset( sLc, select=1:10 )[NULL,]
str( inL )

Classes ‘Lexis’ and 'data.frame': 0 obs. of 10 variables:
$ lex.id : int
$ per : num
$ age : num
$ tfi : num
$ tfr : num
$ lex.dur: num
$ lex.Cst: Factor w/ 4 levels "NRA","Rem","ESRD",..:
$ lex.Xst: Factor w/ 4 levels "NRA","Rem","ESRD",..:
$ id : num
$ sex : Factor w/ 2 levels "M","F":
- attr(*, "time.scales")= chr "per" "age" "tfi" "tfr"
- attr(*, "time.since")= chr "" "" "" "Rem"
- attr(*, "breaks")=List of 4
..$ per: NULL
..$ age: NULL
..$ tfi: num 0 0.0833 0.1667 0.25 0.3333 ...
..$ tfr: NULL

timeScales(inL)

[1] "per" "age" "tfi" "tfr"

inL[1,"lex.id"] <- 1
inL[1,"per"] <- 2000
inL[1,"age"] <- 50
inL[1,"tfi"] <- 0
inL[1,"lex.Cst"] <- "NRA"
inL[1,"lex.Xst"] <- NA
inL[1,"lex.dur"] <- NA
inL[1,"sex"] <- "M"
inL

lex.id per age tfi tfr lex.dur lex.Cst lex.Xst id sex
1 1 2000 50 0 NA NA NRA <NA> NA M

Tr <- list( "NRA" = list( "Rem" = mr,
"ESRD" = mp ),

"Rem" = list( "ESRD(Rem)" = mp ) )
( iL <- simLexis( Tr, inL, N=10 ) )

lex.id per age tfi tfr lex.dur lex.Cst lex.Xst id sex cens
1 1 2000.000 50.00000 0.00000 NA 3.385253 NRA ESRD NA M 2020
2 2 2000.000 50.00000 0.00000 NA 7.975437 NRA ESRD NA M 2020
3 3 2000.000 50.00000 0.00000 NA 4.254962 NRA ESRD NA M 2020
4 4 2000.000 50.00000 0.00000 NA 8.496107 NRA ESRD NA M 2020
5 5 2000.000 50.00000 0.00000 NA 5.223561 NRA ESRD NA M 2020
6 6 2000.000 50.00000 0.00000 NA 5.319889 NRA ESRD NA M 2020
7 7 2000.000 50.00000 0.00000 NA 6.110789 NRA ESRD NA M 2020
8 8 2000.000 50.00000 0.00000 NA 6.072945 NRA ESRD NA M 2020
9 9 2000.000 50.00000 0.00000 NA 20.000000 NRA NRA NA M 2020
10 10 2000.000 50.00000 0.00000 NA 1.773140 NRA Rem NA M 2020
11 10 2001.773 51.77314 1.77314 0 18.226860 Rem Rem NA M 2020

summary( iL )
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Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 1 1 8 0 10 9 68.61 10
Rem 0 1 0 0 1 0 18.23 1
Sum 1 2 8 0 11 9 86.84 10

system.time(
sM <- simLexis( Tr, inL, N=10000, t.range=25, n.int=251 ) )

user system elapsed
23.063 0.456 23.520

summary( sM )

Transitions:
To

From NRA Rem ESRD ESRD(Rem) Records: Events: Risk time: Persons:
NRA 3 1405 8592 0 10000 9997 55957.20 10000
Rem 0 120 0 1285 1405 1285 14869.67 1405
Sum 3 1525 8592 1285 11405 11282 70826.87 10000

nSt <- nState( sM, at=seq(0,24,0.1), from=50, time.scale="age" )
head( nSt )

State
when NRA Rem ESRD ESRD(Rem)
50 10000 0 0 0
50.1 9931 24 45 0
50.2 9863 54 83 0
50.3 9797 87 116 0
50.4 9715 124 161 0
50.5 9647 154 199 0

pp <- pState( nSt, perm=c(1,2,4,3) )
head( pp )

State
when NRA Rem ESRD(Rem) ESRD
50 1.0000 1.0000 1.0000 1
50.1 0.9931 0.9955 0.9955 1
50.2 0.9863 0.9917 0.9917 1
50.3 0.9797 0.9884 0.9884 1
50.4 0.9715 0.9839 0.9839 1
50.5 0.9647 0.9801 0.9801 1

tail( pp )

State
when NRA Rem ESRD(Rem) ESRD
73.5 4e-04 0.0194 0.1409 1
73.6 4e-04 0.0188 0.1409 1
73.7 4e-04 0.0183 0.1409 1
73.8 4e-04 0.0180 0.1409 1
73.9 3e-04 0.0174 0.1408 1
74 3e-04 0.0169 0.1408 1

plot( pp )
# Two colors and the corresponding pale ones for the dead states
clr <- c("limegreen","orange")
col2rgb(clr)
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[,1] [,2]
red 50 255
green 205 165
blue 50 0

cl4 <- cbind(col2rgb(clr),col2rgb(clr)/2+255/2)[,c(1,2,4,3)]
cl4 <- rgb( t(cl4), max=255 )
# Nicer plot
plot( pp, col=cl4, xlab="Age" )
lines( as.numeric(rownames(pp)), pp[,2], lwd=2 )

3.2 Time-splitting, time-scales and SMR: Diabetes in

Denmark

This exercise is using data from the National Danish Diabetes register. There is a random
sample of 10,000 records from this in the Epi package. Actually there are two data sets, we
shall use the one with only cases of diabetes diagnosed after 1995, see the help page for
DMlate.

This is of interest because it is only for these where the data of diagnosis is certain, and
hence for whom we can compute the duration of diabetes during follow-up.

The exercise is about assessing how mortality depends age, calendar time and duration
of diabetes. And how to understand and compute SMR, and assess how it depends on
these factors as well.

1. First, we load the Epi package and the dataset, and take a look at it:

> options( width=90 )
> library( Epi )
> data( DMlate )
> str( DMlate )

'data.frame': 10000 obs. of 7 variables:
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth: num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth: num NA NA NA NA NA ...
$ dooad: num NA 2007 NA NA NA ...
$ doins: num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...

> head( DMlate )

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> summary( DMlate )
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sex dobth dodm dodth dooad doins
M:5185 Min. :1898 Min. :1995 Min. :1995 Min. :1995 Min. :1995
F:4815 1st Qu.:1930 1st Qu.:2000 1st Qu.:2002 1st Qu.:2001 1st Qu.:2001

Median :1941 Median :2004 Median :2005 Median :2004 Median :2005
Mean :1942 Mean :2003 Mean :2005 Mean :2004 Mean :2004
3rd Qu.:1951 3rd Qu.:2007 3rd Qu.:2008 3rd Qu.:2007 3rd Qu.:2007
Max. :2008 Max. :2010 Max. :2010 Max. :2010 Max. :2010

NA's :7497 NA's :4503 NA's :8209
dox

Min. :1995
1st Qu.:2010
Median :2010
Mean :2009
3rd Qu.:2010
Max. :2010

2. We then set up the dataset as a Lexis object with age, calendar time and duration of
diabetes as timescales, and date of death as event.

In the dataset we have a date of exit dox which is either the day of censoring or the
date of death:

> with( DMlate, table( dead=!is.na(dodth),
+ same=(dodth==dox), exclude=NULL ) )

same
dead TRUE <NA>
FALSE 0 7497
TRUE 2503 0

So we can set up the Lexis object by specifying the timescales and the exit status via
!is.na(dodth):

> LL <- Lexis( entry = list( A = dodm-dobth,
+ P = dodm,
+ dur = 0 ),
+ exit = list( P = dox ),
+ exit.status = factor( !is.na(dodth),
+ labels=c("Alive","Dead") ),
+ data = DMlate )

NOTE: entry.status has been set to "Alive" for all.

The 4 persons are persons that have identical date of diabetes and date of death.

We can get an overview of the data by using the summary function on the object:

> summary( LL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 7497 2499 9996 2499 54273.27 9996

> head( LL )
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A P dur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm
50185 58.66119 1998.917 0 11.0800821 Alive Alive 1 F 1940.256 1998.917
307563 64.09035 2003.309 0 6.6885695 Alive Alive 2 M 1939.218 2003.309
294104 86.25051 2004.552 0 5.4455852 Alive Alive 3 F 1918.301 2004.552
336439 44.03559 2009.261 0 0.7364819 Alive Alive 4 F 1965.225 2009.261
245651 75.77550 2008.653 0 1.3442847 Alive Alive 5 M 1932.877 2008.653
216824 80.01643 2007.886 0 2.0369610 Alive Dead 6 F 1927.870 2007.886

dodth dooad doins dox
50185 NA NA NA 2009.997
307563 NA 2007.446 NA 2009.997
294104 NA NA NA 2009.997
336439 NA NA NA 2009.997
245651 NA NA NA 2009.997
216824 2009.923 NA NA 2009.923

3. A very crude picture of the mortality by sex can be obtained by the stat.table

function:

> stat.table( sex,
+ list( D=sum( lex.Xst=="Dead" ),
+ Y=sum( lex.dur ),
+ rate=ratio( lex.Xst=="Dead", lex.dur, 1000 ) ),
+ data=LL )

-------------------------------
sex D Y rate
-------------------------------
M 1343.00 27614.21 48.63
F 1156.00 26659.05 43.36
-------------------------------

So not surprising, we see that men have a higher mortality than women.

4. We now want to assess how mortality depends on age, calendar time and duration. In
principle we could split the follow-up along all three time scales, but in practice it
would be sufficient to split it along one of the time-scales and then just use the value
of each of the time-scales at the left endpoint of the intervals.

We note that the total follow-up time was some 54,000 person-years, so if we split the
follow-up in 6-month intervals we get a bit more than 110,000 records:

> SL <- splitLexis( LL, breaks=seq(0,125,1/2), time.scale="A" )
> summary( SL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 115974 2499 118473 2499 54273.27 9996

> summary( LL )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 7497 2499 9996 2499 54273.27 9996
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We see that the number of records have increased, but the number of persons, events
and person-years is still the same as in LL

5. We now use this dataset to estimate models with age-specific mortality curves for
men and women separately, using natural splines (the function ns from the splines

package).

> library( splines )
> r.m <- glm( (lex.Xst=="Dead") ~ ns( A, df=10 ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> r.f <- update( r.m, data = subset( SL, sex=="F" ) )

Here we are modeling the follow-up (events ((lex.Xst=="Dead")) and person-years
(lex.dur) ) as a non-liner function of age — represented by the spline function ns.

6. From these objects we could get the estimated log-rates by using predict, by
supplying a data frame of values for the variables corresponding to the predictor
variables in the model.

The default predict.glm function is a bit clunky as it gives the prediction and the
standard errors of these in two different elements of a list, so in Epi there is a
wrapper function ci.pred that uses this and computes predicted rates and
confidence limits for these.

Note that lex.dur is a covariate too; by putting this to 1000 we get the rates in units
of deaths per 1000 PY:

> nd <- data.frame( A = seq(10,90,0.5),
+ lex.dur = 1000)
> p.m <- ci.pred( r.m, newdata = nd )
> p.f <- ci.pred( r.f, newdata = nd )
> str( p.m )

num [1:161, 1:3] 1.33 1.34 1.34 1.34 1.35 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:161] "1" "2" "3" "4" ...
..$ : chr [1:3] "Estimate" "2.5%" "97.5%"

7. We can then plot the predicted rates for men and women together using matplot:

> matplot( nd$A, cbind(p.m,p.f),
+ type="l", col=rep(c("blue","red"),each=3), lwd=c(3,1,1), lty=1,
+ log="y", xlab="Age", ylab="Mortality of DM ptt per 1000 PY")

Period and duration effects

8. We model the mortality rates among diabetes patients also including current date
and duration of diabetes. However, we shall not just use the positioning of knots for
the splines as provided by ns, because this is based on the allocating knots so that
the number of observations (lines in the dataset), is the same between knots.
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Figure 3.4: Age-specific mortality rates for Danish diabetes patients as estimated from a
model with only age. Blue: men, red: women.

However the information in a follow-up study is in the number of events, so it would
be better to allocate knots so that number of events were the same between knots.

We use the so-called natural splines that are linear beyond the boundary knots, and
hence we take the 5th and 95th percentile of deaths as the boundary knots for age (A)
and calendar time (P) but for duration where we actually have follow-up from tine 0
on the timescale we use 0 as the first knot.

> ( kn.A <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( A+lex.dur, probs=seq(5,95,20)/100 ) ) )

5% 25% 45% 65% 85%
56.02519 69.06092 76.29021 81.42094 87.66598

> ( kn.P <- with( subset( SL, lex.Xst=="Dead" ),
+ quantile( P+lex.dur, probs=seq(5,95,20)/100 ) ) )

5% 25% 45% 65% 85%
1998.117 2002.120 2004.694 2006.826 2008.761

> ( kn.dur <- c(0,with( subset( SL, lex.Xst=="Dead" ),
+ quantile( dur+lex.dur, probs=seq(10,90,20)/100 ) )) )

10% 30% 50% 70% 90%
0.0000000 0.3055441 1.5961670 3.4250513 5.6629706 9.1723477
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9. With these we can now model mortality rates (separately for men and women), as
functions of age, calendar time and duration:

> Mm <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A ) +
+ Ns( P, kn=kn.P ) +
+ Ns( dur, kn=kn.dur ),
+ offset = log( lex.dur ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> summary( Mm )

Call:
glm(formula = (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P,

kn = kn.P) + Ns(dur, kn = kn.dur), family = poisson, data = subset(SL,
sex == "M"), offset = log(lex.dur))

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8367 -0.2308 -0.1595 -0.1115 4.4965

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.16121 0.10390 -30.426 < 2e-16
Ns(A, kn = kn.A)1 1.52180 0.11720 12.985 < 2e-16
Ns(A, kn = kn.A)2 1.89400 0.09175 20.643 < 2e-16
Ns(A, kn = kn.A)3 2.98735 0.12279 24.328 < 2e-16
Ns(A, kn = kn.A)4 2.05374 0.07824 26.250 < 2e-16
Ns(P, kn = kn.P)1 -0.19507 0.13352 -1.461 0.144009
Ns(P, kn = kn.P)2 -0.29731 0.10694 -2.780 0.005435
Ns(P, kn = kn.P)3 -0.43455 0.17152 -2.533 0.011293
Ns(P, kn = kn.P)4 -0.29586 0.08978 -3.295 0.000982
Ns(dur, kn = kn.dur)1 -0.76626 0.15497 -4.945 7.63e-07
Ns(dur, kn = kn.dur)2 -0.63208 0.15325 -4.124 3.72e-05
Ns(dur, kn = kn.dur)3 -0.46099 0.12080 -3.816 0.000136
Ns(dur, kn = kn.dur)4 -1.29240 0.21518 -6.006 1.90e-09
Ns(dur, kn = kn.dur)5 -0.12241 0.09654 -1.268 0.204796

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12999 on 60346 degrees of freedom
Residual deviance: 11727 on 60333 degrees of freedom
AIC: 14441

Number of Fisher Scoring iterations: 7

> Mf <- update( Mm, data = subset( SL, sex=="F" ) )
> round( cbind( ci.exp(Mm), ci.exp(Mf) ), 3 )

exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
(Intercept) 0.042 0.035 0.052 0.025 0.019 0.032
Ns(A, kn = kn.A)1 4.580 3.640 5.763 4.247 3.199 5.639
Ns(A, kn = kn.A)2 6.646 5.552 7.955 5.079 4.180 6.170
Ns(A, kn = kn.A)3 19.833 15.591 25.230 20.611 15.288 27.788
Ns(A, kn = kn.A)4 7.797 6.689 9.089 7.806 6.572 9.272
Ns(P, kn = kn.P)1 0.823 0.633 1.069 0.908 0.686 1.202
Ns(P, kn = kn.P)2 0.743 0.602 0.916 0.730 0.579 0.921
Ns(P, kn = kn.P)3 0.648 0.463 0.906 0.768 0.524 1.125
Ns(P, kn = kn.P)4 0.744 0.624 0.887 0.668 0.551 0.809
Ns(dur, kn = kn.dur)1 0.465 0.343 0.630 0.541 0.387 0.756
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Ns(dur, kn = kn.dur)2 0.531 0.394 0.718 0.472 0.338 0.658
Ns(dur, kn = kn.dur)3 0.631 0.498 0.799 0.871 0.678 1.118
Ns(dur, kn = kn.dur)4 0.275 0.180 0.419 0.398 0.248 0.641
Ns(dur, kn = kn.dur)5 0.885 0.732 1.069 0.982 0.800 1.206

It is not possible to attach any meaning to the single parameters from the model, so
we shall look at the estimated non-linear effects of each of the variables.

10. These models fit substantially better than the model with only age as we can see
from this comparison:

> anova( Mm, r.m, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ ns(A, df = 10)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 60333 11727
2 60336 11808 -3 -81.122 < 2.2e-16

> anova( Mf, r.f, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A) + Ns(P, kn = kn.P) + Ns(dur,
kn = kn.dur)

Model 2: (lex.Xst == "Dead") ~ ns(A, df = 10)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 58112 10203
2 58115 10258 -3 -54.302 9.675e-12

The models are not formally nested since the location of the age-knots is different, so
from a formal point of view these test are not valid, but is is clear that the more
extensive modeling provides a much better description of the rates.

11. We can inspect the shape of the estimated effects (and their relative size) using the
Termplot function in the Epi package.

However in order for this to work properly we need a model specification where all of
the prediction is part of a term, essentially including the intercept in one of the terms
— notably age. Moreover, the age-specific rates must the refer to a specific period
and diabetes duration.

This is done by using the intercept and ref arguments to Ns:

> mm <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A , intercept=TRUE ) - 1 +
+ Ns( P, kn=kn.P , ref=2000 ) +
+ Ns( dur, kn=kn.dur, ref=5 ),
+ offset = log( lex.dur/100 ),
+ family = poisson,
+ data = subset( SL, sex=="M" ) )
> mf <- update( mm, data = subset( SL, sex=="F" ) )
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We can check that it actually is the same model, by using the deviances from the two
models fitted.

> c( deviance(Mm), deviance(mm) )

[1] 11726.61 11726.61

12. We the use Termplot, which is a wrapper for termplot. Termplot gives plots on the
rate / resp RR scale, so that we can actually make sense of the plots.

> Termplot( mm )
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Figure 3.5: Age, period and duration terms for mortality among Danish male diabetes pa-
tients. The age effect is age-specific rates for persons with 5 years of diabetes duration in
the year 2000.

> Termplot( mf )

13. Since the fitted model has three time-scales: current age, current date and current
duration of diabetes, so the effects that we see in the Termplot are not really
interpretable; they are (as in any kind of multiple regressions) to be interpreted as
“all else equal” which they are not; the three time scales advance simultaneously at
the same pace.

The reporting would therefore more naturally be only on one time scale, showing the
mortality for persons diagnosed in different ages in a given year.

This is most easily done using the ci.pred function with the newdata= argument. So
a person diagnosed in age 50 in 1995 will have a mortality measured in cases per 1000
PY as:
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Figure 3.6: Age, period and duration terms for mortality among Danish female diabetes
patients. The age effect is age-specific rates for persons with 5 years of diabetes duration in
the year 2000.

> pts <- seq(0,20,2)
> nd <- data.frame( A= 50+pts,
+ P=1995+pts,
+ dur= pts,
+ lex.dur=1000 )
> cbind( nd$A, ci.pred( mm, newdata=nd ) )

Estimate 2.5% 97.5%
1 50 31.02982 21.72823 44.31332
2 52 15.85329 12.17126 20.64919
3 54 18.54048 15.12524 22.72687
4 56 19.75660 16.17241 24.13514
5 58 22.71326 18.97210 27.19216
6 60 26.79926 22.01942 32.61667
7 62 31.43090 24.29985 40.65463
8 64 38.99649 27.98085 54.34883
9 66 49.17746 29.96508 80.70802
10 68 62.48983 31.13183 125.43363
11 70 80.12938 32.18765 199.47763

Since there is no duration beyond 18 years in the dataset we only make predictions
for 20 years of duration, and do it for persons diagnosed in 1995 and 2005 — the
latter is quite dubious too because we are extrapolating calendar time trends way
beyond data.

We form matrices of predictions, that we will plot in the same frame:
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> mpr <- fpr <- NULL
> pts <- seq(0,20,0.1)
> for( ip in c(1995,2005) )
+ for( ia in c(50,60,70) )
+ {
+ nd <- data.frame( A=ia+pts,
+ P=ip+pts,
+ dur= pts,
+ lex.dur=1000 )
+ mpr <- cbind( mpr, ci.pred( mm, nd) )
+ fpr <- cbind( fpr, ci.pred( mf, nd) )
+ }
> str( fpr )

num [1:201, 1:18] 14.5 13.1 12 11 10.3 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:201] "1" "2" "3" "4" ...
..$ : chr [1:18] "Estimate" "2.5%" "97.5%" "Estimate" ...

These 18 columns are 9 columns for 1995, and 9 for 2005, each of these chunks are
estimate and lower and upper confidence bound for persons diagnosed in ages 50, 60
and 70.

These can now be plotted:

> par( mfrow=c(1,2) )
> matplot( cbind(50+pts,60+pts,70+pts)[,rep(1:3,2,each=3)],
+ cbind( mpr[,1:9], fpr[,1:9] ), ylim=c(5,500),
+ log="y", xlab="Age", ylab="Mortality, diagnosed 1995",
+ type="l", lwd=c(4,1,1), lty=1,
+ col=rep(c("blue","red"),each=9) )
> matplot( cbind(50+pts,60+pts,70+pts)[,rep(1:3,2,each=3)],
+ cbind( mpr[,1:9+9], fpr[,1:9+9] ), ylim=c(5,500),
+ log="y", xlab="Age", ylab="Mortality, diagnosed 2005",
+ type="l", lwd=c(4,1,1), lty=1,
+ col=rep(c("blue","red"),each=9) )

3.2.1 SMR

There are two ways to make the comparison of the diabetes mortality to the population
mortality; one is to amend the diabetes patient dataset with the population mortality
dataset, the other (classical) one is to include the population mortality rates as a fixed
variable in the calculations.

The latter requires that each analytic unit in the diabetes patient dataset is amended
with a variable with the population mortality rate for the corresponding sex, age and
calendar time.

This can be achieved in two ways: Either we just use the current split of follow-up time
and allocate the population mortality rates for some suitably chosen (mid-)point of the
follow-up in each, or we make a second split by date, so that follow-up in the diabetes
patients is in the same classification of age and data as the population mortality table.

14. Using the former approach we shall include as an extra variable the population
mortality as available from the data set M.dk.
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Figure 3.7: Mortality rates for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and
70. Men blue, women red.

First create the variables in the diabetes dataset that we need for matching with the
age and period classification of the population mortality data, that is age, date (and
sex) at the midpoint of each of the intervals (or rater at a point 3 months after the
left endpoint of the interval — recall we split the follow-up in 6 month intervals).

We need to have variables of the same type when we merge, so we must transform
the sex variable in M.dk to a factor, and must for each follow-up interval in the SL

data have an age and a period variable that can be used in merging with the
population data.

> str( SL )

Classes ‘Lexis’ and 'data.frame': 118473 obs. of 14 variables:
$ lex.id : int 1 1 1 1 1 1 1 1 1 1 ...
$ A : num 58.7 59 59.5 60 60.5 ...
$ P : num 1999 1999 2000 2000 2001 ...
$ dur : num 0 0.339 0.839 1.339 1.839 ...
$ lex.dur: num 0.339 0.5 0.5 0.5 0.5 ...
$ lex.Cst: Factor w/ 2 levels "Alive","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "Alive","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "M","F": 2 2 2 2 2 2 2 2 2 2 ...
$ dobth : num 1940 1940 1940 1940 1940 ...
$ dodm : num 1999 1999 1999 1999 1999 ...
$ dodth : num NA NA NA NA NA NA NA NA NA NA ...
$ dooad : num NA NA NA NA NA NA NA NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "breaks")=List of 3
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..$ A : num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...

..$ P : NULL

..$ dur: NULL
- attr(*, "time.scales")= chr "A" "P" "dur"
- attr(*, "time.since")= chr "" "" ""

> SL$Am <- floor( SL$A+0.25 )
> SL$Pm <- floor( SL$P+0.25 )
> data( M.dk )
> str( M.dk )

'data.frame': 7800 obs. of 6 variables:
$ A : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : num 1 2 1 2 1 2 1 2 1 2 ...
$ P : num 1974 1974 1975 1975 1976 ...
$ D : num 459 303 435 311 405 258 332 205 312 233 ...
$ Y : num 35963 34383 36099 34652 34965 ...
$ rate: num 12.76 8.81 12.05 8.97 11.58 ...
- attr(*, "Contents")= chr "Number of deaths and risk time in Denmark"

> M.dk <- transform( M.dk, Am = A,
+ Pm = P,
+ sex = factor( sex, labels=c("M","F") ) )
> str( M.dk )

'data.frame': 7800 obs. of 8 variables:
$ A : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 1 2 1 2 1 2 1 2 ...
$ P : num 1974 1974 1975 1975 1976 ...
$ D : num 459 303 435 311 405 258 332 205 312 233 ...
$ Y : num 35963 34383 36099 34652 34965 ...
$ rate: num 12.76 8.81 12.05 8.97 11.58 ...
$ Am : num 0 0 0 0 0 0 0 0 0 0 ...
$ Pm : num 1974 1974 1975 1975 1976 ...

We then match the rates from M.dk into SL — sex, Am and Pm are the common
variables, and therefore the match is on these variables:

> SLr <- merge( SL, M.dk[,c("sex","Am","Pm","rate")] )
> dim( SL )

[1] 118473 16

> dim( SLr )

[1] 118454 17

This merge only takes rows that have information from both data sets, hence the
slightly fewer rows in SLr than in SL — there are a few record in SL with age and
period values that do not exist in the population mortality data.

15. We compute the expected number of deaths as the person-time multiplied by the
corresponding population rate recalling that the rate is given in units of deaths per
1000 PY, whereas lex.dur is in units of 1 PY:
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> SLr$E <- SLr$lex.dur * SLr$rate / 1000
> stat.table( sex,
+ list( D = sum(lex.Xst=="Dead"),
+ Y = sum(lex.dur),
+ E = sum(E),
+ SMR = ratio(lex.Xst=="Dead",E) ),
+ data = SLr )

---------------------------------------
sex D Y E SMR
---------------------------------------
M 1342.00 27611.40 796.11 1.69
F 1153.00 26654.52 747.77 1.54
---------------------------------------

> stat.table( list( Age = floor(pmax(A,39)/10)*10 ),
+ list( D = sum(lex.Xst=="Dead"),
+ Y = sum(lex.dur),
+ E = sum(E),
+ SMR = ratio(lex.Xst=="Dead",E) ),
+ data = SLr )

---------------------------------------
Age D Y E SMR
---------------------------------------
30 11.00 4706.00 3.18 3.45
40 47.00 5776.18 14.48 3.25
50 181.00 10765.19 70.47 2.57
60 432.00 14052.52 216.39 2.00
70 817.00 12225.99 480.11 1.70
80 771.00 5952.59 573.73 1.34
90 236.00 787.46 185.51 1.27
---------------------------------------

We see that the SMR is slightly higher for women than for men, but also that there is
a much larger variation in SMR by age.

16. We can the SMR exactly as mortality rates by including the log expected numbers
instead of the log person-years as offset, again using separate models for men and
women.

We exclude those records where no deaths in the population occur (that is where the
rate is 0) — you could say that this correspond to parts of the data where no
follow-up on the population mortality scale is available.

> sm <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A , intercept=TRUE ) - 1 +
+ Ns( P, kn=kn.P , ref=2000 ) +
+ Ns( dur, kn=kn.dur, ref=5 ),
+ offset = log( E ),
+ family = poisson,
+ data = subset( SLr, E>0 & sex=="M" ) )
> sf <- update( mm, data = subset( SLr, E>0 & sex=="F" ) )

We can plot the estimates as before for the rates, using Termplot. What do the
extracted effects represent now?

> Termplot( sm )
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Figure 3.8: Age, period and duration terms for SMR among Danish male diabetes patients.
The age effect is age-specific SMR for persons with 5 years of diabetes duration in the year
2000.

> Termplot( sf )

17. We can check if there are different SMRs between men and women by fitting a joint
model and expanding it with (linear) sex-effect(s):

> s0 <- glm( (lex.Xst=="Dead") ~ Ns( A, kn=kn.A , intercept=TRUE ) - 1 +
+ Ns( P, kn=kn.P , ref=2000 ) +
+ Ns( dur, kn=kn.dur, ref=5 ),
+ offset = log( E ),
+ family = poisson,
+ data = subset( SLr, E>0 ) )
> s1 <- update( s0, . ~ . + sex )
> sA <- update( s1, . ~ . + sex:A )
> sAP <- update( sA, . ~ . + sex:P )
> sAPd <- update( sAP, . ~ . + sex:dur )
> anova( s0, s1, sA, sAP, sAPd, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) - 1 +
Ns(P, kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5)

Model 2: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex - 1

Model 3: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex + sex:A - 1



Solutions 3.2 Time-splitting, time-scales and SMR: Diabetes in Denmark 51

20 40 60 80 100

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

20.00

50.00

A

1996 2000 2004 2008

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

20.00

50.00

P

0 2 4 6 8 10 12 14

0.02

0.05

0.10

0.20

0.50

1.00

2.00

5.00

10.00

20.00

50.00

dur

Figure 3.9: Age, period and duration terms for mortality among Danish female diabetes
patients. The age effect is age-specific SMR for persons with 5 years of diabetes duration in
the year 2000.

Model 4: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex + sex:A + sex:P - 1

Model 5: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex + sex:A + sex:P + sex:dur - 1

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 118418 21925
2 118417 21925 1 0.00799 0.9288
3 118416 21925 1 0.12948 0.7190
4 118415 21925 1 0.23766 0.6259
5 118414 21924 1 0.45765 0.4987

So by this simple check we see there is no really compelling evidence that the SMR
differs between men and women.

Of course we might repeat it all by including quadratic effects too:

> sA <- update( s1, . ~ . + sex:A + sex:I(A^2) )
> sAP <- update( sA, . ~ . + sex:P + sex:I(P^2) )
> sAPd <- update( sAP, . ~ . + sex:dur + sex:I(dur^2) )
> anova( s0, s1, sA, sAP, sAPd, test="Chisq" )

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) - 1 +
Ns(P, kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5)

Model 2: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
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kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex - 1

Model 3: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex + sex:A + sex:I(A^2) - 1

Model 4: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex + sex:A + sex:I(A^2) + sex:P + sex:I(P^2) - 1

Model 5: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) + Ns(P,
kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5) +
sex + sex:A + sex:I(A^2) + sex:P + sex:I(P^2) + sex:dur +
sex:I(dur^2) - 1

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 118418 21925
2 118417 21925 1 0.0080 0.9288
3 118414 21923 3 2.4179 0.4903
4 118411 21919 3 3.8787 0.2749
5 118408 21918 3 1.2737 0.7354

So there really is no difference, so we can report the SMR between the diabetes
patients and the population as sex-independent:

> Termplot( s0 )
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Figure 3.10: Age, period and duration terms for mortality among Danish diabetes patients,
male as well as female. The age effect is age-specific SMR for persons with 5 years of diabetes
duration in the year 2000.

18. As before, it would be more sensible to show the SMR as a function of age for
persons diagnosed with DM at ages 50, 60 and 70. The code is essentially the same as
before:
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> psmr <- NULL
> pts <- seq(0,20,0.1)
> for( ip in c(1995,2005) )
+ for( ia in c(50,60,70) )
+ {
+ nd <- data.frame( A=ia+pts,
+ P=ip+pts,
+ dur= pts,
+ E=1 )
+ psmr <- cbind( psmr, ci.pred( s0, nd) )
+ }
> str( psmr )

num [1:201, 1:18] 4.9 4.34 3.86 3.47 3.17 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:201] "1" "2" "3" "4" ...
..$ : chr [1:18] "Estimate" "2.5%" "97.5%" "Estimate" ...

These 18 columns are 9 columns for 1995, and 9 for 2005, each of these chunks are
estimate and lower and upper confidence bound for persons diagnosed in ages 50, 60
and 70.

These can now be plotted:

> par( mfrow=c(1,2) )
> matplot( cbind(50+pts,60+pts,70+pts)[,rep(1:3,each=3)],
+ psmr[,1:9], ylim=c(0.7,7),
+ log="y", xlab="Age", ylab="SMR, diagnosed 1995",
+ type="l", lwd=c(4,1,1), lty=1, col="black" )
> abline( h=1 )
> matplot( cbind(50+pts,60+pts,70+pts)[,rep(1:3,each=3)],
+ psmr[,1:9+9], ylim=c(0.7,7),
+ log="y", xlab="Age", ylab="SMR, diagnosed 2005",
+ type="l", lwd=c(4,1,1), lty=1, col="black" )
> abline( h=1 )

From the figure it seems that the conclusion is that there is no effect of age or current
age on SMR, but pretty much that there is an effect of age at diagnosis and a very
strong initial effect of diabetes duration.

19. Try to simplify the model to one with a simple linear effect of date of diagnosis, and
using only knots at 0,1,and 2 years for duration, giving an estimate of the change in
SMR as duration increases beyond 2 years.

It would be natural to simplify the model to one with a non-linear effect of duration
and linear effects of age at diagnosis and calendar time. We choose knots with
successive distances of 1,2,3 and 4 years (a bit out of the blue):

> sx <- glm( (lex.Xst=="Dead") ~ I(A-dur) +
+ I(P-2000) +
+ Ns( dur, kn=c(0,1,3,6,10), ref=5 ),
+ offset = log( E ),
+ family = poisson,
+ data = subset( SLr, E>0 ) )
> anova( s0, sx, test="Chisq" )
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Figure 3.11: SMR for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and 70.

Analysis of Deviance Table

Model 1: (lex.Xst == "Dead") ~ Ns(A, kn = kn.A, intercept = TRUE) - 1 +
Ns(P, kn = kn.P, ref = 2000) + Ns(dur, kn = kn.dur, ref = 5)

Model 2: (lex.Xst == "Dead") ~ I(A - dur) + I(P - 2000) + Ns(dur, kn = c(0,
1, 3, 6, 10), ref = 5)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 118418 21925
2 118425 21935 -7 -9.9485 0.1915

Thus there is no difference between the very simple model for SMR and the more
complicated ones; and we see that the change in SMR per year of age at diagnosis
and calendar year is pretty much the same, namely some 2% per year, or some
15–18% per 10 years:

> round( ci.exp(sx), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 6.7442 5.1886 8.7660
I(A - dur) 0.9809 0.9775 0.9843
I(P - 2000) 0.9843 0.9726 0.9962
Ns(dur, kn = c(0, 1, 3, 6, 10), ref = 5)1 0.5777 0.4830 0.6908
Ns(dur, kn = c(0, 1, 3, 6, 10), ref = 5)2 0.7085 0.6036 0.8316
Ns(dur, kn = c(0, 1, 3, 6, 10), ref = 5)3 0.2638 0.1956 0.3560
Ns(dur, kn = c(0, 1, 3, 6, 10), ref = 5)4 0.9187 0.8040 1.0497

> round( ci.exp( sx, subset=c("A","P"), ctr.mat=10*diag(2) ), 4 )

exp(Est.) 2.5% 97.5%
[1,] 0.8247 0.7966 0.8537
[2,] 0.8536 0.7572 0.9623
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20. We can also see that the predicted SMRs looks pretty much the same:

> xsmr <- NULL
> for( ip in c(1995,2005) )
+ for( ia in c(50,60,70) )
+ {
+ nd <- data.frame( A=ia+pts,
+ P=ip+pts,
+ dur= pts,
+ E=1 )
+ xsmr <- cbind( xsmr, ci.pred( sx, nd) )
+ }
> par( mfrow=c(1,2) )
> matplot( cbind(50+pts,60+pts,70+pts)[,rep(1:3,each=3)],
+ xsmr[,1:9], ylim=c(0.7,7),
+ log="y", xlab="Age", ylab="SMR, diagnosed 1995",
+ type="l", lwd=c(4,1,1), lty=1, col="black" )
> abline( h=1 )
> matplot( cbind(50+pts,60+pts,70+pts)[,rep(1:3,each=3)],
+ xsmr[,1:9+9], ylim=c(0.7,7),
+ log="y", xlab="Age", ylab="SMR, diagnosed 2005",
+ type="l", lwd=c(4,1,1), lty=1, col="black" )
> abline( h=1 )
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Figure 3.12: SMR for diabetes patients diagnosed 1995 and 2005 in ages 50, 60 and 70.
Simplified model.

From the figure it seems that the conclusion is that there is no effect of current age
on SMR, but pretty much that there is an effect of age at diagnosis and a very
strong initial effect of diabetes duration.
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