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Chapter 1

Program and introduction

Course program

As the general rule, the daily program will have one lecture and one practical each morning
and each afternoon.

Lectures will be between 45 and 90 minutes; normally with one or two breaks.
Occasionally you will be asked to do small practical in the middle of the lectures.

The practicals will follow the lecture to fill the 3-hour slot. Sometimes we may need to
push over some of the practical computing to take a bit of the beginning of the next slot.

The general rule is that there will be a walk-through of practicals after you have had a
change to have a go at it yourself.

Monday 2nd

09:00 – 09:15 Welcome and introduction.
09:15 – 12:15 Morning slot:

– L1: Follow-up time and rates from register data surv-rate

– Lexis machinery in Epi lifetable

– Follow-up time and rates from population data tab-mod

– P1: Regression, linear algebra and reparametrization
– Danish prime ministers pm

13:15 – 16:15 Afternoon slot:
– L2: Likelihood for rates: Cox and Poisson
– Cox as limit of the Poisson WntCma

– Poisson model for rates: Factor models
– Practical handling of linear contrasts in R using ci.lin() tab-mod

– P2: Rates and survival, RR and RD
– Linear and curved effects

1



2 APC models

Tuesday 3rd

09:00 – 09:30 Recap of Monday
09:30 – 12:15 Morning slot:

– L3: The age-period and the age-cohort model. AP-AC
– The Age-drift model
– P3: Age-period model age-per
– Age-cohort model age-coh
– Age-drift model age-drift

13:15 – 16:15 Afternoon slot:
– L4: The Age-period-cohort model
– Parametrizations
– Lexis triangles
– P4: Age-period-cohort model
– Using apc.fit

Wednesday 4th

09:00 – 09:30 Recap of Tuesday
09:30 – 12:15 Morning slot:

– L5: Parametrization revisited: The general case.
– The Lee-Carter model
– P5: Age-period-cohort model for triangles
– L5: The implementation of apc.fit.
– Parametrizations.
– The residual parametrization.
– P5: Lee-Carter: Lung cancer in Danish women

13:15 – 16:15 Afternoon slot:
– L6: Several rates compared with APC-models:
– Estimation and reporting of effects.
– Parametrization options for several rates.
– P6: Lung cancer differences by sex lung-sex

Thursday 5th

09:00 – 16:00 Study free: Working with the assignments.
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Friday 6th

09:00 – 09:30 Recap of Wednesday
09:30 – 12:15 Morning slot:

– L7: Predictions based on APC models
– Managing splines for prediction
– P7: Predicting lung cancer lung-pred
– Predicting breast cancer breast-pred

13:15 – 16:00 Afternoon slot:
– L8: APC-models for continuous outcome
– P8: BMI in Australia

16:00 – 16:15 Wrapping up, closure, evaluation and farewell

1.1 Reading

It would be helpful if you had read the papers which cover the essentials of the models that
we will cover: [1, 2, 3, 4]

1.2 Introduction to exercises

Most of the following exercises all require basic skills in computing, in R, in particular the
use of the graphical facilities.

1.2.1 Datasets and how to access them.

All the datasets for the exercises in this section are in the folder APC\data. This can be
accessed through the homepage of the course, as:
http://BendixCarstensen.com/APC/data.

The datasets with .txt extension are plain text files where variable names are found in
the first line. Such datasets can be read into R with the command read.table

1.2.2 R-functions and packages

Most functions for this course (and several more) are supplied in the R-package Epi, which
can be downloaded from CRAN (on the R-website). It is also recommended that you get
the packages demography and ilc.

> library( Epi )
> sessionInfo()

The latter command will list the attached packages and their version numbers. Yur version
of Epi should be at least 2.3.

1.2.3 Solutions

This document also contains some suggestions for solutions of the assignments. They
should not be taken as the only possible solutions to the practicals.

http://BendixCarstensen.com/APC/data
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It is a good idea to give it a shot to do the practicals before you look in the solutions.
However, the odd solution proposal may contain a twist to the analyses that you may find
useful. Any suggestions for improving the solutions would be most welcome.

The R-code used in the solutions is available in the folder
http://bendixcarstensen.com/APC/MPIDR-2016/R/, the filenames are shown at the top
of each of the solution sections.

http://bendixcarstensen.com/APC/MPIDR-2016/R/


Chapter 2

Basic concepts in analysis of rates and
survival

The following is a summary of relations between various quantities used in analysis of
follow-up studies. They are ubiquitous in the analysis and reporting of results. Hence it is
important to be familiar with all of them and the relation between them.

2.1 Probability

Survival function:

S(t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

Conditional survival function:

S(t|tentry) = P {survival at least till t| alive at tentry}
= S(t)/S(tentry)

Cumulative distribution function of death times (cumulative risk):

F (t) = P {death before t}
= P {T ≤ t} = 1− S(t)

Density function of death times:

f(t) = lim
h→0

P {death in (t, t+ h)} /h = lim
h→0

F (t+ h)− F (t)

h
= F ′(t)

Intensity:

λ(t) = lim
h→0

P {event in (t, t+ h] | alive at t} /h

= lim
h→0

F (t+ h)− F (t)

S(t)h
=
f(t)

S(t)

= lim
h→0
− S(t+ h)− S(t)

S(t)h
= − d logS(t)

dt

5
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The intensity is also known as the hazard function, hazard rate, mortality/morbidity
rate or simply “rate”.

Note that f and λ are scaled quantities, they have dimension time−1.

Relationships between terms:

− d logS(t)

dt
= λ(t)

m

S(t) = exp

(
−
∫ t

0

λ(u) du

)
= exp

(
−Λ(t)

)
The quantity Λ(t) =

∫ t

0
λ(s) ds is called the integrated intensity or the cumulative

rate. It is not an intensity (rate), it is dimensionless, despite its name.

λ(t) = − d log(S(t))

dt
= −S

′(t)

S(t)
=

F ′(t)

1− F (t)
=
f(t)

S(t)

The cumulative risk of an event (to time t) is:

F (t) = P {Event before time t} =

∫ t

0

λ(u)S(u) du = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for small values of the integrated
intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate

2.2 Statistics

Likelihood contribution from follow up of one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P {event at t4|entry at t0} = P {survive (t0, t1)| alive at t0} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t2, t3)| alive at t2} ×
P {event at t4| alive at t3}

Each term in this expression corresponds to one empirical rate1

(d, y) = (#deaths,#risk time), i.e. the data obtained from the follow-up of one
person in the interval of length y. Each person can contribute many empirical rates,
most with d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):

`(λ) = d log(λ)− λy

This is under the assumption that the rate (λ) is constant over the interval that the
empirical rate refers to.

1This is a concept coined by BxC, and so is not necessarily generally recognized.
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Log-likelihood for several persons. Adding log-likelihoods from a group of persons
(only contributions with identical rates) gives:

D log(λ)− λY,

where Y is the total follow-up time, and D is the total number of failures.

Note: The Poisson log-likelihood for an observation D with mean λY is:

D log(λY )− λY = D log(λ) +D log(Y )− λY

The term D log(Y ) does not involve the parameter λ, so the likelihood for an
observed rate can be maximized by pretending that the no. of cases D is Poisson
with mean λY . But this does not imply that D follows a Poisson-distribution. It is
entirely a likelihood based computational convenience. Anything that is not
likelihood based is not justified.

A linear model for the log-rate, log(λ) = Xβ implies that

λY = exp
(
log(λ) + log(Y )

)
= exp

(
Xβ + log(Y )

)
Therefore, in order to get a linear model for log(λ) we must require that log(Y )
appear as a variable in the model for D ∼ (λY ) with the regression coefficient fixed
to 1, a so-called offset-term in the linear predictor.

2.3 Competing risks

Competing risks: If there is more than one, say 3, causes of death, occurring with
(cause-specific) rates λ1, λ2, λ3, that is:

λc(a) = lim
h→0

P {death from cause c in (a, a+ h] | alive at a} /h, c = 1, 2, 3

The survival function is then:

S(a) = exp

(
−
∫ a

0

λ1(u) + λ2(u) + λ3(u) du

)
because you have to escape all 3 causes of death. The probability of dying from cause
1 before age a (the cause-specific cumulative risk) is:

P {dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du 6= 1− exp

(
−
∫ a

0

λ1(u) du

)
The term exp(−

∫ a

0
λ1(u) du) is sometimes referred to as the “cause-specific survival”,

but it does not have any probabilistic interpretation in the real world. It is the
survival under the assumption that only cause 1 existed and that the mortality rate
from this cause was the same as when the other causes were present too.

Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes
1, 2 and 3 respectively:

1 = S(a) +

∫ a

0

λ1(u)S(u) du+

∫ a

0

λ2(u)S(u) du+

∫ a

0

λ3(u)S(u) du, ∀a
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Subdistribution hazard Fine and Gray defined models for the so-called subdistribution
hazard. Recall the relationship between between the hazard (λ) and the cumulative
risk (F ):

λ(a) = −
d log

(
S(a)

)
da

= −
d log

(
1− F (a)

)
da

When more competing causes of death are present the Fine and Gray idea is to use
this transformation to the cause-specific cumulative risk for cause 1, say:

λ̃1(a) = −
d log

(
1− F1(a)

)
da

This is what is called the subdistribution hazard, it depends on the survival function
S, which depends on all the cause-specific hazards:

F1(a) = P {dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du

The subdistribution hazard is merely a transformation of the cause-specific
cumulative risk. Namely the same transformation which in the single-cause case
transforms the cumulative risk to the hazard.

2.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age
(a) integrated with respect to the distribution of age at death:

EL =

∫ ∞
0

af(a) da

where f is the density of the distribution of lifetime (age at death).

The relation between the density f and the survival function S is f(a) = −S ′(a), so
integration by parts gives:

EL =

∫ ∞
0

a
(
−S ′(a)

)
da = −

[
aS(a)

]∞
0

+

∫ ∞
0

S(a) da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
definition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) =

∫ ∞
a

S(u)/S(a) du

Lifetime lost due to a disease is the difference between the expected residual lifetime for
a diseased person and a non-diseased (well) person at the same age. So all that is
needed is a(n estimate of the) survival function in each of the two groups.

LL(a) =

∫ ∞
a

SWell(u)/SWell(a)− SDiseased(u)/SDiseased(a) du
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Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease
in question or not. That is whether we will include the possibility of a well person
getting ill and subsequently die. This does not show up in the formulae, but is a
decision required in order to devise an estimate of SWell.

Lifetime lost by cause of death is using the fact that the difference between the
survival probabilities is the same as the difference between the death probabilities. If
several causes of death (3, say) are considered then:

S(a) = 1− P {dead from cause 1 at a}
− P {dead from cause 2 at a}
− P {dead from cause 3 at a}

and hence:

SWell(a)− SDiseased(a) = P {dead from cause 1 at a|Diseased}
+ P {dead from cause 2 at a|Diseased}
+ P {dead from cause 3 at a|Diseased}
− P {dead from cause 1 at a|Well}
− P {dead from cause 2 at a|Well}
− P {dead from cause 3 at a|Well}

So we can conveniently define the lifetime lost due to cause 2, say, by:

LL2(a) =

∫ ∞
a

P {dead from cause 2 at u|Diseased & alive at a}

−P {dead from cause 2 at u|Well & alive at a} du

These quantities have the property that their sum is the total years of life lost due to
the disease:

LL(a) = LL1(a) + LL2(a) + LL3(a)

The terms in the integral are computed as (see the section on competing risks):

P {dead from cause 2 at x|Diseased & alive at a} =

∫ x

a

λ2,Dis(u)SDis(u)/SDis(a) du

P {dead from cause 2 at x|Well & alive at a} =

∫ x

a

λ2,Well(u)SWell(u)/SWell(a) du



Chapter 3

Practical exercises

3.1 Regression, linear algebra and projection

This exercise is aimed at reminding you about the linear algebra behind linear models.
Therefor we use artificial data

1. First generate a continuous variable x, and a factor f on 3 levels, each with 100 units,
say:

x <- runif(100,20,50)
f <- factor( sample(letters[1:3],100,replace=T) )
x
table( f )

Then generate a response variable y by some function (the exact shape is
immaterial):

y <- 0.2*x + 0.02*(x-25)^2 + 3*as.integer(f) + rnorm(100,0,1)
plot( x, y, col=f, pch=16 )

2. Now fit the same model using lm, so this should get your parameter estimates back
(almost):

mm <- lm( y ~ x + I(x^2) + f )
summary( mm )

3. Now verify that you get the same results using the matrix formulae. You will first
have to generate the design matrix:

X <- cbind( 1, x, x^2, f=="b", f=="c" )

Recall that the matrix formula for the estimates is:

β̂ = (X ′X)−1X ′y

To make this calculation explicitly in R you will need the transpose t() and the
matrix inversion solve() functions, as well as the matrix multiplication operator %*%.

An explicit calculation then gives:

bb <- solve( t(X) %*% X ) %*% t(X) %*% y
cbind( bb, coef(mm) )

10
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3.2 Reparametrization of models

This exercise is aimed at showing you how to reparametrize a model: Suppose you have a
model parametrized by the linear predictor Xβ, but that you really wanted the
parametrization Aγ, where the columns of X and A span the same linear space.

So Xβ = Aγ, and we assume that both X and A are of full rank,
dim(X) = dim(A) = n× p, say.

We want to find γ given that we know Xβ and that Xβ = Aγ. Since we have that
p < n, we have that A−A = I, by the properties of G-inverses, and hence:

γ = A−Aγ = A−Xβ

1. try to generate a dataset with a response hat is normally distributed in three groups,
and then fit the model using the “usual” parametrization:

f <- factor( sample(letters[1:3],20,replace=T) )
y <- 5+2*as.integer(f) + rnorm(20,0,1)
mm <- lm( y ~ f )
library( Epi )
ci.lin( mm )

2. Set up the model matrix X for this regression, and versify that you get the same
results by entering X as regression in lm

( X <- cbind( 1, f=="b", f=="c" ) )
ci.lin( lm( y ~ X-1 ) )

3. Now suppose you want a parametrization with the last level as reference instead. You
could then easily convert the parameters, but use the formulae from above to do it,
by first setting up A corresponding to the desired parametrization, and then using
ginv from the MASS library:

library( MASS )
( A <- cbind( 1, f=="a", f=="b" ) )
ginv(A) %*% X
ginv(A) %*% X %*% ci.lin( mm )[,1]

4. Verify that you get the results you expect:

( X <- cbind( 1, f=="b", f=="c" ) )
( A <- cbind( 1, f=="a", f=="b" ) )
ginv(A) %*% X

5. Try to obtain the conversion from the parametrization with an intercept and two
contrasts to the parametrization with a separate level in each group by constructing
the matrices using the model.matrix function.

( X <- model.matrix( ~f ) )
( A <- model.matrix( ~f-1 ) )
ginv(A) %*% X

The essences of these calculations are:
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• Given that you have a set of fitted values in a model (in casu ŷ = Xβ) and you want
the parameter estimates you would get if you had used the model matrix A. Then
they are γ = A−ŷ = A−Xβ.

• Given that you have a set of parameters β, from fitting a model with design matrix
X, and you would like the parameters γ, you would have got had you used the model
matrix A. Then they are γ = A−Xβ.

3.3 Danish prime ministers

The following table shows all Danish prime ministers in office since the war. They are
ordered by the period in office, hence some appear twice. Entry end exit refer to the office
of prime minister. A missing date of death means that the person was alive at 31 March
2016.

Name Birth Death Entry Exit

Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
Jens Otto Kragh 15/09/1914 22/06/1978 03/09/1962 02/02/1968
Hilmar Baunsgaard 26/02/1920 30/06/1989 02/02/1968 11/10/1971
Jens Otto Kragh 15/09/1914 22/06/1978 11/10/1971 05/10/1972
Anker Jorgensen 13/07/1922 20/03/2016 05/10/1972 19/12/1973
Poul Hartling 14/08/1914 30/04/2000 19/12/1973 13/02/1975
Anker Jorgensen 13/07/1922 20/03/2016 13/02/1975 10/09/1982
Poul Schlüter 03/04/1929 . 10/09/1982 25/01/1993
Poul Nyrup Rasmussen 15/06/1943 . 25/01/1993 27/11/2001
Anders Fogh Rasmussen 26/01/1953 . 27/11/2001 05/04/2007
Lars Løkke Rasmussen 15/05/1964 . 21/01/2009 03/10/2011
Helle Thorning-Schmidt 14/12/1966 . 03/10/2011 28/06/2015
Lars Løkke Rasmussen 15/05/1964 . 28/06/2015 .

The data in the table can be found in the file pm-dk.txt.

st <- read.table( "../data/pm-dk.txt", header=T, as.is=T, na.strings="." )
st
str( st )

1. Draw a Lexis diagram with life-lines of the persons, for example by using the Lexis

machinery from the Epi package:
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library( Epi )
# Change the character variables with dates to fractional calendar
# years
for( i in 2:5 ) st[,i] <- cal.yr( st[,i], format="%d/%m/%Y" )
# Attach the data for those still alive
st$fail <- !is.na(st$death)
st[is.na(st$exit),"exit"] <- cal.yr( Sys.Date() )
st[ !st$fail,"death"] <- cal.yr( Sys.Date() )
st
# Lexis object
L <- Lexis( entry = list(per=birth),

exit = list(per=death, age=death-birth),
exit.status=fail,
data=st )

# Plot Lexis diagram
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels
plot( L, xlim=c(1945,2020), ylim=c(20,95),

xaxs="i", yaxs="i", lwd=3, las=1,
grid=0:20*5, col="black", xlab = "Calendar time", ylab="Age" )

points( L, pch=c(NA,16)[L$lex.Xst+1] )
# Put names of the prime ministers on the plot
with( st, text( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 ) )
par( xaxt="s" )
axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office. You could try
something like:

# New Lexis object describing periods in an office
# and lines added to a picture
st <- transform( st,

in_office = c( rep(FALSE,nrow(st)-1),TRUE ),
exit = ifelse( is.na(exit), 2011, exit ) )

Lo <- Lexis( entry = list(per=entry),
exit = list(per=exit, age=exit-birth),
exit.status=in_office,
data = st )

lines( Lo, lwd=3, las=1, col="red" )
# the same may be plotted using command segments
box()
with( st, segments( birth, 0, death, death-birth, lwd=2 ) )
with( st, segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" ) )

3. Draw the line representing age 50 years.

4. How many 50th birthdays have been celebrated in office since the war?

5. Draw the line representing 2 October 1972. (Why just that?)

abline( v=cal.yr( "2/10/1972", format="%d/%m/%Y" ) )

6. How many present and former prime ministes were alive at 31st December 2008?

7. Which period(s) since the war has seen the maximal number of former post-war
prime ministers alive?
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# New lexis object - since entry to the office to the death
Ln <- Lexis( entry = list(per = entry),

exit = list(per = death,
age = death-entry ),

exit.status = death,
data = st )

ny <- 2008-1945
n_alive <- vector( "numeric", ny )
for (i in 1:ny)
{
alive <- ( (Ln$death >=(1944+i))&(Ln$entry<=(1944+i)) )
n_alive[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )
}
plot( n_alive~seq(1945,(1945+ny-1),1), type="l", xlab="Calendar year",

ylab = "Maximal numbers of former prime ministers alive" )

8. Mark the area in the diagram with person years lived by persons aged 50 to 70 in the
period 1 January 1970 through 1 January 1990.

9. Mark the area for the lifetime experience of those who were between 10 and 20 years
old in 1945.

polygon( c(1955,2010,2010,1965,1955), c(30,85,75,30,30), lwd=2,
border="blue", col="lightblue" )

10. How many prime-minister-years have been spent time in each of these sets? And in
the intersection of them?

# Prime-minister years lived by persons
# aged 50 to 70 in the period 1 January 1970 through 1 January 1990.
x1 <- splitLexis( Lo ,breaks = c(0,50,70,100), time.scale="age" )
x2 <- splitLexis( x1, breaks = c(1900,1970,1990,2010), time.scale="per" )
summary( x2 )
tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),

timeBand(x2,"per","left") ), sum )
tapply( dur(x2), list( timeBand(x2,"age","left"),

timeBand(x2,"per","left") ), sum )
# Computing the person-years in the 1925-35 cohort
x3 <- subset( Lo, birth>1925 & birth<=1935 )
summary( x3 )
dur( x3 )
# Computing person years in the intersection
x4 <- subset( x2 , birth>1925 & birth<=1935 )
summary( x4 )
dur( x4 )

3.4 Rates and survival

1. Consider the following data:
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Year of birth Year of death Age at death

1994 1995

1994 2,900 500 0
1993 120 130 1
1992 50 60 2
1991 45 55 3
1990 40 40 4

2. Represent these data in a Lexis diagram. You could use the Lexis.diagram function
from the Epi package and the print the no. of cases on the digram with text.

3. On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (1m2) in 1994? If you can, do it. If you cannot, explain what additional
information you would need.

4. On the basis of these data, can you calculate the probability of surviving from age 2
to age 3 (1q2) in for the cohort born in 1992? If you can, do it. If you cannot, explain
what additional information you would need.

5. Now consider the following data:

• Live births during 1991: 142,000

• Number of infants born in 1991 who did not survive until the end of 1991: 2,900

• Number of infants born in 1991 who survived to the end of 1991, but did not
reach their first birthday: 500

• Live births during 1992: 138,000

• Number of infants born in 1992 who did not survive until the end of 1992: 2,600

• Number of infants born in 1992 who survived to the end of 1992, but did not
reach their first birthday: 450

6. Represent the data on a Lexis diagram.

7. Calculate the infant mortality rate (IMR) for 1992 under the assumption that you
were only able to observe events occurring in 1992, and that you did not know the
birth dates of infants dying during that year.

8. Same as above, except that now you do know the birth dates of infants dying during
1992.

9. Assume all data are known: Calculate the IMR.

10. What is the IMR for the 1992 birth cohort?

3.5 Calculation of rates, RR and RD

This exercise is very prescriptive, so you should make an effort to really understand
everything you type into R. Consult the relevant slides of the lecture on “Poisson regression
for rates . . . ”
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3.5.1 Hand calculations for a single rate

Let λ be the true hazard rate or theoretical incidence rate, its estimator being the
empirical incidence rate λ̂ = D/Y = ’no. cases/person-years’. Recall that the standard

error of the empirical rate is SE(λ̂) = λ̂/
√
D.

The simplest approximate 95% confidence interval (CI) for λ is given by

λ̂± 1.96× SE(λ̂)

An alternative approach is based on logarithmic transformation of the empirical rate.
The standard error of the log-rate θ̂ = log(λ̂) is SE(θ̂) = 1/

√
D. Thus, a simple

approximate 95% confidence interval for the log-hazard θ = log(λ) is obtained from

θ̂ ± 1.96/
√
D = log(λ̂)± 1.96/

√
D

When taking the exponential from the above limits, we get another approximate confidence
interval for the hazard λ itself:

exp{log(λ̂)± 1.96/
√
D} = λ̂

×
÷ EF,

where EF = exp{1.96× SE[log(λ̂)]} is the error factor associated with the 95% interval.
This approach provides a more accurate approximation with small numbers of cases.
(However, both these methods fail when D = 0, in which case an exact method or one
based on profile-likelihood is needed.)

1. Suppose you have 15 events during 5532 person-years. Let’s use R as a simple desk
calculator to derive the rate (in 1000 person-years) and the first version of an
approximate confidence interval:

> library( Epi )
> options(digits=4) # to cut down decimal points in the output

> D <- 15
> Y <- 5.532 # thousands of years
> rate <- D / Y
> SE.rate <- rate/sqrt(D)
> c(rate, SE.rate, rate + c(-1.96, 1.96)*SE.rate )

2. Compute now the approximate confidence interval using the method based on
log-transformation and compare the result with that in item (a)

> SE.logr <- 1/sqrt(D)
> EF <- exp( 1.96 * SE.logr )
> c(log(rate), SE.logr)
> c( rate, EF, rate/EF, rate*EF )
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3.5.2 Poisson model for a single rate with logarithmic link

You are able to estimate λ and compute its CI with a Poisson model, as described in the
relevant slides in the lecture handout.

3. Use the number of events as the response and the log-person-years as an offset term,
and fit the Poisson model with log-link

> m <- glm( D ~ 1, family=poisson(link=log), offset=log(Y) )
> summary( m )

What is the interpretation of the parameter in this model?

4. The summary method produces too much output. You can extract CIs for the model
parameters directly from the fitted model on the scale determined by the link
function with the ci.lin()-function. Thus, the estimate, SE, and confidence limits
for the log-rate θ = log(λ) are obtained by:

> ci.lin( m )

However, to get the confidence limits for the rate λ = exp(θ) on the original scale, the
results must be exp-transformed:

> ci.lin( m, Exp=T)

To get just the point estimate and CI for λ from log-transformed quantities you are
recommended to use function ci.exp(), which is actually a wrapper of ci.lin():

> ci.exp( m)
> ci.lin( m, Exp=T)[, 5:7]

Both functions are found from Epi package. – Note that the test statistic and
P -value are rarely interesting quantities for a single rate.

5. There is an alternative way of fitting a Poisson model: Use the empirical rate
λ̂ = D/Y as a scaled Poisson response, and the person-years as weight instead of
offset (albeit it will give you a warning about non-integer response in a Poisson
model, but you can ignore this warning):

> mw <- glm( D/Y ~ 1, family=poisson, weight=Y )
> ci.exp( mw)

Verify that this gave the same results as above.

3.5.3 Poisson model for a single rate with identity link

The advantage of the approach based on weighting is that it allows sensible use of the
identity link. The response is the same but the parameter estimated is now the rate itself,
not the log-rate.

6. Fit the Poisson model with identity link
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> mi <- glm( D/Y ~ 1, family=poisson(link=identity), weight=Y )
> coef(mi)

What is the meaning of the intercept in this model?

Verify that you actually get the same rate estimate as before.

7. Now use ci.lin() to produce the estimate and the confidence intervals from this
model:

> ci.lin( mi )
> ci.lin( mi )[, c(1,5,6)]

3.5.4 Poisson model assuming same rate for several periods

Now, suppose the events and person years are collected over three periods.

8. Read in the data and compute period-specific rates

> Dx <- c(3,7,5)
> Yx <- c(1.412,2.783,1.337)
> Px <- 1:3
> rates <- Dx/Yx
> rates

9. Fit the same model as before, assuming a single rate to the data for the separate
periods. Compare the result from previous ones

> m3 <- glm( Dx ~ 1, family=poisson, offset=log(Yx) )
> ci.exp(m3)

10. Now test whether the rates are the same in the three periods: Try to fit a model with
the period as a factor in the model:

> mp <- glm( Dx ~ factor(Px), offset=log(Yx), family=poisson )

and compare the two models using anova() with the argument test="Chisq":

> anova( m3, mp, test="Chisq" )

Compare the test statistic to the deviance of the model mp.

What is the deviance good for?



APC models 3.5 Calculation of rates, RR and RD 19

3.5.5 Analysis of rate ratio

We now switch to comparison of two rates λ1 and λ0, i.e. the hazard in an exposed group
vs. that in an unexposed one. Consider first estimation of the true rate ratio ρ = λ1/λ0

between the groups. Suppose we have pertinent empirical data (cases and person-times)
from both groups, (D1, Y1) and (D0, Y0). The point estimate of ρ is the empirical rate ratio

RR =
D1/Y1

D0/Y0

.

It is known that the variance of log(RR), that is, the difference of the log of the

empirical rates log(λ̂1)− log(λ̂0) is estimated as

var(log(RR)) = var{log(λ̂1/λ̂0)}
= var{log(λ̂1)}+ var{log(λ̂0)}
= 1/D1 + 1/D0

Based on a similar argument as before, an approximate 95% CI for the true rate ratio
λ1/λ0 is then:

RR
×
÷ exp

(
1.96

√
1

D1

+
1

D0

)
Suppose you have 15 events during 5532 person-years in an unexposed group and 28 events
during 4783 person-years in an exposed group:

11. Calculate the the rate-ratio and CI by direct application of the above formulae:

> D0 <- 15 ; D1 <- 28
> Y0 <- 5.532 ; Y1 <- 4.783
> RR <- (D1/Y1)/(D0/Y0)
> SE.lrr <- sqrt(1/D0+1/D1)
> EF <- exp( 1.96 * SE.lrr)
> c( RR, RR/EF, RR*EF )

12. Now achieve this using a Poisson model:

> D <- c(D0,D1) ; Y <- c(Y0,Y1); expos <- 0:1
> mm <- glm( D ~ factor(expos), family=poisson, offset=log(Y) )

What do the parameters mean in this model?

13. You can extract the exponentiated parameters in two ways:

> ci.exp( mm)
> ci.lin( mm, E=T)[,5:7]
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3.5.6 Analysis of rate difference

When estimating the true rate difference δ = λ1 − λ0, the variance of the natural estimator
RD = D1/Y1 −D0/Y0 is (since the empirical rates are based on independent samples) just
the sum of the variances:

var(RD) = var(λ̂1) + var(λ̂0)

= D1/Y
2

1 +D0/Y
2

0

14. Use this formula to compute the rate difference and a 95% confidence interval for it:

> rd <- diff( D/Y )
> sed <- sqrt( sum( D/Y^2 ) )
> c( rd, rd+c(-1,1)*1.96*sed )

15.

16. Verify that this is the confidence interval you get when you fit an additive model with
exposure as factor:

> ma <- glm( D/Y ~ factor(expos),
+ family=poisson(link=identity), weight=Y )
> ci.lin( ma )[, c(1,5,6)]

3.5.7 Calculations using matrix tools

NB. This subsection requires some familiarity with matrix algebra.

17. You can explore the function ci.mat(), which lets you use matrix multiplication
(operator '%*%' in R) to produce confidence interval from an estimate and its
standard error (or CIs from whole columns of estimates and SEs):

> ci.mat
> ci.mat()

Apply this to the single rate calculations in 1.6.1:

> c( rate, SE.rate ) %*% ci.mat()
> exp( c( log(rate), SE.logr ) %*% ci.mat() )

18. For computing the rate ratio and its CI as in 1.6.5, matrix multiplication with
ci.mat() should give the same result as there:

> exp( c( log(RR), SE.lrr ) %*% ci.mat() )

19. Look again the model used to analyse the rate ratio in 1.6.5(b). Often one would like
to get simultaneously both the rates and the ratio between them. This can be
achieved in one go using the contrast matrix argument ctr.mat to ci.lin() or
ci.exp(). Try:
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> CM <- rbind( c(1,0), c(1,1), c(0,1) )
> rownames( CM ) <- c("rate 0","rate 1","RR 1 vs. 0")
> CM
> mm <- glm( D ~ factor(expos),
+ family=poisson(link=log), offset=log(Y) )
> ci.exp( mm, ctr.mat=CM)

20. Use the same machinery to the additive model to get the rates and the rate-difference
in one go. Note that the annotation of the resulting estimates are via the
column-names of the contrast matrix.

> rownames( CM ) <- c("rate 0","rate 1","RD 1 vs. 0")
> ma <- glm( D/Y ~ factor(expos),
+ family=poisson(link=identity), weight=Y )
> ci.lin( ma, ctr.mat=CM )[, c(1,5,6)]

3.6 Estimation and reporting of linear and curved

effects

In this exercise we will use the testisDK data from the Epi package, which contains the
number of cases of testis cancer in Denmark 1943–96:

1. First load the Danish testis cancer data, and inspect the dataset:

library( Epi )
sessionInfo()
data( testisDK )
str( testisDK )
head( testisDK )

Tabulate both events and person-years using stat.table, in say 10-year age-groups
and 10-year periods of follow-up. In which ages are the age-specific testis cancer rates
highest?

2. Now fit a Poisson-model for the mortality rates with a linear term for age at
follow-up (current age, attained age):

ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
ci.exp( ml )

What do the parameters mean?

3. Work out the the predicted log-mortality rates for ages 25 to 45, say, by doing a
hand-calculation based on the coefficients:

( cf <- coef( ml ) )

4. However, we do not have the standard errors of these mortality rates, and hence
neither the confidence intervals. This is implemented in ci.exp; if we provide the
argument ctr.mat= as a matrix where each row corresponds to a prediction point
and each column to a parameter from the model. Look at the help page for ci.exp
and then try:
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( CM <- cbind( 1, 25:45 ) )
round( ci.exp( ml, ctr.mat=CM )*10^5, 3 )

5. Use this machinery to derive and plot the mortality rates over the range from 15 to
65 years, say:

C1 <- cbind( 1, 15:65 )
matplot( 15:65, ci.exp( ml, ctr.mat=C1 )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

6. Now check if the mortality rates really are eksponentially increasing by age (that is
linearly on the log-scale), by adding a quadratic term to the model. Note that you
must use the expression I(A^2) in the modelleing in order to avoid that the “^” is
interpreted as part of the model formula:

mq <- glm( D ~ A + I(A^2), offset=log(Y), family=poisson, data=testisDK )
ci.exp( mq, Exp=F )

Then plot the estimated rates under the quadratic model.

aa <- 15:65
C2 <- cbind( 1, aa, aa^2 )
matplot( aa, ci.exp( mq, ctr.mat=C2 )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

Try to overlay the estimated rates from the model with linear efect of age — you will
need the function matlines.

7. Repeat the same using a 3rd degree polynomial.

8. Instead of continuing with higher powers of age we could use fractions of powers, or
we could use splines, piecevise polynomial curves, that fit nicely together at join
points (knots). This is implemented in the splines package, in the function ns,
which returns a matrix. There is a wrapper Ns in the Epi-package that automatically
designate the smallest and largest knots a boundary knots, beyond which the resulting
curve is linear:

library( splines )
ms <- glm( D ~ Ns(A,knots=seq(15,65,10)), offset=log(Y),

family=poisson, data=testisDK )

In order to extract the estimated effects, construct a contrast matrix that correspond
to the parameters of the model:

As <- Ns( aa, knots=seq(15,65,10) )
matplot( aa, ci.exp( ms, ctr.mat=cbind(1,As) )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

9. Now add a linear term in calendar time P to the model, and make a prediction of the
incidence rates in 1970, say:
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msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P, offset=log(Y), family=poisson, data=testisDK )
matplot( aa, ci.exp( msp, ctr.mat=cbind(1,As,1970) )*10^5,

log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
type="l", lty=1, lwd=c(3,1,1), col="black" )

Note that cbind automatically will expand the 1 and the 1970 to match the number
of rows of As.

10. Extract the RR relative to 1970, by using the subset argument to ci.exp:

ci.exp( msp, subset="P" )

What is the annual relative increase in the testis cancer incidence rates? Show the
RR of testis cancer by year relative to 1970 by multipling the log-RR for period with
the distance form 1970, such as:

yy <- 1943:1996
Cp1 <- cbind( yy - 1970 )
matplot( yy, ci.exp( msp, ctr.mat=Cp1, subset="P" ),

log="y", xlab="Date", ylab="RR of Testis cancer",
type="l", lty=1, lwd=c(3,1,1), col="black" )

abline( h=1 )

11. Try to add a quadratic term to the period effect, and plot the resulting RR relative
to 1970.
Hint: In order to extract the quadratic effects relative to 1970, you must form the
matrix of linear and quadratic period, and a corresponding matrix where all rows are
identical to the 1970 row:

msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
offset=log(Y), family=poisson, data=testisDK )

Cq <- cbind( yy, yy^2 ) - cbind( rep(1970,length(yy)), 1970^2 )

Use this matrix as arguent to ci.exp

12. Now investigate if there is any non-linearity in period beyond the quadratic, by
fitting fit a spline for (P) as well, and comparing the models. Plot the resulting RR
by year, relative to 1970 too. You must define a contrast matrix corresponding to the
years where the prediction is made, as well as a matrix with the same number of
rows, but with all rows identical to the one corresponding to the reference year. You
must use the differenec of these two as the arument to ctr.mat in ci.exp.

13. Plot the estimated age-specific rates in 1970 from this model. Note that you need a
reference matrix for the period with all rows identical to the 1970 row, but this time
with the same number of rows as the age-prediciton points.

14. Collect these steps in a general outline, where you first define the knots, and the
points of age and period prediction, and then fit the model and do the two plots.

15. Form a new variable in the data frame, B=P-A, the data of birth, and repeat the last
analysis with this variable instead of P.
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3.7 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period model. It will give you the opportunity explore how to extract and and plot
parameter estimates from models. It is based on Danish male lung cancer incidence data in
5-year classes.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

lung <- read.table( "../data/lung5-M.txt", header=T )
lung
with( lung , table( A ) )
with( lung , table( P ) )
with( lung , tapply( Y, list(A,P), sum ) )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and period (P) as class variables:

ap.1 <- glm( D ~ factor(A) + factor(P) + offset(log(Y)),
family=poisson, data=lung )

summary( ap.1 )

What do the parameters refer to, i.e. which ones are log-rates and which ones are
rate-ratios?

3. Fit the same model without intercept (use -1 in the model formula); call it ap.0 —
we shall refer to this subsequently. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period, by using the
relevel command for factors to make 1968 the first level:

ap.3 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
family=poisson, data=lung )

5. Extract the prameters from the model, by doing:

ap.cf <- summary( ap.3 )$coef

6. Now plot the estimated age-specific incidence rates, remembering to annoatte them with
the correct scale. We need the first 10 parameters, with their standard errors:

age.cf <- ap.cf[1:10,1:2]

This means that we take rows 1–10 and columns 1–2. The corresponding age classes are
40, . . . , 85. The midpoints of these age-classes are 2.5 years higher. The ages can be
generated in R by saying seq(40,85,5)+2.5.

Now put confidence limits on the curves by taking ±1.96× s.e.. The line of the estimates
can be over-drawn once more in a thicker style:

lines( seq(40,85,5)+2.5, exp(age.cf[,1]), lwd=3 )



APC models 3.7 Age-period model 25

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

RR.cf <- ap.cf[11:20,1:2]

But the reference group is missing, so we must stick two 0s in the correct place. We use the
command rbind (row-bind):

RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )

Now we have the same situation as for the age-specific rates, and can plot the relative risks
(relative to 1968) in precisely the same way as for the agespecific rates.

Make a line-plot of the relative risks with confidence intervals.

8. However, the relevant parameters may also be extracted directly from the model without
intercept, using the function ci.lin (remember to read the documentation for this!)

The point is to define a contrast matrix, which multiplied to (a subset of) the parameters
gives the rates in the reference period. The log-rates in the reference period (the first level
of factor(P) are the age-parameters. The log-rates in the period labelled 1968 are these
plus the period estimate from 1968.

Now construct the following matrix and look at it:

cm.A <- cbind( diag( nlevels( factor(lung$A) ) ), 1 )

Now look at the parameters extracted by ci.lin, using the subset= argument:

ci.lin( ap.0, subset=c("A","1968") )

Now use the argument ctr.mat= in ci.lin to produce the rates in period 1968 and plot
them on a log-scale.

9. Save the estimates of age aned period effects along with the age-points and period-points,
using save (look up the help page if you are not familiar with it. You will need these in the
next exercise on the age-cohort model.

10. We can also use the same machinery to extract the rate-ratios relative to 1968. The
contrast matrix to use is the difference between two: The first one is the one that extracts
the rate-ratios with a prefixed 0:

cm.P <- rbind(0,diag( nlevels(factor(lung$P))-1 ) )
cm.P
ci.lin( ap.0, subset="P", ctr.mat=cm.P )

In order to subtract the value corresponding to 1968, we must subtract a 11× 10 matrix,
that just selects the 1968 column:

cm.Pref <- cm.P * 0
cm.Pref[,5] <- 1
cm.Pref

The contrast matrix to use is the difference between these two:

cm.P - cm.Pref
ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref )
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Use the Exp=TRUE argument to get the rate-ratios and plot these with confidence intervals
on a log-scale.

11. For the real nerds: Plot the rates and the rate ratios beside each other, and make sure that
the physical extent of the units on both the x-axis and the y-axis are the same.

Hint: You may want to use par(mar=c(0,0,0,0), oma=), the function layout as well as
the xaxs="i" argument to plot.

3.8 Age-cohort model

This exercise is aimed at familiarizing you with the parametrization of the age-cohort
model. It will give you the opportunity explore how to extract and and plot parameter
estimates from models. It is parallel to the exercise on the age-period model and is therefor
less detailed.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

library(Epi)
lung <- read.table( "../data/lung5-M.txt", header=T )
lung
attach( lung )
table( A )
table( P )
table( P-A )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and cohort (C) as class variables. You
will need to form the variable C (cohort) as P − A first.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to ?

Hint: Use -1 in the model formula.

4. Fit the same model, using the cohort 1908 as the reference cohort. What do the
parameters represent now?

Hint: Use the Relevel command for factors to make 1968 the first level.

5. What is the range of birth dates represented in the cohort 1908?

6. Extract the age-specific incidence parameters from the model and plot then against
age. Remember to annotate them with the correct units. Add 95% confidence
intervals.

Hint: Use the function ci.lin from the Epi package.

7. Extract the cohort-specific rate-ratio parameters and plot then against the date of
birth (cohort). Add 95% confidence intervals.

8. Now load the estimates from the age-period model, and plot the estimated
age-specific rates from the two models on top of each other.

Why are they different? In particular, why do they have different slopes?
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3.9 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the
two different ways of parametrizing this model. Like the two previous exercises it is based
on the male lung cancer data.

1. First read the data in the file lung5-M.txt and create the cohort variable:

lung <- read.table( "../data/lung5-M.txt", header=T )
lung$C <- lung$P - lung$A

Alternatively you can do:

lung <- transform( lung, C = P - A )

2. Fit a Poisson model with effects of age as class variable and period P as continuous
variable.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period.

Hint: When you center a variable on a reference value ref, say, by entering P-ref

directly in the model formula will cause a crash, because the “-” is interpreted as a
model operator. You must “hide” the minus from the model formula interpretation by
using the identity function, i.e. use: I(P-ref).

Now what do the parameters represent?

5. Fit a model with cohort as a continuous variable, using 1908 as the reference, and
without intercept. What do the resulting parameters represent?

6. Compare the deviances and the slope estimates from the models with cohort drift
and period drift.

7. What is the relationship between the estimated age-effects in the two models?

Verify this empirically by converting one set of age-parameters to the other.

8. Plot the age-specific incidence rates from the two different models in the same panel.

9. The rates from the model are:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the log rate ratio relative to
1970.5 will be:

log RR = δ̂ × x
and the upper and lower confidence bands:

log RR = (δ̂ ± 1.96× s.e.(δ))× x

Now extract the slope parameter, and plot the rate-ratio functions as a function of
period.
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3.10 Age-period-cohort model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period-cohort model and with the realtionship of the APC-model to the other model
that you have been working with, so we will refer back to those, and assume that you have
the results from them at hand.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

lung <- read.table( "../data/lung5-M.txt", header=T )
lung
attach( lung )

2. Fit a Poisson model with effects of age (A), period (P) and cohort (C) as class
variables. Also fit a model with age alone as a class variable. Write down a scheme
showing the deviances and degrees of freedom for the 5 models you have models fitted
to this dataset.

3. Compare the models that can be compared, with likelihood-ratio tetsts. You will
want to use anova (or specifically anova.glm) with the argument test="Chisq".

4. Next, fit the same model without intercept, and with the first and last period
parameters and the 1908 cohort parameter set to 0. Before you do so a few practical
things must be fixed:

You can merge the first and the last period level using the Relevel function (look at
the documentation for it).

lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )

You can also use this function to make the 1908 cohort the first level of the cohort
factor:

lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

It is a good idea to tabulate the new factor against the old one (i.e. that variable
from which it was created) in order to meake sure that the relevelling actually is as
you intended it to be.

5. Now you can fit the model, using the factors you just defined. What do the
parameters now refer to?

6. Make a graph of the parameters. Remember to take the exponential to convert the
age-parameters to rates (and find out what the units are) and the period and cohort
parameters to rate ratios. Also use a log-scale for the y-axis. You may want to use
ci.lin to facilitate this.

7. Fit the same model, using the period 1968–72 as the reference period and two cohorts
of your choice as references. To decide which of the cohorts to alias it may be useful
to see how many observations there are in each:
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with( lung, table(P-A) )
with( lung, tapply(D,list(P-A),sum) )

Having fitted the model, now what do the parameters in it represent?

8. Make a plot of these parameters.

Add the parameters from the previous parametrization to the same graph.

3.11 Age-period-cohort model for Lexis triangles

The following exercise is aimed at showing the problems associated with age-period-cohort
modelling for triangular data.

Also you will learn how to overcome these problems by parametric modelling of the three
effects.

1. Read the Danish male lung cancer data tabulated by age period and birth cohort,
lung5-Mc.txt. List the first few lines of the dataset and make sure you understand
what the variables refer to. Also define nthe synthetic cohorts as P5-A5:

library( Epi )
ltri <- read.table( "../data/lung5-Mc.txt", header=T )
ltri$S5 <- ltri$P5 - ltri$A5
attach( ltri )

2. Make a Lexis diagram showing the subdivision of the follow-data. You will explore
the function Lexis.diagram.

Lexis.diagram( age=c(40,90), date=c(1943,1998), coh.grid=TRUE )

3. Use the variables A5 and P5 to fit a traditional age-period-cohort model with
synthetic cohort defined above as S5=P5-A5:

ms <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
family=poisson, data=ltri )

How many parameters does this model have? (Use the summary() function)

4. Now try to fit the model with the “real” cohort variable C5:

mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
family=poisson, data=ltri )

summary( mc )$df

How many parameters does this model have?

5. Plot the parameter estimates from the two models on top of each other, with
confidence intervals. Remember to put the correct scales on the plot.
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par( mfrow=c(1,3) )
a.pt <- as.numeric( levels(factor(A5)) )
p.pt <- as.numeric( levels(factor(P5)) )
s.pt <- as.numeric( levels(factor(S5)) )
c.pt <- as.numeric( levels(factor(C5)) )
matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/10^5,

type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Age", ylab="Rates", log="y" )

matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]/10^5,
type="l", lty=1, lwd=c(3,1,1), col="blue" )

matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Period", ylab="RR", log="y" )

matlines( p.pt, rbind( c(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
type="l", lty=1, lwd=c(3,1,1), col="blue" )

matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:7]),
type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Cohort", ylab="RR", log="y" )

matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
type="l", lty=1, lwd=c(3,1,1), col="blue" )

How do the confidence limits compare between the three effects?

6. Now fit the model using the proper midpoints of the triangles as factor levels. How
many parameters does this model have?

mt <- glm( D ~ -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
family=poisson, data=ltri )

summary( mt )$df

7. Plot the parameters from this model in three panels as for the previous two models.

par( mfrow=c(1,3) )
a.pt <- as.numeric( levels(factor(Ax)) )
p.pt <- as.numeric( levels(factor(Px)) )
c.pt <- as.numeric( levels(factor(Cx)) )
matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,

type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Age", ylab="Rates", log="y" )

matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Period", ylab="RR", log="y" )

matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
type="l", lty=1, lwd=c(3,1,1), col="black",
xlab="Cohort", ylab="RR", log="y" )

We see that the parameters clearly do not convey a reasonable picture of the effects;
som severe indeterminacy has crept in.

8. What is the residual deviance of this model?

summary( mt )$deviance

9. The dataset also has a variable up, which indicates whether the observation comes
from an upper or lower triangle. Try to tabulate this variable against P5-A5-C5.

table( up, P5-A5-C5 )
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10. Fit an age-period cohort model separately for the subset of the dataset from the
upper triangles and from the lowere triangles. What is the residual deviance from
each of these models and what is the sum of these. Compare to the model using the
proper midpoints as factor levels.

m.up <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
family=poisson, data=subset(ltri,up==1) )

summary( m.up )$deviance
m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),

family=poisson, data=subset(ltri,up==0) )
summary( m.lo )$deviance
summary( m.lo )$deviance + summary( m.up )$deviance
summary( mt )$deviance

11. Next, repeat the plots of the parameters from the model using the proper midpoints
as factor levels, but now super-posing the estimates (in different color) from each of
the two models just fitted. What goes on?

par( mfrow=c(1,3) )
a.pt <- as.numeric( levels(factor(Ax)) )
p.pt <- as.numeric( levels(factor(Px)) )
c.pt <- as.numeric( levels(factor(Cx)) )
a5.pt <- as.numeric( levels(factor(A5)) )
p5.pt <- as.numeric( levels(factor(P5)) )
s5.pt <- as.numeric( levels(factor(S5)) )
matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,

type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
xlab="Age", ylab="Rates", log="y" )

matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/10^5,
pch=c(16,3,3), col="blue" )

matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:7]/10^5,
pch=c(16,3,3), col="red" )

matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
xlab="Period", ylab="RR", log="y" )

matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="blue" )

matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="red" )

matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
xlab="Cohort", ylab="RR", log="y" )

matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="blue" )

matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="red" )

12. Now, load the splines package and fit a model using the correct midpoints of the
triangles as quantitative variables in restricted cubic splines, using the function ns:

library( splines )
mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)

+ ns(Px,df=6,intercept=F)
+ ns(Cx,df=6,intercept=F) + offset(log(Y)),

family=poisson, data=ltri )

13. Compute the residual degrees of freedom for the two models and compare the
deviance of the models with these
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summary( mspl )
summary( mt )$deviance - summary( mspl )$deviance
summary( mt )$df - summary( mspl )$df

How do the deviances compare?

14. Make a prediction of the terms, using predict.glm using the argument
type="terms", and plot these estimated terms.

15. Repeat the last three questions based on a moedl where you have interchanged the
sequence of the period and cohort term.

3.12 Using apc.fit etc.

This exercise is aimed at introducing the functions for fitting and plotting the results from
age-period-cohort models: apc.fit apc.plot apc.lines and apc.frame.

You should read the help page for the apc.fit function, in particular you should be
aware of the meaning of the argument

1. Read the testis cancer data and collapse the cases over the histological subtypes:

th <- read.table( "../data/testis-hist.txt", header=T )
str( th )

Knowing the names of the variables in the dataset, you can collapse the dataset over
the histological subtypes. You may want to use the function aggregate; note that
there is no need to tabulate by cohort, because even for the triangular data the
relationship c = p− a holds.

Note that the original data had three subtypes of testis cancer, so while it is OK to
sum the number of cases (D), risk time should not be aggregated across histological
subtypes — the aggregation is basically as for competing risks only events are added
up, the risk time is the same. (Take a look at the help page for aggregate):

2. Present the rates in 5-year age and period classes from age 15 to age 59 using
rateplot. Consider the function subset. To this end you must make a table, for
example using something like:

with( tc, tapply( D, list(floor(A/5)*5+2.5,
floor((P-1943)/5)*5+1945.5), sum ) )

— assuming your aggregated data is in the data frame tc. and a similar construction
for the risk time.

3. Fit an age-period-cohort model to the data using the machinery implemented in
apc.fit. The function returns a fitted model and a parametrization, hence you must
choose how to parametrize it, in this case "ACP" with all the drift included in the
cohort effect and the reference cohort being 1918.

tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )

Can any of the effects be omitted from the model?
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4. Plot the estimates using the apc.plot function:

apc.plot( tapc, ci=TRUE )

5. Now explore in more depth the cohort effect by increasing the number of parameters
used for it:

tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
parm="ACP", ref.c=1918, scale=10^5 )

fp <- apc.plot( tapc, ci=TRUE )

Do the extra parameters for the cohort effect have any influence on the model fit?

6. Explore the effect of using the residual method instead, and over-plot the estimates
from this method on the existing plot:

7. The standard display is not very pretty — it gives an overview, but certainly not
anything worth publishing, hence a bit of handwork is needed. Use the apc.frame for
this, and create a nicer plot of the estimates from the residual model. You may not
agree with all the parameters suggested here:

par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )
fp <- apc.frame( a.lab=seq(20,60,10),

a.tic=seq(10,60,5),
cp.lab=seq(1900,2000,20),
cp.tic=seq(1885,2000,5),
r.lab=c(c(1,2,5)/10,1,2,5,10),
r.tic=c(1:9/10,1:10),
gap=8,

rr.ref=1)
apc.lines( tapc, ci=TRUE, col="blue", frame.par=fp )
apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

8. Try to repeat the exercise using period as the primary timescale, and add this to the
plot as well.

What is revealed by looking at the data this way?

3.13 Statin use in the Netherlands

Bijlsma et al. published an analysis of the prevalence of statin use in the Netherlands [5],
available as http://bendixcarstensen.com/APC/MPIDR-2016/Bijlsma.2012.pdf. The
authors have kindly put the data at our disposal, so this exercise is partly replicating the
analysis in the paper, partly assessing how variants of the model behave.

1. Start by reading the data from the paper — slightly modified so that A and P now
are coded as quantitative variables corresponding to the mean in each subset of the
Lexis diagram:

statin <- read.csv( "../data/statin.csv" )
str( statin )
head( statin )

http://bendixcarstensen.com/APC/MPIDR-2016/Bijlsma.2012.pdf
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2. Now fit AP and APC models as described in the paper. In order to fix cohort effects
to be 0 for specific cohorts you will need to explore the levels of factor(P-A) and
subsequently use the function Relevel to merge the two levels to the first.

Make sure you know where the overall prevalence rates goes (with the age-effect
perhaps?)

3. Then try to fit a model with suitable smooth terms in age, period and cohort, using
for example apc.fit. Are the conclusions substantially different with respect to the
period and cohort effects?

4. The outcome variable (D) is the number of persons that in a given period (calendar
year) take out at least one prescription of statins, and the exposure Y is the average
number of persons in the period. One might then argue that the outcome were better
modeled as a fraction and not a rate; that is with a binomial distribution of D out of
Y persons.

Try the same sequence of models as before and check if similar conclusion emerge
when using logit link, log link and complementary log−log link (available as
argument to the binomial family argument).

5. Finally check if any of the Lee-Carter models provide viable alternatives to the
APC-models.

3.14 Lung cancer in Danish women

This exercise is parallel to the example on male lung cancer from the lectures. The point is
to fit age-period-cohort models as well as Lee-Carter models and inspect their relative
merits and different fits to data on female lung cancer in Denmark.

1. Read the lung cancer data from the file lung-md.txt from the data repository, and
subset to women only (sex==2), and inspect no. of cases per 5-year age-class:

library( Epi )
lC <- read.table( "../data/lung-mf.txt", header=TRUE )
lF <- subset( lC, sex==2 )

2. Use xtabs to get an overview of cases and incidence rates (per 1000 PY, say), and
derive the rates for use with the function rateplot.

3. When fitting APC-models and Lee-Carter models we shall use natural splines for
fitting, so we must devise knots on the age and time-scales for the splines. Since the
informtion in the data on event rates is in the number of cases, we would like to place
the n knots such that there is 1/n between each pair of successive knots and 1/2n
below the first and obove the last knot. Now use the quantile function for this,
using for example (we do not necessarily want 8 knots):

quantile( rep( A,D), probs=(1:8-0.5)/8 )
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4. Use apc.fit to fit an APC-model to data using the chosen knots. You must
contemplate the type of parametrization and possible reference points on the perido
and cohort scales — read the help page for apc.fit.

5. Plot the estimated effects uisng plot.apc and possible apc.frame for increased
control of the plot.

6. For comparison with the APC-model, fit the two Lee-Carter models, one with
age-period and one with age-cohort interaction, and compare the fit of these models
with the fit of the APC-model. You should use the LCa.fit function from the Epi

package. In order that models be comparable, you must use the same knots for age,
period and cohort effects. Alternatively the lca.rh function from the ilc package.

7. Plot the estimated components of the Lee-Carter models.

8. (This exercise is quite long-winded). In order to get a better view of the behaviour of
the different models, plot the predicted rates from the two Lee-Carter models over
the time-span of the data frame at select ages (say 50, 60, 70 and 80), using both
period and cohort as time-axis. Compare with the fits from the AP, AC and
APC-models. Make similar plots of the predicted age-specific rates for select period
and cohorts, and again compare the 5 different model fits.

3.15 Histological subtypes of testis cancer

The purpose of this exercise is to handle two different rates that both obey (possibly
different) age-period-cohort models. The analysis shall compare rates of seminoma and
non-seminoma testis cancer.

1. Read the testis cancer data:

th <- read.table( "../data/testis-hist.txt", header=T )
str( th )

2. Restrict the dataset to seminomas (hist=1) and non-seminomas (hist=2), and
define hist as factor with two levels, suitably named. Also restrict to the age-range
relevant for testis cancer analysis, 15–65 years.

3. Make the four classical rate-plots:

(a) for data grouped in 5× 5year classes of age and period.

(b) for data grouped in 3× 3year classes of age and period.

4. Fit separate APC-models for the two histological types of testis cancer, and plot
them together in a single plot.

5. Check whether age, period or cohort effects are similar between the two types:

(a) by testing formally the interactions

(b) by plotting the relevant interactions and visually inspecting whether they are
alike.
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What restrictions are imposed on the parameters for the two models? What
restrictions are imposed on the parameters for the rate-ratio?

6. Define a sensible model for description of the two histological types, and report:

(a) The rates for one type

(b) The rate-ratio between the types

7. Conlude on the data and graphs.

3.16 Lung cancer: the sex difference

The purpose of this exercise to analyse lung cancer incidence rates in Danish men and
women and make comparisons of the effects between the two.

1. Read the lung cancer dataset from the

lung <- read.table("../data/apc-Lung.txt", header=T )
str( lung )
summary( lung )

These data are tabulated by sex, age, period and cohort in 1-year classes, i.e. each
observation corresponds to a triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to
be able to properly analyse data, compute the correct midpoints for each of the
triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped
rates. Make the plots separately for men and women.

4. Fit an age-period-cohort model for male and female rates separately. Plot them in
separate displays using apc.plot. Use apc.frame to set up a display that will
accomodate plotting of both sets of estimates.

5. Can you find a way of estimating the ratios of rates and the ratios of RRs between
the two sexes (including confidence intervals for them) using only the apc objects for
males and females separately?

6. Use the function ns (from the splines package) to create model matrices describing
age, period and cohort effects respectively. Then use the function detrend to remove
intercept and trend from the cohort and period terms.

Fit the age-period-cohort model with these terms separately for each sex, for example
by introducing an interaction between sex and all the variables (remember that sex
must be a factor for this to be meaningful).

7. Are there any of the effects that possibly could be assumed to be similar between
males and females?

8. Fit a model where the period effect is assumed to be identical between males and
females and plot the resulting fit for the male/female rate-ratios, and comment on
this.
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3.17 Prediction of breast cancer rates

1. Read the breast cancer data from the text file:

library(Epi)
breast <- read.table("../data/breast.txt", header=T )

These data are tabulated be age, period and cohort, i.e. each observation correspond
to a triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to
be able to proper analyse data, compute the correct midpoints for each of the
triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped
rates.

4. Fit the age-period-cohort model with natural splines and plot the parameters (the
estimated splines) in a age-period-cohort display.

5. As a starting point for predictions, add the prediction of the period and cohort effects
to the plot of the effects, and in particular evaluate the trend in the period
respectively cohort trends. You will need to look into the single components of the
apc object from apc.fit. Are these trends invariant under reparametrization ?
Which function(s) of them are ?

6. Based on the model fitted, make a prediction of future rates of breast cancer:

• at the years 2020, 2025, 2030.

• in the 1960, 65 and 70 generations.

Use extensions of the estimated period and cohort effects from the natural spline
model — note that you will have to refit the model with glm in order to make
predictions with ci.pred sinc the Model art of the apc object is useless for this.

7. Now fit a model where the knots for period and cohort effecst are moved a bit
downward, so that the last piece from which the prediction is done is a bit longer. A
simple approach would be to omit the last knot in the natural splines for period and
cohort. Compute the identifiable slope at the and of the period resp. cohort effcts.

8. Now fit glm versions of these models and compare the predictions for the same dates
and cohorts as before between the three models.

3.18 BMI in Australia

The APC-problems are not necessarily tied to analysis of rates and proportions; the
identifiabilty problem is on the linear predictor scale. Here is an example of an
APC-problem from analysis of a continuous measure, namely BMI.

There are regular health surveys in Australia, and amongst other things information on
the body mass index (BMI) of the surveyed persons are collected. In 2014, Peeters et al.
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published an analysis of the timetrends in BMI in the Australia [6]. For this course the
paper is available as
http://bendixcarstensen.com/APC/MPIDR-2016/Peeters.2014.pdf.

A distorted version of the underlying data is available, all dates (birth and survey) have
been changes by a small random quantity, so no person’s data is traceable.

There is one measurement of BMI per person, and for each measurement we have the
sex, date of birth and date of survey (date of measurement). The persons may be regarded
as a random sample of the Australian population, so in principle we have measurements of
BMI by age and calendar time for each sex.

1. Read the data from the file bmi.txt using for example read.table and plot the
measurement points by age and calendar time.

2. Fit separate linear regression models for the two sexes to the BMI-measurements
with non-linear effects of age and calendar time (splines, for example). Show the
resulting effects, and check the validity of the model assumptions, in particular the
symmetry of the residuals.

3. Check if adding a non-linear cohort effect improves the fit. Consider how to
parametrize the resulting model when showing the effects. You would have a look at
the function detrend for use in modeling and showing the relevant parametrization.

4. Check if a log-transform of the BMI-values improves the fit.

5. (Somewhat log-winded) Get the quantreg package and perform separate analyses of
BMI for the percentiles (say) 10, 25, 50, 75 and 90. Figure out how to show the
results from the different perventiles jointly. What is the conclusion?

http://bendixcarstensen.com/APC/MPIDR-2016/Peeters.2014.pdf
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