Estimation and prediction in multistate models

Bendix Carstensen

Steno Diabetes Center, Gentofte, Denmark

& Department of Biostatistics, University of Copenhagen

b@bxc.dk

http://BendixCarstensen.com

University of Aberdeen, 17 August 2017

http://BendixCarstensen/AdvCoh/Aberdeen-2017

1/38

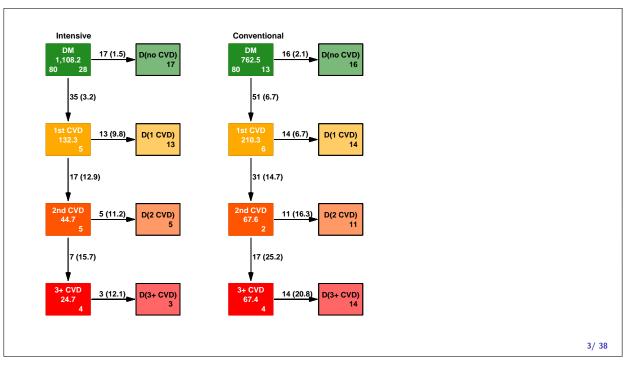
(CrossMark

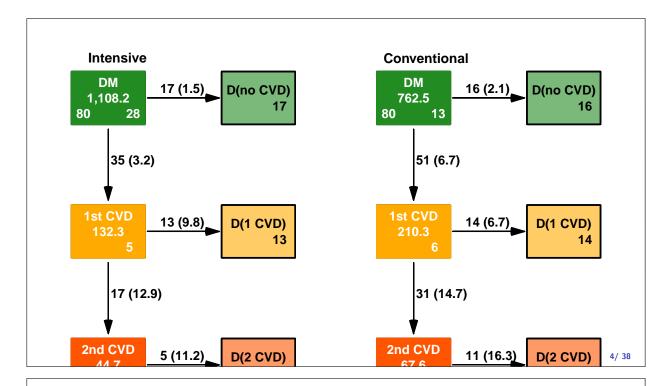
Diabetologia

DOI 10.1007/s00125-016-4065-6

Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial

Peter Gæde $^{1,2}\cdot$ Jens Oellgaard $^{1,2,3}\cdot$ Bendix Carstensen $^3\cdot$ Peter Rossing $^{3,4,5}\cdot$ Henrik Lund-Andersen $^{3,5,6}\cdot$ Hans-Henrik Parving $^{5,7}\cdot$ Oluf Pedersen 8


Received: 7 April 2016 / Accepted: 1 July 2016

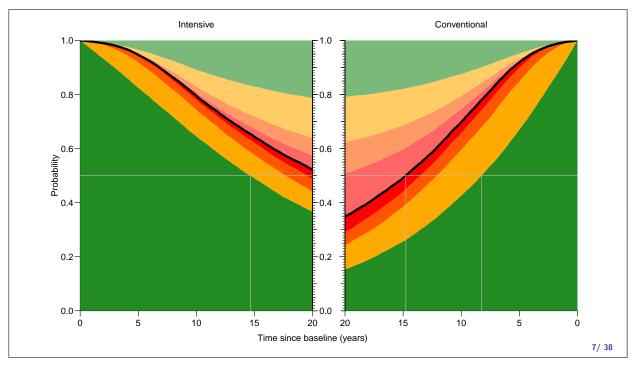

© The Author(s) 2016. This article is published with open access at Springerlink.com

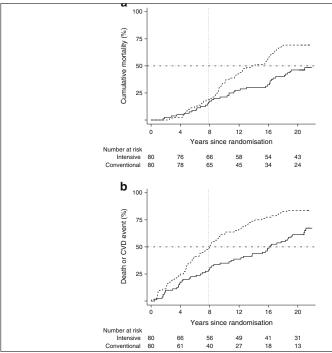
Abstract

Aims/hypothesis The aim of this work was to study the potential long-term impact of a 7.8 years intensified multifactorial

pharmacological approaches. After 7.8 years the study continued as an observational follow-up with all patients receiving treatment as for the original intensive therapy group. The pri-

Models used

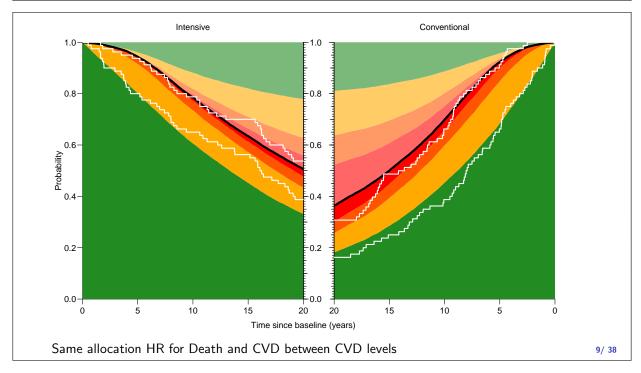

- ▶ One model for the 4 mortality rates
- One model for the 3 CVD rates
- ... both models assume:
 - proportional hazards between CVD states (0, 1, 2(, 3)) CVD events
 - proportional hazards between groups (conventional, intervention)
 - proportional hazards between levels of sex and age
- ► Which just means: multiplicative effects of the covariates: time since baseline, CVD state, group, sex and age
- Proportional hazards means: no interaction with the time scale

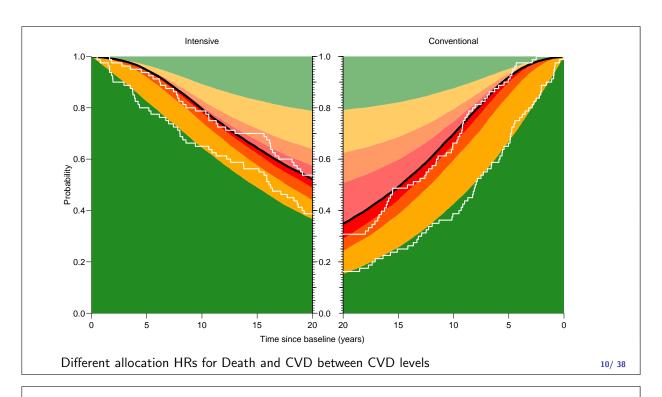

5/ 38

Hazard ratios

	Mortality	CVD event
HR, Int. vs. Conv.	0.83 (0.54; 1.30)	0.55 (0.39;0.77)
H_0 : PH btw. CVD groups	p=0.438	p=0.261
H_0 : $HR = 1$	p=0.425	p=0.001
HR vs. 0 CVD events:		_
0 (ref.)	1.00	1.00
1	3.08 (1.82; 5.19)	2.43 (1.67;3.52)
2	4.42 (2.36; 8.29)	3.48 (2.15;5.64)
3+	7.76 (4.11;14.65)	·

Then use fitted rates to estimate the probabilities of being in each state at all times. (This is immensely complicated).

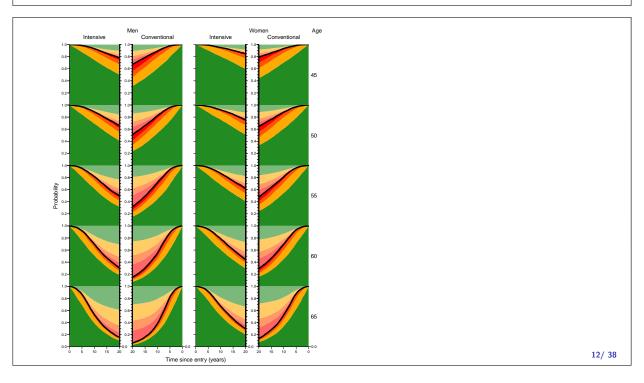

between groups (HK 0.83 [95% CI 0.54, 1.50], p=0.43). Inus, the reduced mortality was primarily due to reduced risk of CVD.

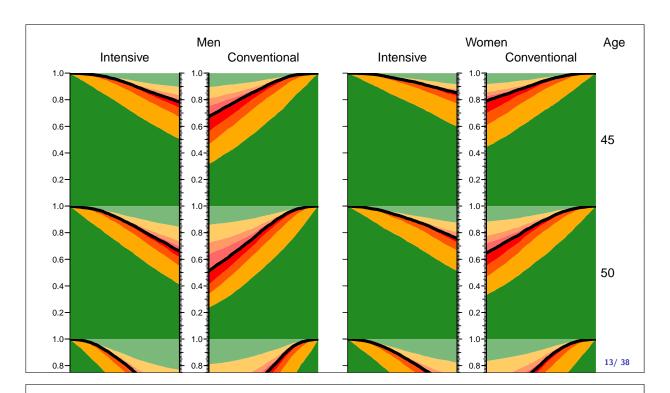

The patients in the intensive group experienced a total of 90 cardiovascular events vs 195 events in the conventional group. Nineteen intensive-group patients (24%) vs 34 conventional-group patients (43%) experienced more than one cardiovascular event. No significant between-group difference in the distribution of specific cardiovascular first-event types was observed (Table 2 and Fig. 4).

Microvascular complications Hazard rates of progression rates in microvascular complications compared with baseline status are shown Fig. 3. Sensitivity analyses showed a negligible effect of the random dates imputation.

Progression of retinopathy was decreased by 33% in the intensive-therapy group (Fig. 5). Blindness in at least one eye was reduced in the intensive-therapy group with an HR of 0.47 (95% CI 0.23, 0.98, p=0.044). Autonomic neuropathy was decreased by 41% in the intensive-therapy group (Fig. 5). We observed no difference between groups in the progression of peripheral neuropathy (Fig. 5). Progression to diabetic nephropathy (macroalbuminuria) was reduced by 48% in the intensive-therapy group (Fig. 5). Ten patients in the conventional-therapy groups vs five patients in the intensive-therapy group progressed to end-stage renal disease (p=0.061).

Discussion 8/38

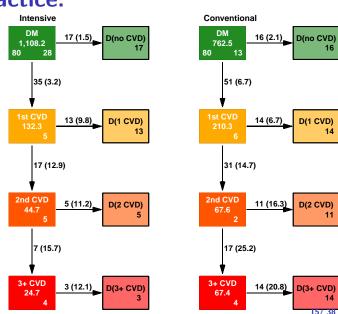



Expected lifetime and YLL (well, gained)

► Expected lifetime (years) in the Steno 2 cohort during the first 20 years after baseline by treatment group and CVD status.

State	where	Int.	Conv.	Int.—Conv.
Alive	under black line	15.6	14.1	1.5
No CVD	green area	12.7	10.0	2.6
Any CVD	orange area	3.0	4.1	-1.1

- ▶ What does "expected" mean?
- Expectation w.r.t. age and sex-distribution in the Steno 2 study!
- Computed as areas under survival curves



Expected lifetime (years) during the first 20 years after baseline by sex, age, treatment group and CVD status.

sex		Men	1	Women			
state	age	Int.	Conv.	Int.—Conv.	Int.	Conv.	Int.—Conv.
Alive	45	18.5	17.5	1.0	19.1	18.4	0.7
	50	17.2	16.1	1.1	18.0	17.2	0.8
	55	15.6	13.8	1.8	17.4	15.9	1.6
	60	13.9	11.6	2.2	15.5	13.7	1.8
	65	11.2	9.5	1.8	13.3	11.4	2.0
No CVD	45	14.9	12.5	2.4	15.8	14.3	1.5
	50	14.0	11.1	2.9	15.1	12.9	2.2
	55	12.2	9.7	2.5	14.3	11.6	2.7
	60	10.9	8.2	2.7	12.4	9.9	2.6
	65	9.0	6.7	2.2	10.7	8.3	2.4

Multistate models in practice:

- ► Representation:
 - States
 - Transitions
 - Sojourn times
 - ► Rates
- ► Analysis of rates:
 - Cox-model
 - Poisson model
- Reporting
 - Rates
 - HRs
 - **Probabilities**
 - Expected lifetime

D(2 CVD)

Representation of multistate FU: Lexis

- Allowing multiple time scales
 - ▶ time-scale variables the starting point on each time scale
 - sojourn time variable lex.dur risk time, exposure
 the same on all time scales
- Allowing multiple states requires state variables:
 - ▶ lex.Cst the state in which follow-up (lex.dur) is
 - ▶ lex.Xst the state to which transition occur

16/38

Representation of multistate FU: Lexis

Multiple records per person:

One record for each **transient** state (*i.e.* state with FU-time)

```
lex.id per age dur tsb lex.dur lex.Cst lex.Xst allocation sex 5 1993.162 57.169 6.816 0.000 0.797 DM 1st CVD Conventional M 5 1993.959 57.966 7.613 0.797 0.698 1st CVD 2nd CVD Conventional M 5 1994.657 58.664 8.311 1.495 3.389 2nd CVD D(2 CVD) Conventional M
```

17/ 38

Likelihood for transition through states

$$\textbf{A} \longrightarrow \textbf{B} \longrightarrow \textbf{C}$$

- given start of observation in **A** at time t_0
- ightharpoonup transitions at times t_B and t_C
- survival in C till (at least) time t_x:

```
\begin{split} \boldsymbol{L} &= \mathrm{P}\{\mathsf{survive}\ t_0 \to t_B\ \mathsf{in}\ \boldsymbol{\mathsf{A}}\} \\ &\times \mathrm{P}\{\mathsf{transition}\ \boldsymbol{\mathsf{A}} \to \boldsymbol{\mathsf{B}}\ \mathsf{at}\ t_B|\ \mathsf{alive}\ \mathsf{in}\ \boldsymbol{\mathsf{A}}\} \\ &\times \mathrm{P}\{\mathsf{survive}\ t_B \to t_C\ \mathsf{in}\ \boldsymbol{\mathsf{B}}\ |\ \mathsf{entered}\ \boldsymbol{\mathsf{B}}\ \mathsf{at}\ t_B\} \\ &\times \mathrm{P}\{\mathsf{transition}\ \boldsymbol{\mathsf{B}} \to \boldsymbol{\mathsf{C}}\ \mathsf{at}\ t_C|\ \mathsf{alive}\ \mathsf{in}\ \boldsymbol{\mathsf{B}}\} \\ &\times \mathrm{P}\{\mathsf{survive}\ t_C \to t_x\ \mathsf{in}\ \boldsymbol{\mathsf{C}}\ |\ \mathsf{entered}\ \boldsymbol{\mathsf{C}}\ \mathsf{at}\ t_C\} \end{split}
```

- ▶ Product of likelihood contributions for each transition
 - each one as for a survival model

Likelihood contributions reflected in Lexis object

```
L = P\{\text{survive } t_0 \rightarrow t_B \text{ in } \mathbf{A}\} \times P\{\text{transition } \mathbf{A} \rightarrow \mathbf{B} \text{ at } t_B | \text{ alive in } \mathbf{A}\} \times P\{\text{survive } t_B \rightarrow t_C \text{ in } \mathbf{B} | \text{ entered } \mathbf{B} \text{ at } t_B\} \times P\{\text{transition } \mathbf{B} \rightarrow \mathbf{C} \text{ at } t_C | \text{ alive in } \mathbf{B}\} \times P\{\text{survive } t_C \rightarrow t_x \text{ in } \mathbf{C} | \text{ entered } \mathbf{C} \text{ at } t_C\} \text{lex.id time} \quad \text{lex.dur lex.Cst lex.Xst} \text{lex.id time} \quad \text{lex.dur lex.Cst lex.Xst} \text{low.} \text{low.} \text{low.} \text{lex.} \text{low.} \text{lex.} \text{lex.} \text{lex.} \text{low.} \text{lex.} \text{low.} \text{lex.} \text{low.} \text{lex.} \text{low.} \text{lex.} \text{low.} \text{lex.} \text{low.} \text{
```

constant rate in interval \Rightarrow log-likelihood term is Poisson: $d\log(\lambda) - \lambda y = (\texttt{lex.Xst!} = \texttt{lex.Cst}) \times \log(\lambda) - \lambda \times \texttt{lex.dur}$

19/ 38

Likelihood for multiple states

- Product of likelihoods for each state
 - each one as for a survival model
- conditional on being alive at (observed) entry to current state
- ▶ **Risk time** is the risk time in the **C**urrent (lex.Cst) state
- Events are transitions to the eXit state (lex.Xst)
- All other transitions out of lex.Cst are treated as censorings (but they are not)
- ► Fit models separately for each transition
- ...or jointly for all or some
 - may require restructuring of data

20/ 38

Analysis of rates in multistate models

- ▶ Each transition modeled:
 - Cox model
 - Poisson model with log-PY as offset
- either one requires that you decide on a time-scale: age / time since study start / time since current state...
- Poisson model allows smooth baseline hazards
- requires that follow-up is split in smaller pieces
 (so small that the assumption of constant rates is reasonable)
- also allows modeling of several time scales simultaneously
- simple to access baseline hazard without further ado

Representation of multistate FU: Lexis I

Using splitLexis to obtain:

```
tsb lex.dur lex.Cst lex.Xst
lex.id
                               dur
                                                                             allocation sex
              per
                       age
                                             0.083 DM
0.083 DM
      5 1993.162 57.169
                                                                      DM Conventional
                             6.816 0.000
      5 1993.246 57.252 6.899 0.083
                                                                       DM Conventional
                                            0.083 DM
0.083 DM
0.083 DM
0.083 DM
0.083 DM
0.083 DM
      5 1993.329 57.336 6.983 0.167
                                                                      DM Conventional
                            7.066 0.250
      5 1993.412 57.419
                                                                      DM Conventional
      5 1993.496 57.502
                             7.149 0.333
                                                                      DM Conventional
                                                                                             Μ
        1993.579 57.586
                             7.233 0.417
                                                                      DM Conventional
      5 1993.662 57.669
                             7.316 0.500
                                                                      DM Conventional
                                                                      DM Conventional
      5 1993.746 57.752
                             7.399 0.583
                                                      DM
DM
      5 1993.829 57.836
                             7.483 0.667
                                              0.083
                                                                      DM Conventional
      5 1993.912 57.919
                             7.566 0.750
                                              0.047
                                                           DM 1st CVD Conventional
                             7.613 0.797
      5 1993.959 57.966
                                              0.037 1st CVD 1st CVD Conventional
                                                                                             M
     5 1993.996 58.002 7.649 0.833 0.083 1st CVD 1st CVD Conventional
5 1994.079 58.086 7.733 0.917 0.083 1st CVD 1st CVD Conventional
5 1994.162 58.169 7.816 1.000 0.083 1st CVD 1st CVD Conventional
                                                                                             Μ
```

22/ 38

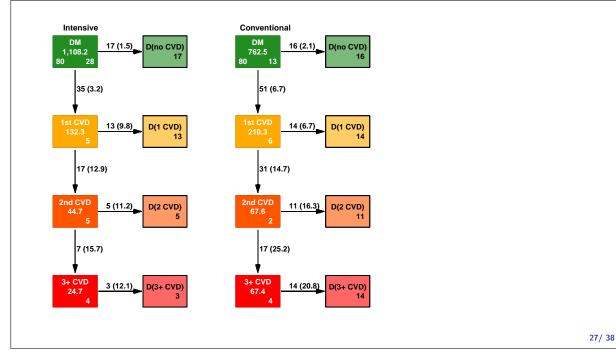
Representation of multistate FU: Lexis II

```
5 1994.246 58.252 7.899 1.083 0.083 1st CVD 1st CVD Conventional
5 1994.329 58.336 7.983 1.167
                                                   0.083 1st CVD
                                                                             1st CVD Conventional
5 1994.412 58.419 8.066 1.250
                                                    0.083 1st CVD
                                                                             1st CVD Conventional
5 1994.412 58.419 8.066 1.250 0.083 1st CVD 5 1994.496 58.502 8.149 1.333 0.083 1st CVD 5 1994.579 58.586 8.233 1.417 0.078 1st CVD 5 1994.657 58.664 8.311 1.495 0.005 2nd CVD 5 1994.662 58.669 8.316 1.500 0.083 2nd CVD 5 1994.746 58.752 8.399 1.583 0.083 2nd CVD 5 1994.829 58.836 8.483 1.667 0.083 2nd CVD 5 1994.912 58.919 8.566 1.750 0.083 2nd CVD
                                                                             1st CVD Conventional
                                                                             2nd CVD Conventional
                                                                              2nd CVD Conventional
                                                                              2nd CVD Conventional
                                                                              2nd CVD Conventional
                                                                              2nd CVD Conventional
                                                                              2nd CVD Conventional
5 1994.996 59.002 8.649 1.833 0.083 2nd CVD
                                                                              2nd CVD Conventional
                                                    0.083 2nd CVD
5 1995.079 59.086
                               8.733 1.917
                                                                              2nd CVD Conventional
                                                                                                                   M
                               8.816 2.000
   1995.162 59.169
                                                     0.083 2nd CVD
                                                                               2nd CVD Conventional
                                                    0.083 2nd CVD
5 1995.246 59.252
                               8.899 2.083
                                                                               2nd CVD Conventional
5 1995.329 59.336
                               8.983 2.167
                                                    0.083 2nd CVD
                                                                              2nd CVD Conventional
5 1995.412 59.419
                               9.066 2.250
                                                    0.083 2nd CVD
                                                                               2nd CVD Conventional
5 1995.496 59.502
                               9.149 2.333 0.083 2nd CVD
                                                                              2nd CVD Conventional
                              9.233 2.417 0.083 2nd CVD
9.316 2.500 0.083 2nd CVD
5 1995.579 59.586
                                                                              2nd CVD Conventional
                                                                                                                   M
5 1995.662 59.669
                              9.316 2.500
                                                                              2nd CVD Conventional
```

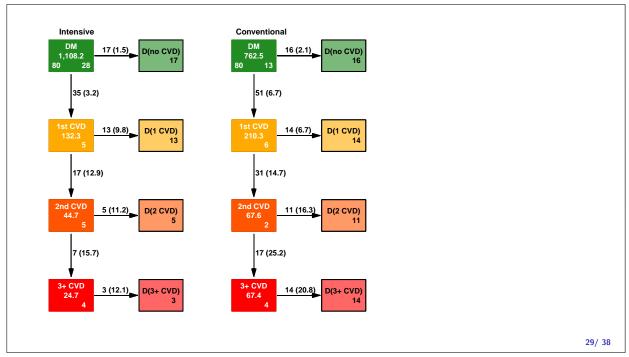
23/ 38

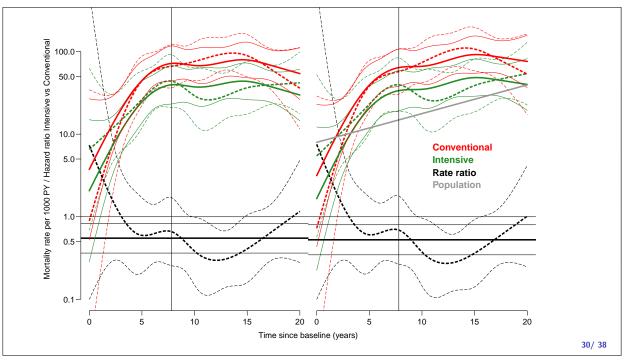
Representation of multistate FU: Lexis III

```
5 1995.746 59.752 9.399 2.583 0.083 2nd CVD 2nd CVD Conventional
5 1995.829 59.836 9.483 2.667
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1995.912 59.919
                   9.566 2.750
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1995.996 60.002
                    9.649 2.833
                                 0.083 2nd CVD
                                                  2nd CVD Conventional
5 1996.079 60.086
                    9.733 2.917 0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.162 60.169 9.816 3.000 0.083 2nd CVD
5 1996.246 60.252 9.899 3.083 0.083 2nd CVD
5 1996.329 60.336 9.983 3.167 0.083 2nd CVD
                                                   2nd CVD Conventional
                                                   2nd CVD Conventional
                                                   2nd CVD Conventional
5 1996.412 60.419 10.066 3.250 0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.496 60.502 10.149 3.333 0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.579 60.586 10.233 3.417 0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.662 60.669 10.316 3.500
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.746 60.752 10.399 3.583
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.829 60.836 10.483 3.667
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.912 60.919 10.566 3.750
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1996.996 61.002 10.649 3.833
                                  0.083 2nd CVD
                                                   2nd CVD Conventional
5 1997.079 61.086 10.733 3.917 0.083 2nd CVD
                                                   2nd CVD Conventional
5 1997.162 61.169 10.816 4.000 0.083 2nd CVD
                                                   2nd CVD Conventional
5 1997.246 61.252 10.899 4.083
                                 0.083 2nd CVD
                                                  2nd CVD Conventional
```


Representation of multistate FU: Lexis IV

```
5 1997.329 61.336 10.983 4.167
                                 0.083 2nd CVD
                                                2nd CVD Conventional
5 1997.412 61.419 11.066 4.250
                                 0.083 2nd CVD
                                                 2nd CVD Conventional
5 1997.496 61.502 11.149 4.333
                                 0.083 2nd CVD
                                                2nd CVD Conventional
5 1997.579 61.586 11.233 4.417
                                 0.083 2nd CVD
                                                2nd CVD Conventional
5 1997.662 61.669 11.316 4.500
                                 0.083 2nd CVD
                                                 2nd CVD Conventional
                                                                        Μ
5 1997.746 61.752 11.399 4.583
                                 0.083 2nd CVD
                                                 2nd CVD Conventional
5 1997.829 61.836 11.483 4.667
                                 0.083 2nd CVD
                                                2nd CVD Conventional
                                                                        Μ
5 1997.912 61.919 11.566 4.750
                                 0.083 2nd CVD
                                                2nd CVD Conventional
5 1997.996 62.002 11.649 4.833
                                 0.051 2nd CVD D(2 CVD) Conventional
```


25/ 38

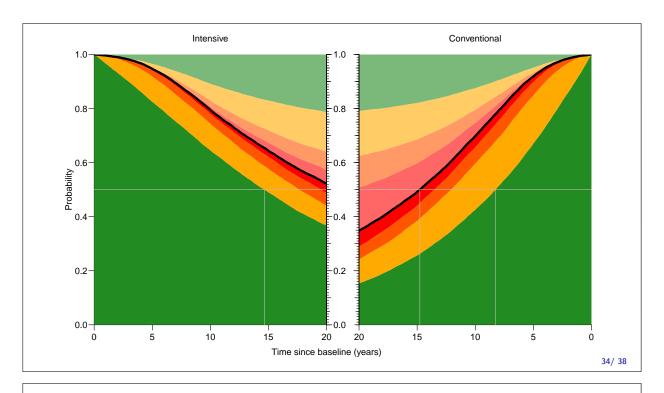

Representation of multistate FU: Lexis

```
tsb lex.dur lex.Cst lex.Xst
lex.id
                                                                allocation sex
                   age
                          dur
            per
     5 1993.162 57.169
                        6.816 0.000
                                      0.083
                                                           DM Conventional
                                                  DM
     5 1993.246 57.252
                        6.899 0.083
                                      0.083
                                                  DM
                                                           DM Conventional
     5 1993.829 57.836
                        7.483 0.667
                                      0.083
                                                  DM
                                                           DM Conventional
                                                                             М
     5 1993.912 57.919
                        7.566 0.750
                                      0.047
                                                  DM
                                                      1st CVD Conventional
                                                                             М
     5 1993.959 57.966
                        7.613 0.797
                                      0.037 1st CVD
                                                      1st CVD Conventional
     5 1994.496 58.502
                        8.149 1.333
                                      0.083 1st CVD
                                                      1st CVD Conventional
                        8.233 1.417
                                      0.078 1st CVD
     5 1994.579 58.586
                                                      2nd CVD Conventional
                                                                             М
     5 1994.657 58.664
                        8.311 1.495
                                      0.005 2nd CVD
                                                      2nd CVD Conventional
     5 1994.746 58.752
                        8.399 1.583
                                      0.083 2nd CVD
                                                      2nd CVD Conventional
     5 1994.829 58.836 8.483 1.667
                                      0.083 2nd CVD
                                                      2nd CVD Conventional
     5 1997.912 61.919 11.566 4.750
                                      0.083 2nd CVD
                                                     2nd CVD Conventional
                                                                             М
     5 1997.996 62.002 11.649 4.833
                                      0.051 2nd CVD D(2 CVD) Conventional
```


Modeling mortality rates in Lexis objects

Modeling CVD rates in Lexis objects

31/ 38

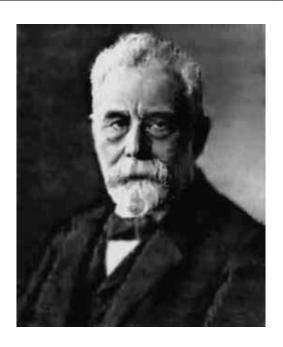

From rates to probabilities

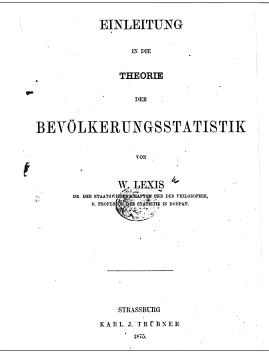
- ▶ There is a one-to-one correspondence between:
 - ▶ all rates between states (by time) + initial state distribution
 - state distribution by time
- Model for rates
 - ⇒ probability of being in a given state at any given time
- Analytically this is a nightmare
- Simulation is the answer

32/ 38

From rates to probabilities: simLexis

- Assume a person is in "DM" initially
 - Simulate a time of death (transition to "D(no CVD)")
 - Simulate a time of CVD (transition to "1st CVD")
 - Choose the smaller as the transition
- ▶ If transition is to "1st CVD" simulate death / 2nd CVD, etc.
- ▶ Repeat for, say, 10,000 persons
 - ⇒ simulated cohort study
- simLexis does this for you, provided you have
 - initial state and covariates for all persons
 - models to predict (cumulative) rates
- ▶ Count how many is in each state at each time:
 - ⇒ state occupancy probabilities
- nState and pState does this for you


Using the Lexis machinery


- Allows estimation of fully parametric rate function
- Simple test for proportional hazards
- ► State occupancy probabilities requires simulation: simLexis see vignette in Epi package
- Access to other measures such as expected residual lifetime.
- similar machinery available in Stata:
 - multistate
 - Crowther, M. J. & Lambert, P. C.: Parametric multi-state survival models: flexible modeling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. Under review for Stats in Medicine
 - Only one timescale, however...

35/ 38

History

- ► Epi package grew out of "Statistical Practice in Epidemiology with R", annually since 2002 in Tartu Estonia
- Lexis machinery conceived by Martyn Plummer, IARC
- Naming originally by David Clayton & Michael Hills, stlexis in Stata, later renamed stsplit
- ▶ David Clayton wrote a lexis function for the Epi package. Obsolete now.

37/ 38

Summary of Lexis

- Proper representation of multistate data essential:
 States, transitions, risk time, occupancy
- ▶ Readable modeling code but standard models
- Calculation of state probabilities requires simulation in any realistic situation
- Examples of practical multistate modeling in: http://bendixcarstensen.com/AdvCoh/Lexis-ex/
- ▶ Worked example in the simLexis vignette in Epi package

Thanks for your attention