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The best way to learn R

I The best way to learn R is to use it!

I This is a very short introduction before you sit down in front of
a computer.

I R is a little different from other packages for statistical
analysis.

I These differences make R very powerful, but for a new user
they can sometimes be confusing.

I Our first job is to help you up the initial learning curve so that
you can be comfortable with R.
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Nothing is lost or hidden

I Statistical software provides “canned” procedures to address
common statistical problems.

I Canned procedures are useful for routine analysis, but they are
also limiting.

I You can only do what the programmer lets you do.

I In R, the results of statistical calculations are always accessible.

I You can use them for further calculations.
I You can always see how the calculations were done.
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R Packages

I The capabilities of R can be extended using “packages”.

I Distributed over the Internet via CRAN:
(the Comprehensive R Archive Network) and can be
downloaded directly from an R session.

I There is an R package developed during the annual course on
“Statistical Practice in Epidemiology using R, called “Epi”.

I Contains special functions for epidemiologists and some data
sets that .

I There are 5,825 other user contributed packages on CRAN.
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Objects and functions

R allows you to build powerful procedures from simple building
blocks. These building blocks are objects and functions.

I All data in R is represented by objects, for example:

I A dataset (called data frame in R)
I A vector of numbers
I The result of fitting a model to data

I You, the user, call functions

I Functions act on objects to create new objects:

I Using glm on a dataframe (an object) produces a fitted model
(another object).
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Because all is functions. . .

I You will always (almost) use parentheses:
> res <- FUN( x, y )

I . . . which is pronounced

I res gets (”<-”) FUN of x,y (”(x,y)”)
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Vectors

One of the simplest objects in R is a sequence of numbers, called a
vector.

You can create a vector in R with the collection (c) function:

> c(1,3,2)

[1] 1 3 2

You can save the results of any calculation using the left arrow:

> x <- c(1,3,2)

> x

[1] 1 3 2
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The workspace

I Every time you use <-, you create a new object in the
workspace (or overwrite an old one).

I A list of objects in the workspace can be seen with the
objects function (synonym: ls()):
> objects()

[1] "a" "aa" "acz2" "alpha" "b"

[6] "bar" "bb" "bdendo" "beta" "cc"

[11] "Col"
I In Epi is a function lls() that gives a bit more information

on the objects.
I The workspace is held entirely in (volatile) computer memory

and will be lost at the end of the session unless you explicitly
save it.Introducing R (Data) 8/ 218

Working Directory

Every R session has a current working directory, which is the
location on the hard disk where files are saved, and the default
location from which files are read into R.

I getwd() Prints the current working directory

I setwd("c:/Users/Martyn/Project") sets the current
working directory.

I You may also use a Graphical User Interface (GUI) to change
directory.
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Ending an R session

I To end an R session, call the quit() function

I Every time you want to do something in R, you call a function.

I You will be asked “Save workspace image?”

Yes saves the workspace to the file “.RData” in your
current working directory. It will be automatically
loaded into R the next time you start an R session.

No does not save the workspace.
Cancel continues the current R session without saving

anything.

I It is recommended you just say “No”.
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Always start with a clean workspace

Keeping objects in your workspace from one session to another can
be dangerous:

I You forget how they were made.

I You cannot easily recreate them if your data changes.

I They may not even be from the same project

It is almost always best to start with an empty workspace and use a
script file to create the objects you need from scratch.

Introducing R (Data) 11/ 218

Rectangular Data

Rectangular data sets are common to most statistical packages

”id” ”visit” ”time” ”status”

1 1 0.0 0
1 2 1.5 0
2 1 0.0 0
2 2 1.1 0
2 3 2.3 1

Columns represent variables.
Rows represent individual records.
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The world is not a rectangle!

I Most statistical packages used by epidemiologists assume that
all data can be represented as a rectangular data set.

I R allows a much richer set of data structures, represented by
objects of different classes.

I Rectangular data sets are just one type of object that may be
in your workspace. This class of object is called a data frame.
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Data Frames

Each column of a data frame is a variable.

Variables may be of different types:

I vectors:
I numeric: c(1,2,3)
I character: c("John","Paul","George","Ringo")
I logical: c(FALSE,FALSE,TRUE)

I factors: factor(c("low","medium","high","low",
"low"))
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Building your own data frame

Data frames can be constructed from a list of vectors

> mydata <- data.frame(x=c(3,6,7),f=c("a","b","a"))

> mydata

x f

1 3 a

2 6 b

3 7 a

Character vectors are automatically converted to factors.
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Inspecting data frames

Most data frames are too large to inspect by printing them to the
screen, so use:

I names returns a vector of variable names.
I You can use sort(names(x)) to get them in alphabetical order.

I head prints the first few lines, and tail. . .

I str prints a brief overview of the structure of the data frame.
Can be used on any object.

I summary prints a more comprehensive summary

I Quantiles for numeric variables
I Tables for factors
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Extracting values from a data frame

Use square brackets to take subsets of a data frame

I mydata[1,2]. The value in row 1, column 2.

I mydata[1,]. The whole of the first row.

I mydata[,2]. The whole of the second column.

You can also extract a column from a data frame by name:

I mydata$age. The column, or variable, named “age”

I mydata[,"age"]. The same.
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Importing data
I R has good facilities for importing data from other

applications:
I read.dta for reading Stata datasets.
I read.spss for reading SPSS datasets.
I read.xport and read.ssd for reading SAS-datasets.
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Reading Text Files

The function read.table reads data from a text file and returns a
data frame.

I mydata <- read.table("myfile")
I myfile could be

I A file in the current working directory: fem.dat
I A path to a file: c:/rex/fem.dat
I A URL: http://BendixCarstensen.com/AdvCoh/Scot-

2014/data/bogus.txt

I Note: myfile must be enclosed in quotes.

write.table does the opposite.

R uses a forward slash / for file paths. If you want to use
backslash, you have to double it:

c:\\rex\\fem.datIntroducing R (Data) 19/ 218



Some useful arguments to read.table

I header = TRUE if first line contains variable names

I sep="," if values are comma-separated instead of being
space-delimited.

I as.is = TRUE to stop strings being converted to factors

I na.strings = "99" to denote that 99 means “missing”.
Default values are:

I NA“Not Available”
I NaN“Not a Number”

I For comma-separated files there is coderead.csv
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Reading Binary Data

I R can read in data in binary (non-text) format from other
statistical systems using the foreign extension package.

I R is an open source project, and relies on the format for binary
files to be well-documented.

I Example: SAS XPORT format has been adopted as a data
exchange standard by the US Food and Drug Administration.
SAS CPORT format remains a proprietary format.
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Some functions in the foreign package

I read.dta for Stata (also write.dta)

I read.xport for SAS XPORT format (not CPORT)

I read.epiinfo for EPIINFO

I read.mtp for MiniTab Portable Worksheet

I read.spss for SPSS

See the “R Data Import/Export manual” for more details.
RShowDoc("R-data")
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Accessing databases systems
Microsoft Access:
> library(RODBC)

> ch <- odbcConnectAccess("../data/theData.mdb")

> bd <- sqlFetch(ch, "aTable" )

Microsoft Excel:
> library( RODBC )

> cnc <- odbcConnectExcel(paste("../theXel.xls",sep=""))

> sht <- sqlFetch( cnc, "theSheet" )

> close( cnc )

Other databases
> ?odbcConnect
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Summary - data

I You can use a data frame to organize your variables

I You can extract variables from a data frame using $.

I You can extract variables and observation using indecing [,]
I You can read in data using

I read.table
I tailored function from the foreign package
I database interface from the RODBC package
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Summary - when it goes wrong

When somthing is fishy with an object obj, try to find out what
you (accidentally) got, by using:

> lls()

> str( obj )

> dim( obj )

> length( obj )

> names( obj )

> head( obj )

> class( obj )

> mode( obj )
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Language

I R is a programming language – also on the command line

I (This means that there are syntax rules)

I Print an object by typing its name

I Evaluate an expression by entering it on the command line

I Call a function, giving the arguments in parentheses – possibly
empty

I Notice ls vs. ls()

R language (lang) 26/ 218

Objects

I The simplest object type is vector

I Modes: numeric, integer, character, generic (list)

I Operations are vectorized: you can add entire vectors with a +

b

I Recycling of objects: If the lengths don’t match, the shorter
vector is reused
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R expressions

x <- rnorm(10, mean=20, sd=5)

m <- mean(x)

sum((x - m)^2)

I Object names

I Explicit constants

I Arithmetic operators

I Function calls

I Assignment of results to names
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Function calls

Lots of things you do with R involve calling functions.
For instance

mean(x, na.rm=TRUE)

The important parts of this are

I The name of the function

I Arguments: input to the function

I Sometimes, we have named arguments
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Function arguments
rnorm(10, mean=m, sd=s)

hist(x, main="My histogram")

mean(log(x + 1))

Items which may appear as arguments:

I Names of an R objects
I Explicit constants
I Return values from another function call or expression
I Some arguments have their default values.
I Use help(function ) or args(function ) to see the

arguments (and their order and default values) that can be
given to any function.
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Creating simple functions

logit <- function(p) log(p/(1-p))

logit(0.5)

simpsum <-

function(x, dec=5)

{

# produces mean and SD of a variable

# default value for dec is 5

round(c(mean=mean(x),sd=sd(x)),dec)

}

x <- rnorm(100)

simpsum(x)

simpsum(x,2)
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Indexing

I R has several useful indexing mechanisms:

I a[5] single element

I a[5:7] several elements

I a[-6] all except the 6th

I a[c(1,1,2,1,2)] some elements repeated

I a[b>200] logical index

I a[ well ] indexing by name

R language (lang) 32/ 218

Lists

I Lists are vectors where the elements can have different types
I Functions often return lists
I lst <- list(A=rnorm(5),B="hello",K=12)

I Special indexing:
I lst$A

I lst[1:2] a list with first two first elements (A and B — NB:
single brackets)

I lst[1] a list of length 1 which is the first element (codeA —
NB: single brackets)

I lst[[1]] first element (NB: double brackets) — a vector of
length 5.
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Classes, generic functions

I R objects have classes

I Functions can behave differently depending on the class of an
object

I E.g. summary(x) or print(x) does different things if x is
numeric, a factor, or a linear model fit
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The workspace

I The global environment contains R objects created on the
command line.

I There is an additional search path of loaded packages and
attached data frames.

I When you request an object by name, R looks first in the
global environment, and if it doesn’t find it there, it continues
along the search path.

I The search path is maintained by library(), attach(), and
detach()

I List the search path by search()
I Notice that objects in the global environment may mask

objects in packages and attached data frames
R language (lang) 35/ 218

Data manipulation and with

bmi <- with(stud, weight/(height/100)^2)

uses variables weight and height in the data frame stud (not the
variables with the same name in the workspace), but creates the
variable bmi in the global environment (not in the data frame).

To create a new variable in the data frame, you can use:

stud$bmi <- with( stud, weight/(height/100)^2 )
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Constructors

I Matrices and arrays, constructed by the (surprise) matrix and
array functions.

I You can extract and set names with names(x); for matrices
and data frames also colnames(x) and rownames(x)

I You can also construct a matrix from its columns using cbind,
whereas joining two matrices with equal no of columns (with
the same column names) can be done using rbind.
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Factors (class variables)

I Factors are used to describe groupings.

I Basically, these are just integer codes plus a set of names for
the levels

I They have class "factor" making them (a) print nicely and
(b) maintain consistency

I A factor can also be ordered (class "ordered"), signifying
that there is a natural sort order on the levels

I In model specifications, factors play a fundamental role by
indicating that a variable should be treated as a classification
rather than as a quantitative variable (similar to a CLASS
statement in SAS)
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The factor function

I This is typically used when read.table gets it wrong,

I e.g. group codes read as numeric

I or read as factors, but with levels in the wrong order (e.g.
c("rare", "medium", "well-done") sorted alphabetically.)

I Notice that there is a slightly confusing use of levels and
labels arguments:

I levels are the value codes on input
I labels are the value codes on output (and becomes the levels of the

resulting factor)
I The levels of a factor is shown by the levels() function.
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Working with Dates

I Dates are usually read as character or factor variables

I Use the as.Date function to convert them to objects of class
"Date"

I If data are not in the default format (yyyy-mm-dd) you need
to supply a format specification

> as.Date("11/3-1959",format="%d/%m-%Y")

[1] "1959-03-11"
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Working with Dates

I Computing the differences between Date objects gives an
object of class "difftime", which is number of days between
the two dates:
> as.numeric(as.Date("2007-5-25")-

as.Date("1959-3-11"),"days")

[1] 17607

I In the Epi package is a function that converts dates to
calendar years with decimals:
> as.Date("1952-07-14")

[1] "1952-07-14"

> cal.yr( as.Date("1952-07-14") )

[1] 1952.533

attr(,"class")

[1] "cal.yr" "numeric"R language (lang) 40/ 218

Basic graphics

The plot() function is a generic function, producing different plots
for different types of arguments. For instance, plot(x) produces:

I a plot of observation index against the observations, when x is
a numeric variable

I a bar plot of category frequencies, when x is a factor variable

I a time series plot (interconnected observations) when x is a
time series

I a set of diagnostic plots, when x is a fitted regression model

I . . .
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Basic graphics

Similarly, the plot(x,y) produces:

I a scatter plot of x is a numeric variable

I a bar plot of category frequencies, when x is a factor variable
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Basic graphics
Examples:

x <- c(0,1,2,1,2,2,1,1,3,3)

plot(x)

plot(factor(x))

plot(ts(x)) # ts() defines x as time series

y <- c(0,1,3,1,2,1,0,1,4,3)

plot(x,y)

plot(factor(x),y)
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Basic graphics

More simple plots:

I hist(x) produces a histogram

I barplot(x) produces a bar plot (useful when x contains
counts – often one uses barplot(table(x)))

I boxplot(y x) produces a box plot of y by levels of a (factor)
variable x.
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Survival data

Persons enter the study at some date.

Persons exit at a later date, either dead or alive.

Observation:
Actual time span to death (“event”)

or
Some time alive (“at least this long”)
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Examples of time-to-event measurements

I Time from diagnosis of cancer to death.

I Time from randomisation to death in a cancer clinical trial

I Time from HIV infection to AIDS.

I Time from marriage to 1st child birth.

I Time from marriage to divorce.

I Time to re-offending after being released from jail
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Ordered by date
of entry

Most likely the
order in your
database.
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Timescale
changed to
“Time since
diagnosis”.
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Patients ordered
by survival time.
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Survival times
grouped into
bands of
survival.

Year of follow−up
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Patients ordered
by survival
status within
each band.

Year of follow−up
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Survival after Cervix cancer

Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13

10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465

Estimated 1 year survival is 1− 0.0465 = 0.9535

Life-table estimator.Rates and Survival (surv-rate) 53/ 218

Survival function

Persons enter at time 0:
Date of birth, date of randomization, date of diagnosis.

How long do they survive?
Survival time T — a stochastic variable.

Distribution is characterized by the survival function:

S (t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

F (t) is the cumulative risk of death before time t .
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Intensity or rate

P {event in (t , t + h] | alive at t} /h

=
F (t + h)− F (t)

S (t)× h

= − S (t + h)− S (t)

S (t)h
−→
h→0
− dlogS (t)

dt

= λ(t)

This is the intensity or hazard function for the distribution.
Characterizes the survival distribution as does f or F .

Theoretical counterpart of a rate.
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Relationships

− dlogS (t)

dt
= λ(t)

m

S (t) = exp

(
−
∫ t

0

λ(u) du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(s) ds is called the integrated intensity. Not an
intensity, it is dimensionless.

λ(t) = − dlog(S (t))

dt
= −S

′(t)

S (t)
=

F ′(t)

1− F (t)
=

f (t)

S (t)
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Rate and survival

S (t) = exp

(
−
∫ t

0

λ(s) ds

)
λ(t) =

S ′(t)

S (t)

Survival is a cumulative measure, the rate is an instantaneous
measure.

Note: A cumulative measure requires an origin!

. . . it is always survival since some timepoint.

Rates and Survival (surv-rate) 57/ 218

Observed survival and rate

I Survival studies: Observation of (right censored) survival
time:

X = min(T ,Z ), δ = 1{X = T}
— sometimes conditional on T > t0
(left truncation, delayed entry).

I Epidemiological studies:
Observation of (components of) a rate:

D/Y

D : no. events, Y no of person-years, in a prespecified
time-frame.
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Empirical rates for individuals

I At the individual level we introduce the
empirical rate: (d , y),
— number of events (d ∈ {0, 1}) during y risk time.

I A person contributes several observations of (d , y), with
associated covariate values.

I Empirical rates are responses in survival analysis.

I The timescale t is a covariate — varies within each individual:
t : age, time since diagnosis, calendar time.

I Don’t confuse with y — difference between two points on any
timescale we may choose.
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Empirical rates
by
calendar time.
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Empirical rates
by
time since
diagnosis.

Time since diagnosis
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Statistical inference: Likelihood

Two things needed:

I Data — what did we actually observe
Follow-up for each person:
Entry time, exit time, exit status, covariates

I Model — how was data generated
Rates as a function of time:
Probability machinery that generated data

Likelihood is the probability of observing the data, assuming the
model is correct.

Maximum likelihood estimation is choosing parameters of the
model that makes the likelihood maximal.
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Likelihood from one person

The likelihood from several empirical rates from one individual is a
product of conditional probabilities:

P {event at t4|t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

Log-likelihood from one individual is a sum of terms.

Each term refers to one empirical rate (d , y)
— y = ti − ti−1 and mostly d = 0.

ti is the timescale (covariate).
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Poisson likelihood

The log-likelihood contributions from follow-up of one individual:

dt log
(
λ(t)

)
− λ(t)yt , t = t1, . . . , tn

is also the log-likelihood from several independent Poisson
observations with mean λ(t)yt , i.e. log-mean log

(
λ(t)

)
+ log(yt)

Analysis of the rates, (λ) can be based on a Poisson model with
log-link applied to empirical rates where:

I d is the response variable.

I log(λ) is modelled by covariates

I log(y) is the offset variable.
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Likelihood for follow-up of many persons

Adding empirical rates over the follow-up of persons:

D =
∑

d Y =
∑

y ⇒ D log(λ)− λY

I Persons are assumed independent
I Contribution from the same person are conditionally

independent, hence give separate contributions to the
log-likelihood.

I Therefore equivalent to likelihood for independent Poisson
variates

I No need to correct for dependent observations; the likelihood
is a product.
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Likelihood

Probability of the data and the parameter:

Assuming the rate (intensity) is constant, λ, the probability of
observing 7 deaths in the course of 500 person-years:

P {D = 7,Y = 500|λ} = λDeλY ×K

= λ7eλ500 ×K

= L(λ|data)

Best guess of λ is where this function is as large as possible.

Confidence interval is where it is not too far from the maximum
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Likelihood function
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Likelihood function
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Confidence interval for a rate

A 95% confidence interval for the log of a rate is:

θ̂ ± 1.96/
√
D = log(λ)± 1.96/

√
D

Take the exponential to get the confidence interval for the rate:

λ
×
÷ exp(1.96/

√
D)︸ ︷︷ ︸

error factor,erf
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Example

Suppose we have 17 deaths during 843.6 years of follow-up.

The rate is computed as:

λ̂ = D/Y = 17/843.7 = 0.0201 = 20.1 per 1000 years

The confidence interval is computed as:

λ̂
×
÷ erf = 20.1

×
÷ exp(1.96/

√
D) = (12.5, 32.4)

per 1000 person-years.
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Ratio of two rates

If we have observations two rates λ1 and λ0, based on (D1,Y1) and
(D0,Y0), the variance of the difference of the log-rates, the
log(RR), is:

var(log(RR)) = var(log(λ1/λ0))

= var(log(λ1)) + var(log(λ0))

= 1/D1 + 1/D0

As before a 95% c.i. for the RR is then:

RR
×
÷ exp

(
1.96

√
1

D1
+

1

D0

)

︸ ︷︷ ︸
error factor
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Example

Suppose we in group 0 have 17 deaths during 843.6 years of
follow-up in one group, and in group 1 have 28 deaths during 632.3
years.

The rate-ratio is computed as:

RR = λ̂1/λ̂0 = (D1/Y1)/(D0/Y0)

= (28/632.3)/(17/843.7) = 0.0443/0.0201 = 2.198

The 95% confidence interval is computed as:

R̂R
×
÷ erf = 2.198

×
÷ exp

(
1.96

√
1/17 + 1/28

)

= 2.198
×
÷ 1.837 = (1.20, 4.02)
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Example using R

Poisson likelihood, for one rate,
based on 17 events in 843.7 PY:

library( Epi )
D <- 17 ; Y <- 843.7
m1 <- glm( D ~ 1, offset=log(Y/1000), family=poisson)
ci.exp( m1 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.14934 12.52605 32.41213

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068Rates and Survival (surv-rate) 72/ 218

Example using R

Poisson likelihood, two rates, or one rate and RR:

D <- c(17,28) ; Y <- c(843.7,632.3) ; gg <- factor(0:1)
m2 <- glm( D ~ gg, offset=log(Y/1000), family=poisson)
ci.exp( m2 )

exp(Est.) 2.5% 97.5%
(Intercept) 20.149342 12.526051 32.412130
gg1 2.197728 1.202971 4.015068

m3 <- glm( D ~ gg - 1, offset=log(Y/1000), family=poisson)
ci.exp( m3 )

exp(Est.) 2.5% 97.5%
gg0 20.14934 12.52605 32.41213
gg1 44.28278 30.57545 64.13525

Rates and Survival (surv-rate) 73/ 218

Representation of follow-up data

Bendix Carstensen
Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis

University of Aberdeen,
18 AUgust 2017

http://BendixCarstensen/AdvCoh/courses/Frias-2016 time-split

Follow-up and rates

I Follow-up studies:
I D — events, deaths
I Y — person-years
I λ = D/Y rates

I Rates differ between persons.
I Rates differ within persons:

I By age
I By calendar time
I By disease duration
I . . .

I Multiple timescales.
I Multiple states (little boxes — later)
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Stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of
current age, both for:
No. of events, D , and Risk time, Y .

Age-scale
35 40 45 50

Follow-up
Two e1 5 3

One u4 3
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Representation of follow-up data

A cohort or follow-up study records:
Events and Risk time.

The outcome is thus bivariate: (d , y)

Follow-up data for each individual must therefore have (at least)
three variables:

Date of entry entry date variable
Date of exit exit date variable
Status at exit fail indicator (0/1)

Specific for each type of outcome.
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y d

t0 t1 t2 tx

y1 y2 y3

Probability log-Likelihood

P(d at tx|entry t0) d log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(d at tx|entry t2) + d log(λ)− λy3
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y ed = 0

t0 t1 t2 tx

y1 y2 y3
e

Probability log-Likelihood

P(surv t0 → tx|entry t0) 0 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(surv t2 → tx|entry t2) + 0 log(λ)− λy3
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y ud = 1

t0 t1 t2 tx

y1 y2 y3
u

Probability log-Likelihood

P(event at tx|entry t0) 1 log(λ)− λy
= P(surv t0 → t1|entry t0) = 0 log(λ)− λy1

×P(surv t1 → t2|entry t1) + 0 log(λ)− λy2

×P(event at tx|entry t2) + 1 log(λ)− λy3
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Dividing time into bands:

If we want to put D and Y into intervals on the timescale we must
know:

Origin: The date where the time scale is 0:

I Age — 0 at date of birth
I Disease duration — 0 at date of diagnosis
I Occupation exposure — 0 at date of hire

Intervals: How should it be subdivided:

I 1-year classes? 5-year classes?
I Equal length?

Aim: Separate rate in each interval
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Example: cohort with 3 persons:

Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1

I Age bands: 10-years intervals of current age.

I Split Y for every subject accordingly

I Treat each segment as a separate unit of observation.

I Keep track of exit status in each interval.
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Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Splitting the follow-up

id Bdate Entry Exit St risk int

1 14/07/1952 03/08/1965 14/07/1972 0 6.9432 10
1 14/07/1952 14/07/1972 14/07/1982 0 10.0000 20
1 14/07/1952 14/07/1982 14/07/1992 0 10.0000 30
1 14/07/1952 14/07/1992 27/06/1997 1 4.9528 40
2 01/04/1954 08/09/1972 01/04/1974 0 1.5606 10
2 01/04/1954 01/04/1974 31/03/1984 0 10.0000 20
2 01/04/1954 31/03/1984 01/04/1994 0 10.0000 30
2 01/04/1954 01/04/1994 23/05/1995 0 1.1417 40
3 10/06/1987 23/12/1991 09/06/1997 0 5.4634 0
3 10/06/1987 09/06/1997 24/07/1998 1 1.1211 10

Keeping track of calendar time too?
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Timescales

I A timescale is a variable that varies deterministically within
each person during follow-up:

I Age
I Calendar time
I Time since treatment
I Time since relapse

I All timescales advance at the same pace
(1 year per year . . . )

I Note: Cumulative exposure is not a timescale.
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Follow-up on several timescales

I The risk-time is the same on all timescales
I Only need the entry point on each time scale:

I Age at entry.
I Date of entry.
I Time since treatment at entry.

— if time of treatment is the entry, this is 0 for all.

I Response variable in analysis of rates:

(d , y) (event, duration)

I Covariates in analysis of rates:
I timescales
I other (fixed) measurements
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Follow-up data in Epi — Lexis objects
A follow-up study:

> round( th, 2 )

id sex birthdat contrast injecdat volume exitdat exitstat

1 1 2 1916.61 1 1938.79 22 1976.79 1

2 640 2 1896.23 1 1945.77 20 1964.37 1

3 3425 1 1886.97 2 1955.18 0 1956.59 1

4 4017 2 1936.81 2 1957.61 0 1992.14 2

...

Timescales of interest:

I Age
I Calendar time
I Time since injection
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Definition of Lexis object

> thL <- Lexis( entry = list( age = injecdat-birthdat,
+ per = injecdat,
+ tfi = 0 ),
+ exit = list( per = exitdat ),
+ exit.status = as.numeric(exitstat==1),
+ data = th )

entry is defined on three timescales,
but exit is only defined on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat
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The looks of a Lexis object

> thL[,1:9]
age per tfi lex.dur lex.Cst lex.Xst lex.id

1 22.18 1938.79 0 37.99 0 1 1
2 49.54 1945.77 0 18.59 0 1 2
3 68.20 1955.18 0 1.40 0 1 3
4 20.80 1957.61 0 34.52 0 0 4
...

> summary( thL )
Transitions:

To
From 0 1 Records: Events: Risk time: Persons:

0 3 20 23 20 512.59 23
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> plot( thL, lwd=3 )
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Lexis diagram

> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast], grid=T )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )
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> plot( thL, 2:1, lwd=5, col=c("red","blue")[thL$contrast],

+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),

+ xlim=1930+c(0,70), xaxs="i", ylim= 10+c(0,70), yaxs="i", las=1 )

> points( thL, 2:1, pch=c(NA,3)[thL$lex.Xst+1],lwd=3, cex=1.5 )Representation of follow-up data (time-split) 92/ 218

Splitting follow-up time

> spl1 <- splitLexis( thL, breaks=seq(0,100,20),
> time.scale="age" )
> round(spl1,1)

age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 22.2 1938.8 0.0 17.8 0 0 1 2 1916.6 1 1938.8 22
2 40.0 1956.6 17.8 20.0 0 0 1 2 1916.6 1 1938.8 22
3 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
4 49.5 1945.8 0.0 10.5 0 0 640 2 1896.2 1 1945.8 20
5 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
6 68.2 1955.2 0.0 1.4 0 1 3425 1 1887.0 2 1955.2 0
7 20.8 1957.6 0.0 19.2 0 0 4017 2 1936.8 2 1957.6 0
8 40.0 1976.8 19.2 15.3 0 0 4017 2 1936.8 2 1957.6 0
...
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Split on another timescale
> spl2 <- splitLexis( spl1, time.scale="tfi",

breaks=c(0,1,5,20,100) )
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1 1945.8 20
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1 1945.8 20
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1 1945.8 20
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1 1945.8 20
11 3 68.2 1955.2 0.0 1.0 0 0 3425 1 1887.0 2 1955.2 0
12 3 69.2 1956.2 1.0 0.4 0 1 3425 1 1887.0 2 1955.2 0
13 4 20.8 1957.6 0.0 1.0 0 0 4017 2 1936.8 2 1957.6 0
14 4 21.8 1958.6 1.0 4.0 0 0 4017 2 1936.8 2 1957.6 0
15 4 25.8 1962.6 5.0 14.2 0 0 4017 2 1936.8 2 1957.6 0
16 4 40.0 1976.8 19.2 0.8 0 0 4017 2 1936.8 2 1957.6 0
17 4 40.8 1977.6 20.0 14.5 0 0 4017 2 1936.8 2 1957.6 0
...
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age tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast injecdat volume
22.2 0.0 1.0 0 0 1 2 1916.6 1 1938.8 22
23.2 1.0 4.0 0 0 1 2 1916.6 1 1938.8 22
27.2 5.0 12.8 0 0 1 2 1916.6 1 1938.8 22
40.0 17.8 2.2 0 0 1 2 1916.6 1 1938.8 22
42.2 20.0 17.8 0 0 1 2 1916.6 1 1938.8 22
60.0 37.8 0.2 0 1 1 2 1916.6 1 1938.8 22
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Likelihood for a piecewise constant rate

I This setup is for a situation where it is assumed that rates are
constant in each of the intervals.

I Each observation in the dataset contributes a term to a
“Poisson” likelihood.

I Models can include fixed covariates, as well as the timescales
(the left end-points of the intervals) as continuous variables.

I Rates are assumed to vary by timescales:

I continuously
I non-linearly

I Rates can vary along several timescales simultaneously.
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Where is (dpi , ypi) in the split data?
Likelihood is dpi log(λpi)− λpiypi
> round( spl2, 1 )

lex.id age per tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast
1 1 22.2 1938.8 0.0 1.0 0 0 1 2 1916.6 1
2 1 23.2 1939.8 1.0 4.0 0 0 1 2 1916.6 1
3 1 27.2 1943.8 5.0 12.8 0 0 1 2 1916.6 1
4 1 40.0 1956.6 17.8 2.2 0 0 1 2 1916.6 1
5 1 42.2 1958.8 20.0 17.8 0 0 1 2 1916.6 1
6 1 60.0 1976.6 37.8 0.2 0 1 1 2 1916.6 1
7 2 49.5 1945.8 0.0 1.0 0 0 640 2 1896.2 1
8 2 50.5 1946.8 1.0 4.0 0 0 640 2 1896.2 1
9 2 54.5 1950.8 5.0 5.5 0 0 640 2 1896.2 1
10 2 60.0 1956.2 10.5 8.1 0 1 640 2 1896.2 1
...

— and what are covariates for the rates?
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Analysis of results

I dpi — events in the variable: lex.Xst:
In the model as response: lex.Xst==1

I ypi — risk time: lex.dur (duration):
In the model as offset log(y), log(lex.dur).

I Covariates are:
I timescales (age, period, time in study)
I other variables for this person (constant or assumed constant in each

interval).

I Model rates using the covariates in glm:
— no difference between time-scales and other covariates.
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Classical estimators: Lifetable
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Survival analysis

I Response variable: Time to event, T

I Censoring time, Z

I We observe (min(T ,Z ), δ = 1{T < Z}).

I This gives time a special status, and mixes the response
variable (risk)time with the covariate time(scale).

I Originates from clinical trials where everyone enters at time 0,
and therefore Y = T − 0 = T
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The life table method

The simplest analysis is by the “life-table method”:

interval alive dead cens.
i ni di li pi

1 77 5 2 5/(77− 2/2)= 0.066
2 70 7 4 7/(70− 4/2)= 0.103
3 59 8 1 8/(59− 1/2)= 0.137

pi = P {death in interval i} = 1− di/(ni − li/2)

S (t) = (1− p1)× · · · × (1− pt)
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Population life table, DK 1997–98
Men Women

a S(a) λ(a) E[`res(a)] S(a) λ(a) E[`res(a)]

0 1.00000 567 73.68 1.00000 474 78.65
1 0.99433 67 73.10 0.99526 47 78.02
2 0.99366 38 72.15 0.99479 21 77.06
3 0.99329 25 71.18 0.99458 14 76.08
4 0.99304 25 70.19 0.99444 14 75.09
5 0.99279 21 69.21 0.99430 11 74.10
6 0.99258 17 68.23 0.99419 6 73.11
7 0.99242 14 67.24 0.99413 3 72.11
8 0.99227 15 66.25 0.99410 6 71.11
9 0.99213 14 65.26 0.99404 9 70.12

10 0.99199 17 64.26 0.99395 17 69.12
11 0.99181 19 63.28 0.99378 15 68.14
12 0.99162 16 62.29 0.99363 11 67.15
13 0.99147 18 61.30 0.99352 14 66.15
14 0.99129 25 60.31 0.99338 11 65.16
15 0.99104 45 59.32 0.99327 10 64.17
16 0.99059 50 58.35 0.99317 18 63.18
17 0.99009 52 57.38 0.99299 29 62.19
18 0.98957 85 56.41 0.99270 35 61.21
19 0.98873 79 55.46 0.99235 30 60.23
20 0.98795 70 54.50 0.99205 35 59.24
21 0.98726 71 53.54 0.99170 31 58.27
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Danish life tables 1997−1998

log2[mortality per 105 (40−85 years)]

Men: −14.289 + 0.135 age

Women: −14.923 + 0.135 age
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Observations for the lifetable
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Life table is based on person-years and
deaths accumulated in a short period.

Age-specific rates — cross-sectional!

Survival function:

S (t) = e−
∫ t

0
λ(a) da = e−

∑t
0 λ(a)

— assumes stability of rates to be
interpretable for actual persons.
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This is a Lexis diagram.
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Life table approach

individual.

I The population experience:
D : Deaths (events).
Y : Person-years (risk time).

I The classical lifetable analysis compiles these for prespecified
intervals of age, and computes age-specific mortality rates.

I Data are collected crossectionally, but interpreted
longitudinally.

I The rates are the basic building bocks — used for
construction of:

I RRs
I cumulative measures (survival and risk)
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Summary

I Follow-up studies observe time to event

I — in the form of empirical rates, (d , y) for small interval

I each interval (empirical rate) has covariates attached

I each interval contribute d log(λ)− λy
I — like a Poisson observation d with mean λy

I identical covariates: pool obervations to D =
∑

D ,Y =
∑

y

I — like a Poisson obervation D with mean λY

I the result is an estimate of the rate λ

I from a model where rates are constant within intervals — but
varies between intervals.
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Classical estimators: Kaplan-Meier
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The Kaplan-Meier Method

I The most common method of estimating the survival function.

I A non-parametric method.

I Divides time into small intervals where the intervals are defined
by the unique times of failure (death).

I Based on conditional probabilities as we are interested in the
probability a subject surviving the next time interval given that
they have survived so far.
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Kaplan–Meier method illustrated

(• = failure and × = censored):

-

Time
× • × ×•

50N = 49 46

61.0Cumulative
survival

probability

I Steps caused by multiplying by
(1− 1/49) and (1− 1/46) respectively

I Late entry can also be dealt with
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Using R: Surv()

library( survival )
data( lung )
head( lung, 3 )

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

with( lung, Surv( time, status==2 ) )[1:10]

[1] 306 455 1010+ 210 883 1022+ 310 361 218 166

( s.km <- survfit( Surv( time, status==2 ) ~ 1 , data=lung ) )

Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
228 165 310 285 363

plot( s.km )
abline( v=310, h=0.5, col="red" )

Classical estimators: Kaplan-Meier (km-na) 110/ 218

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Classical estimators: Kaplan-Meier (km-na) 111/ 218

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Classical estimators: Kaplan-Meier (km-na) 112/ 218



Who needs the Cox-model
anyway?

Bendix Carstensen
Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis

University of Aberdeen,
18 AUgust 2017

http://BendixCarstensen/AdvCoh/courses/Frias-2016 KMCox

A look at the Cox model

λ(t , x ) = λ0(t)× exp(x ′β)

A model for the rate as a function of t and x .

The covariate t has a special status:

I Computationally, because all individuals contribute to (some
of) the range of t .

I . . . the scale along which time is split (the risk sets)

I Conceptually t is just a covariate that varies within individual.

I Cox’s approach profiles λ0(t) out from the model
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The Cox-likelihood as profile likelihood

I One parameter per death time to describe the effect of time
(i.e. the chosen timescale).

log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Profile likelihood:
I Derive estimates of αt as function of data and βs

— assuming constant rate between death times
I Insert in likelihood, now only a function of data and βs
I Turns out to be Cox’s partial likelihood
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The Cox-likelihood: mechanics of computing

I The likelihood is computed by suming over risk-sets:

`(η) =
∑

t

log

(
eηdeath∑
i∈Rt

eηi

)

I this is essentially splitting follow-up time at event- (and
censoring) times

I . . . repeatedly in every cycle of the iteration

I . . . simplified by not keeping track of risk time

I . . . but only works along one time scale
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log
(
λ(t , xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

I Suppose the time scale has been divided into small intervals
with at most one death in each:

I Empirical rates: (dit , yit) — each t has at most one dit = 0.

I Assume w.l.o.g. the ys in the empirical rates all are 1.

I Log-likelihood contributions that contain information on a
specific time-scale parameter αt will be from:

I the (only) empirical rate (1, 1) with the death at time t .
I all other empirical rates (0, 1) from those who were at risk at time t .
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Note: There is one contribution from each person at risk to this
part of the log-likelihood:

`t(αt , β) =
∑

i∈Rt

di log(λi(t))− λi(t)yi

=
∑

i∈Rt

{
di(αt + ηi)− eαt+ηi

}

= αt + ηdeath − eαt

∑

i∈Rt

eηi

where ηdeath is the linear predictor for the person that died.
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The derivative w.r.t. αt is:

Dαt
`t(αt , β) = 1− eαt

∑

i∈Rt

eηi = 0 ⇔ eαt =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for αt , we get the
profile likelihood (with αt “profiled out”):

log

(
1∑

i∈Rt
eηi

)
+ ηdeath − 1 = log

(
eηdeath∑
i∈Rt

eηi

)
− 1

which is the same as the contribution from time t to Cox’s partial
likelihood.
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Splitting the dataset a priori

I The Poisson approach needs a dataset of empirical rates (d , y)
with suitably small values of y .

I — each individual contributes many empirical rates
I (one per risk-set contribution in Cox-modelling)
I From each empirical rate we get:

I Poisson-response d
I Risk time y → log(y) as offset
I Covariate value for the timescale

(time since entry, current age, current date, . . . )
I other covariates

I Contributions not independent, but likelihood is a product
I Same likelihood as for independent Poisson variates
I Modelling is by standard glm Poisson
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Example: Mayo Clinic lung cancer

I Survival after lung cancer

I Covariates:

I Age at diagnosis
I Sex
I Time since diagnosis

I Cox model

I Split data:

I Poisson model, time as factor
I Poisson model, time as spline
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Example: Mayo Clinic lung cancer I

> library( survival )
> library( Epi )
> Lung <- Lexis( exit = list( tfe=time ),
+ exit.status = factor(status,labels=c("Alive","Dead")),
+ data = lung )

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfe timescale.
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Example: Mayo Clinic lung cancer II
> mL.cox <- coxph( Surv( tfe, tfe+lex.dur, lex.Xst=="Dead" ) ~
+ age + factor( sex ),
+ method="breslow", eps=10^-8, iter.max=25, data=Lung )
> Lung.s <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time))),
+ time.scale="tfe" )
> Lung.S <- splitLexis( Lung,
+ breaks=c(0,sort(unique(Lung$time[Lung$lex.Xst=="Dead"]))),
+ time.scale="tfe" )
> summary( Lung.s )

Transitions:
To

From Alive Dead Records: Events: Risk time: Persons:
Alive 19857 165 20022 165 69593 228

> summary( Lung.S )
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Example: Mayo Clinic lung cancer III
Transitions:

To
From Alive Dead Records: Events: Risk time: Persons:
Alive 15916 165 16081 165 69593 228

> subset( Lung.s, lex.id==96 )[,1:11]

lex.id tfe lex.dur lex.Cst lex.Xst inst time status age sex ph.ecog
9235 96 0 5 Alive Alive 12 30 2 72 1 2
9236 96 5 6 Alive Alive 12 30 2 72 1 2
9237 96 11 1 Alive Alive 12 30 2 72 1 2
9238 96 12 1 Alive Alive 12 30 2 72 1 2
9239 96 13 2 Alive Alive 12 30 2 72 1 2
9240 96 15 11 Alive Alive 12 30 2 72 1 2
9241 96 26 4 Alive Dead 12 30 2 72 1 2

> nlevels( factor( Lung.s$tfe ) )

[1] 186
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Example: Mayo Clinic lung cancer IV
> system.time(
+ mLs.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )

user system elapsed
10.540 0.016 10.555

> length( coef(mLs.pois.fc) )

[1] 188

> system.time(
+ mLS.pois.fc <- glm( lex.Xst=="Dead" ~ - 1 + factor( tfe ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.S, eps=10^-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer V
user system elapsed
3.175 0.003 3.178

> length( coef(mLS.pois.fc) )

[1] 142

> t.kn <- c(0,25,100,500,1000)
> dim( Ns(Lung.s$tfe,knots=t.kn) )

[1] 20022 4

> system.time(
+ mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )
+ )
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Example: Mayo Clinic lung cancer VI
user system elapsed
0.227 0.000 0.227

> ests <-
+ rbind( ci.exp(mL.cox),
+ ci.exp(mLs.pois.fc,subset=c("age","sex")),
+ ci.exp(mLS.pois.fc,subset=c("age","sex")),
+ ci.exp(mLs.pois.sp,subset=c("age","sex")) )
> cmp <- cbind( ests[c(1,3,5,7) ,],
+ ests[c(1,3,5,7)+1,] )
> rownames( cmp ) <- c("Cox","Poisson-factor","Poisson-factor (D)","Poisson-spline")
> colnames( cmp )[c(1,4)] <- c("age","sex")

> round( cmp, 7 )
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Example: Mayo Clinic lung cancer VII
age 2.5% 97.5% sex 2.5% 97.5%

Cox 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor 1.017158 0.9989388 1.035710 0.5989574 0.4313720 0.8316487
Poisson-factor (D) 1.017332 0.9991211 1.035874 0.5984794 0.4310150 0.8310094
Poisson-spline 1.016189 0.9980329 1.034676 0.5998287 0.4319932 0.8328707

Who needs the Cox-model anyway? (KMCox) 128/ 218

0 200 400 600 800

0.1

0.2

0.5

1.0

2.0

5.0

10.0

Days since diagnosis

M
or

ta
lit

y 
ra

te
 p

er
 y

ea
r

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Days since diagnosis

S
ur

vi
va

l

Who needs the Cox-model anyway? (KMCox) 129/ 218

0 200 400 600 800

0.1

0.2

0.5

1.0

2.0

5.0

10.0

Days since diagnosis

M
or

ta
lit

y 
ra

te
 p

er
 y

ea
r

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

Days since diagnosis

S
ur

vi
va

l

Who needs the Cox-model anyway? (KMCox) 129/ 218

Deriving the survival function

> mLs.pois.sp <- glm( lex.Xst=="Dead" ~ Ns( tfe, knots=t.kn ) +
+ age + factor( sex ),
+ offset = log(lex.dur),
+ family=poisson, data=Lung.s, eps=10^-8, maxit=25 )

> CM <- cbind( 1, Ns( seq(10,1000,10)-5, knots=t.kn ), 60, 1 )
> lambda <- ci.exp( mLs.pois.sp, ctr.mat=CM )
> Lambda <- ci.cum( mLs.pois.sp, ctr.mat=CM, intl=10 )[,-4]
> survP <- exp(-rbind(0,Lambda))

Code and output for the entire example avaiable in
http://bendixcarstensen.com/AdvCoh/WNtCMa/
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What the Cox-model really is

Taking the life-table approach ad absurdum by:

I dividing time very finely and

I modeling one covariate, the time-scale, with one parameter per
distinct value.

I the model for the time scale is really with exchangeable
time-intervals.

I ⇒ difficult to access the baseline hazard (which looks terrible)

I ⇒ uninitiated tempted to show survival curves where irrelevant
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Models of this world

I Replace the αts by a parametric function f (t) with a limited
number of parameters, for example:

I Piecewise constant
I Splines (linear, quadratic or cubic)
I Fractional polynomials

I the two latter brings model into “this world”:
I smoothly varying rates
I parametric closed form representation of baseline hazard
I finite no. of parameters

I Makes it really easy to use rates directly in calculations of
I expected residual life time
I state occupancy probabilities in multistate models
I . . .
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Multiple time scales and
continuous rates

Bendix Carstensen
Senior Statistician, Steno Diabetes Center

Practice in analysis of multistate models using Epi::Lexis

University of Aberdeen,
18 AUgust 2017

http://BendixCarstensen/AdvCoh/courses/Frias-2016 crv-mod

Testis cancer
Testis cancer in Denmark:

> options( show.signif.stars=FALSE )
> library( Epi )
> data( testisDK )
> str( testisDK )

'data.frame': 4860 obs. of 4 variables:
$ A: num 0 1 2 3 4 5 6 7 8 9 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: num 1 1 0 1 0 0 0 0 0 0 ...
$ Y: num 39650 36943 34588 33267 32614 ...

> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33Multiple time scales and continuous rates (crv-mod) 133/ 218

Cases, PY and rates

> stat.table( list(A=floor(A/10)*10,
+ P=floor(P/10)*10),
+ list( D=sum(D),
+ Y=sum(Y/1000),
+ rate=ratio(D,Y,10^5) ),
+ margins=TRUE, data=testisDK )

------------------------------------------------------------------------
--------------------------------P--------------------------------

A 1940 1950 1960 1970 1980 1990 Total
------------------------------------------------------------------------
0 10.00 7.00 16.00 18.00 9.00 10.00 70.00

2604.66 4037.31 3884.97 3820.88 3070.87 2165.54 19584.22
0.38 0.17 0.41 0.47 0.29 0.46 0.36

10 13.00 27.00 37.00 72.00 97.00 75.00 321.00
2135.73 3505.19 4004.13 3906.08 3847.40 2260.97 19659.48

0.61 0.77 0.92 1.84 2.52 3.32 1.63

20 124.00 221.00 280.00 535.00 724.00 557.00 2441.00
2225.55 2923.22 3401.65 4028.57 3941.18 2824.58 19344.74

5.57 7.56 8.23 13.28 18.37 19.72 12.62

30 149.00 288.00 377.00 624.00 771.00 744.00 2953.00
2195.23 3058.81 2856.20 3410.58 3968.81 2728.35 18217.97

6.79 9.42 13.20 18.30 19.43 27.27 16.21

40 95.00 198.00 230.00 334.00 432.00 360.00 1649.00
1874.92 2980.15 2986.83 2823.11 3322.59 2757.72 16745.30

5.07 6.64 7.70 11.83 13.00 13.05 9.85

50 40.00 79.00 140.00 151.00 193.00 155.00 758.00
1442.85 2426.54 2796.60 2813.32 2635.00 2069.18 14183.49

2.77 3.26 5.01 5.37 7.32 7.49 5.34

60 29.00 43.00 54.00 83.00 82.00 44.00 335.00
1041.94 1711.79 2055.08 2358.05 2357.28 1564.98 11089.13

2.78 2.51 2.63 3.52 3.48 2.81 3.02

70 18.00 26.00 35.00 41.00 40.00 32.00 192.00
537.62 967.88 1136.06 1336.95 1538.02 1100.86 6617.39
3.35 2.69 3.08 3.07 2.60 2.91 2.90

80 7.00 9.00 13.00 19.00 18.00 21.00 87.00
133.57 261.61 346.26 423.50 504.20 414.61 2083.75
5.24 3.44 3.75 4.49 3.57 5.06 4.18

Total 485.00 898.00 1182.00 1877.00 2366.00 1998.00 8806.00
14192.04 21872.50 23467.78 24921.03 25185.34 17886.80 127525.49

3.42 4.11 5.04 7.53 9.39 11.17 6.91
------------------------------------------------------------------------
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Linear effects in glm
How do rates depend on age?

> ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -9.7755 0.0207 -472.3164 0 -9.8160 -9.7349
A 0.0055 0.0005 11.3926 0 0.0045 0.0064

> round( ci.exp( ml ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0001 0.0001 0.0001
A 1.0055 1.0046 1.0064

Linear increase of log-rates by age
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Linear effects in glm

> nd <- data.frame( A=15:60, Y=10^5 )
> pr <- ci.pred( ml, newdata=nd )
> head( pr )

Estimate 2.5% 97.5%
1 6.170105 5.991630 6.353896
2 6.204034 6.028525 6.384652
3 6.238149 6.065547 6.415662
4 6.272452 6.102689 6.446937
5 6.306943 6.139944 6.478485
6 6.341624 6.177301 6.510319

> matplot( nd$A, pr,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Linear effects in glm

> round( ci.lin( ml ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -9.7755 0.0207 -472.3164 0 -9.8160 -9.7349
A 0.0055 0.0005 11.3926 0 0.0045 0.0064

> Cl <- cbind( 1, nd$A )
> head( Cl )

[,1] [,2]
[1,] 1 15
[2,] 1 16
[3,] 1 17
[4,] 1 18
[5,] 1 19
[6,] 1 20

> matplot( nd$A, ci.exp( ml, ctr.mat=Cl ),
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Linear effects in glm
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> matplot( nd$A, pr,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Linear effects in glm
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> matplot( nd$A, ci.exp( ml, ctr.mat=Cl )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Quadratic effects in glm

How do rates depend on age?

> mq <- glm( D ~ A + I(A^2),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( mq ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -12.3656 0.0596 -207.3611 0 -12.4825 -12.2487
A 0.1806 0.0033 54.8290 0 0.1741 0.1871
I(A^2) -0.0023 0.0000 -53.7006 0 -0.0024 -0.0022

> round( ci.exp( mq ), 4 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.0000 0.0000 0.0000
A 1.1979 1.1902 1.2057
I(A^2) 0.9977 0.9976 0.9978
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Quadratic effect in glm

> round( ci.lin( mq ), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -12.3656 0.0596 -207.3611 0 -12.4825 -12.2487
A 0.1806 0.0033 54.8290 0 0.1741 0.1871
I(A^2) -0.0023 0.0000 -53.7006 0 -0.0024 -0.0022

> Cq <- cbind( 1, 15:60, (15:60)^2 )
> head( Cq, 4 )

[,1] [,2] [,3]
[1,] 1 15 225
[2,] 1 16 256
[3,] 1 17 289
[4,] 1 18 324

> matplot( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
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Quadratic effect in glm
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> matplot( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black", log="y" )
> matlines( nd$A, ci.exp( ml, ctr.mat=Cl )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Spline effects in glm

> library( splines )
> ms <- glm( D ~ Ns(A,knots=seq(15,65,10)),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( ms ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.548 7.650 9.551
Ns(A, knots = seq(15, 65, 10))2 5.706 4.998 6.514
Ns(A, knots = seq(15, 65, 10))3 1.002 0.890 1.128
Ns(A, knots = seq(15, 65, 10))4 14.402 11.896 17.436
Ns(A, knots = seq(15, 65, 10))5 0.466 0.429 0.505

> aa <- 15:65
> As <- Ns( aa, knots=seq(15,65,10) )
> head( As )

1 2 3 4 5
[1,] 0.0000000000 0 0.00000000 0.00000000 0.00000000
[2,] 0.0001666667 0 -0.02527011 0.07581034 -0.05054022
[3,] 0.0013333333 0 -0.05003313 0.15009940 -0.10006626
[4,] 0.0045000000 0 -0.07378197 0.22134590 -0.14756393
[5,] 0.0106666667 0 -0.09600952 0.28802857 -0.19201905
[6,] 0.0208333333 0 -0.11620871 0.34862613 -0.23241742
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Spline effects in glm
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> matplot( aa, ci.exp( ms, ctr.mat=cbind(1,As) )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
> matlines( nd$A, ci.exp( mq, ctr.mat=Cq )*10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Adding a linear period effect

> msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P,
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.lin( msp ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -58.105 1.444 -40.229 0.000 -60.935 -55.274
Ns(A, knots = seq(15, 65, 10))1 2.120 0.057 37.444 0.000 2.009 2.231
Ns(A, knots = seq(15, 65, 10))2 1.700 0.068 25.157 0.000 1.567 1.832
Ns(A, knots = seq(15, 65, 10))3 0.007 0.060 0.110 0.913 -0.112 0.125
Ns(A, knots = seq(15, 65, 10))4 2.596 0.097 26.631 0.000 2.405 2.787
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.748 0.000 -0.861 -0.698
P 0.024 0.001 32.761 0.000 0.023 0.025

> Ca <- cbind( 1, Ns( aa, knots=seq(15,65,10) ), 1970 )
> head( Ca )

1 2 3 4 5
[1,] 1 0.0000000000 0 0.00000000 0.00000000 0.00000000 1970
[2,] 1 0.0001666667 0 -0.02527011 0.07581034 -0.05054022 1970
[3,] 1 0.0013333333 0 -0.05003313 0.15009940 -0.10006626 1970
[4,] 1 0.0045000000 0 -0.07378197 0.22134590 -0.14756393 1970
[5,] 1 0.0106666667 0 -0.09600952 0.28802857 -0.19201905 1970
[6,] 1 0.0208333333 0 -0.11620871 0.34862613 -0.23241742 1970

> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
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Adding a linear period effect
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> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
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Adding a linear period effect
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> matplot( aa, ci.exp( msp, ctr.mat=Ca )*10^5,
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black", ylim=c(2,20) )
> matlines( nd$A, ci.pred( ms, newdata=nd ),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )Multiple time scales and continuous rates (crv-mod) 147/ 218

The period effect

> round( ci.lin( msp ), 3 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) -58.105 1.444 -40.229 0.000 -60.935 -55.274
Ns(A, knots = seq(15, 65, 10))1 2.120 0.057 37.444 0.000 2.009 2.231
Ns(A, knots = seq(15, 65, 10))2 1.700 0.068 25.157 0.000 1.567 1.832
Ns(A, knots = seq(15, 65, 10))3 0.007 0.060 0.110 0.913 -0.112 0.125
Ns(A, knots = seq(15, 65, 10))4 2.596 0.097 26.631 0.000 2.405 2.787
Ns(A, knots = seq(15, 65, 10))5 -0.780 0.042 -18.748 0.000 -0.861 -0.698
P 0.024 0.001 32.761 0.000 0.023 0.025

> pp <- seq(1945,1995,0.2)
> Cp <- cbind( pp ) - 1970
> head( Cp )

pp
[1,] -25.0
[2,] -24.8
[3,] -24.6
[4,] -24.4
[5,] -24.2
[6,] -24.0

> ci.exp( msp, subset="P" )

exp(Est.) 2.5% 97.5%
P 1.024235 1.022769 1.025704

> matplot( pp, ci.exp( msp, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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Period effect

1950 1960 1970 1980 1990

0.
5

1.
0

1.
5

2.
0

Date

Te
st

is
 c

an
ce

r 
in

ci
de

nc
e 

R
R

> matplot( pp, ci.exp( msp, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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A quadratic period effect

> mspq <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( mspq ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.356 7.478 9.337
Ns(A, knots = seq(15, 65, 10))2 5.513 4.829 6.295
Ns(A, knots = seq(15, 65, 10))3 1.006 0.894 1.133
Ns(A, knots = seq(15, 65, 10))4 13.439 11.101 16.269
Ns(A, knots = seq(15, 65, 10))5 0.458 0.422 0.497
P 2.189 1.457 3.291
I(P^2) 1.000 1.000 1.000

> Cq <- cbind( pp-1970, pp^2-1970^2 )
> head( Cq )

[,1] [,2]
[1,] -25.0 -97875.00
[2,] -24.8 -97096.96
[3,] -24.6 -96318.84
[4,] -24.4 -95540.64
[5,] -24.2 -94762.36
[6,] -24.0 -93984.00

> ci.exp( mspq, subset="P" )

exp(Est.) 2.5% 97.5%
P 2.1893078 1.4566021 3.2905821
I(P^2) 0.9998075 0.9997042 0.9999107

> matplot( pp, ci.exp( mspq, subset="P", ctr.mat=Cq ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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A quadratic period effect
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> matplot( pp, ci.exp( mspq, subset="P", ctr.mat=Cq ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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A spline period effect

Because we have the age-effect with the rate dimension, the period
effect is a RR

> msps <- glm( D ~ Ns(A,knots=seq(15,65,10)) +
+ Ns(P,knots=seq(1950,1990,10),ref=1970),
+ offset=log(Y), family=poisson, data=testisDK )
> round( ci.exp( msps ), 3 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.327 7.452 9.305
Ns(A, knots = seq(15, 65, 10))2 5.528 4.842 6.312
Ns(A, knots = seq(15, 65, 10))3 1.007 0.894 1.133
Ns(A, knots = seq(15, 65, 10))4 13.447 11.107 16.279
Ns(A, knots = seq(15, 65, 10))5 0.458 0.422 0.497
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)1 1.711 1.526 1.918
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)2 2.190 2.028 2.364
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)3 3.222 2.835 3.661
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)4 2.299 2.149 2.459
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A spline period effect

> Cp <- Ns( pp, knots=seq(1950,1990,10),ref=1970)
> head( Cp, 4 )

1 2 3 4
[1,] -0.6666667 0.0142689462 -0.5428068 0.3618712
[2,] -0.6666667 0.0091980207 -0.5275941 0.3517294
[3,] -0.6666667 0.0041270951 -0.5123813 0.3415875
[4,] -0.6666667 -0.0009438304 -0.4971685 0.3314457

> ci.exp( msps, subset="P" )

exp(Est.) 2.5% 97.5%
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)1 1.710808 1.525946 1.918065
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)2 2.189650 2.027898 2.364303
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)3 3.221563 2.835171 3.660614
Ns(P, knots = seq(1950, 1990, 10), ref = 1970)4 2.298946 2.149148 2.459186

> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
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Period effect
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> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", ylim=c(0.5,2), xlab="Date",
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Period effect

> par( mfrow=c(1,2) )
> matplot( aa, ci.pred( msps, newdata=data.frame(A=aa,P=1970,Y=10^5) ),
+ log="y", xlab="Age",
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", xlab="Date", ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Age and period effect
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Period effect

> par( mfrow=c(1,2) )
> matplot( aa, ci.pred( msps, newdata=data.frame(A=aa,P=1970,Y=10^5) ),
+ log="y", xlab="Age",
+ ylim=c(2,20), xlim=c(15,65),
+ ylab="Testis cancer incidence rate per 100,000 PY in 1970",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( pp, ci.exp( msps, subset="P", ctr.mat=Cp ),
+ log="y", xlab="Date",
+ ylim=c(2,20)/sqrt(2*20), xlim=c(15,65)+1930,
+ ylab="Testis cancer incidence RR",
+ type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1, v=1970 )
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Age and period effect
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Age and period effect with ci.exp

I In rate models there is always one term with the rate
dimension — usually age

I But it must refer to a specific reference value for all other
variables (P).

I All parameters must be used in computing rates, at some
reference value(s).

I For the “other” variables, report the RR relative to the
reference point.

I Only parameters relevant for the variable (P) used.
I Contrast matrix is a difference between (splines at) the

prediction points and the reference point.
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Likelihood for multistate follow-up

Bendix Carstensen
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University of Aberdeen,
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Likelihood for transition through states

A −→ B −→ C −→
I given start of observation in A at time t0
I transitions at times tB and tC
I survival in C till (at least) time tx :

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

I Product of likelihood contributions for each transition
— each one as for a survival model
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Likelihood contributions reflected in Lexis object

L = P{survive t0 → tB in A}
× P{transition A→ B at tB | alive in A}
× P{survive tB → tC in B | entered B at tB}
× P{transition B→ C at tC | alive in B}
× P{survive tC → tx in C | entered C at tC}

lex.id time lex.dur lex.Cst lex.Xst
1 t_0 t_B-t_0 A B
1 t_B t_C-t_B B C
1 t_C t_x-t_C C C

constant rate in interval ⇒ log-likelihood term is Poisson:
d log(λ)− λy = (lex.Xst! =lex.Cst)× log(λ)− λ× lex.dur
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Competing risks

But you may die from more than one cause
(move to one of more possible states):

Alive

Cause A

Cause B

Cause C

�
�
�
�
�
��3

-

Q
Q
Q
Q
Q
QQs

λA

λB

λC
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Cause-specific intensities

λA(t) = limh→0
P {death from cause A in (t , t + h] | alive at t}

h

λB(t) = limh→0
P {death from cause B in (t , t + h] | alive at t}

h

λC (t) = limh→0
P {death from cause C in (t , t + h] | alive at t}

h

Total mortality rate:

λTotal(t) = limh→0
P {death from any cause in (t , t + h] | alive at t}

h
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Cause-specific intensities

For small h, P {2 events in (t , t + h]} ≈ 0, so:

P {death from any cause in (t , t + h] | alive at t}

= P {death from cause A in (t , t + h] | alive at t}+

P {death from cause B in (t , t + h] | alive at t}+

P {death from cause C in (t , t + h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC (t)

Intensities are additive,
if they all refer to the
same risk set, in this case “Alive”.
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Likelihood for competing risks

Data:
Y - person years in “Alive”
DA - deaths from cause A
DB - deaths from cause B
DC - deaths from cause C

Now, assume for a start that transition rates between states are
constant.
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Likelihood for competing risks

A survivor contributes to the log-likelihood:

log(P {Survival for a time of y}) = −(λA + λB + λC )y

A death from cause A contributes an additional log(λA), from
cause B an additional log(λB) etc.

The total log-likelihood is then:

`(λA, λB , λC ) =DAlog(λA) + DB log(λB) + DC log(λC )

− (λA + λB + λC )Y

=[DAlog(λA)− λAY ]+

[DB log(λB)− λBY ]+

[DC log(λC )− λCY ]
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Components of the likelihood

The log-likelihood is made up of three contributions:
I one for cause A,

I one for cause B and

I one for cause C

Deaths are the cause-specific deaths,

but the person-years are the same in all contributions.

The person-years appear once for each transition out of a state.
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Likelihood for multiple states

I Product of likelihoods for each transition
— each one as for a survival model

I conditional on being alive at (observed) entry to current state

I Risk time is the risk time in the current (“From”, lex.Cst)
state

I Events are transitions to the “To” state (lex.Xst)

I All other transitions out of “From” are treated as censorings
(but they are not)

I Fit models separately for each transition or jointly for all
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Time varying rates:

I The same type of analysis as with a constant rates

I . . . but data must be split in intervals sufficiently small to
justify an assumption of constant rate (intensity),

I the model should allow for a separate rate for each interval,

I but these can be constrained to follow model with a smooth
effect of the time-scale values allocated to each interval.
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Practical implications

I Empirical rates ((d , y) from each individual) will be the same
for all analyses except for those where deaths occur.

I Analysis of cause A:

I Contributions (1, y) only for those intervals where a cause A death
occurs.

I Intervals with cause B or C deaths (or no deaths) contribute only
(0, y) — treated as censorings.
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original expanded
------------------------------- ---------------------
id time cause xx d.A d.B d.C id time dd xx Tr
1 1 B 0.50 0 1 0 1 1 0 0.50 A
2 1 NA 1.00 0 0 0 2 1 0 1.00 A
3 8 B -1.74 0 1 0 3 8 0 -1.74 A
4 3 A -0.55 1 0 0 4 3 1 -0.55 A
5 7 NA -0.58 0 0 0 5 7 0 -0.58 A
6 7 C -0.04 0 0 1 6 7 0 -0.04 A

1 1 1 0.50 B
2 1 0 1.00 B
3 8 1 -1.74 B
4 3 0 -0.55 B
5 7 0 -0.58 B
6 7 0 -0.04 B

1 1 0 0.50 C
2 1 0 1.00 C
3 8 0 -1.74 C
4 3 0 -0.55 C
5 7 0 -0.58 C
6 7 1 -0.04 C

. . . accomplished by stack.Lexis
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Lexis objects (data frame)

I Represents the follow-up

I lex.dur contains the total time at risk for (any) event

I lex.Cst is the state in which this time is spent

I lex.Xst is the state to which a transition occurs
— if no transition, the same as lex.Cst.

This is used for modelling of single transitions between states —
and multiple transitions with no two originating in the same state.
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stacked.Lexis objects (data frame)

I Represents the likelihood contributions

I lex.dur contains the total time at risk for (any) event

I lex.Tr is the transition to which the record contributes

I lex.Fail is the event (failure) indicator for the transition in
question.

This is used for joint modelling of all transition in a multistate
set-up.

Particularly with several rates originating in the same state
(competing risks).
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Implemented in the stack.Lexis function:

> library( Epi )
> data(DMlate)
> head(DMlate)

sex dobth dodm dodth dooad doins dox
50185 F 1940.256 1998.917 NA NA NA 2009.997
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997
294104 F 1918.301 2004.552 NA NA NA 2009.997
336439 F 1965.225 2009.261 NA NA NA 2009.997
245651 M 1932.877 2008.653 NA NA NA 2009.997
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923

> dml <- Lexis( entry = list(Per = dodm,
+ Age = dodm-dobth,
+ DMdur = 0 ),
+ exit = list(Per = dox ),
+ exit.status = factor(!is.na(dodth),
+ labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.
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Implemented in the stack.Lexis function:

> dmi <- cutLexis( dml, cut = dml$doins,
+ new.state = "Ins",
+ precursor = "DM" )
> summary( dmi )

Transitions:
To

From DM Ins Dead Records: Events: Risk time: Persons:
DM 6157 1694 2048 9899 3742 45885.49 9899
Ins 0 1340 451 1791 451 8387.77 1791
Sum 6157 3034 2499 11690 4193 54273.27 9996

> boxes( dmi, boxpos = list(x=c(20,20,80),
+ y=c(80,20,50)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.1 )
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Implemented in the stack.Lexis function:

> options( digits=3, width=200 )
> st.dmi <- stack( dmi )
> print( st.dmi[1:6,], row.names=F )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1999 58.7 0 11.080 DM DM DM->Ins FALSE 1 F 1940 1999 NA NA NA 2010
2003 64.1 0 6.689 DM DM DM->Ins FALSE 2 M 1939 2003 NA 2007 NA 2010
2005 86.3 0 5.446 DM DM DM->Ins FALSE 3 F 1918 2005 NA NA NA 2010
2009 44.0 0 0.736 DM DM DM->Ins FALSE 4 F 1965 2009 NA NA NA 2010
2009 75.8 0 1.344 DM DM DM->Ins FALSE 5 M 1933 2009 NA NA NA 2010
2008 80.0 0 2.037 DM Dead DM->Ins FALSE 6 F 1928 2008 2010 NA NA 2010

> str( st.dmi )

Classes 'stacked.Lexis' and 'data.frame': 21589 obs. of 16 variables:
$ Per : num 1999 2003 2005 2009 2009 ...
$ Age : num 58.7 64.1 86.3 44 75.8 ...
$ DMdur : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur : num 11.08 6.689 5.446 0.736 1.344 ...
$ lex.Cst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 3 levels "DM","Ins","Dead": 1 1 1 1 1 3 1 1 3 1 ...
$ lex.Tr : Factor w/ 3 levels "DM->Ins","DM->Dead",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ sex : Factor w/ 2 levels "M","F": 2 1 2 2 1 2 1 1 2 1 ...
$ dobth : num 1940 1939 1918 1965 1933 ...
$ dodm : num 1999 2003 2005 2009 2009 ...
$ dodth : num NA NA NA NA NA ...
$ dooad : num NA 2007 NA NA NA ...
$ doins : num NA NA NA NA NA NA NA NA NA NA ...
$ dox : num 2010 2010 2010 2010 2010 ...
- attr(*, "breaks")=List of 3
..$ Per : NULL
..$ Age : NULL
..$ DMdur: NULL
- attr(*, "time.scales")= chr "Per" "Age" "DMdur"
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Implemented in the stack.Lexis function:

> print( subset( dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins 15 M 1944 2003 NA NA 2005 2010
2005 60.9 2.8 4.643 Ins Ins 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins 28 F 1925 1999 2008 2001 2007 2008
2007 82.4 8.7 0.977 Ins Dead 28 F 1925 1999 2008 2001 2007 2008

> print( subset( st.dmi, lex.id %in% c(13,15,28) ), row.names=FALSE )

Per Age DMdur lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id sex dobth dodm dodth dooad doins dox
1997 59.4 0.0 0.890 DM Dead DM->Ins FALSE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Ins TRUE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Ins TRUE 28 F 1925 1999 2008 2001 2007 2008
1997 59.4 0.0 0.890 DM Dead DM->Dead TRUE 13 M 1938 1997 1998 NA NA 1998
2003 58.1 0.0 2.804 DM Ins DM->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
1999 73.7 0.0 8.701 DM Ins DM->Dead FALSE 28 F 1925 1999 2008 2001 2007 2008
2005 60.9 2.8 4.643 Ins Ins Ins->Dead FALSE 15 M 1944 2003 NA NA 2005 2010
2007 82.4 8.7 0.977 Ins Dead Ins->Dead TRUE 28 F 1925 1999 2008 2001 2007 2008
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Analysis of rates in multistate models

I Interactions between all covariates (including time) and state
(lex.Cst):
⇔ separate analyses of all transition rates.

I Only interaction between state (lex.Cst) and time(scales):
⇔ same covariate effects for all causes transitions, but
separate baseline hazards — “stratified model”.

I Main effect of state only (lex.Cst):
⇔ proportional hazards

I No effect of state:
⇔ identical baseline hazards — hardly ever relevant.
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Analysis approaches and data representation

I Lexis objects represents the precise follow-up in the cohort, in
states and along timescales

I — used for analysis of single transition rates.

I stacked.Lexis objects represents contributions to the total
likelihood

I — used for joint analysis of (all) rates in a multistate setup

I . . . which is the case if you want to specify common effects
between different transitions.

Likelihood for multistate follow-up (ms-lik) 180/ 218

Assumptions in competing risks

“Classical” way of looking at survival data:
description of the distribution of time to death.

For competing risks that would require three variables:
TA, TB and TC , representing times to death from each of the three
causes.
But at most one of these is observed.

Often it is stated that these must be assumed independent in order
to make the likelihood machinery work

1. It is not necessary.

2. Independence can never be assessed from data.

Likelihood for multistate follow-up (ms-lik) 181/ 218

An account of these problems is given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:
Competing risks as a multistate model,
Statistical Methods in Medical Research; 11, 2002: pp. 203–215

Per Kragh Andersen, Ronald B Geskus, Theo de Witte & Hein Putter:
Competing risks in epidemiology: possibilities and pitfalls,

International Journal of Epidemiology ; 2012: pp. 1–10

Contains examples where both dependent and independent “cause
specific survival times” gives rise to the same set of cause specific
rates.
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Competing risk interpretation

The problems with competing risk models only comes when
estimated intensities (rates) are used to produce probability
statements.

Classical set-up in cancer-registries:

Well Lung cancer-λ

Common statement:

P {Lung cancer before age 75} = 1− e−Λ(75)

This is not quite right.Lifetime risk (DK-lung) 183/ 218

How the world really looks

Well

Lung cancer

Dead

�
�
�
�
��3

?
Q
Q
Q
Q
QQs

λ

µ

ν

Illness-death model, mortality of lung cancer patients (ν) not
relevant here, we only want to find out how many pass through
“Lung cancer”
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How many get lung cancer before age a?
I

P {Lung cancer before age 75} 6= 1− e−Λ(75)

the r.h.s. does not take the possibility of death prior to lung
cancer into account.

I 1− e−Λ(75) often stated as the probability of lung cancer before
age 75, assuming all other acuses of death absent.

I Lung cancer rates are however observed in a mortal population.

I If all other causes of death were absent, this would assume
that lung cancer rates remained the same.
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How it really is:

P {Lung cancer diagnosis before age a}

=

∫ a

0

P {Lung cancer at age u} du

=

∫ a

0

P {Lung cancer in age (u, u + du] | alive at u}
×P {alive at u without lung cancer} du

=

∫ a

0

λ(u)exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du
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Probability of lungcancer

The rates are easily plotted for inspection in R:

matplot( age, 1000*cbind( D/Y, lung/Y ),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per 1000 person-years" )
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The probablility that a person contracts lung cancer before age a is:

∫ a

0

λ(u) exp

(
−
∫ u

0

µ(s) + λ(s) ds

)
du

=

∫ a

0

λ(u) exp

(
−
(
M(u) + Λ(u)

))
du

M(u) is the cumulative mortality rate.

Λ(u) is the cumulative lung cancer incidence rate.
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R-commands needed to do the calculations:

cr.death <- cumsum( D/Y )
cr.lung <- cumsum( lung/Y )
p.simple <- 1 - exp( -cr.lung )
p.lung <- cumsum( lung/Y *

exp( -(cr.death+cr.lung) ) )
matlines( age, 100*cbind( cr.lung, p.simple, p.lung ),

type="l", lty=1, lwd=2*c(2,2,3),
col=c("black","blue","red") )
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Assumptions

I The calculation and the statement “6% of Danish males will
get lung cancer” assumess that the lung cancer rates and the
mortality rates in the file apply to a cohort of men.

I But they are cross-sectional rates, so the assumption is one of
steady state of:

1. mortality rates (which is dubious)
2. lung cancer incidence rates (which is appalling).

I However, the machinery can be applied to any set of rates for
competing risks, regardless of how they were estimated.
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Life expectancy

The expected lifetime (at birth) is the variable age (a) integrated
with respect to the distribution of age at death:

EL =

∫ ∞

0

af (a) da

where f is the density of the distribution of lifetimes.

Simplest computed as the area under the survival curve:

EL =

∫ ∞

0

S (a) da
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Life expectancy at age a

Use the conditional survival function, given alive at age a

P(Survive till t |alive at a) = S (t)/S (a)

Life expectancy at age a:

EL(a) =

∫ ∞

a

S (t)/S (a) dt

— the area under the conditional survival function.
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Lifetime lost

— due to a disease is the difference between the expected residual
lifetime for a diseased person and a non-diseased (well) person at
the same age:

LL(a) =

∫ ∞

a

SWell(u)/SWell(a)− SDiseased(u)/SDiseased(a) du

Note that the survival for a“well”person, SWell(a) must be defined:

I includes the possibility to become diseased (increase mortality)

I or assumes immunity to the disease
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Lifetime lost using rates

I age-specific mortality rates λ(a)

I survival function S (a) = exp(−
∫ a

0 λ(u) du)

I residual lifetime EL(a) =
∫∞
a S (u) du)

I do for “well” and “dis”

I life lost at age a: LL(a) = ELwell(a)− ELdis(a)
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Lifetime lost in practice

I Compute mortality rates at age midpoints of small intervals
(1/10 year long, say):
0.05, 0.15, 0.25, . . . — λ(a), lambda

I Compute the integral by summing λ(a)× 0.1
cumsum(lambda*0.1) — Λ(a)

I Compute survival function as exp of minus this S <-

exp(-cumsum(lambda*0.1))

I Expected life time at age 40, say, is then the integral of the
conditionl survival: sum(S[400:1000]/S[400])*0.1

I Compute both for well and dis, and subtract.
I — now you do the practical. . .
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Multistate models

I Outcomes are transitions between states, with times

I Covariates are measurements and timescales

I Models describe the single transition rates

I Results are:

I Description of rates — how do they depend time etc.
I Prediction of state occupancy:

What is the probability that a person is in a given state at a given
time?

I This illustrates the latter.
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Diabetes patient mortality

> library(Epi)
> data(DMlate)
> dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ),
+ exit = list(Per=dox),
+ exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
+ data = DMlate )

NOTE: entry.status has been set to "DM" for all.

> summary(dml)

Transitions:
To

From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
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. . . subdivided by insulin status

Split follow-up at insulin, introduce a new timescale and split
non-precursor states:

> dmi <- cutLexis( dml, cut = dml$doins,
+ pre = "DM",
+ new.state = "Ins",
+ new.scale = "t.Ins",
+ split.states = TRUE )
> summary( dmi )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996

> boxes( dmi, boxpos=list(x=c(20,20,80,80),y=c(80,20,80,20)),
+ scale.R=1000, show.BE=TRUE, hmult=1.2, wmult=1.2 )
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Split the follow in 3-month intervals for modelling

> Si <- splitLexis( dmi, 0:60/4, "DMdur" )
> summary( Si )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 184986 1694 2048 0 188728 3742 45885.49 9899
Ins 0 34707 0 451 35158 451 8387.77 1791
Sum 184986 36401 2048 451 223886 4193 54273.27 9996

> summary( dmi )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 6157 1694 2048 0 9899 3742 45885.49 9899
Ins 0 1340 0 451 1791 451 8387.77 1791
Sum 6157 3034 2048 451 11690 4193 54273.27 9996
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Define knots for spline modelling of the rates:

> nk <- 4
> ( ai.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
27.68241 49.61893 61.88364 75.56211

> ( ad.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
63.61875 74.98700 81.38501 89.26831

> ( di.kn <- with( subset(Si,lex.Xst=="Ins"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
1.50 4.25 7.00 10.50

> ( dd.kn <- with( subset(Si,lex.Xst=="Dead"),
+ quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
0.3778234 1.9582478 4.3370979 8.0232717

> ( td.kn <- with( subset(Si,lex.Xst=="Dead(Ins)"),
+ quantile( t.Ins+lex.dur, probs=(1:nk-0.5)/nk ) ) )

12.5% 37.5% 62.5% 87.5%
0.1759069 1.0095825 2.7939767 6.3579740

> library( splines )
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Fit Poisson models to transition rates

> DM.Ins <- glm( (lex.Xst=="Ins") ~ Ns( Age , knots=ai.kn ) +
+ Ns( DMdur, knots=di.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM") )
> DM.Dead <- glm( (lex.Xst=="Dead") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="DM") )
> Ins.Dead <- glm( (lex.Xst=="Dead(Ins)") ~ Ns( Age , knots=ad.kn ) +
+ Ns( DMdur, knots=dd.kn ) +
+ Ns( t.Ins, knots=td.kn ) +
+ I(Per-2000) + sex,
+ family=poisson, offset=log(lex.dur),
+ data = subset(Si,lex.Cst=="Ins") )
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Put the fitted models into an object representing the transitions

> Tr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = DM.Dead ),
+ "Ins" = list( "Dead(Ins)" = Ins.Dead ) )
> lapply( Tr, names )

$DM
[1] "Ins" "Dead"

$Ins
[1] "Dead(Ins)"
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Define an initial object
— note the combination of select= and NULL which ensures that
the relevant attributes from the Lexis object Si are carried over to
ini (using Si[NULL,1:9] will lose essential attributes )

> ini <- subset(Si,select=1:9)[NULL,]
> ini[1:2,"lex.Cst"] <- "DM"
> ini[1:2,"Per"] <- 1995
> ini[1:2,"Age"] <- 60
> ini[1:2,"DMdur"] <- 5
> ini[1:2,"sex"] <- c("M","F")
> ini

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex
1 NA 1995 60 5 NA NA DM <NA> M
2 NA 1995 60 5 NA NA DM <NA> F

Reporting a multistate model (ms-rep) 206/ 218

Simulate 10,000 of each sex using the estimated models in Tr:

> system.time(
+ simL <- simLexis( Tr, ini, time.pts=seq(0,11,0.5), N=10000 ) )

user system elapsed
24.330 0.040 24.365

> summary( simL )

Transitions:
To

From DM Ins Dead Dead(Ins) Records: Events: Risk time: Persons:
DM 8831 6057 5112 0 20000 11169 149966.28 20000
Ins 0 4389 0 1668 6057 1668 33293.03 6057
Sum 8831 10446 5112 1668 26057 12837 183259.32 20000

> subset( simL, lex.id < 3 )

lex.id Per Age DMdur t.Ins lex.dur lex.Cst lex.Xst sex cens
1 1 1995.000 60.00000 5.000000 NA 10.989503 DM Dead M 2006
2 2 1995.000 60.00000 5.000000 NA 3.517961 DM Ins M 2006
3 2 1998.518 63.51796 8.517961 0 3.346653 Ins Dead(Ins) M 2006
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We now have a dataframe (Lexis object) with simulated follow-up
of 10,000 men and 10,000 women.

We then find the number of persons in each state at a specified set
of times.

> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.1), from=1995, time.scale="Per" )
> nSt

State
when DM Ins Dead Dead(Ins)
1995 10000 0 0 0
1995.1 9942 24 34 0
1995.2 9885 39 76 0
1995.3 9844 52 104 0
1995.4 9788 69 143 0
1995.5 9732 91 176 1
1995.6 9674 114 208 4
1995.7 9608 144 242 6
1995.8 9537 174 281 8
1995.9 9485 194 310 11
1996 9416 231 340 13
1996.1 9334 268 385 13
1996.2 9260 308 418 14
1996.3 9211 333 441 15
1996.4 9146 367 471 16
1996.5 9070 406 506 18
1996.6 8991 448 542 19
1996.7 8921 492 566 21
1996.8 8849 525 602 24
1996.9 8790 551 631 28
1997 8728 578 659 35
1997.1 8635 630 696 39
1997.2 8563 676 716 45
1997.3 8484 717 751 48
1997.4 8403 762 784 51
1997.5 8337 804 805 54
1997.6 8251 855 833 61
1997.7 8165 905 864 66
1997.8 8086 947 897 70
1997.9 8008 984 929 79
1998 7942 1027 950 81
1998.1 7853 1077 984 86
1998.2 7760 1132 1017 91
1998.3 7667 1189 1051 93
1998.4 7593 1233 1071 103
1998.5 7511 1288 1092 109
1998.6 7421 1338 1124 117
1998.7 7328 1383 1165 124
1998.8 7227 1441 1201 131
1998.9 7150 1483 1231 136
1999 7069 1527 1256 148
1999.1 6983 1573 1286 158
1999.2 6897 1619 1317 167
1999.3 6818 1661 1349 172
1999.4 6754 1697 1372 177
1999.5 6681 1738 1396 185
1999.6 6613 1758 1429 200
1999.7 6556 1785 1450 209
1999.8 6490 1808 1479 223
1999.9 6405 1845 1513 237
2000 6348 1870 1536 246
2000.1 6283 1900 1563 254
2000.2 6218 1942 1581 259
2000.3 6177 1957 1598 268
2000.4 6114 1985 1625 276
2000.5 6051 2004 1654 291
2000.6 6004 2022 1674 300
2000.7 5953 2039 1697 311
2000.8 5895 2058 1724 323
2000.9 5836 2082 1752 330
2001 5778 2093 1783 346
2001.1 5739 2109 1797 355
2001.2 5691 2122 1824 363
2001.3 5645 2143 1841 371
2001.4 5596 2148 1871 385
2001.5 5540 2162 1899 399
2001.6 5490 2172 1923 415
2001.7 5443 2184 1943 430
2001.8 5401 2197 1963 439
2001.9 5368 2195 1981 456
2002 5320 2220 1999 461
2002.1 5277 2219 2030 474
2002.2 5220 2229 2065 486
2002.3 5172 2244 2091 493
2002.4 5127 2254 2111 508
2002.5 5076 2262 2140 522
2002.6 5040 2269 2159 532
2002.7 5004 2270 2181 545
2002.8 4965 2268 2208 559
2002.9 4929 2270 2227 574
2003 4883 2279 2250 588
2003.1 4844 2286 2272 598
2003.2 4805 2290 2292 613
2003.3 4774 2283 2312 631
2003.4 4726 2287 2338 649
2003.5 4693 2283 2355 669
2003.6 4643 2293 2383 681
2003.7 4601 2298 2405 696
2003.8 4557 2303 2429 711
2003.9 4519 2305 2451 725
2004 4480 2312 2472 736
2004.1 4449 2311 2487 753
2004.2 4411 2308 2513 768
2004.3 4381 2302 2532 785
2004.4 4353 2290 2554 803
2004.5 4322 2286 2574 818
2004.6 4290 2278 2594 838
2004.7 4251 2276 2620 853
2004.8 4220 2271 2642 867
2004.9 4192 2271 2657 880
2005 4153 2268 2681 898
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Show the cumulative prevalences in a different order than that of
the state-level ordering and plot them using all defaults:

> pp <- pState( nSt, perm=c(1,2,4,3) )
> head( pp )

State
when DM Ins Dead(Ins) Dead
1995 1.0000 1.0000 1.0000 1
1995.1 0.9942 0.9966 0.9966 1
1995.2 0.9885 0.9924 0.9924 1
1995.3 0.9844 0.9896 0.9896 1
1995.4 0.9788 0.9857 0.9857 1
1995.5 0.9732 0.9823 0.9824 1

> plot( pp )
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We can show the results in an clearer way, buy choosing colors
wiser:

> clr <- c("orange2","forestgreen")
> par( las=1, mar=c(3,3,3,3) )
> plot( pp, col=clr[c(2,1,1,2)] )
> lines( as.numeric(rownames(pp)), pp[,2], lwd=2 )
> mtext( "60 year old male, diagnosed 1995", side=3, line=2.5, adj=0 )
> mtext( "Survival curve", side=3, line=1.5, adj=0 )
> mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1] )
> mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[2] )
> axis( side=4 )
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We could also use a Cox-model for the mortality rates assuming the
two mortality rates to be proportional:

When we fit a Cox-model, lex.dur must be used in the Surv()

function, and the I() construction must be used when specifying
intermediate states as covariates, since factors with levels not
present in the data will create NAs in the parameter vector returned
by coxph, which in return will crash the simulation machinery.

> library( survival )
> Cox.Dead <- coxph( Surv( DMdur, DMdur+lex.dur,
+ lex.Xst %in% c("Dead(Ins)","Dead")) ~
+ Ns( Age-DMdur, knots=ad.kn ) +
+ I(lex.Cst=="Ins") +
+ I(Per-2000) + sex,
+ data = Si )
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> Cr <- list( "DM" = list( "Ins" = DM.Ins,
+ "Dead" = Cox.Dead ),
+ "Ins" = list( "Dead(Ins)" = Cox.Dead ) )
> simL <- simLexis( Cr, ini, time.pts=seq(0,11,0.2), N=10000 )
> nSt <- nState( subset(simL,sex=="M"),
+ at=seq(0,10,0.2), from=1995, time.scale="Per" )
> pp <- pState( nSt, perm=c(1,2,4,3) )
> plot( pp )
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Now your turn. . .
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