Occurrence rates, cumulative risks, competing risks, state probabilities with multiple states and time scales in in Register Research with \mathbb{R} and Epi: :

Computer practicals

Aalborg Math
 March 2022
 http://bendixcarstensen.com/AdvCoh/courses/Aalborg-2022/
 Version 2

Compiled Saturday $5^{\text {th }}$ March, 2022, 22:01
from:

Bendix Carstensen Steno Diabetes Center Copenhagen, Gentofte, Denmark
\& Department of Biostatistics, University of Copenhagen
b@bxc.dk
http://BendixCarstensen.com

Contents

0.0 Preface 1
0.1 Program 1
1 Survival and rates: lung 2
1.1 Data and simple survival 2
1.2 Rates and rate-ratios: Simple Cox model 4
1.3 Simple Poisson model 6
1.4 Representation of follow-up: Lexis object 7
1.5 Estimating the hazard function: splitting time 10
2 Competing risks: DMlate 17
2.1 Data 17
2.2 State probabilities 19
2.3 What not to do 21
2.4 Modeling cause specific rates 23
2.5 Integrals with R 24
2.6 Cumulative risks from parametric models 27
2.7 Expected life time: using simulated objects 29
3 Multistate models: steno2 31
3.1 Lexis object for steno2 31
3.2 Transition rates: multiple time scales 37
3.3 State probabilities 43
3.3.1 Models for transition rates 43
3.3.1.1 Mortality rates 43
3.3.1.2 Albuminuria state rates 45
3.3.2 Simulation of state probabilities 47
3.3.2.1 Study population cohort 48
3.3.2.2 Initiation cohort with predefined variables 52
3.4 State probabilities using the Aalen-Johansen approach from survival 58
3.5 Time spent in albuminuria states 65
3.6 Clinical variables 68
3.7 Several transitions from one state: stack 72
References 76

0.0 Preface

This course draws to some extent on the content of the book "Epidemiology with R" [1], (http://bendixcarstensen.com/EwR), but in particular on the draft of my new book (which by no means is sure ever to appear as a book) "Practical multistate modeling with R and Epi:Lexis". The former is available through Oxford University Press, the latter as a draft (updated at unpredictable times) as http://bendixcarstensen.com/MSbook.pdf.

- The target audience is the group of statisticians and epidemiologists working in or with the 5 SDCentres.
- The prerequisites are

1. a basic knowledge of R,
2. a working installation of Epi_2.44
3. a working installation of popEpi_0.4.8
4. some epidemiological practice

- The format of the course will be short lectures closely aligned with the topics in the exercises. The exercises will be run in chunks between the short lectures.

Exercises are given including most of the solutions. You can get the exercise code chunks from the course website http://bendixcarstensen.com/AdvCoh/courses/SDC-2021

0.1 Program

Program

Monday $\mathbf{7}$ March	
10:00-10:30	L: Introduction to multistate models
10:30-11:30	P: Survival analysis
11:30-12:15	Lunch
12:15-13:15	L: Introduction to competing risks
13:15-16:00	P: Cause-specific rates and competing risks

Tuesday 8 March

09:00-10:00 L: Multistate models in practice
10:00-11:30 P: Multistate models
11:30-12:15 Lunch
12:15-14:30 P: State probabilities
14:30-15:00 Q: Wrap-up and questions
Within each of the the topics (see the table of contents) there will be a short introductury lecture, introducing the practical.

Chapter 1

Survival and rates: lung

Paraphernalia

It is advisable to load all packages needed at the start:

```
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> clear()
```


1.1 Data and simple survival

1. Load the lung data from the survival package, and convert sex to a factor (always do that with categorical variables). Also we rescale time from days to months:
```
> data(lung)
> lung$sex <- factor(lung$sex,
+ levels = 1:2,
+ labels = c("M", "W"))
> lung$time <- lung$time / (365.25/12)
> head(lung)
```


2. Use survfit to construct the Kaplan-Meier estimator of overall survival:

```
> ?Surv
> ?survfit
```

```
> km <- survfit(Surv(time, status == 2) ~ 1, data = lung)
> km
Call: survfit(formula = Surv(time, status == 2) ~ 1, data = lung)
\begin{tabular}{rrrrr}
\(n\) & events & median & \(0.95 L C L\) & \(0.95 U C L\) \\
228.00 & 165.00 & 10.18 & 9.36 & 11.93
\end{tabular}
> # summary(km) # very long output
```

The standard print method just prints the number of events and the median survival, while the summary prints the entire survival function estimate.

We can plot the survival curve - this is the default plot for a survfit object:

```
> plot(km)
```

What is the median survival? What does it mean?
3. Explore if survival patterns between men and women are different:

```
> kms <- survfit(Surv(time, status == 2) ~ sex, data = lung)
> kms
Call: survfit(formula = Surv(time, status == 2) ~ sex, data = lung)
    n events median 0.95LCL 0.95UCL
sex=M 138 112 8.87 6.97 10.2
sex=W 90 53 14.00 11.43 18.1
```

We can plot the two resulting survival curves with confidence limits:

```
> plot(kms, col = c("blue", "red"), lwd = 1, conf.int = TRUE)
> lines(kms, col = c("blue", "red"), lwd = 3)
```

e see that men have worse survival than women, but they are also a bit older (age is age at diagnosis of lung cancer):

```
> with(lung, tapply(age, sex, mean))
M W
63.34058 61.07778
```

Formally there is a significant difference in survival between men and women

```
> ?survdiff
> survdiff(Surv(time, status==2) ~ sex, data = lung)
```

What is the null hypothesis tested here?

Figure 1.1: Kaplan-Meier estimators of survival for men (blue) and women (red). W ../graph/surv-kms

1.2 Rates and rate-ratios: Simple Cox model

4. Now explore how sex and age (at diagnosis) influence the mortality - note that we are now addressing the mortality rate and not the survival in a Cox-model:
```
> c0 <- coxph(Surv(time, status == 2) ~ sex , data = lung)
> c1 <- coxph(Surv(time, status == 2) ~ sex + I(age/10), data = lung)
> summary(c1)
Call:
coxph(formula = Surv(time, status == 2) ~ sex + I(age/10), data = lung)
    n= 228, number of events= 165
```



```
exp(coef) exp(-coef) lower . }95\mathrm{ upper . }9
I(age/10) 1.1858
Concordance= 0.603 (se = 0.025 )
Likelihood ratio test= 14.12 on 2 df, p=9e-04
Wald test = 13.47 on 2 df, p=0.001
Score (logrank) test = 13.72 on 2 df, p=0.001
> ci.exp(c0)
    exp(Est.) 2.5% 97.5%
sexW 0.5880028 0.4237178 0.8159848
> ci.exp(c1)
    exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
I(age/10) 1.185842 0.9897335 1.4208086
```

We see that there is not much confounding by age; the W/M mortality RR (hazard ratio is another word for this) is slightly below 0.6 whether age is included or not.
The age effect is formally non-significant, the estimate corresponds to a 1.7% higher mortality rate per year of age at diagnosis (mortality RR or hazard ratio of 1.017).
What is the mortality $R R$ for a 10 year age difference?
5. We can check if the assumption of proportional hazards holds, cox.zph provides a test, and the plot method shows the Schoenfeld residuals and a smooth of them; interpretable as an estimate of the interaction effect; that is how the W/M (log) rate-ratio depends on time:

```
> ?cox.zph
> cox.zph(c0)
    chisq df p
sex 2.86 1 0.091
GLOBAL 2.86 1 0.091
> (z1 <- cox.zph(c1))
\begin{tabular}{llrr} 
& chisq & df & p \\
sex & 2.608 & 1 & 0.11 \\
I (age/10) & 0.209 & 1 & 0.65 \\
GLOBAL & 2.771 & 2 & 0.25
\end{tabular}
> par(mfrow = c(1, 2)) ; plot(z1)
```

If the proportional hazards model holds, then the resulting lines in he plots should be approximately horizontal.
6. We see that there is no systematic pattern for age, but an increase by sex. The cox.zph really gives a test for an interaction between each covariate and the time scale.

We will keep that in mind so we can assess this through proper modeling of the interaction - the Cox model does not include the estimate of the effect of time, and the by that token it is impossible to estimate any interaction with time as well.
7. Before we showed the Kaplan-Meier estimator for each of the two sexes. We can also show the estimated survival curves for the two sexes as derived from the Cox-model. This requires a prediction data frame - a data frame with the same variables as in the Cox-model and values of these representing the persons for whom we want predictions:

```
> prs <- survfit(c0, newdata = data.frame(sex = c("M","W")))
> plot(prs, col = c("blue", "red"))
```

How is the shape of the two curves relative to each other?
8. Try to over-plot the Cox-prediction on the Kaplan-Meier curves:

```
> plot(prs, col = c("blue", "red"), lwd = 1, lty = 1, conf.int = TRUE)
> lines(prs, col = c("blue", "red"), lty = 1, lwd=3)
> lines(kms, col = c("blue", "red"), lty = 2, lwd=2)
```

Do they agree? What does that mean?

1.3 Simple Poisson model

9. But we do not know how the mortality per se looks as a function of time (since diagnosis). That function is not available from the Cox-model or from the survfit object. To that end we must provide a model for the effect of time on mortality; the simplest is of course to assume that it is constant or a simple linear function of time.

For a start we assume that the mortality is constant over time, it is so that the likelihood for the model is equivalent to a Poisson likelihood, which can be fitted using the poisreg family from the Epi package:

```
> ?poisreg
> p1 <- glm(cbind(status == 2, time) ~ sex + age,
+ family = poisreg,
+ data = lung)
> ci.exp(p1) # estimates form Poisson
```

```
    exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
> ci.exp(c1) # estimates from Cox
    exp(Est.) 2.5% 97.5%
sexW 0.598566 0.4310936 0.8310985
I (age/10) 1.185842 0.9897335 1.4208086
```

We see that the estimates of sex and age effects are quite close between the Poisson and the Cox models, but also that the Poisson model has an intercept term, the estimate of the (assumed) constant underlying mortality. Since we entered the risk time part of the response (second argument in the cbind) in units of months (remember we rescaled in the beginning?), the (Intercept) (taken from the ci.exp) is a rate per 1 person-month.
What age and sex does the (Intercept) refer to?
10. The syntax for poisreg is a bit different from that for poisson, which would be:

```
> px <- glm(status == 2 ~ sex + age + offset(log(time)),
+ family = poisson,
+ data = lung)
> ## or:
> px <- glm(status == 2 ~ sex + age,
+ offset = log(time),
+ family = poisson,
+ data = lung)
> ci.exp(px)
```

The formulation with the offset is the reason that papers use the description "... we fitted a Poisson model with log person years as offset".

The drawback of the poisson approach is that you need the (risk) time (person-years) as a variable in the prediction frame. This is not the case for poisreg, where you get the predicted rates per unit in which as you entered the person years when specifying the model.

We shall return to prediction of rates.

1.4 Representation of follow-up: Lexis object

If we want to see how mortality varies by age we must split the follow-up of each person in small intervals of say, 30 days. This is most easily done using a Lexis object. That is basically just taking the lung dataset and adding a few features that defines times and states. The point is that it makes life a lot easier when things get more complex than just simple survival.
11. First make a Lexis object:

```
> ?Lexis
```

```
> Ll <- Lexis(exit = list(tfl = time),
+ exit.status = factor(status,
+ levels = 1:2,
+ labels = c("Alive","Dead")),
+ data = lung)
NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the tfl timescale.
head(Ll)
```


We see that 5 variables have been added to the dataset:
tfl: time from lung cancer at the time of entry, therefore it is 0 for all persons; the entry time is 0 from the entry time.
lex.dur: the length of time a person is in state lex. Cst, here measured in months, because time is.
lex.Cst: Current state, the state in which the lex.dur time is spent.
lex. Xst: eXit state, the state to which the person moves after the lex.dur time in lex.Cst.
lex.id: a numerical id of each record in the dataset (normally this will be a person id).

This seems a bit of an overkill for keeping track of time and death for the lung cancer patients, but the point is that this generalizes to multistate data too.

It also gives a handy overview of the follow-up:

```
> summary(Ll)
Transitions:
            To
From Alive Dead Records: Events: Risk time: Persons:
    Alive 63 165 228 165 2286.42 
```

What is the average follow-up time for persons?
For a graphical representation, try:

```
> ?boxes
> boxes(Ll, boxpos = TRUE)
```

Explain the numbers in the resulting graph. Redo the graph with risk time counted in years.
12. We can make the Cox-analysis using the Lexis-specific variables by:

```
> ?Surv
> cl <- coxph(Surv(tfl,
+ tfl + lex.dur,
+ lex.Xst == "Dead") ~ sex + age,
+ data = LI)
```

but even simpler, by using the Lexis features:

```
> ?coxph.Lexis
```

$>c L<-\operatorname{coxph} . L e x i s(L I, t f 1$ ~ sex + age)
survival::coxph analysis of Lexis object Ll:
Rates for the transition Alive->Dead
Baseline timescale: tfl
> ci.exp(cL)
$\exp ($ Est.) $2.5 \% \quad 97.5 \%$
sexW 0.5985660 .43109360 .8310985
age 1.0171910 .99896861 .0357467
> ci.exp(cl)
\exp (Est.) $\quad 2.5 \% \quad 97.5 \%$
sexW 0.5985660 .43109360 .8310985
age 1.0171910 .99896861 .0357467
13. And we can make the Poisson-analysis by:

```
> pc <- glm(cbind(lex.Xst == "Dead", lex.dur) ~ sex + age,
+ family = poisreg,
+ data = Ll)
```

or even simpler, by using the Lexis features:

```
> pL <- glm.Lexis(Ll, ~ sex + age)
```

```
stats::glm Poisson analysis of Lexis object Ll with log link:
Rates for the transition: Alive->Dead
> ci.exp(pL)
    exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
> ci.exp(pc)
    exp(Est.) 2.5% 97.5%
(Intercept) 0.03255152 0.01029228 0.1029511
sexW 0.61820515 0.44555636 0.8577537
age 1.01574132 0.99777446 1.0340317
```

Remember that the Poisson-model fitted is a very brutal approximation to the Cox-model; it assumes that the baseline hazard is constant, whereas the Cox-model allows the baseline hazard to vary arbitrarily by time.

1.5 Estimating the hazard function: splitting time

If we want a more detailed version of the baseline hazard we split follow-up time in small intervals, assume that the hazard is constant in each small interval, and assume the the size of the hazard varies smoothly with time, tfl:
14. We can subdivide the follow-up in small intervals by survival:::survSplit, Epi:::splitLexis or popEpi:::splitMulti (and possibly many more). The splitMulti is by far the easiest to use (and fastest as well). Recall we rescaled time to months, so we split in 1 month intervals:

```
> Sl <- splitMulti(Ll, tfl = 0:36)
```

This will split the follow-up along the time-scale tfl at times $0,1, \ldots, 36$ months; we see that the follow-up time is the same, but there are now about 10 times as many records:

```
> summary(Ll)
Transitions:
            To
From Alive Dead 
> summary(Sl)
Transitions:
            To
From Alive Dead Records:
    Alive 2234 165 2399 165 2286.42 
```

We can see how the follow up for person, 10 say, is in the original and the split dataset:

```
> wh <- names(Ll)[1:10] # names of variables in some order
> subset(Ll, lex.id == 10)[,wh]
```



```
> subset(Sl, lex.id == 10)[,wh]
\begin{tabular}{lrrrrrrrrrr} 
& tfl & lex.dur & lex.Cst & lex.Xst & lex.id & inst & \multicolumn{3}{c}{ time } & status \\
163 & 0 & 1.0000000 & Alive & Alive & 10 & 7 & 5.453799 & 2 & 61 & M \\
164 & 1 & 1.0000000 & Alive & Alive & 10 & 7 & 5.453799 & 2 & 61 & M \\
165 & 2 & 1.0000000 & Alive & Alive & 10 & 7 & 5.453799 & 2 & 61 & M \\
166 & 3 & 1.0000000 & Alive & Alive & 10 & 7 & 5.453799 & 2 & 61 & M \\
167 & 4 & 1.0000000 & Alive & Alive & 10 & 7 & 5.453799 & 2 & 61 & M \\
168 & 5 & 0.4537988 & Alive & Dead & 10 & 7 & 5.453799 & 2 & 61 & M
\end{tabular}
```

In Sl each record now represents a small interval of follow-up for a person, so each person has many records. The main thing to note here is tfl, which represents the time from lung cancer at the beginning of each interval, and lex.dur representing the risk time ("person-years", in months though).
15. We can now include a smooth effect of tfl in the Poisson-model allowing the baseline hazard to vary by time. That is done by natural splines, Ns:

```
> ps <- glm(cbind(lex.Xst == "Dead", lex.dur)
+ ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age,
+ family = poisreg,
+ data = Sl)
> ci.exp(ps)
```

		$\exp ($ Est. $)$	2.5%	97.5%
(Intercept)	0.0189837	0.005700814	0.06321569	
Ns (tfl, knots = seq(0, 36, 12)) 1	2.4038681	0.809442081	7.13896863	
Ns (tfl, knots = seq(0, 36, 12)) 2	4.1500822	0.436273089	39.47798357	
Ns (tfl, knots = seq(0, 36, 12))3	0.8398973	0.043928614	16.05849662	
sexW		0.5987171	0.431232662	0.83124998
age		1.0165872	0.998377104	1.03512945

or even simpler:

```
> ?glm.Lexis
> ps <- glm.Lexis(Sl, ~ Ns(tfl, knots = seq(0, 36, 12)) + sex + age)
> ci.exp(ps)
```

16. Compare these to the regression estimates from the Cox-model and from the model with constant baseline:
```
> round(cbind(ci.exp(cl),
+ ci.exp(ps, subset = c("sex","age")),
+ ci.exp(pc, subset = c("sex","age"))), 3)
```

```
        exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5% exp(Est.) 2.5% 97.5%
sexW 0.599 0.431 0.831 0.599 0.431 0.831 0.618 0.446 0.858
age 1.017 0.999 1.036 1.017 0.998 1.035 1.016 0.998 1.034
```

We see that the smooth parametric Poisson model and the Cox model produce virtually the same estimates, whereas the Poisson model with constant hazard produce slightly different ones.
17. The proportional hazards assumption is the same for the Cox model and the Poisson models: The M/W hazard ratio is the same at any time after diagnosis. What differs is the assumed shape of the hazard (not a hazard ratio).
The Cox model allows the baseline rate to change arbitrarily at every event time time not using the quantitative nature of time, the ps Poisson model has a baseline that varies smoothly by time and the pc Poisson model has a baseline that is constant over time. The latter is clearly not tenable, whereas the smooth Poisson model and the Cox model give the same regression estimates.
18. We now have a parametric model for the baseline hazard which means that we can show the estimated baseline hazard for a 60 -year old woman, by supplying a suitable prediction frame, i.e. a data frame where each row represents a set of covariate values, including the time where we want the predicted mortality:

```
> prf <- data.frame(tfl = seq(0, 30, 0.2),
+ sex = "W",
+ age = 60)
```

We can over-plot with the predicted rates from the model where mortality rates are constant, the only change is the model (pc instead of ps):

```
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
> matshade(prf$tfl, ci.pred(pc, prf), lty = 2, lwd = 3)
```

What we see from the plot is that mortality rates are increasing during the first 1.5 years after lung cancer and then leveling off.

Put some sensible axis labels on the plot, and rescale the rates to rates per 1 person-year.
19. We can transform the hazard function, $\lambda(t)$, to a survival function, $S(t)$ using the relationship $S(t)=\exp \left(-\int_{0}^{t} \lambda(u) \mathrm{d} u\right)$. This is implemented in the ci.surv function, which takes the model and a prediction data frame as arguments; the prediction data frame must correspond to a sequence of equidistant time points, so we can use prf for this purpose:

```
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
```

We can expand this by overlaying the survival function from the model with constant hazard (also known as "exponential(y distributed) survival") and the KM-estimator

```
> matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
> lines(prf$tfl, ci.surv(pc, prf, intl = 0.2)[,1])
> lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ lwd = 2, lty = 1)
```

We see that the survival function from the constant hazard model is quite a bit off, but also a good correspondence between the Cox-model based survival and the survival from the parametric hazard function.
We can bring the plots together in one graph:

```
> par(mfrow = c(1,2))
> # hazard scale
> matshade(prf$tfl, ci.pred(ps, prf),
+ plot = TRUE, log = "y", lwd = 3)
matshade(prf$tfl, ci.pred(pc, prf), lty = 3, lwd = 3)
# survival
matshade(prf$tfl, ci.surv(ps, prf, intl = 0.2),
+ plot = TRUE, ylim = 0:1, lwd = 3)
matshade(prf$tfl, ci.surv(pc, prf, intl = 0.2),
lty = 3, alpha = 0, lwd = 3)
lines(survfit(c1, newdata = data.frame(sex = "W", age = 60)),
+ col = "forestgreen", lwd = 3)
```

20. We have compared the predicted survival curve from a Poisson model with age and sex and time since lung cancer as covariates to that from a Cox-model with age and sex as covariates and time since lung cancer as underlying time scale.

We now go back to the Kaplan-Meier estimator and compare that to the corresponding Poisson-model, which is one with time (tfl) as the only covariate:

```
> par(mfrow=c(1,2))
> pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = seq(0, 36, 12)),
+ family = poisreg,
+ data = Sl)
# hazard
> matshade(prf$tfl, ci.pred(pk, prf),
    plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
# survival from smooth model
matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
    plot = TRUE, lwd = 3, ylim = 0:1)
# K-M estimator
lines(km, lwd = 2)
```

21. We can explore how the tightness of the knots in the smooth model influence the underlying hazard and the resulting survival function. This is easiest done by setting up a function that does the analysis withe different number of knots

Figure 1.2: Hazards (left) and survival (right) for 60 year old women. The left hand plot is unavailable from the Cox model.
../graph/surv-ratesurv

```
> zz <-
+ function(dk)
+ {
+ kn <- seq(0, 36, dk)
+ pk <- glm(cbind(lex.Xst == "Dead",
+ lex.dur) ~ Ns(tfl, knots = kn),
+ family = poisreg,
+ data = Sl)
+ matshade(prf$tfl, ci.pred(pk, prf),
+ plot = TRUE, log = "y", lwd = 3, ylim = c(0.01,1))
+ rug(kn, lwd=3)
+
+ plot(km, lwd = 2, col = "limegreen")
+ matshade(prf$tfl, ci.surv(pk, prf, intl = 0.2) ,
+ lwd = 3, ylim = 0:1)
+ }
```

```
> par(mfrow=c(1,2))
```

> $z z(12)$

```
> par(mfrow=c(4,2))
> for (nk in c(6, 4, 3, 2)) zz(nk)
```

You will see that the more knots you include, the closer the parametric estimate gets to the Kaplan-Meier estimator. But also that the estimated underlying hazard

Figure 1.3: Baseline hazard (left), and corresponding survival function from parametric model and Kaplan-Meier estimator.
. ./graph/surv-parkm
becomes increasingly silly. The ultimate silliness is of course achieved when we arrive at the Kaplan-Meier estimator.
Fortunately the baseline hazard underlying the Kaplan-Meier and the Breslow estimator is rarely shown.

Figure 1.4: Hazard (left) and survival (right) comparing a parametric model with different number of knots and the Kaplan-Meier estimator.

Chapter 2

Competing risks: DM1ate

Paraphernalia

It is advisable to load all packages needed at the start:

```
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> clear()
```


2.1 Data

This exercise follows quite closely the section on competing risks in "Epidemiology with R", pp. 207 and 210 ff . With the major exception that we will use the function ci.Crisk, which was not available in the Epi package when the book was written.

We shall use the DMlate dataset which is a random sample of Danish diabetes patients, with dates of birth, diabetes, OAD start, insulin start and death.

We want to look at the event "start of OAD", which occurs at dooad, while taking death as competing event into account. This means that we want to address the question of the probability of starting OAD, while taking death into account. Essentially estimating the probability of being in each of the states DM, OAD and Dead, where OAD means "started OAD and either alive or dead after this" and Dead means "dead without starting OAD".

1. Load the DMlate data from the Epi package, and for ease of calculation restrict to a random sample of 2000 persons:
```
> data(DMlate)
> # str(DMlate)
> set.seed(1952)
> DMlate <- DMlate[sample(1:nrow(DMlate), 2000),]
> str(DMlate)
```

```
'data.frame': 2000 obs. of 7 variables:
    $ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 1 1 1 1 1 ...
    $ dobth: num 1964 1944 1957 1952 1952 ...
    $ dodm : num 2003 2006 2008 2007 2003 ...
    $ dodth: num NA ...
    $ dooad: num NA 2006 NA 2007 2006 ...
    $ doins: num NA NA NA 2008 NA ...
    $ dox : num 2010 2010 2010 2010 2010 ...
> head(DMlate)
\begin{tabular}{lrrrrrrr} 
& sex & dobth & \multicolumn{1}{r}{ dodm } & dodth & dooad & doins & dox \\
70126 & F & 1963.591 & 2003.481 & NA & NA & NA & 2009.997 \\
235221 & M & 1944.127 & 2005.644 & NA & 2005.778 & NA & 2009.997 \\
230872 & F & 1956.790 & 2007.886 & NA & NA & NA & 2009.997 \\
138167 & M & 1952.355 & 2006.969 & NA & 2006.969 & 2008.026 & 2009.997 \\
406109 & M & 1952.240 & 2003.361 & NA & 2005.852 & NA & 2009.997 \\
72438 & M & 1978.758 & 2001.948 & NA & NA & 2001.967 & 2009.997
\end{tabular}
```

2. Define a Lexis object with the total follow up for each person:
```
> Ldm <- Lexis(entry = list(per = dodm,
+ age = dodm - dobth,
+ tfd = 0),
+ exit = list(per = dox),
+ exit.status = factor(!is.na(dodth),
+ labels = c("DM","Dead")),
+ data = DMlate)
NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 1 rows with duration of follow up < tol
> summary(Ldm)
Transitions:
            To
From DM Dead Records: Events: Risk time: Persons:
    DM 1521 478 1999 478 10742.34 1999
```

Then subdivide the follow-up at the date of OAD, using dooad:

```
> Cdm <- cutLexis(Ldm,
+ cut = Ldm$dooad,
+ timescale = "per",
+ new.state = "OAD")
> summary(Cdm)
Transitions:
        To
\begin{tabular}{crrrrrrr} 
From & DM & OAD & Dead & Records: & Events: Risk time: & Persons: \\
DM & 685 & 634 & 226 & 1545 & 860 & 5414.29 & 1545 \\
OAD & 0 & 836 & 252 & 1088 & 252 & 5328.05 & 1088 \\
Sum 685 & 1470 & 478 & 2633 & 1112 & 10742.34 & 1999
\end{tabular}
```

In this context we are not interested in what goes on after OAD so we only keep follow-up in state DM (note that we must use subset because filter does not have a method for Lexis objects):

```
> Adm <- subset(Cdm, lex.Cst == "DM")
> summary(Adm)
Transitions:
        To
From DM OAD Dead Records: Events: Risk time: Persons:
    DM 685 634 226 1545 860 5414.29 1545
> boxes(Adm, boxpos = TRUE, scale.R = 100, show.BE = TRUE)
```


Figure 2.1: Competing risks set-up for events OAD and Dead. ../graph/cmpr-boxCR

As shown in figure 2.1 we now have a traditional competing risks set-up, with some 1500 DM patients starting without OAD, and where the quantity of interest is the probability of starting drug treatment, and the OAD state here means "having been on oral antidiabetic treatment, disregarding subsequent death". The other event considered is Dead which here means "dead without initiating oral antidiabetic treatment".

2.2 State probabilities

We can compute the (correct) counterpart of the survival function for this competing risks setup. The survival function we saw in the previous exercise gives the probability of being alive, and the complement is the probability of being dead.
3. survfit can do the corresponding calculation for the three states in the figure; the requirements are: 1) the third argument to the Surv function is a factor and 2) an id
argument is given, pointing to an id variable that links together records belonging to the same person. The latter is superfluous in this case because there is only one record for each person, but even so it is required by the function survfit.

Also note that the initial state (DM) must be the first level of the factor lex.Xst:

```
> levels(Adm$lex.Xst)
[1] "DM" "OAD" "Dead"
> m3 <- survfit(Surv(tfd,
+ tfd + lex.dur,
+ lex.Xst) ~ 1,
+ id = lex.id,
+ data = Adm)
names(m3)
```

```
[1] "n" "time" "n.risk" "n.event" "n.censor" "pstate"
[7] "p0" "cumhaz" "std.err" "sp0" "logse" "transition
[13] "conf.int" "conf.type" "lower" "call" "upper" "conf.type" "conf.int"
[19] "states" "type" "call"
> m3$states
[1] "(s0)" "OAD" "Dead"
> head(cbind(time = m3$time, m3$pstate))
    time
[1,] 0.002737851 0.9987055 0.001294498 0.0000000000
[2,] 0.005475702 0.9928803 0.006472492 0.0006472492
[3,] 0.008213552 0.9889968 0.009061489 0.0019417476
[4,] 0.010951403 0.9877023 0.009708738 0.0025889968
[5,] 0.013689254 0.9838188 0.013592233 0.0025889968
[6,] 0.016427105 0.9805825 0.016828479 0.0025889968
```

Because lex.Xst is a factor, survfit will compute the Aalen-Johansen estimator of being in a given state and place the probabilities in the matrix m3\$pstate; the times these refer to are in the vector m3\$time. These are measured in years since diabetes, because tfd is in units of years,
Explore the object m3; start by using names (m3).
Compare m3\$transitions to summary (Adm).
4. The $\mathrm{m} 3 \$$ pstate contains the Aalen-Johansen probabilities of being in the Alive, having left to the OAD, resp. Dead state.
Plot the three curves in the same graph (use for example matplot). Add the confidence limits.
5. These three curves have sum 1, so basically this is a way of distributing the probabilities across states at each time. It is therefore natural to stack the probabilities, which can be done by stackedCIF:

```
> par( mfrow=c(1,2) )
> matplot(m3$time, m3$pstate,
+ type="s", lty=1, lwd=4,
+ col=c("ForestGreen","red","black"),
xlim=c(0,15), xaxs="i",
ylim=c(0,1), yaxs="i" )
> stackedCIF(m3, lwd=3, xlim=c(0,15), xaxs="i", yaxs="i" )
> text( rep(12,3), c(0.9,0.3,0.6), levels(Cdm) )
> box()
```


Figure 2.2: Separate state probabilities (left) and stacked state probabilities (right). In the left panel, Alive is green, OAD is red and Dead is black.
../graph/cmpr-surv2
6. What do you get if you replace " 1 " by " \sim sex" in the call to survfit?

2.3 What not to do

A very common error is to use a partial outcome such as OAD, when there is a competing type of event, in this case Dead. If that is ignored and a traditional survival analysis is made as if OAD were the only possible event, we will have a substantial overestimate of the cumulative probability of going on drug. Here is an illustration of this erroneous approach:

```
> m2 <- survfit(Surv(tfd,
+ tfd + lex.dur,
```

```
+ lex.Xst == "OAD" ) ~ 1,
+ data = Adm)
> M2 <- survfit(Surv(tfd,
            tfd + lex.dur,
            lex.Xst == "Dead") ~ 1,
        data = Adm)
par(mfrow = c(1,2))
mat2pol(m3$pstate, c(2,3,1), x = m3$time,
        col = c("red", "black", "transparent"),
        xlim=c(0,15), xaxs="i",
        yaxs = "i", xlab = "time since DM", ylab = "" )
    lines(m2$time, 1 - m2$surv, lwd = 3, col = "red" )
mat2pol(m3$pstate, c(3,2,1), x = m3$time, yaxs = "i",
    col = c("black","red","transparent"),
    xlim=c(0,15), xaxs="i",
    yaxs = "i", xlab = "time since DM", ylab = "" )
    lines(M2$time, 1 - M2$surv, lwd = 3, col = "black" )
```

The first two statements calculate the survival as if only OAD, respectively Dead were the only way of exiting the state Alive. The mat2pol (matrix to polygon) takes the columns of state probabilities from the survfit object m3 that contains the correctly modeled probabilities and plot them as coloured areas stacked; the second argument to mat2pol is the order in which they should be stacked. The lines plot the wrongly computed cumulative risks (from m 2 and M2) - in order to find these we fish out the surv component from the survfit objects.

Figure 2.3: Stacked state probabilities Alive is white, OAD is red and Dead is black. The red line in the left panel is the wrong (but often computed) "cumulative risk" of OAD, and the black line in the right panel is the wrong (but often computed) "cumulative risk" of Death. The black and the red areas in the two plots represent the correctly computed probabilities; they have the same size in both panels, only they are stacked differently.../graph/cmpr-surv3

2.4 Modeling cause specific rates

There is nothing wrong with modeling the cause-specific event-rates, the problem lies in how you transform them into probabilities. The relevant model for a competing risks situation normally consists of separate models for each of the cause-specific rates. Not for technical or statistical reasons, but for substantial reasons; it is unlikely that rates of different types of event (OAD initiation and death, say) depend on time in the same way.
7. Now model the two sets of rates by parametric models; this must be based on a time-split data set:

```
> Sdm <- splitMulti(Adm, tfd = seq(0,20,0.1) )
> summary(Adm)
Transitions:
            To
From DM OAD Dead Records: Events: Risk time: Persons:
    DM 685 634 226 1545 860 5414.29 1545
> summary(Sdm)
Transitions:
            To
\begin{tabular}{rrrr} 
From DM OAD Dead & Records: & Events: Risk time: & Persons: \\
DM 54064634 & 226 & 54924 & 860 \\
5414.29 & 1545
\end{tabular}
```

8. We will use natural splines for the effect of diabetes duration in a model using glm. The Ns requires a set of pre-specified knots for the time variable, where the specification should be (partially) guided by the location on the times of the events:
```
> round(cbind(
+ 3)
\begin{tabular}{lrr} 
& {\([, 1]\)} & {\([, 2]\)} \\
\(0 \%\) & 0.003 & 0.005 \\
\(10 \%\) & 0.038 & 0.129 \\
\(20 \%\) & 0.095 & 0.507 \\
\(30 \%\) & 0.142 & 1.083 \\
\(40 \%\) & 0.239 & 1.730 \\
\(50 \%\) & 0.534 & 2.552 \\
\(60 \%\) & 1.268 & 3.584 \\
\(70 \%\) & 2.199 & 4.490 \\
\(80 \%\) & 3.373 & 6.196 \\
\(90 \%\) & 5.213 & 8.471 \\
\(100 \%\) & 14.311 & 11.858
\end{tabular}
```

+ with(subset(Sdm, lex.Xst == "OAD"), quantile(tfd + lex.dur, 0:10/10)),
+ with(subset(Sdm, lex.Xst == "Dead"), quantile(tfd + lex.dur, 0:10/10))),

We see that the OAD occur earlier than Dead, so we choose the knots a bit earlier:

```
> okn <- c(0,0.5,3,6)
> dkn <- c(0,2.0,5,9)
> OAD.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = okn), from = "DM", to = "OAD" )
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->OAD
> Dead.glm <- glm.Lexis(Sdm, ~ Ns(tfd, knots = dkn), from = "DM", to = "Dead")
stats::glm Poisson analysis of Lexis object Sdm with log link:
Rates for the transition: DM->Dead
```

9. With models for the two rates out of the DM state we can derive the estimated rates from the two models for rates by time by using a prediction frame, nd:
```
> int <- 0.01
> nd <- data.frame(tfd = seq(0, 15, int))
> l.glm <- ci.pred( OAD.glm, nd)
> m.glm <- ci.pred(Dead.glm, nd)
```

Now plot the estimated rates, in this case the gam models with dotted and glm models with full lines; mortality with black and OAD rates with red:

```
> matshade(nd$tfd,
+ cbind(l.glm, m.glm) * 100,
+ plot = TRUE,
+ log = "y", ylim = c(2, 20),
+ col = rep(c("red","black"), 2), lwd = 3)
```


2.5 Integrals with R

Based on these parametric models we can estimate the cumulative risks of being in each of the states, but also the expected time time spent in each state. The theory of these involves calculation of integrals of the rate functions. Integrals looks scary to many people, but they are really just areas under curves. So here is a digression showing how to calculate integrals as areas under a curve.

The key is to understand how a curve is represented in R. A curve representing the function μ is just a set of two vectors, one vector of t s and one vector $y=\mu(t) \mathrm{s}$. When we have a model such as the gam or glm above that estimates the mortality as a function of time (tfd), we can get a representation of the mortality as a funtion of time by first choosing the timepoints, say from 0 to 15 years in steps of 0.01 year (≈ 4 days). Then put this in a dataframe (nd, newdata) with the variable name from the model to get the function values at the chosen time points:

```
>t <- seq(0, 15, 0.01)
> nd <- data.frame(tfd = t)
> mu <- ci.pred(Dead.glm, nd)[,1]
> head(cbind(t, mu))
```


Figure 2.4: Mortality rates (black) and OAD-rates (red), from a glm model with natural splines.

```
    t mu
10.00 0.06919036
2 0.01 0.06885302
3 0.02 0.06851733
40.03 0.06818330
50.04 0.06785093
60.05 0.06752022
> plot(t, mu, type="l", lwd = 3,
+ xlim = c(0, 7), xaxs = "i",
+ ylim = c(0, max(mu)), yaxs = "i")
> polygon(t[c(1:501,501:1)], c(mu[1:501], rep(0, 501)),
+ col = "gray", border = "transparent")
```

This is a representaion of the points $(t, \mu(t))$; if we want the integral of $m u$ over the interval $[0,5]$, say, $M(5)=\int_{0}^{5} \mu(s) \mathrm{d} s$, we are just asking for the area under the curve. Each t represents an endpoint of an interval, but what we want in order to compute the area under the curve is the width of each interval, $\operatorname{diff}(\mathrm{t})$, multiplied by the average of the function values at the ends of each interval (this goes under the name of the "trapezoidal formula"). So we need a small function to compute midpoints between successive values in a vector:

```
> mid <- function(x) x[-1] - diff(x) / 2
> (x<-c(1:5, 7, 10))
[1] }\begin{array}{llllllll}{1}&{2}&{3}&{4}&{5}&{7}&{10}
> mid(x)
```


Figure 2.5: Mortality function and integral from 0 to 5 years.
../graph/cmpr-int-ill

[1] 1.52 .53 .54 .56 .08 .5

Note that $\operatorname{mid}(x)$ is a vector that is 1 shorter than the vector x, just as $\operatorname{diff}(x)$ is.
So if we want the integral over the period 0 to 5 years, we want the sum over the first 500 intervals, corresponding to the first 501 interval endpoints:

```
> sum(diff(t[1:501]) * mid(mu[1:501]))
[1] 0.1896222
```

So now we have computed $\int_{0}^{5} \mu(s) \mathrm{d}(s)$. This is called the cumulative rate over the interval $[0,5]$ years.

It is iportamt to get the units right. In the modeling we entered the risk time
("person-years") in units of 1 year, so the unit of predicted mortality function, mu, is events per 1 person-year. Therefore, the units of t must be year too; otherwise we will introduce a scaling.

In pratice we will want the integral function of μ, so for every t we want $M(t)=\int_{0}^{t} \mu(s) \mathrm{d}(s)$. This is easily accomplished by the function cumsum:

```
> Mu <- c(O, cumsum(diff(t) * mid(mu)))
> head(cbind(t, Mu))
    t Mu
    0.00 0.0000000000
2 0.01 0.0006902169
```

```
3 0.02 0.0013770686
40.03 0.0020605718
5 0.04 0.0027407429
60.05 0.0034175987
```

Note the first value which is the integral from 0 to 0 , so by definition 0 .

2.6 Cumulative risks from parametric models

Here is the theory where we need integration: The cumulative risk of OAD at time t is:

$$
R_{\mathrm{OAD}}(t)=\int_{0}^{t} \lambda(u) S(u) \mathrm{d} u=\int_{0}^{t} \lambda(u) \exp \left(-\int_{0}^{u} \lambda(s)+\mu(s) \mathrm{d} s\right) \mathrm{d} u
$$

where λ is the rate of OAD (lam), and μ the mortality rate (mrt). A similar formula is obtained for the cumulative risk of Dead (that is "dead without OAD"), by exchanging λ and μ.

The prectical calculation of these quantities are on pages 214-5 of "Epidemiology with R".
10. This means that if we have estimates of λ and μ as functions of time, we can derive the cumulative risks. In practice this will be by numerical integration; compute the rates at closely spaced intervals and evaluate the integrals as sums. This is easy, but what is not so easy is to come up with confidence intervals for the cumulative risks.
Confidence intervals are most conveniently produced by simulation ("parametric bootstrap" as some say):
(a) generate a random vector from the multivariate normal distribution with mean equal to the parameters of the model, and variance-covariance equal to the estimated variance-covariance of the parameter estimates (the Hessian as it is called).
(b) use this to generate a simulated set of rates $(\lambda(t), \mu(t))$, evaluated a closely spaced times
(c) use these in numerical integration to derive state probabilities at these times
(d) repeat 1000 times, say, to obtain 1000 sets of state probabilities at these times
(e) use these to derive confidence intervals for the state probabilities as the 2.5 and 97.5 percentiles of the state probabilities at each time

This machinery is implemented in the function ci.Crisk

```
> cR <- ci.Crisk(mods = list(OAD = OAD.glm,
+ Dead = Dead.glm),
+ nd = nd)
NOTE: Times are assumed to be in the column tfd at equal distances of 0.01
```

```
> str(cR)
List of 4
    $ Crisk: num [1:1501, 1:3, 1:3] 1 0.991 0.983 0.975 0.968 ...
        ..- attr(*, "dimnames")=List of 3
    .. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
    .. ..$ cause: chr [1:3] "Surv" "OAD" "Dead"
    .. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
    $ Srisk: num [1:1501, 1:2, 1:3] 0 0.000692 0.001374 0.002048 0.002713 ...
    ..- attr(*, "dimnames")=List of 3
    .. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
    .. ..$ cause: chr [1:2] "Dead" "Dead+OAD"
    .. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
    $ Stime: num [1:1501, 1:3, 1:3] 0 0.00996 0.01983 0.02963 0.03934 ...
    ..- attr(*, "dimnames")=List of 3
    .. ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
    .. ..$ cause: chr [1:3] "Surv" "OAD" "Dead"
    .. ..$ : chr [1:3] "50%" "2.5%" "97.5%"
    $ time : num [1:1501] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
    - attr(*, "int")= num 0.01
```

There are 4 components of the results, the three first are simply arrays with 2 or 3 functions of time with confidence intervals.

So now plot the cumulative risks of being in each of the states (the Crisk component):

```
> matshade(as.numeric(dimnames(cR$Crisk)[[1]]),
+ cbind(cR$Crisk[,1,],
+ cR$Crisk[,2,],
+ cR$Crisk[,3,]), plot = TRUE,
+ lwd = 2, col = c("limegreen","red","black"))
```

11. Plot the stacked probabilities (matrix 2 polygons):
```
> mat2pol(cR$Crisk[,3:1,1], col = c("forestgreen","red","black")[3:1])
```

The component Srisk has the confidence limits of the stacked probabilities, add these to the plot, for example by semi-transparent shades or dotted lines,

If you are really entrepreneurial, devise a function that will take the Srisk component of $c R$ and produce a stacked plot with shaded confidence limits; here is the stacked plot:

```
> matshade(as.numeric(dimnames(cR$Srisk)[[1]]),
+ cbind(cR$Srisk[,1,],
+ cR$Srisk[,2,]), plot = TRUE,
+ lwd = 2, col = c("black","red"),
+ ylim = 0:1, yaxs = "i")
```

Note the yaxs = "i"...
You may want to look at adjustcolor or rgb to see how to make semi-transparent colours.

Figure 2.6: Cumulative risks of being in each of the states DM (green), OAD (red) and Dead . ./graph/cmpr-crisk

2.7 Expected life time: using simulated objects

12. It is not only the cumulative risks of being in different states that my be of interest, the integrals - area under the cumulative risk curves are of interest too. The cumulative risks are probabilities, so dimensionless, which means that integrals of these along the time-axis will have dimension time; they will represent the expected time spent in each of the states.

The areas between the lines (up to say 10 years) are expected sojourn times, that is:

- expected years alive without OAD
- expected years lost to death without OAD
- expected years after OAD, including years dead after OAD

Not all of these are of direct relevance; actually only the first may be so. They are available (with simulation-based confidence intervals) in the component of cR, Stime (Sojourn time).
A relevant quantity would be the expected time alive without OAD during the first 5 , 10 and 15 years (remember that the first dimension of Stime is in unots of $1 / 100$ year):

```
> str(cR$Stime)
    num [1:1501, 1:3, 1:3] 0 0.00996 0.01983 0.02963 0.03934 ...
    - attr(*, "dimnames")=List of 3
    ..$ tfd : chr [1:1501] "0" "0.01" "0.02" "0.03" ...
    ..$ cause: chr [1:3] "Surv" "OAD" "Dead"
    ..$ : chr [1:3] "50%" "2.5%" "97.5%"
> round(cR$Stime[1:3*500+1,"Surv",], 1)
tfd 50% 2.5% 97.5%
    5 3.2 3.1 3.3
    10 5.1 4.9 5.3
    15 6.4 6.0 6.8
```

13. We can also compute the expected fraction of the first $5,10,15$ years alive:
$>(m Y<-\operatorname{matrix}(\operatorname{rep}(1: 3 * 5,3), 3,3))$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	5	5	5
$[2]$,	10	10	10
$[3]$,	15	15	15

> round(100 * cR\$Stime[1:3*500+1,"Surv",] / mY, 1)
tfd 50\% 2.5\% 97.5\%
$5 \quad 64.7 \quad 62.5 \quad 66.8$
$\begin{array}{llll}10 & 51.3 & 49.1 & 53.4\end{array}$
$1542.740 .3 \quad 45.0$

This can also be shown as a function of time; how large a fraction of the first t time can a person expect to be alive, for t ranging from 0 to 15 years:

```
> time <- as.numeric(dimnames(cR$Stime)[[1]]) / 100
> matshade(time, cR$Stime[,"Surv",] /
+ cbind(time,
+ time,
+ time) * 100,
+ plot=TRUE,
+ ylim = 0:1*100, yaxs = "i", xaxs = "i")
```

Amend the plot with proper axis labels.

Chapter 3

Multistate models: steno2

Paraphernalia

First we load the relevant packages and set some options:

```
> library(survival)
> library(Epi)
> library(popEpi)
> # popEpi::splitMulti returns a data.frame rather than a data.table
> options("popEpi.datatable" = FALSE)
> library(tidyverse)
> setwd("c:/bendix/teach/AdvCoh/courses/Aalborg.2022/pracs")
> getwd()
[1] "c:/bendix/teach/AdvCoh/courses/Aalborg.2022/pracs"
> clear()
```

For later convenience we devise a function that prints a data frame with all its numerical values rounded-this is particularly useful for Lexis objects with time scales calendar time and say, age.

```
> nround <-
+ function(df, dec = 2)
+ {
+ wh.num <- sapply(df, is.numeric)
+ df[,wh.num] <- round(df[,wh.num], dec)
+ print(df)
+ }
```


3.1 Lexis object for steno2

1. Bring in the steno2 dataset, and convert dates to cal. yr to get a natural unit of time (years - 365.25 days, that is). Because of the way data were anonymized, the doEnd is not perfectly aligned to doDth, which we remedy on the fly by resetting doEnd if a doDth is known.
```
data(steno2)
steno2 <- cal.yr(steno2)
> steno2 <- transform(steno2,
+ doEnd = pmin(doEnd, doDth, na.rm = TRUE))
str(steno2)
'data.frame': }160\mathrm{ obs. of }14\mathrm{ variables:
$ id : num 1 2 3 4 5 6 7 8 9 10 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 2 2 2 2 2 1 1 1 ...
$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 1 2 2 2 ...
$ baseCVD : num 0 0 0 0 0 1 0 0 0 0 ...
$ deathCVD: num 0 0 0 0 1 0 0 0 1 0 ...
$ doBth : 'cal.yr' num 1932 1947 1943 1945 1936 ...
$ doDM : 'cal.yr' num 1991 1982 1983 1977 1986 ...
$ doBase : 'cal.yr' num 1993 1993 1993 1993 1993 ...
$ doCVD1 : 'cal.yr' num 2014 2009 2002 1995 1994 ...
$ doCVD2 : 'cal.yr' num NA 2009 NA 1997 1995 ...
$ doCVD3 : 'cal.yr' num NA 2010 NA 2003 1998 ...
$ doESRD : 'cal.yr' num NaN NaN NaN NaN 1998 ...
$ doEnd : 'cal.yr' num 2015 2015 2002 2003 1998 ...
$ doDth : 'cal.yr' num NA NA 2002 2003 1998 ...
```

2. Start by setting up a Lexis data frame for the entire observation time for each person; from entry (doBase, date of baseline) to exit, doEnd. Note that we call the initial state Mic(roalbuminuria), because all patients in the Steno2 study had this status at entry - it was one of the inclusion criteria:
```
> L2 <- Lexis(entry = list(per = doBase,
+ age = doBase - doBth,
+ tfi = 0),
    exit = list(per = doEnd),
    exit.status = factor(deathCVD + !is.na(doDth),
                                    labels=c("Mic","D(oth)", "D(CVD)")),
        id = id,
    data = steno2)
NOTE: entry.status has been set to "Mic" for all.
> summary(L2, t = TRUE)
Transitions:
            To
From Mic D(oth) D(CVD) Records: Events: Risk time: Persons:
    Mic 67 55 38 160 10, 93 2416.59 
Timescales:
per age tfi
> boxes(L2, boxpos = TRUE, show.BE = TRUE)
```

How many deaths are there in the cohort?
Explain the coding of exit.status.

How many person-years?
What are the time scales?
3. In this set-up we can study the CVD and the non-CVD mortality rates, a classical competing risks problem, but we want in particular to see how the mortality rates depend on albuminuria status.

In order to allocate follow-up (person-time and events) to current albuminuria status we need to know when the persons change status; this is recorded in the data frame st2alb.

We will cut the follow-up at each date of albuminuria measurement allowing the patients to change between states Normoalbuminuria, Microalbuminuria and Macroalbuminuria at each of these dates, possibly several times per person. To this end we use the function rcutLexis (recurrent cuts), which requires a data frame of transitions with columns lex.id, cut and new.state - see ?rcutLexis.

We change the scale of the date of transition to year by cal.yr (to align with the per variable in L2), and in order to comply with the requirements of rcutLexis rename the id variable id to lex.id, the date variable doTr to cut and the state variable state to new.state:

```
> data(st2alb)
> cut2 <- cal.yr(st2alb)
> names(cut2)
```

[1] "id" "doTr" "state"
> names(cut2) <- c("lex.id","cut","new.state")
> str (cut2)
'data.frame': 563 obs. of 3 variables:
\$ lex.id : num $1111122222 \ldots$
\$ cut : 'cal.yr' num 19931995200020022007 ...
\$ new.state: Factor w/ 3 levels "Norm","Mic","Mac": 2121212322 ...
> head(cut2)

	lex.id	cut	new.state
1	1	1993.444	Mic
2	1	1995.361	Norm
3	1	2000.067	Mic
4	1	2001.984	Norm
5	1	2007.317	Mic
6	2	1993.786	Norm

How many persons are in the cut2 data frame? WE can do this in two different ways, illustrating the tidyverse philosophy

```
> addmargins(table(table(cut2$lex.id)))
    1 2 3 4 5 Sum
    4
```

```
> cut2$lex.id %>% table %>% table %>% addmargins
    1 2 3 4 5 Sum
4
```

Explain the entries in this table.
4. Now cut at intermediate transition times (note that rcutLexis assumes that values in the cut column refer to the first timescale by default, and the first of the timescales in L2 is per:

```
> cut2$cut <- as.numeric(cut2$cut)
> L2$per <- as.numeric(L2$per)
> L3 <- rcutLexis(L2, cut2)
> summary(L3)
Transitions:
            To
From Mic Norm Mac D(oth) D(CVD) Records: Events: Risk time: Persons:
```



```
    Norm
    Mac
> boxes(L3, boxpos = TRUE, cex = 0.8)
```

5. Note that there are transitions both ways between all three of Norm, Mic and Mac, which is a bit illogical, since we have a natural ordering of states: Norm $<$ Mic $<$ Mac, so transitions from Norm to Mac (and vice versa) should go through Mic

In order to remedy this anomaly we find all transitions Norm \rightarrow Mac and provide a transition Norm \rightarrow Mic in between. And of course similarly for transitions Mac \rightarrow Norm.

The relevant "jump" transitions are easily found:

```
> (jump <-
+ subset(L3, (lex.Cst == "Norm" & lex.Xst == "Mac") |
+ (lex.Xst == "Norm" & lex.Cst == "Mac"))[,
+ c("lex.id", "per", "lex.dur","lex.Cst", "lex.Xst")])
\begin{tabular}{lrrrrr} 
& lex.id & per & lex.dur & lex.Cst & lex. Xst \\
291 & 70 & 1999.487 & 2.6748802 & Mac & Norm \\
353 & 86 & 2001.759 & 12.8158795 & Norm & Mac \\
506 & 130 & 2000.910 & 1.8781656 & Mac & Norm \\
511 & 131 & 1997.756 & 4.2354552 & Norm & Mac \\
525 & 136 & 1997.214 & 0.4709103 & Mac & Norm \\
526 & 136 & 1997.685 & 4.2436687 & Norm & Mac \\
654 & 171 & 1996.390 & 5.3388090 & Norm & Mac \\
676 & 175 & 2004.585 & 9.8836413 & Norm & Mac
\end{tabular}
```


Figure 3.1: The default lay-out of the 5 boxes placed on a circle, including the jumps directly between Norm and Mac.
6. What we need to do for each of these "jumps" is to provide an extra transition to Mic at a time during the stay in either Norm or Mac, i.e. somewhere between per and per + lex.dur in these records; we choose a random time in the middle 80% between the dates:

```
> set.seed(1952)
> xcut <- select(transform(jump,
```

```
+ cut = per + lex.dur * runif(per, 0.1, 0.9),
+ new.state = "Mic"),
+ c(lex.id, cut, new.state))
xcut
\begin{tabular}{lrrr} 
& lex.id & cut & new. state \\
291 & 70 & 2001.789 & Mic \\
353 & 86 & 2012.232 & Mic \\
506 & 130 & 2001.488 & Mic \\
511 & 131 & 2001.032 & Mic \\
525 & 136 & 1997.610 & Mic \\
526 & 136 & 2000.780 & Mic \\
654 & 171 & 1997.057 & Mic \\
676 & 175 & 2013.472 & Mic
\end{tabular}
```

How many extra records will be generated when cutting the follow-up?
7. Now make extra cuts (transitions to Mic) at these dates using rcutLexis with xcut on the L3 object, and order the levels sensibly:

```
> L4 <- rcutLexis(L3, xcut)
> L4 <- Relevel(L4, c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> summary(L4)
Transitions:
        To
\begin{tabular}{lrrrrrrrrr} 
From & Norm & Mic & Mac & D (CVD) & D(oth) & Records: & Events: & Risk time: & Persons: \\
Norm & 90 & 35 & 0 & 6 & 13 & 144 & 54 & 581.04 & 66 \\
Mic & 72 & 312 & 65 & 14 & 30 & 493 & 181 & 1435.14 & 160 \\
Mac & 0 & 22 & 41 & 18 & 12 & 93 & 52 & 400.41 & 60 \\
Sum & 162 & 369 & 106 & 38 & 55 & 730 & 287 & 2416.59 & 160
\end{tabular}
```

We see that there are now no transitions directly between Norm and Mac in L4, so we can make a more intelligible plot of the transitions (remember to read the help page for boxes.Lexis):

```
> clr <- c("forestgreen","orange","red","blue",gray(0.3))
> boxes(L4, boxpos = list(x = c(20,20,20,80,80),
+ y = c(10,50,90,75,25)),
+ show.BE = "nz",
scale.R = 100,
+ digits.R = 2,
+ cex = 0.9,
+ pos.arr = 0.3,
+ col.bg = clr,
+ col.border = clr,
+ col.txt = c("white","black")[c(1,2,1,1,1)])
```

Explain the arguments of boxes.
Explain the numbers in the graph.
Describe the overall effect of albuminuria on the two mortality rates.
With this multistate model (well, there is no model yet) set up we can look at mortality rates and see how they depend on the current albuminuria state, or look at the transition rates between the different albuminuria states and assess how these depend on covariates.

Figure 3.2: Transitions between states in the Steno2 study.
. ./graph/ms-b4

3.2 Transition rates: multiple time scales

8. We will model the transition rates with parametric functions, so we need to split the dataset along some time scale; we will use 3 month intervals (they should be sufficiently small to accommodate an assumption of constant rates in each interval):
```
> S4 <- splitMulti(L4, tfi = seq(0, 25, 1/2))
> summary(L4)
Transitions:
            To
\begin{tabular}{lrrrrrrrrr} 
From & Norm Mic Mac & D (CVD) & D(oth) & Records: & Events: & Risk time: & Persons: \\
Norm & 90 & 35 & 0 & 6 & 13 & 144 & 54 & 581.04 & 66 \\
Mic & 72 & 312 & 65 & 14 & 30 & 493 & 181 & 1435.14 & 160 \\
Mac & 0 & 22 & 41 & 18 & 12 & 93 & 52 & 400.41 & 60 \\
Sum & 162 & 369 & 106 & 38 & 55 & 730 & 287 & 2416.59 & 160
\end{tabular}
> summary(S4)
```


We see that the number of events (transitions) and person-years are the same, in the two Lexis objects, but the number of records in $S 4$ is substantially larger than in L4.
9. We can now model the overall mortality rates as functions of age and duration (time since entry) using the defaults for glm.Lexis (this function call will trigger a warning):

```
> ma <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq}(50,80,10))
+ lex.Cst)
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->D(CVD), Mic->D (CVD), Mac->D(CVD), Norm->D(oth), Mic->D(ot
```

The warning triggered here just tells you that you are modeling the occurrence of any type of death, which amounts to modeling of the sum of CVD and non-CVD death rates - overall mortality.
The model structure in lex. Cst as an additive term is assuming that the overall mortality rates are proportional between states of albuminuria.
What are the mortality rate-ratios (hazard ratios), what ratios do they refer to: rates of what between which groups?
10. The default for glm.Lexis is to model all transitions to absorbing states which in this case are the two "dead" states, D (oth) and D (CVD).
The glm. Lexis above is just a convenience wrapper for:

```
> m1 <- glm(cbind(lex.Xst %in% c("D(oth)", "D(CVD)")
+ & lex.Cst != lex.Xst,
+ lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ family = poisreg,
+ data = subset(S4, lex.Cst %in% c("Norm","Mic","Mac")))
```

This will also give the same results as:

```
> m2 <- glm((lex.Xst %in% c("D(oth)", "D(CVD)") & lex.Cst != lex.Xst)
+ ~Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ offset = log(lex.dur),
+ family = poisson,
+ data = subset(S4, lex.Cst %in% c("Norm","Mic","Mac")))
```

-note the difference between the families poisreg and poisson: poisreg enters events and person-time more logically as part of the outcome, whereas poisson enters events as the response and person-years (lex.dur) via the offset,
11. The parameters from any of the formulations are on the log-scale so we want to see them exponentiated, so on the rate-scale:

```
> round(ci.exp(ma), 2)
```

	\exp (Est.) 2.5\%	97.5\%
(Intercept)	0.000 .00	0.01
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 1$	5.211 .09	24.87
$\mathrm{Ns}(\mathrm{tfi}, \mathrm{knots}=\operatorname{seq}(0,20,5)) 2$	4.000 .97	16.41
$\mathrm{Ns}(\mathrm{tfi}, \mathrm{knots}=\operatorname{seq}(0,20,5)) 3$	33.150 .90	1222.37
$\mathrm{Ns}(\mathrm{tfi}, \mathrm{knots}=\operatorname{seq}(0,20,5)) 4$	0.430 .14	1.36
Ns (age, knots $=\operatorname{seq}(50,80,10)) 1$	3.371 .38	8.24
Ns (age, knots $=\operatorname{seq}(50,80,10)) 2$	10.901 .41	83.93
Ns (age, knots $=\operatorname{seq}(50,80,10)) 3$	12.625 .60	28.42
lex.CstMic	0.960 .56	1.65
lex.CstMac	1.700 .95	3.06

We see there is a higher mortality in the Mac state but no discernible difference between the Mic and the Norm states.
12. It can be formally tested whether the three states carry the same mortality using a Wald test (testing whether the Norm and Mac parameters both are 0 on the log-scale):

```
> Wald(ma, subset = "lex.Cst")
Chisq}\mp@code{d.f.
```

What is the meaning of this test (i.e. what is the null hypothesis)?
13. Now do the same analysis for the two causes of death separately, using the to argument to glm.Lexis:

```
> mo <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->D(oth), Mic->D(oth), Mac->D(oth)
> round(ci.exp(mo), 3)
```

```
(Intercept)
Ns(tfi, knots = seq(0, 20, 5))1
Ns(tfi, knots = seq(0, 20, 5))2
Ns(tfi, knots = seq(0, 20, 5))3
Ns(tfi, knots = seq(0, 20, 5))4
Ns(age, knots = seq(50, 80, 10))1
Ns(age, knots = seq(50, 80, 10))2
Ns(age, knots = seq(50, 80, 10))3
lex.CstMic
lex. CstMac
> mC <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst,
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->D(CVD), Mic->D(CVD), Mac->D(CVD)
> round(ci.exp(mC), 3)
\begin{tabular}{|c|c|c|c|}
\hline & \(\exp\) (Est.) & 2.5\% & 97.5\% \\
\hline (Intercept) & 0.001 & 0.000 & 0.015 \\
\hline Ns (tfi, knots \(=\operatorname{seq}(0,20,5)) 1\) & 1.045 & 0.162 & 6.748 \\
\hline Ns(tfi, knots \(=\operatorname{seq}(0,20,5)) 2\) & 1.844 & 0.293 & 11.589 \\
\hline Ns(tfi, knots \(=\operatorname{seq}(0,20,5)) 3\) & 1.057 & 0.017 & 65.022 \\
\hline Ns(tfi, knots \(=\operatorname{seq}(0,20,5)) 4\) & 0.128 & 0.016 & 1.052 \\
\hline Ns(age, knots \(=\operatorname{seq}(50,80,10)) 1\) & 6.362 & 1.064 & 38.040 \\
\hline Ns (age, knots \(=\operatorname{seq}(50,80,10)) 2\) & 427.131 & 1.868 & 97690.836 \\
\hline Ns(age, knots \(=\operatorname{seq}(50,80,10)) 3\) & 15.098 & 3.569 & 63.875 \\
\hline lex.CstMic & 0.915 & 0.349 & 2.400 \\
\hline lex.CstMac & 3.233 & 1.273 & 8.213 \\
\hline
\end{tabular}
```

What is the conclusion w.r.t. the effect of albuminuria state on the two cause-specific mortality rates?
14. Make a formal test of relevant hypotheses using Wald.

```
> Wald(mo, subset = "Cst")
    Chisq d.f. P
0.0004420469 2.0000000000 0.9997790010
> Wald(mC, subset = "Cst")
    Chisq d.f. P
1.387135e+01 2.000000e+00 9.724688e-04
```

What is the conclusion from these w.r.t. mortality dependence on albuminuria status?
15. We can show how fitted mortality rates look for persons currently in state Mic entering the study at a set of specific ages. The entry ages are in the vector L2\$age:

```
> summary(L2$age)
```

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
37.39	48.52	56.60	55.13	61.06	67.50

Based on this we shall use ages 45,55 and 65 , and show mortality rates for persons entering at these ages. We will show the rates as functions of their current age. We need a prediction data frame, with values for all variables in the model, (current) age and time from entry, tfi. Here expand.grid is our friend:

```
> expand.grid(tfi = c(NA, seq(0, 20, 5)),
+ ain =c(45, 55, 65))
    tfi ain
N NA 45
2 0 45
5 5 45
4 10 45
5 15 45
6 20 45
7 NA 55
8 055
9 5 55
10}10\quad5
11 15 55
12 20 55
1 3 ~ N A ~ 6 5
14 0 65
15 5 65
16 10 65
17 15 65
18 20 65
```

- it will give all combinations of the values in the vectors supplied as a data.frame. The NAs are there for plotting purposes - we get a break in plotted curves if there is an NA in the data. We want the tfi points to be closer than in the illustrative example:

```
> prf <- transform(expand.grid(tfi = c(NA, seq(0, 20, 0.5)),
+ ain = c(45, 55, 65))[-1,],
+ age = ain + tfi,
+ lex.Cst = "Mic")
> prf[ 1: 5,]
    tfi ain age lex.Cst
2 0.0 45 45.0 Mic
3 0.5 45 45.5 Mic
4 1.0 45 46.0 Mic
5 1.5 45 46.5 Mic
6.0 45 47.0 Mic
> prf[40:44,]
```


Figure 3.3: CVD mortality rates (blue) and non-CVD mortality rates (black), with 95\% confidence intervals as shades. Curve represent persons entering the study at ages 45, 55 and 65 respectively. N

OTE: matshade uses polygon internally, and if the polygon-here the confidence limits - are too far outside the plotting area, they will not show up. A really clumpy workaround is:

```
> matshade(prf$age, pmin(pmax(
+ cbind(ci.pred(mo, prf),
+ ci.pred(mC, prf)) * 100, 0.01), 40),
+ lwd = 3, col = c("black","blue"),
+ log = "y", ylim = c(0.02,20), plot = TRUE)
```

The rates of death from other causes is very small at the beginning and increases steeply over the first 5 years of follow-up, while the CVD mortality is pretty stable with a foreseeable increase by age.

Give an informal description of the curves, and a possible reason for the shape of the curves.
16. We can show the impact of albuminuria state on the mortality rates in a 3 -panel layout:

```
> par(mfrow=c (1,3))
> for(st in c("Norm","Mic","Mac"))
+ {
+ matshade(prf$age, pmin(pmax(
+ cbind(ci.pred(mo, transform(prf, lex.Cst = st)),
+ ci.pred(mC, transform(prf, lex.Cst = st))) * 100,
                                    0.05), 60),
    lwd = 3, col = c("black","blue"),
    log = "y", ylim = c(0.1,50), plot = TRUE)
text(60, 50, st, adj = 0)
+ }
```

How are the curves in the three panels related?
Describe the effect of albuminuria status on the two types of mortality.
How can you see this from the model parameters?

3.3 State probabilities

We would like to see how the probabilities of being in each of the states in figure 3.2 look as a function of time since entry, and we will in particular be interested in how this depends on allo, the allocation to intensified or standard treatment.

3.3.1 Models for transition rates

Thus we will need models for 1) the cause-specific mortality rates and 2) transition rates between albuminuria states. And of course models which all include the effect of allo (treatment allocation).

We already fitted models for the mortality rates, but here we refit them in a slightly different guise, namely including the treatment allocation (allo) as covariate too.

3.3.1.1 Mortality rates

17. We first model the mortality rates using a proportional hazards model, but allowing different mortality between the two allocation groups (in allo), and the three albuminuria states (in lex.Cst):
```
> mix <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst * allo,
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->D(oth), Mic->D(oth), Mac->D(oth)
> round(ci.exp(mix), 3)
(Intercept)
Ns(tfi, knots = seq(0, 20, 5))1
Ns(tfi, knots = seq}(0, 20, 5))2 
Ns(tfi, knots = seq(0, 20, 5))3
Ns(tfi, knots = seq(0, 20, 5))4
Ns(age, knots = seq(50, 80, 10))1
Ns(age, knots = seq(50, 80, 10))2
Ns(age, knots = seq(50, 80, 10))3
exp(Est.) 2.5% 97.5%
        0.000 0.000 5.000000e-03
    126.115 3.081 5.162934e+03
    37.862 1.793 7.997080e+02
36064.265 7.437 1.748841e+08
    1.968 0.343 1.128900e+01
    2.925 0.966 8.856000e+00
    1.504 0.152 1.486400e+01
    12.006 4.251 3.390800e+01
lex.CstMic
    0.971 0.362 2.604000e+00
lex.CstMac 1.629 0.531 4.995000e+00
alloConv 1.820 0.599 5.530000e+00
lex.CstMic:alloConv 1.057 0.277 4.026000e+00
lex.CstMac:alloConv 0.358 0.071 1.797000e+00
```

We would however like to see the allocation effect on mortality separately for each albuminuria state; this is done by the "/" operator in the model formula (pronounced: allo effect within lex.Cst):

```
> mox <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(oth)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->D(oth), Mic->D(oth), Mac->D(oth)
> round(ci.exp(mox), 3)
(Intercept)
Ns(tfi, knots = seq(0, 20, 5))1
Ns(tfi, knots = seq(0, 20, 5))2
Ns(tfi, knots = seq(0, 20, 5))3
Ns(tfi, knots = seq(0, 20, 5))4
Ns(age, knots = seq(50, 80, 10))1
exp(Est.) 2.5% 97.5%
    0.000 0.000 5.000000e-03
    126.115 3.081 5.162934e+03
    37.862 1.793 7.997080e+02
36064.265 7.437 1.748841e+08
    1.968 0.343 1.128900e+01
    2.925 0.966 8.856000e+00
Ns(age, knots = seq(50, 80, 10))2 1.504 0.152 1.486400e+01
Ns(age, knots = seq(50, 80, 10))3 12.006 4.251 3.390800e+01
lex.CstMic 0.971 0.362 2.604000e+00
lex.CstMac 1.629 0.531 4.995000e+00
lex.CstNorm:alloConv 1.820 0.599 5.530000e+00
lex.CstMic:alloConv 1.924 0.924 4.005000e+00
lex.CstMac:alloConv 0.652 0.205 2.071000e+00
> c(deviance(mox), deviance(mix))
```

[1] 532.6934532 .6934

The use of the deviance gives a good indication that the models fitted actually are the same model, just differently parametrized.
What is the meaning of the parameters?
18. We also need a similar model for the CVD-mortality:

```
> mCx <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = \operatorname{seq}(50, 80, 10)) +
+ lex.Cst / allo,
+ to = "D(CVD)")
stats::glm Poisson analysis of Lexis object S4 with log link:
Rates for transitions: Norm->D (CVD), Mic->D (CVD), Mac->D (CVD)
> round(ci.exp(mCx), 3)
\begin{tabular}{|c|c|c|c|}
\hline & \(\exp\) (Est.) & 2.5\% & 97.5\% \\
\hline (Intercept) & 0.001 & 0.000 & 0.014 \\
\hline Ns(tfi, knots \(=\operatorname{seq}(0,20,5)) 1\) & 0.901 & 0.139 & 5.835 \\
\hline Ns(tfi, knots \(=\operatorname{seq}(0,20,5)) 2\) & 2.103 & 0.344 & 12.853 \\
\hline Ns(tfi, knots \(=\operatorname{seq}(0,20,5)) 3\) & 0.936 & 0.015 & 57.737 \\
\hline Ns(tfi, knots \(=\) seq (0, 20, 5)) 4 & 0.109 & 0.012 & 0.964 \\
\hline Ns (age, knots \(=\operatorname{seq}(50,80,10)) 1\) & 6.783 & 1.110 & 41.440 \\
\hline Ns (age, knots \(=\operatorname{seq}(50,80,10)) 2\) & 569.625 & 2.135 & 151956.071 \\
\hline Ns(age, knots \(=\operatorname{seq}(50,80,10)) 3\) & 21.025 & 4.831 & 91.510 \\
\hline lex.CstMic & 0.802 & 0.198 & 3.250 \\
\hline lex.CstMac & 1.245 & 0.244 & 6.350 \\
\hline lex.CstNorm:alloConv & 1.390 & 0.276 & 7.008 \\
\hline lex.CstMic:alloConv & 1.685 & 0.580 & 4.899 \\
\hline lex.CstMac:alloConv & 4.880 & 1.372 & 17.354 \\
\hline
\end{tabular}
```

Show also the RR of CVD death between the intensive (Int) and conventional (Conv) groups (look at the subset= argument to ci.exp)?
What is the conclusion for the intervention effect on CVD mortality rates?

3.3.1.2 Albuminuria state rates

For a complete description of transitions in the model we also need models for the transitions between albuminuria states.
19. We will use different models for deterioration and improvement in albuminuria (arrow up or down in figure 3.2). Again the modeling is a bit simplified by glm.Lexis:

```
> det <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ from = c("Norm","Mic"),
+ to = c("Mic","Mac"))
```

stats::glm Poisson analysis of Lexis object S4 with log link: Rates for transitions: Norm->Mic, Mic->Mac

```
> imp <- glm.Lexis(S4, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo,
+ from = c("Mac","Mic"),
+ to = c("Mic","Norm"))
```

stats::glm Poisson analysis of Lexis object S 4 with log link:
Rates for transitions: Mac->Mic, Mic->Norm
> round(ci.exp(det), 3)

```
(Intercept)
Ns(tfi, knots = seq(0, 20, 5))1
Ns(tfi, knots = seq(0, 20, 5))2
Ns(tfi, knots = seq(0, 20, 5))3
Ns(tfi, knots = seq(0, 20, 5))4
Ns(age, knots = seq(50, 80, 10))1
Ns(age, knots = seq(50, 80, 10))2
Ns(age, knots = seq(50, 80, 10))3
lex.CstMic
lex.CstNorm:alloConv
lex.CstMic:alloConv
```

\exp (Est.)	2.5%	97.5%
0.076	0.036	0.161
0.607	0.232	1.586
0.264	0.075	0.931
0.244	0.041	1.443
0.218	0.061	0.782
2.030	0.852	4.834
3.497	0.932	13.123
2.732	0.768	9.719
0.391	0.221	0.691
0.489	0.221	1.080
1.966	1.178	3.279

> round(ci.exp(imp), 3)
(Intercept)
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3 \quad 0.0420 .0070 .240$
$\exp ($ Est.) 2.5\% 97.5\%
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 4 \quad 0.2010 .0381 .048$
Ns (age, knots $=\operatorname{seq}(50,80,10)) 1 \quad 0.8250 .2812 .418$
Ns (age, knots $=\operatorname{seq}(50,80,10)) 20.3530 .0701 .776$
$\begin{array}{lll}0.207 & 0.131 & 0.326 \\ 0.256 & 0.079 & 0.827\end{array}$
$\begin{array}{lll}0.256 & 0.079 & 0.827 \\ 0.059 & 0.009 & 0.382\end{array}$
Ns (age, knots $=\operatorname{seq}(50,80,10)) 30.5890 .0704 .923$
lex.CstMac
lex.CstMic:alloConv 0.5260 .3240 .856
lex.CstMac:alloConv 1.3410 .5443 .301

```
> round(ci.exp(det, subset="al"), 1)
    exp(Est.) 2.5% 97.5%
lex.CstNorm:alloConv 0.5 0.2 1.1
lex.CstMic:alloConv 2.0 1.2 3.3
> round(ci.exp(imp, subset="al"), 1)
    exp(Est.) 2.5% 97.5%
lex.CstMic:alloConv 0.5 0.3 0.9
lex.CstMac:alloConv 1.3 0.5 3.3
```

What was the meaning of "different models for det and imp"?
What do the parameters in the models represent?
What are the assumptions in the models?
Label the transitions in figure 3.2 with the models for each of the transitions.

3.3.2 Simulation of state probabilities

We now have statistical models for all transitions, two models for the cause specific mortality rates, and two models for transitions between albuminuria states.

The state probabilities that in principle can be derived from these are not trivial to compute, essentially they can only be computed by simulation ${ }^{1}$.
20. But first we need an explicit specification of what transitions the models refer to, since the simulated transitions will be using predictions from these models. This is specified in a list of lists (remember what a list is??).
There must be one element in the list for each transient state (of which we have 3):

```
> Tr <- list(Norm = list("Mic" = det,
+ "D(oth)" = mox,
+ "D(CVD)" = mCx),
+ Mic = list("Mac" = det,
+ "Norm" = imp,
+ "D(oth)" = mox,
    "D(CVD)" = mCx),
    Mac = list("Mic" = imp,
    "D(oth)" = mox,
    "D(CVD)" = mCx))
+ "D(CVD)" = mCx))
> lapply(Tr, names)
$Norm
[1] "Mic" "D(oth)" "D(CVD)"
$Mic
[1] "Mac" "Norm" "D(oth)" "D(CVD)"
$Mac
[1] "Mic" "D(oth)" "D(CVD)"
```

For example, the object Tr\$Norm\$Mic is a model for the transition rate Norm \rightarrow Mic; we see that there are 10 entries in the specification of Tr , corresponding to each of the 10 transitions in the diagram in figure 3.2. Some of the entries in Tr point to the same model; all the models fitted were actually joint models for more than one transiton.
21. We can use the estimated rates to simulate the transition between states in a group of people with a given set of covariates.

The simulated data can the be used to assess the probability of being in each of the states at a given time after entry to the study, separately for the two intervention groups if we wish.
These probabilities depend on the age at entry to the study (because current age (age) and time since entry, (tfi) are both in the models).
We can choose our initial cohort in (at least) two different ways:

[^0]- Use a population with the same age-distribution as the entire study population ("population-averaged")
- Evaluate the probabilities for a prespecified set of ages at entry ("conditional").

What is needed for this is a data frame of persons indicating their initial status. simLexis will then simulate their individual trajectories through states (what transition takes place when) and produce a simulated cohort of persons in the form of a Lexis object. The initial (baseline) data frame should also be a Lexis object, but the values of lex.Xst and lex.dur need not be given, since these will be simulated.

3.3.2.1 Study population cohort

22. First construct a cohort with the same covariate distribution as the entire study for each of the allocation groups:
```
> ini <- L2[,c("per", "age", "tfi")]
> ini <- rbind(transform(ini, lex.Cst = factor("Mic"), allo = factor("Int")),
+ transform(ini, lex.Cst = factor("Mic"), allo = factor("Conv")))
> str(ini)
Classes 'Lexis' and 'data.frame': }320\mathrm{ obs. of 5 variables:
$ per : num 1993 1993 1993 1993 1993 ...
$ age : 'cal.yr' num 61.1 46.6 49.9 48.5 57.3 ...
$ tfi : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Cst: Factor w/ 1 level "Mic": 1 1 1 1 1 1 1 1 1 1 ...
$ allo : Factor w/ 2 levels "Int","Conv": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "breaks")=List of 3
    ..$ per: NULL
    ..$ age: NULL
    ..$ tfi: NULL
    - attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
    - attr(*, "time.since")= chr [1:3] "" "" ""
```

This will be the initial values in the cohort we follow through states-we have the starting state in lex.Cst and the covariates (at start): timescales (per, age, tfi) and the other covariates allo
23. First we simulate transitions from a large cohort that looks like the study population, say 10 copies of each person in the original data set (see ?simLexis):

```
> set.seed(1952)
> system.time(
+ Sorg <- simLexis(Tr = Tr, # models for each transition
+ init = ini, # cohort of straters
+ N = 10, # how many copies of each person in ini
+ t.range = 20, # how long should we simulate before censoring
+ n.int = 200))# how many intervals for evaluating rates
bruger system forlbet
    18.37 1.97 20.35
```

There is no guaranteed order of the states in the Sorg object, so we explicitly reorder the states:

```
> Sorg <- Relevel(Sorg, c("Norm", "Mic", "Mac", "D(CVD)", "D(oth)"))
> summary(Sorg, t = T)
Transitions:
        To
\begin{tabular}{lrrrrrrrr} 
From & Norm & Mic & Mac & D (CVD) & D (oth) & Records: & Events: & Risk time:
\end{tabular} Persons:
```

Timescales:
per age tfi
> nround(subset(Sorg, lex.id \%in\% 28:32), 2)

lex.id	per	age	tfi	lex.dur	lex. Cst	lex. Xst	allo	cens
28	1993.37	49.94	0.00	0.78	Mic	Norm	Int 2013.37	
28	1994.15	50.72	0.78	5.57	Norm	Mic	Int 2013.37	
28	1999.72	56.29	6.35	12.74	Mic	Norm	Int 2013.37	
28	2012.46	69.03	19.08	0.92	Norm	Norm	Int 2013.37	
29	1993.37	49.94	0.00	2.11	Mic	Norm	Int 2013.37	
29	1995.48	52.05	2.11	2.77	Norm	D(oth)	Int 2013.37	
30	1993.37	49.94	0.00	7.15	Mic	Norm	Int 2013.37	
30	2000.52	57.09	7.15	3.12	Norm	D (CVD)	Int 2013.37	
31	1993.34	48.50	0.00	5.13	Mic	Norm	Int 2013.34	
31	1998.47	53.64	5.13	14.87	Norm	Norm	Int 2013.34	
32	1993.34	48.50	0.00	4.64	Mic	Mac	Int 2013.34	
32	1997.97	53.14	4.64	0.65	Mac	Mic	Int 2013.34	
32	1998.62	53.79	5.28	14.72	Mic	Mic	Int 2013.34	

24. Describe in words how the simulated data looks, and what each record represents. What is it really we simulated?
```
> addmargins(table(table(Sorg$lex.id)))
```

1	2	3	4	5	6	7	8	Sum
878	1403	536	283	71	25	2	2	3200

What does this table mean?
25. Now we can just count how many of the original 1600 persons are in each of the states at each of a set of times; this is done by the function nState:

```
> system.time(
+ Nst <- nState(Sorg,
+ at = \operatorname{seq}(0, 20, 0.2),
+ from = 0,
+ time.scale = "tfi"))
```

```
    bruger system forlbet
    1.02 0.02 1.04
> str(Nst)
'table' int [1:101, 1:5] 0 88 168 231 293 340 390 445 494 535 ...
- attr(*, "dimnames")=List of 2
    ..$ when : chr [1:101] "0" "0.2" "0.4" "0.6" ...
    ..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...
> head(Nst)
\begin{tabular}{crrrrr}
\multicolumn{5}{c}{ State } & \\
When & Norm & Mic & Mac & \(D(\) CVD \()\) & D (oth) \\
0 & 0 & 3200 & 0 & 0 & 0 \\
0.2 & 88 & 3077 & 33 & 2 & 0 \\
0.4 & 168 & 2964 & 62 & 6 & 0 \\
0.6 & 231 & 2862 & 100 & 7 & 0 \\
0.8 & 293 & 2772 & 121 & 14 & 0 \\
1 & 340 & 2693 & 148 & 18 & 1
\end{tabular}
```

This is however not necessarily a relevant summary; we would be interested in seeing how things look in each of the allocation groups, Int and Conv.

```
> Nint <- nState(subset(Sorg, allo == "Int"),
+ at = \operatorname{seq}(0, 20, 0.1),
from = 0,
+ time.scale = "tfi")
> Nconv<- nState(subset(Sorg, allo == "Conv"),
+ at = \operatorname{seq}(0, 20, 0.1),
+ from = 0,
+ time.scale = "tfi")
> cbind(
+ head(Nint), NA,
+ head(Nconv))
\begin{tabular}{lrrrrrrrrrr} 
& Norm & Mic & Mac & D (CVD) & D (oth) & Norm & Mic & Mac & D (CVD) & D (oth) \\
0 & 0 & 1600 & 0 & 0 & 0 & NA & 0 & 1600 & 0 & 0
\end{tabular}
```

If we divide each of these by 1600, we get the probabilities of being in each if the states at the different times since entry.
26. If we want the cumulated state probabilities over states we can derive these by pState, that yields a matrix with the cumulative state probabilities.

```
> Pint <- pState(Nint )
> Pconv <- pState(Nconv)
> str(Pint)
```

```
'pState' num [1:201, 1:5] 0 0.015 0.0344 0.0481 0.0656 ...
- attr(*, "dimnames")=List of 2
    ..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...
    ..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...
> head(Pint)
        State
\begin{tabular}{crrrrr} 
when & Norm & Mic & Mac & D (CVD) & D(oth) \\
0 & 0.000000 & 1.000000 & 1.000000 & 1 & 1 \\
0.1 & 0.015000 & 0.995625 & 0.999375 & 1 & 1 \\
0.2 & 0.034375 & 0.992500 & 0.999375 & 1 & 1 \\
0.3 & 0.048125 & 0.989375 & 0.998750 & 1 & 1 \\
0.4 & 0.065625 & 0.985625 & 0.998750 & 1 & 1 \\
0.5 & 0.076875 & 0.977500 & 0.998750 & 1 & 1
\end{tabular}
```

Describe the structure of Pint.
27. There is a standard plotting method for a pState object, it will plot the stacked state probabilities stacked in the order given by the perm argument (not used here because they are already in the order we want):

```
> clr <- c("forestgreen", "orange", "red", "blue", gray(0.4))
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> plot(Pint , col = clr, xlim = c(0, 20))
> plot(Pconv, col = clr, xlim = c(20, 0))
```

... and slightly more sophisticated:

```
> clr <- c("forestgreen", "orange", "red", "blue", gray(0.4))
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> plot(Pint, col = clr, xlim = c(0, 20))
> # the survival curve
> lines(as.numeric(rownames(Pint)), Pint[,"Mac"], lwd = 4, col = "white")
> lines(as.numeric(rownames(Pint)), Pint[,"Mac"], lwd = 1, col = "black")
> text(rownames(Pint)[150],
+ Pint[150,] - diff(c(0, Pint[150,]))/2,
+ colnames(Pint), col = "white", cex = 0.8)
> plot(Pconv, col = clr, xlim = c(20, 0))
> # the survival curve
> lines(as.numeric(rownames(Pconv)), Pconv[,"Mac"], lwd = 4, col = "white")
> lines(as.numeric(rownames(Pconv)), Pconv[,"Mac"], lwd = 1, col = "black")
> text(rownames(Pconv) [150],
+ Pconv[150,] - diff(c(0, Pconv[150,]))/2,
+ colnames(Pint), col = "white", cex = 0.8)
> mtext(c("Intensive care","Conventional care"),
+ side = 3, at =c(1,3)/4, outer = TRUE, line = - 2)
```

Redo the plot with proper labeling of axes, including units where needed.
28. Describe the results and conclude on the probabilities shown.

Figure 3.4: State probabilities for the two intervention groups, for populations of the same structure as the original total Steno2 population.
29. The plot 3.4 may be of limited interest; the probabilities here are really "the probability that a randomly chosen person from the Steno 2 study...". So we are referring to a universe that is not generalizable, the reference is to a particular distribution of ages at entry into the study. The plot is only partially relevant for showing the intervention effect, the absolute sizes of the state probabilities are strictly speaking irrelevant.

3.3.2.2 Initiation cohort with predefined variables

30. Even if we take the modeling background deeply serious and accept that occurrence rates depend only on current age (age), time since entry (tfi) and treatment allocation (allo), the assumption of age-distribution as in the Steno 2 study is quite absurd; who wants to refer to this? Often this is disguised in terms such as "population averaged".
Therefore, it would be more relevant to show the results for a homogeneous population of persons at select ages at entry. This would just require a different init data frame. But note that it must be a Lexis object, easiest obtained by copying from S 4 :
```
> ini <- S4[1:10,c("lex.id", "per", "age", "tfi", "lex.Cst", "allo")]
> ini[,"lex.id"] <- 1:10
> ini[,"per"] <- 1993 # not used but it is a time scale in S4
> ini[,"age"] <-
+ ini[,"ain"] <- rep(seq(45,65,5), 2)
> ini[,"tfi"] <- 0
```

```
> ini[,"lex.Cst"] <- factor("Mic",
+ levels = c("Norm","Mic","Mac","D(CVD)","D(oth)"))
> ini[,"allo"] <- factor(rep(c("Int","Conv"), each = 5))
> ini
    lex.id per age tfi lex.Cst allo ain
1 1 1993 45 0 Mic Int 45
2 1993 50 0 Mic Int 50
3 3 1993 55 0 Mic Int 55
4 4 1993 60 0 Mic Int 60
5 5 1993 65 0 Mic Int 65
6 6 1993 45 0 Mic Conv 45
7 7 1993 50 0 Mic Conv 50
8 8 1993 55 0 Mic Conv 55
9 9 1993 60 0 Mic Conv 60
10101993 65 0 Mic Conv 65
> str(ini)
Classes 'Lexis' and 'data.frame': 10 obs. of 7 variables:
    $ lex.id : int 1 2 3 4 5 6 7 8 9 10
    $ per : num 1993 1993 1993 1993 1993 ...
    $ age : num 45 50 55 60 65 45 50 55 60 65
    $ tfi : num 0 0 0 0 0 0 0 0 0 0
    $ lex.Cst: Factor w/ 5 levels "Norm","Mic","Mac",..: 2 2 2 2 2 2 2 2 2 2
    $ allo : Factor w/ 2 levels "Conv","Int": 2 2 2 2 2 1 1 1 1 1
    $ ain : num 45 50 55 60 65 45 50 55 60 65
    - attr(*, "time.scales")= chr [1:3] "per" "age" "tfi"
    - attr(*, "time.since")= chr [1:3] "" "" ""
    - attr(*, "breaks")=List of 3
    ..$ per: NULL
    ..$ age: NULL
    ..$ tfi: num [1:51] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
```

Note that it is important that we enter the variable lex.Cst as a factor with the same levels as in the Lexis object S4, in the order we want the states when reporting results. allo must also be entered as a factor, otherwise it is not possible to compute predictions from the models where allo were included as a factor.
31. For each of these combinations of age (at entry) and treatment allocation we will simulate 100 persons (note that we are using the same transition rates, the models in Tr):

```
> system.time(
+ Sdef <- simLexis(Tr = Tr,
+ init = ini,
+ N = 100,
+ t.range = 20,
+ n.int = 200))
    bruger system forlbet
    5.31 0.13 5.43
> summary(Sdef)
```


In real applications we would use 5000 or 10,000 replicates of each to minimize the simulation error.
32. Now we will repeat the graph above, but for the 10 combinations of age at enrollment (ain), and allocation; we start with the 45 year old allocated to Int:

```
> P45i <- nState(subset(Sdef, ain == 45 & allo == "Int"),
+ at = \operatorname{seq}(0,20, 0.1),
+ from = 0,
+ time.scale = "tfi")
head(P45i)
        State
when Norm Mic Mac D(CVD) D(oth)
    0 0 100 0 0 0
    0.1 2 97 1 0
    0.2 4
    0.3
    0.4
> head(pState(P45i))
            State
when Norm Mic Mac D(CVD) D(oth)
    0 0.00 1.00 1.00 1.00 1
    0.1 0.02 0.99 1.00 1.00 1
    0.2 0.04 0.99 1.00 1.00 1
    0.3 0.05 0.99 1.00 1.00 1
    0.4 0.07 0.98 1.00 1.00 1
    0.5 0.08 0.97 0.99 0.99 1
```

This should then be repeated for 4 other ages at enrollment and the two allocations, plus we will only store the state probabilities:

```
P45c <- pState(nState(subset(Sdef, ain == 45 & allo == "Conv"),
    at = seq(0, 20, 0.1),
    from = 0,
        time.scale = "tfi"))
P45i <- pState(nState(subset(Sdef, ain == 45 & allo == "Int"),
    at = seq(0, 20, 0.1),
    from = 0,
        time.scale = "tfi"))
P50c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P50i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P55c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P55i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P60c <- pState(nState(subset(Sdef, ain == 55 & allo == "Conv"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P60i <- pState(nState(subset(Sdef, ain == 55 & allo == "Int"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P65c <- pState(nState(subset(Sdef, ain == 65 & allo == "Conv"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
P65i <- pState(nState(subset(Sdef, ain == 65 & allo == "Int"),
            at = seq(0, 20, 0.1),
            from = 0,
        time.scale = "tfi"))
```

33. Then we can plot these in a multiple lay-out:
```
par(mfrow = c(5,2), mar = c(1,1,0,0),
+ oma =c(3,3,1,0), mgp=c(3,1,0)/1.6)
plot(P45i, col = clr, xlim = c(0,20))
plot(P45c, col = clr, xlim = c(20,0))
plot(P50i, col = clr, xlim = c(0,20))
> plot(P50c, col = clr, xlim = c(20,0))
plot(P55i, col = clr, xlim = c(0,20))
plot(P55c, col = clr, xlim = c(20,0))
plot(P60i, col = clr, xlim = c(0,20))
> plot(P60c, col = clr, xlim = c(20,0))
plot(P65i, col = clr, xlim = c(0,20))
```

```
> plot(P65c, col = clr, xlim = c(20,0))
> mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = 0)
> mtext(paste(seq(45,65,5)), side = 2, at = (5:1*2-1)/10,
+ outer = TRUE, line = 0)
```


Figure 3.5: Predicted probabilities of being in each of the states for persons aged 45, 50, 55, 60 and 65 at entry, separately for the two intervention groups. W
../graph/ms-panel5
e see that the curves are quite ragged; this is due to the simulation errors, it would be nicer if we simulated 1000 copies of each instead of only 100 .
34. Digression: The previous is a lot of hard-coding, we would like to be able to easily get a plot with only a subset of the ages. To this end it is more convenient to collect the state probabilities in an array:

```
> (ain <- seq}(45, 65, 5))
[1] 45 50 55 60 65
> (all <- levels(S4$allo))
[1] "Int" "Conv"
> pdef <- NArray(c(list(ain = ain,
+ allo = all),
+ dimnames(P45i)))
str(pdef)
logi [1:5, 1:2, 1:201, 1:5] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
    ..$ ain : chr [1:5] "45" "50" "55" "60" ...
    ..$ allo : chr [1:2] "Int" "Conv"
    ..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...
    ..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...
```

But when we stick the results in an array we lose the pState class of the results: so we resort to the mat2pol function that stacks probabilities and plots them, so we simply take the result from nState and divide by the number in the initial state (Mic) using sweep:

```
> for(aa in ain)
+ for(gg in all)
+ pdef[paste(aa), gg, ,] <-
+ nState(subset(Sdef, ain == aa & allo == gg),
+ at = as.numeric(dimnames(pdef)[["when"]]),
from = 0,
+ time.scale = "tfi")
> pdef <- sweep(pdef, 1:2, pdef[,,1,"Mic"], "/")
> str(pdef)
num [1:5, 1:2, 1:201, 1:5] 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 4
    ..$ ain : chr [1:5] "45" "50" "55" "60" ...
    ..$ allo : chr [1:2] "Int" "Conv"
    ..$ when : chr [1:201] "0" "0.1" "0.2" "0.3" ...
    ..$ State: chr [1:5] "Norm" "Mic" "Mac" "D(CVD)" ...
```

Then we have the state probabilities in the array pdef

```
> ain <- seq(45, 65, 10)
> par(mfrow = c(length(ain),2),
+ mar = c(3,3,1,1),
+ oma = c(0,2,1,0),
mgp = c(3,1,0) / 1.6)
for(aa in ain)
```

```
+ {
+ mat2pol(pdef[paste(aa),"Int" ,,], col = clr, xlim = c(0,20))
+ mat2pol(pdef[paste(aa), "Conv",,], col = clr, xlim = c(20,0))
+ }
> mtext(c("Int", "Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = 0)
> mtext(ain, side = 2, at = (length(ain):1 * 2 - 1) / (length(ain) * 2),
+ outer = TRUE, line = 0)
```


3.4 State probabilities using the Aalen-Johansen approach from survival

The survival package allows estimation of state probabilities by the Aalen-Johansen estimator similar to what we did in competing risks.

As mentioned under competing risks, the results will refer to a population of the same structure as the study population, and so the absolute sizes of the state probabilities will not be generalizable to other populations. The results here correspond to the results we derived using the original Steno2 population cohort in section 3.3.2.1 on page 48 ff .

The estimates of state probabilities in section 3.3.2.1 are based on parametric models for the transition probabilities, where some of the transition rates depend on age and duration in the same way. The estimates from the Aalen-Johansen approach is non-parametric in the sense that the transition rates can have any shape; the down side is that they cannot depend on more than one time scale (sensibly time since entry) and the shape and size of them are not easily retrievable.
35. A direct application gives the wrong result-transitions are wrong:

```
> AaJ <- survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ data = L4)
> AaJ$transitions
\begin{tabular}{crrrrr}
\multicolumn{4}{c}{ to } & & \\
from & Mic & Mac & D (CVD) & D (oth) & (censored) \\
(s0) & 127 & 16 & 3 & 6 & 8 \\
Mic & 220 & 49 & 17 & 37 & 10 \\
Mac & 22 & 41 & 18 & 12 & 0 \\
D(CVD) & 0 & 0 & 0 & 0 & 0 \\
D (oth) & 0 & 0 & 0 & 0 & 0
\end{tabular}
> summary(L4)
Transitions:
        To
\begin{tabular}{lrrrrrrrrr} 
From & Norm & Mic & Mac & D (CVD) & D(oth) & Records: & Events: & Risk time: & Persons: \\
Norm & 90 & 35 & 0 & 6 & 13 & 144 & 54 & 581.04 & 66 \\
Mic & 72 & 312 & 65 & 14 & 30 & 493 & 181 & 1435.14 & 160 \\
Mac & 0 & 22 & 41 & 18 & 12 & 93 & 52 & 400.41 & 60 \\
Sum & 162 & 369 & 106 & 38 & 55 & 730 & 287 & 2416.59 & 160
\end{tabular}
```


Figure 3.6: Predicted probabilities of being in each of the states for persons aged 45, 55 and 65 at entry, separately for the two intervention groups.
../graph/ms-panel3

Comparing with the summary of L4 we see that we get the number of transitions wrong; me must use the istate argument:

```
> survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
```

```
+ istate = lex.Cst,
+ data = L4)
```

... but this will crash. This is because the machinery does not allow records with null transitions, that is records that is just a transition from a given state to the same if it is the last record for a person (i.e. censorings in the last state).
36. We therefore must rename these levels of lex.Xst to, say, cens (for censored, but any name will do), and this state must then be the first level of lex.Xst:

```
> R4 <- sortLexis(L4)
> last <- rev(!duplicated(rev(R4$lex.id)))
> R4$lex.Xst <- ifelse(last & R4$lex.Cst == R4$lex.Xst,
+ "cens",
+ as.character(R4$lex.Xst))
> R4 <- Relevel(factorize(R4), "cens")
NOTE: lex.Cst and lex.Xst now have levels:
    Norm Mic Mac cens D(CVD) D(oth)
> summary(L4)
Transitions:
            To
\begin{tabular}{lrrrrrrrrr} 
From & Norm & Mic & Mac & D (CVD) & D(oth) & Records: & Events: & Risk time: & Persons: \\
Norm & 90 & 35 & 0 & 6 & 13 & 144 & 54 & 581.04 & 66 \\
Mic & 72 & 312 & 65 & 14 & 30 & 493 & 181 & 1435.14 & 160 \\
Mac & 0 & 22 & 41 & 18 & 12 & 93 & 52 & 400.41 & 60 \\
Sum & 162 & 369 & 106 & 38 & 55 & 730 & 287 & 2416.59 & 160
\end{tabular}
> summary(R4)
Transitions:
            To
\begin{tabular}{lrrrrrrrrrr} 
From & cens & Norm Mic & Mac & D (CVD) & D (oth) & Records: & Events: & Risk time: & Persons: \\
Norm & 18 & 72 & 35 & 0 & 6 & 13 & 144 & 72 & 581.04 & 66 \\
Mic & 36 & 72 & 276 & 65 & 14 & 30 & 493 & 217 & 1435.14 & 160 \\
Mac & 13 & 0 & 22 & 28 & 18 & 12 & 93 & 65 & 400.41 & 60 \\
Sum & 67 & 144 & 333 & 93 & 38 & 55 & 730 & 354 & 2416.59 & 160
\end{tabular}
```

Describe how the two Lexis objects are related.
37. As mentioned, we must tell what state each record starts in, this is conveyed in the argument istate (initial state):

```
> AaJest <- survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1,
+ id = lex.id,
+ istate = lex.Cst,
+ data = R4)
```

We see that we get the correct number of transitions when we merge the initial state s(0) with Mic:

```
> AaJest$transitions[,c(6,1:5)]
from (censored) Norm Mic Mac D(CVD) D(oth)
    Norm 18 18 72 35 0
    Mic 36 72 276 65 14 30
```



```
    D(oth) 0 0 0 0 0 0
> summary(R4)
Transitions:
        To
\begin{tabular}{lrrrrrrrrrr} 
From & cens & Norm Mic & Mac & D(CVD) & D(oth) & Records: & Events: & Risk time: & Persons: \\
Norm & 18 & 72 & 35 & 0 & 6 & 13 & 144 & 72 & 581.04 & 66 \\
Mic & 36 & 72 & 276 & 65 & 14 & 30 & 493 & 217 & 1435.14 & 160 \\
Mac & 13 & 0 & 22 & 28 & 18 & 12 & 93 & 65 & 400.41 & 60 \\
Sum & 67 & 144 & 333 & 93 & 38 & 55 & 730 & 354 & 2416.59 & 160
\end{tabular}
> summary(L4)
Transitions:
        To
From Norm Mic Mac D(CVD) D(oth) Records: Events: Risk time: Persons:
    Norm 
    Mic 
    Mac 
    Sum 162 369 106 38 55 llllllll
```

There is a funtion, AaJ.Lexis coming in the next version of Epi that does the hard work:

```
> source("http://bendixcarstensen.com/AdvCoh/courses/Aalborg-2022/R/AaJ.Lexis.R")
```

but we must make sure that the initial state, Mic, is the first level when we use the function :

```
> AaJepi <- AaJ(L4, timeScale = "tfi")
NOTE: lex.Cst and lex.Xst now have levels:
    Norm Mic Mac cens D(CVD) D(oth)
NOTE: Timescale is tfi
> AaJepi
Call: survfit(formula = form, data = Lx, id = lex.id, istate = lex.Cst)
\begin{tabular}{lrrr} 
& n & nevent & rmean* \\
Norm & 730 & 72 & 3.718799 \\
Mic & 730 & 57 & 9.173179 \\
Mac & 730 & 65 & 2.574825 \\
D (CVD) & 730 & 38 & 2.855333 \\
D (oth) & 730 & 55 & 3.580671
\end{tabular}
        *restricted mean time in state (max time = 21.90281 )
```

> AaJest
Call: survfit(formula = Surv(tfi, tfi + lex.dur, lex.Xst) ~ 1, data = R4, id = lex.id, istate = lex.Cst)

```
                    n nevent rmean*
Norm 730 72 3.718799
Mic 730 57 9.173179
Mac 730 65 2.574825
D(CVD) 730 38 2.855333
D(oth) 730 55 3.580671
    *restricted mean time in state (max time = 21.90281 )
```

38. The predicted state probabilities are in the slot called pstate, and the confidence intervals in the corresponding slots lower and upper.
```
> names(AaJepi)
```

[1] "n"	"time"	"n.risk"	"n.event"	"n.censor"	"pstate"
[7] "p0"	"cumhaz"	"std.err"	"sp0"	"logse"	"transition
[13] "lower"	"upper"	"conf.type"	"conf.int"	"states"	"type"
[19] "call"					

> AaJepi\$states
[1] "Norm" "Mic" "Mac" "D(CVD)" "D(oth)"
> head(AaJepi\$pstate)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0.00000	0.99375	0.00625	0	0
$[2]$,	0.00625	0.98750	0.00625	0	0
$[3]$,	0.00625	0.98750	0.00625	0	0
$[4]$,	0.01250	0.98125	0.00625	0	0
$[5]$,	0.01250	0.98125	0.00625	0	0
$[6]$,	0.01250	0.98125	0.00625	0	0

> head(AaJepi\$lower)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	NA	0.9816133	0.0008858142	NA	NA
$[2]$,	0.0008858142	0.9704340	0.0008858142	NA	NA
$[3]$,	0.0008858142	0.9704340	0.0008858142	NA	NA
$[4]$,	0.0031535032	0.9604561	0.0008858142	NA	NA
$[5]$,	0.0031535032	0.9604561	0.0008858142	NA	NA
$[6]$,	0.0031535032	0.9604561	0.0008858142	NA	NA

> head(AaJepi\$upper)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	NA	1	0.04409785	NA	NA
$[2]$,	0.04409785	1	0.04409785	NA	NA
$[3]$,	0.04409785	1	0.04409785	NA	NA
$[4]$,	0.04954807	1	0.04409785	NA	NA
$[5]$,	0.04954807	1	0.04409785	NA	NA
$[6]$,	0.04954807	1	0.04409785	NA	NA

We can now show the Aalen-Johansen estimator of the state probabilities:

```
> par(mfrow = c(1,1))
> mat2pol(AaJepi$pstate, perm = c(2,1,3,5,4), x = AaJepi$time,
+ col = clr)
> lines(AaJepi$time, apply(AaJepi$pstate[,1:3], 1, sum), lwd = 5)
```


Figure 3.7: Overall state probabilities from the Aalen-Johansen model

> ../graph/ms-AaJ
39. But as above, we are interested in seeing the results from each of the allocation groups, so we do the calculation for each:

```
> AaJallo <- survfit(Surv(tfi, tfi + lex.dur, lex.Xst) ~ allo,
+ id = lex.id,
+ istate = lex.Cst,
+ data = R4)
> AaJallo
Call: survfit(formula = Surv(tfi, tfi + lex.dur, lex.Xst) ~ allo, data = R4,
    id = lex.id, istate = lex.Cst)
        n nevent rmean*
```

```
allo=Int, Norm 384 47 4.794785
allo=Conv, Norm 346 25 2.640688
allo=Int, Mic 384 34 9.933409
allo=Conv, Mic 346 23 8.401154
allo=Int, Mac 384 23 2.073443
allo=Conv, Mac 346 42 3.077278
allo=Int, D(CVD) 384 12 2.024196
allo=Conv, D(CVD) 346 26 3.691880
allo=Int, D(oth) 384 26 3.076973
allo=Conv, D(oth) 346 29 4.091806
    *restricted mean time in state (max time = 21.90281 )
> AaJallo <- AaJ(L4, ~ allo, timeScale = "tfi")
NOTE: lex.Cst and lex.Xst now have levels:
    Norm Mic Mac cens D(CVD) D(oth)
NOTE: Timescale is tfi
> AaJallo
Call: survfit(formula = form, data = Lx, id = lex.id, istate = lex.Cst)
n nevent rmean*
allo=Int, Norm 384 47 4.794785
allo=Conv, Norm 346 25 2.640688
allo=Int, Mic 384 34 9.933409
allo=Conv, Mic 346 23 8.401154
allo=Int, Mac 384 23 2.073443
allo=Conv, Mac 346 42 3.077278
allo=Int, D(CVD) 384 12 2.024196
allo=Conv, D(CVD) 346 26 3.691880
allo=Int, D(oth) 384 26 3.076973
allo=Conv, D(oth) 346 294.091806
    *restricted mean time in state (max time = 21.90281 )
> names(AaJallo)
```

| [1] | "n" | "time" | "n.risk" | "n.event" | "n.censor" |
| :---: | :--- | :--- | :--- | :--- | :--- | "pstate"

The result in the AaJallo object is in a long vector of time and pstate, the two parts corresponding to Int and Conv put after one another, with the length of each part in strata.

```
> AaJallo$states
```

[1] "Norm" "Mic" "Mac" "D(CVD)" "D(oth)"
> AaJallo\$strata

```
allo=Int allo=Conv
```

 \(375 \quad 337\)
    ```
> wh <- rep(substr(names(AaJallo$strata), 6, 9), AaJallo$strata)
> table(wh)
wh
Conv Int
    337 375
```

So we just make the plots for the two subsets and place them next to each other as before:

```
> par(mfrow = c(1,2), mar=c(3,3,2,2))
> mat2pol(AaJallo$pstate[wh=="Int",],
+ perm = c(2,1,3:5),
+ x = AaJallo$time[wh=="Int"],
+ col = clr, xlim = c(0,21), xaxs = "i", yaxs = "i")
lines(AaJallo$time[wh=="Int"],
+ apply(AaJallo$pstate[,1:3], 1, sum)[wh=="Int"], lwd = 4)
mat2pol(AaJallo$pstate[wh=="Conv",],
perm = c(2,1,3:5),
+ x = AaJallo$time[wh=="Conv"],
col = clr, xlim = c(21,0), xaxs = "i", yaxs = "i")
lines(AaJallo$time[wh=="Conv"],
apply(AaJallo$pstate[,1:3], 1, sum)[wh=="Conv"], lwd = 4)
mtext(c("Int","Conv"), side = 3, at = c(1,3)/4, outer = TRUE, line = -2)
```

40. This can be considered the empirical counterpart of figure 3.4; the state probabilities for a population as the one in the study. However not quite so; the models underlying figure 3.4 are proportional hazards in the sense that the effects of age and time since enrollment are proportional between state by allocation (6 groups for mortality, 4 groups for albuminuria state), whereas the figures in 3.8 are based on separate models for each transition and allocation.
41. We have confidence intervals for each of the state probabilities in the slots lower and upper, but not for the sums of these. And it is the sums of state probabilities we have shown in the graph.
Moreover we would also want confidence intervals for areas under the curves. Neither are available from the Aalen-Johansen nor from the simulation approach. The simulation approach does not even give confidence intervals

3.5 Time spent in albuminuria states

Besides the state probabilities at different times after entry for groups of patients, we may also want to assess the time spent in each state, during, say, the first 15 or 20 years after entry.
42. We may want to compare groups by the expected time spent in the albuminuria states during the first, say, 20 years. The expected time in a state is simply the

Figure 3.8: Aalen-Johansen estimator of the state probabilities for the two intervention groups, for the original Steno2 population, subdivided by intervention allocation.
../graph/ms-AaJstates
time-integral of the probabilities, so we could compute it from pdef; each probability represents an interval of length 0.1 , so we just take the midpoint of the probabilities at the ends of each interval.
This is however a bit like bringing coal to Newcastle, we have the simulated cohort Sdef, where we have simulated sojourn times in each state; so we can just sum these and display them:

```
> tLive <- xtabs(lex.dur ~ ain + allo + lex.Cst, data = Sdef) /
+ nid(Sdef) * 10
> str(mtLive <- addmargins(tLive, 3))
    'table' num [1:5, 1:2, 1:6] 5.722 4.462 2.732 1.904 0.776 ...
    - attr(*, "dimnames")=List of 3
    ..$ ain : chr [1:5] "45" "50" "55" "60" ...
    ..$ allo : chr [1:2] "Conv" "Int"
    ..$ lex.Cst: chr [1:6] "Norm" "Mic" "Mac" "D(CVD)" ...
> round(ftable(mtLive , col.vars = c(3,2)), 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & lex.Cst & Norm & & Mic & & Mac & & D (CVD) & & D (oth) & & Sum & \\
\hline & allo & Conv & Int \\
\hline ain & & & & & & & & & & & & & \\
\hline 45 & & 5.7 & 7.0 & 8.5 & 8.6 & 2.5 & 1.9 & 0.0 & 0.0 & 0.0 & 0.0 & 16.7 & 7.6 \\
\hline
\end{tabular}
```

| 50 | 4.5 | 4.7 | 8.8 | 10.5 | 2.8 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 16.1 | 17.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 55 | 2.7 | 4.3 | 9.1 | 10.1 | 2.6 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 14.4 | 16.7 |
| 60 | 1.9 | 3.3 | 7.8 | 9.4 | 2.3 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 15.2 |
| 65 | 0.8 | 2.8 | 5.7 | 7.1 | 2.7 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 9.2 | 11.2 |
| > round (ftable(mtLive[, ,-(4:5)], col.vars = c (3,2)), 1) | | | | | | | | | | | | |
| lex.Cst | Norm | | Mic | | Mac | | Sum | | | | | |
| allo | Conv | Int | Conv | Int | Conv | Int | Conv | Int | | | | |
| ain | | | | | | | | | | | | |
| 45 | 5.7 | 7.0 | 8.5 | 8.6 | 2.5 | 1.9 | 16.717 | 17.6 | | | | |
| 50 | 4.5 | 4.7 | 8.8 | 10.5 | 2.8 | 2.6 | 16.117 | 17.8 | | | | |
| 55 | 2.7 | 4.3 | 9.1 | 10.1 | 2.6 | 2.3 | 14.416 | 16.7 | | | | |
| 60 | 1.9 | 3.3 | 7.8 | 9.4 | 2.3 | 2.5 | 12.015 | 15.2 | | | | |
| 65 | 0.8 | 2.8 | 5.7 | 7.1 | 2.7 | 1.3 | 9.211 | 11.2 | | | | |

With the results in an array we can also easily show the difference between the two arms of the trial:

```
> round((mtLive[,"Int",-(4:5)] - mtLive[,"Conv",-(4:5)]), 1)
    lex.Cst
ain Norm Mic Mac Sum
    45
    50
    55 1.6 1.0 -0.2 2.3
    60
    65 2.0 1.4 -1.4 2.0
```

43. We might also want to know the lifetime lost to the two causes of death. This timespan is not directly availabe in Sdef, it is the time from death till 20 years (the time-frame we have chosen). For persons who die, the time of death is tfi + lex.dur in the records with lex.Xst $\in(D(o t h, D(C V D)$, so quite easily evaluated with xtabs too:
```
> tDead <- xtabs((20 - tfi - lex.dur) ~ ain + allo + lex.Xst,
+ data = subset(Sdef, lex.Xst %in% c("D(oth)", "D(CVD)"))) /
+ nid(Sdef) * 10
> str(mtDead <- addmargins(tDead[,,4:5], 3))
    'table' num [1:5, 1:2, 1:3] 0.513 2.234 3.253 4.335 6.385 ...
    - attr(*, "dimnames")=List of 3
    ..$ ain : chr [1:5] "45" "50" "55" "60" ...
    ..$ allo : chr [1:2] "Conv" "Int"
    ..$ lex.Xst: chr [1:3] "D(CVD)" "D(oth)" "Sum"
> round(ftable(mtDead , col.vars =c(3,2)), 1)
        lex.Xst D(CVD) 
ain
45 0.5
50 2.2 0.6 1.6
55 3.3 1.8 2.4 1.5 5.6 3.3
60 4.3 1.1 3.6 3.6
65 6.4 3.3 4.4 5.5 10.8
```

```
> round(ftable(mtDead[,,-(4:5)], col.vars = c(3,2)), 1)
    lex.Xst D(CVD) 
ain
45 0.5
50 2.2 0.6 1.6
55 3.3 1.8 2.4 1.5
60 4.3 1.1 3.6
65 6.4 3.3 4.4 5.5 10.8 8.8
```


3.6 Clinical variables

So far we have only considered covariates that we know the value of at any time point, including future time points, that is the allocation status and timescales such as age and time since inclusion.
(a) In the dataset st2clin are clinical measurements taken at different dates, up to six different occasions per person:

```
> data(st2clin)
> str(st2clin)
'data.frame': 750 obs. of 5 variables:
    $ id : num 1 2 3 4 5 6 7 8 9 10 ...
    $ doV : Date, format: "1993-05-07" "1993-05-05" ...
    $ a1c : num 87.3 66.5 73 61.2 102.7 ...
    $ chol: num 3.9 6.6 5.6 5.2 6 4.8 8.6 5.1 4.2 5.4 ...
    $ crea: num 83 83 68 97 149 55 56 78 123 79 ...
> st2clin <- cal.yr(st2clin)
> names(st2clin)
[1] "id" "doV" "a1c" "chol" "crea"
> names(st2clin)[1:2] <- c("lex.id","per")
> summary(st2clin)
\begin{tabular}{|c|c|c|c|c|}
\hline lex.id & r & a1c & chol & crea \\
\hline Min. : 1.00 & Min. :1993 & Min. : 32.80 & Min. : 2.200 & Min. : 28.0 \\
\hline 1st Qu.: 39.00 & 1st Qu.:1995 & 1st Qu.: 54.80 & 1st Qu.: 4.000 & 1st Qu.: 67 \\
\hline Median : 84.50 & Median :1997 & Median : 66.35 & Median : 4.800 & Median : 88.0 \\
\hline Mean : 85.81 & Mean :2000 & Mean : 68.22 & Mean : 4.941 & Mean : 99 \\
\hline 3rd Qu.:131.00 & 3rd Qu.:2002 & 3rd Qu.: 79.38 & 3rd Qu.: 5.700 & 3rd Qu.: 115 \\
\hline Max. : 176.00 & Max. :2015 & Max. :147.60 & Max. \(: 14.000\) & Max. :1067 \\
\hline & & NA's : 4 & NA's : 3 & NA's \\
\hline
\end{tabular}
> addmargins(table(table(st2clin$lex.id)))
    1
    2
```

Explain the contents of the table.
(b) We can use addCov.Lexis to amend the follow-up data with the clinical measurements:

```
> S5 <- addCov.Lexis(S4, st2clin, "per")
> tt <- table(st2clin$lex.id)
> (who <- names(tt[tt == 3]) [1])
[1] "5"
> subset(st2clin, lex.id == who)
    lex.id per a1c chol crea
5 5 1993.151 102.7 6.0 149
165 5 1995.511 54.7 8.8 140
321 5 1997.496 41.9 5.8 141
> nround(subset(S5,
+ lex.id == who,
+ select = c(lex.id,per,tfi,tfc,exnam,a1c,chol,crea)))
    lex.id per tfi tfc exnam a1c chol crea
159 5 1993.22 0.00 0.07 ex1 102.7 6.0 149
160 5 1993.72 0.50 0.57 ex1 102.7 6.0 149
161 5 1993.77 0.55 0.62 ex1 102.7 6.0 149
162 5 1994.22 1.00 1.07 ex1 102.7 6.0 149
163 5 1994.72 1.50 1.57 ex1 102.7 6.0 149
164 5 1995.22 2.00 2.07 ex1 102.7 6.0 149
165 5 1995.51 2.29 0.00 ex2 54.7 8.8 140
166 5 1995.72 2.50 0.21 ex2 54.7 8.8 140
167 5 1996.22 3.00 0.71 ex2 54.7 8.8 140
168 5 1996.72 3.50 1.21 ex2 54.7 8.8 140
169 5 1997.07 3.85 1.56 ex2 54.7 8.8 140
170 5 1997.22 4.00 1.71 ex2 54.7 8.8 140
171 5 1997.50 4.27 0.00 ex3 41.9 5.8 141
172 5 1997.72 4.50 0.23 ex3 41.9 5.8 141
> timeScales(S5)
[1] "per" "age" "tfi" "tfc"
> timeSince(S5)
per age tfi tfc
```

We see that tfc is included as a time scale, but it is a not a proper time scale; it is reset to 0 at every clinical visit, and it also has some missing values, as do the clinical variables. The missing values are where there is follow-up before the earliest clinical measurement for a person.
But it needs to be a time scale in the Lexis object in order to be properly handled when subsequently cutting and splitting a Lexis object.
(c) The values of the clinical measurements in st2clin are added to the follow-up data: extra cut points at the measurement dates are added, and the values of the clinical variables are propagated as LOCF (Last Observation Carried Forward), so it is possible to model the effect of these clinical variables on transition rates - creatinine is traditionally modeled on a log-scale, here we use the base 2 logarithm.

```
> detc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ from = c("Norm","Mic"),
+ to = c("Mic","Mac"))
```

stats::glm Poisson analysis of Lexis object $S 5$ with log link: Rates for transitions: Norm->Mic, Mic->Mac

```
> impc <- glm.Lexis(S5, ~ Ns(tfi, knots = seq( 0, 20, 5)) +
+ Ns(age, knots = seq(50, 80, 10)) +
+ lex.Cst / allo +
+ a1c + chol + log2(crea),
+ to = c("Norm","Mic"),
+ from = c("Mic","Mac"))
```

stats::glm Poisson analysis of Lexis object $S 5$ with log link: Rates for transitions: Mic->Norm, Mac->Mic
> round (ci.exp(detc), 3)

```
(Intercept)
Ns(tfi, knots = seq(0, 20, 5))1
Ns(tfi, knots = seq(0, 20, 5))2
Ns(tfi, knots = seq(0, 20, 5))3
Ns(tfi, knots = seq(0, 20, 5))4
Ns(age, knots = seq(50, 80, 10))1
Ns(age, knots = seq}(50, 80, 10))2 2
Ns(age, knots = seq(50, 80, 10))3
lex.CstMic
a1c
chol
log2(crea)
lex.CstNorm:alloConv
lex.CstMic:alloConv
> round(ci.exp(impc), 3)
```

(Intercept)
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 2$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 4$
Ns (age, knots $=\operatorname{seq}(50,80,10)) 1$
Ns (age, knots $=\operatorname{seq}(50,80,10)) 2$
\exp (Est.) 2.5\% 97.5\%
Ns (age, knots $=\operatorname{seq}(50,80,10)) 3$
lex.CstMac
a1c
chol
$\log 2($ crea)
lex.CstMic:alloConv
lex.CstMac:alloConv $1.5260 .612 \quad 3.808$
$\exp ($ Est.) 2.5\% 97.5\%
$0.086 \quad 0.005 \quad 1.420$
$\begin{array}{lll}0.682 & 0.259 & 1.792\end{array}$
$0.280 \quad 0.078 \quad 1.008$
$0.245 \quad 0.040 \quad 1.481$
$0.2280 .063 \quad 0.828$
$2.098 \quad 0.881 \quad 4.999$
4.3131 .10316 .863
3.3880 .91412 .567
$0.387 \quad 0.218 \quad 0.686$
1.0050 .9931 .018
$1.091 \quad 0.910 \quad 1.308$
0.8650 .5831 .284
$0.4330 .192 \quad 0.973$
$1.7030 .978 \quad 2.965$
1.0820 .06119 .118
0.2480 .0760 .806
$0.0580 .009 \quad 0.386$
$0.0410 .007 \quad 0.248$
$0.1900 .036 \quad 0.999$
$0.838 \quad 0.288 \quad 2.440$
$0.366 \quad 0.072 \quad 1.861$
$0.597 \quad 0.072 \quad 4.973$
$1.0570 .467 \quad 2.393$
$0.991 \quad 0.978 \quad 1.003$
0.9630 .8031 .156
$0.873 \quad 0.580 \quad 1.314$
$0.598 \quad 0.359 \quad 0.996$
> moc <- glm.Lexis(S5, ~ Ns (tfi, knots $=\operatorname{seq}(0,20,5))+$
$+\quad$ Ns $($ age, $\operatorname{knots}=\operatorname{seq}(50,80,10))+$
$+\quad$ lex.Cst / allo +
$\begin{array}{ll}+ & \text { lex.Cst allo + } \\ + & \text { a1c + chol + log2 (crea), }\end{array}$
$+\quad$ to $=$ "D(oth)")
stats::glm Poisson analysis of Lexis object 55 with log link:
Rates for transitions: Norm->D(oth), Mic->D(oth), Mac->D(oth)
> mCc <- glm.Lexis (S5, ~ Ns (tfi, knots $=\operatorname{seq}(0,20,5))+$
$+\quad$ Ns (age, knots $=\operatorname{seq}(50,80,10))+$
Ns (age, knots $=\operatorname{seq}(50,80,10))+$
$+\quad$ lex.Cst / allo +
$+\quad$ a1c + chol + log2 (crea),
$+\quad$ to $=$ "D (CVD)")

```
stats::glm Poisson analysis of Lexis object S5 with log link:
Rates for transitions: Norm->D(CVD), Mic->D(CVD), Mac->D (CVD)
> round(ci.exp(moc), 3)
exp(Est.) 2.5% 97.5%
        0.000 0.000 1.000000e-03
(Intercept)
Ns(tfi, knots = seq(0, 20, 5))1
Ns(tfi, knots = seq(0, 20, 5))2
Ns(tfi, knots = seq(0, 20, 5))3
Ns(tfi, knots = seq(0, 20, 5))4
Ns(age, knots = seq(50, 80, 10))1
Ns(age, knots = seq(50, 80, 10))2
Ns(age, knots = seq(50, 80, 10))3
lex.CstMic
lex.CstMac
a1c
chol
log2(crea)
lex.CstNorm:alloConv
lex.CstMic:alloConv
lex.CstMac:alloConv
> round(ci.exp(mCc), 3)
\begin{tabular}{lrrr} 
& exp(Est.) & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & 0.000 & 0.000 & 0.015 \\
Ns (tfi, knots = seq(0, 20, 5))1 & 0.845 & 0.129 & 5.554 \\
Ns (tfi, knots = seq(0, 20, 5))2 & 1.785 & 0.263 & 12.106 \\
Ns (tfi, knots = seq(0, 20, 5))3 & 0.735 & 0.011 & 51.383 \\
Ns (tfi, knots = seq(0, 20, 5)) 4 & 0.108 & 0.012 & 0.985 \\
Ns (age, knots = seq(50, 80, 10))1 & 6.164 & 0.972 & 39.097 \\
Ns (age, knots = seq(50, 80, 10))2 & 535.063 & 1.892 & 151348.708 \\
Ns (age, knots = seq(50, 80, 10))3 & 19.126 & 4.173 & 87.664 \\
lex.CstMic & 0.799 & 0.197 & 3.246 \\
lex.CstMac & 1.137 & 0.220 & 5.886 \\
a1c & 0.999 & 0.980 & 1.019 \\
chol & 1.004 & 0.736 & 1.371 \\
log2(crea) & 1.354 & 0.759 & 2.413 \\
lex.CstNorm:alloConv & 1.383 & 0.269 & 7.115 \\
lex.CstMic:alloConv & 1.678 & 0.552 & 5.104 \\
lex.CstMac:alloConv & 5.081 & 1.390 & 18.575
\end{tabular}
```

Only crea has any effect; a doubling of creatinine is associated with a 1.85 times higher mortality rate from other (non-CVD) causes. Confidence interval is $(1.14,3.00)$, so not terribly precisely determined.
There are limitations in using clinical measurements as time-dependent variables without a model for the clinical variables. In order to simulate events based on models for transition rates we must know all covariates at all times, so models with non-deterministicly varying are not usable. Timescales are time-varying covariate, but they vary deterministicly, so their value for each person will be known at any time of follow-up.
So the models with effects of clinical variables as presented here cannot be used for prediction of state probabilities - that would requires some kind of model for the clinical variables over time as well.

3.7 Several transitions from one state: stack

So far, we have only jointly modeled transitions that originated in different states, for example
Mic \rightarrow Mac and Norm \rightarrow Mic;
Norm \rightarrow D(CVD), Mic \rightarrow D(CVD) and Mac \rightarrow D(CVD).
As long as the different rates modeled are originating in different states, the likelihood will have at most one contribution from each record in the Lexis follow-up data set.

But if we want to create a joint model for more than one rate originating in a given state we must repeat some of risk time in different contributions to the likelihood. This means that the modeling cannot be based on (subsets of) a Lexis object, we must repeat some records. This is detailed in section on Competing Risks in the PMM (Practical Multistate Modeling, http://bendixcarstensen.com/MSbook.pdf, very preliminary).
This behaviour can be achieved by the stack.Lexis function:

```
> St4 <- stack(S4)
NOTE: lex.Cst and lex.Xst now have levels:
    Norm Mic Mac D(CVD) D(oth)
> c(nrow(S4), nrow(St4))
```

[1] 548419734
> table(S4\$lex.Cst)

| Norm | Mic | Mac | D (CVD) | D (oth) |
| :--- | ---: | ---: | ---: | ---: |
| 1306 | 3282 | 896 | 0 | 0 |

> table(St4\$lex.Tr, St4\$lex.Cst)

| | Norm | Mic | Mac | D (CVD) | D (oth) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Mac->D (CVD) | 0 | 0 | 896 | 0 | 0 |
| Mac->D (oth) | 0 | 0 | 896 | 0 | 0 |
| Mac->Mic | 0 | 0 | 896 | 0 | 0 |
| Mic->D (CVD) | 0 | 3282 | 0 | 0 | 0 |
| Mic->D (oth) | 0 | 3282 | 0 | 0 | 0 |
| Mic->Mac | 0 | 3282 | 0 | 0 | 0 |
| Mic->Norm | 0 | 3282 | 0 | 0 | 0 |
| Norm->D (CVD) | 1306 | 0 | 0 | 0 | 0 |
| Norm $->D$ (oth) | 1306 | 0 | 0 | 0 | 0 |
| Norm $->$ Mic | 1306 | 0 | 0 | 0 | 0 |

> ftable(St4\$lex.Tr, St4\$lex.Xst, St4\$lex.Fail, col.vars = 2:3)

| Norm | Mic | Mac | D(CVD) | D(oth) |
| ---: | :---: | :---: | :---: | :---: |
| FALSE TRUE FALSE TRUE FALSE TRUE | FALSE TRUE | FALSE TRUE | | |

| Mac $->$ D (CVD) | 0 | 0 | 22 | 0 | 844 | 0 | 0 | 18 | 12 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mac $->$ D (oth) | 0 | 0 | 22 | 0 | 844 | 0 | 18 | 0 | 0 | 12 |
| Mac $>$ Mic | 0 | 0 | 0 | 22 | 844 | 0 | 18 | 0 | 12 | 0 |

| Mic $->$ D (CVD) | 72 | 0 | 3101 | 0 | 65 | 0 | 0 | 14 | 30 | 0 |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Mic $->$ D (oth) | 72 | 0 | 3101 | 0 | 65 | 0 | 14 | 0 | 0 | 30 |
| Mic $>$ Mac | 72 | 0 | 3101 | 0 | 0 | 65 | 14 | 0 | 30 | 0 |
| Mic $->$ Norm | 0 | 72 | 3101 | 0 | 65 | 0 | 14 | 0 | 30 | 0 |
| Norm \rightarrow D (CVD) | 1252 | 0 | 35 | 0 | 0 | 0 | 0 | 6 | 13 | 0 |
| Norm \rightarrow D (oth) | 1252 | 0 | 35 | 0 | 0 | 0 | 6 | 0 | 0 | 13 |
| Norm \rightarrow Mic | 1252 | 0 | 0 | 35 | 0 | 0 | 6 | 0 | 13 | 0 |

We see that the lex.Fail is only TRUE where lex.Xst is equal to the second part if the lex.Tr.

The two ways of representing the data for person 102 are quite different:

| | lex.id | per | age | tfi | lex.dur | lex.Cst l | lex.Xst | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3340 | 102 | 1993.5 | 58.3 | 0.0 | 0.5 | Mic | Mic 1 | 102 | |
| 3341 | 102 | 1994.0 | 58.8 | 0.5 | 0.5 | Mic | Mic 1 | 102 | |
| 3342 | 102 | 1994.5 | 59.3 | 1.0 | 0.5 | Mic | Mic | 102 | |
| 3343 | 102 | 1995.0 | 59.8 | 1.5 | 0.2 | Mic | D (CVD) 1 | 102 | |
| > nround(subset(St4, lex.id == 102)[,1:9], 1) | | | | | | | | | |
| | lex.id | per | age | e tfi | lex.dur | lex.Cst | lex.Xst | lex.Tr | lex.Fail |
| 3340 | 102 | 1993.5 | 58.3 | 30.0 | 0.5 | 5 Mic | Mic | Mic->Norm | FALSE |
| 3341 | 102 | 1994.0 | 58.8 | 80.5 | 0.5 | 5 Mic | Mic | Mic->Norm | FALSE |
| 3342 | 102 | 1994.5 | 59.3 | 31.0 | 0.5 | 5 Mic | Mic | Mic->Norm | FALSE |
| 3343 | 102 | 1995.0 | 59.8 | 81.5 | 0.2 | 2 Mic | D (CVD) | Mic->Norm | FALSE |
| 33401 | 102 | 1993.5 | 58.3 | 30.0 | 0.5 | 5 Mic | Mic | Mic->Mac | FALSE |
| 33411 | 102 | 1994.0 | 58.8 | 80.5 | 0.5 | 5 Mic | Mic | Mic->Mac | FALSE |
| 33421 | 102 | 1994.5 | 59.3 | 31.0 | 0.5 | 5 Mic | Mic | Mic->Mac | FALSE |
| 33431 | 102 | 1995.0 | 59.8 | 81.5 | 0.2 | 2 Mic | D (CVD) | Mic->Mac | FALSE |
| 33402 | 102 | 1993.5 | 58.3 | 30.0 | 0.5 | 5 Mic | Mic | Mic->D (CVD) | FALSE |
| 33412 | 102 | 1994.0 | 58.8 | 80.5 | 0.5 | 5 Mic | Mic | Mic->D (CVD) | FALSE |
| 33422 | 102 | 1994.5 | 59.3 | 31.0 | 0.5 | 5 Mic | Mic | Mic->D (CVD) | FALSE |
| 33432 | 102 | 1995.0 | 59.8 | 81.5 | 0.2 | 2 Mic | D (CVD) | Mic->D (CVD) | TRUE |
| 33403 | 102 | 1993.5 | 58.3 | 30.0 | 0.5 | 5 Mic | Mic | Mic->D (oth) | FALSE |
| 33413 | 102 | 1994.0 | 58.8 | 80.5 | 0.5 | 5 Mic | Mic | Mic->D (oth) | FALSE |
| 33423 | 102 | 1994.5 | 59.3 | 31.0 | 0.5 | 5 Mic | Mic | Mic->D (oth) | FALSE |
| 33433 | 102 | 1995.0 | 59.8 | 81.5 | 0.2 | Mic | D (CVD) | Mic->D (oth) | FALSE |

44. Suppose we wanted to fit a model for the two types of mortality assuming that, say, the effect of sex was the same.

Since some of the transitions we put in the same model originate from the same state we need the stacked data representation where each record corresponds to a likelihood term.

```
> cbind(with(subset(St4, grepl("D", lex.Tr)), table(lex.Tr)))
    [,1]
Mac->D (CVD) 896
Mac->D(oth) }89
Mac->Mic
0
```

```
Mic->D(CVD) 3282
Mic->D(oth) 3282
Mic->Mac 0
Mic->Norm 0
Norm->D(CVD) 1306
Norm->D(oth) 1306
Norm->Mic 0
```

We can then fit a model with common effect of sex for the two types mortality:

```
> stD <- glm(cbind(lex.Fail, lex.dur)
+ ~ Ns(tfi, knots = seq( 0, 20, 5)) * lex.Tr +
+ Ns(age, knots = seq(50, 80, 10)) * lex.Tr +
+ lex.Tr / allo + sex,
+ family = poisreg,
+ offset = log(lex.dur),
+ data = subset(St4, grepl("D", lex.Tr)))
> round(ci.exp(stD)[,1,drop=F],3)
```

(Intercept)
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 3$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 4$
lex.TrMac->D(oth)
lex.TrMic->D (CVD)
lex.TrMic->D(oth)
lex.TrNorm->D (CVD)
lex.TrNorm->D (oth)
Ns(age, knots $=\operatorname{seq}(50,80,10)) 1$
Ns(age, knots $=$ seq(50, 80, 10))2
Ns (age, knots $=\operatorname{seq}(50,80,10)) 3$
sexM
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1: l e x . T r M a c->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2: l e x . T r M a c->D(o t h)$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3: l e x . T r M a c->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 4: l e x . T r M a c->D(o t h)$
Ns(tfi, knots $=$ seq(0, 20, 5))1:lex.TrMic->D(CVD)
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2: l e x . T r M i c->D(C V D)$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3: l e x . T r M i c->D(C V D)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 4: l e x . T r M i c->D(C V D)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1: l e x . T r M i c->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2: l e x . T r M i c->D(o t h)$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3: l e x . T r M i c->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 4: l e x . T r M i c->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1: l e x . T r N o r m->D(C V D)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2: l e x . T r N o r m->D(C V D)$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3: 1 e x . T r N o r m->D(C V D)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 4: l e x . T r N o r m->D(C V D)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 1: l e x . T r N o r m->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 2: l e x . T r N o r m->D(o t h)$
Ns (tfi, knots $=\operatorname{seq}(0,20,5)) 3: l e x . T r N o r m->D(o t h)$
Ns(tfi, knots $=\operatorname{seq}(0,20,5)) 4: l e x . T r N o r m->D(o t h)$
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))1
exp(Est.)
$0.000000 \mathrm{e}+00$
$9.416000 \mathrm{e}+00$
$1.300400 \mathrm{e}+01$
$8.537000 \mathrm{e}+00$
$3.760000 \mathrm{e}-01$
$0.000000 \mathrm{e}+00$
$4.407000 \mathrm{e}+00$
$1.100000 \mathrm{e}-02$
$0.000000 \mathrm{e}+00$
$1.028000 \mathrm{e}+01$
$7.546000 \mathrm{e}+00$
$3.440860 \mathrm{e}+02$
$7.543500 \mathrm{e}+01$
$1.447000 \mathrm{e}+00$
$4.152047 e+71$
$1.526456 e+51$
$8.515519 \mathrm{e}+140$
$5.405899 \mathrm{e}+29$
8.000000e-03
$1.420000 \mathrm{e}-01$
$1.550000 \mathrm{e}-01$
$2.440000 \mathrm{e}-01$
$1.320971 \mathrm{e}+03$
$9.167000 \mathrm{e}+01$
$3.997491 \mathrm{e}+07$
$2.844900 \mathrm{e}+01$
$1.779303 \mathrm{e}+04$
$9.118128 \mathrm{e}+04$
$2.126602 \mathrm{e}+10$
$0.000000 \mathrm{e}+00$
3.260000e-01
$2.440000 \mathrm{e}-01$
$2.431400 \mathrm{e}+01$
$3.750000 \mathrm{e}-01$
$2.030000 \mathrm{e}-01$

```
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))1 1.728000e+00
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))1 2.680000e-01
lex.TrNorm->D (CVD):Ns(age, knots = seq(50, 80, 10))1 2.137000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))1 1.131000e+00
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))2 6.000000e-03
lex.TrMic->D (CVD):Ns(age, knots = seq(50, 80, 10))2 4.079000e+00
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))2 3.000000e-03
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))2 0.000000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))2 1.000000e-02
lex.TrMac->D(oth):Ns(age, knots = seq(50, 80, 10))3 1.340000e-01
lex.TrMic->D(CVD):Ns(age, knots = seq(50, 80, 10))3 1.860000e-01
lex.TrMic->D(oth):Ns(age, knots = seq(50, 80, 10))3 1.550000e-01
lex.TrNorm->D(CVD):Ns(age, knots = seq(50, 80, 10))3 0.000000e+00
lex.TrNorm->D(oth):Ns(age, knots = seq(50, 80, 10))3 2.620000e-01
lex.TrMac->D (CVD):alloConv
lex.TrMac->D(oth):alloConv 6.230000e-01
lex.TrMic->D(CVD):alloConv 1.703000e+00
lex.TrMic->D(oth):alloConv 2.103000e+00
lex.TrNorm->D(CVD):alloConv 2.067000e+00
lex.TrNorm->D(oth):alloConv 1.783000e+00
```

So under the assumption that the sex-effects are the same for all 6 mortality rates in figure 3.2 the M / W rate ratio is 1.46 .

But it is only rarely that we want to model different rates out of the same state, so the actual use of stack(.Lexis) is seldom needed.

References

[1] Bendix Carstensen. Epidemiology with R. Number ISBN: 978-0-19-884133-3. Oxford University Press, 2020.

[^0]: ${ }^{1}$ A detailed description of the use of simLexis is available in the vignette in the Epi package, also available as http://bendixcarstensen.com/Epi/simLexis.pdf

