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Inclusion of the birth cohort dimension improved description
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Abstract
Objective: Including the birth cohort dimension improves trend studies of mortality and health. We investigated the effect of including
the birth cohort dimension in trend studies of prescription drug use by studying prevalence of statin use among adults.

Study Design and Setting: Data from a drug prescription database in the Netherlands (IADB.nl) were used to obtain the number of
users of statin per 1,000 population (prevalence) in the age range 18e85 years from 1994 to 2008. We applied descriptive graphs and stan-
dard age-period-cohort (APC) models.

Results: From 1994 to 2008, the prevalence increased from |10 to |90 users per 1,000 population, with the peak in prevalence shifting
from age 63 to 78 years. The APC model shows patterns that were masked in the age-period (AP) model. The prevalence rate ratio
increased from the 1911 birth cohort to the 1930 birth cohort and then declined. Similar for both sexes, adding nonlinear period effects
contributed |4.4% to reductions in deviance, whereas adding nonlinear birth cohort effects contributed |12.9%.

Conclusion: Adding the birth cohort dimension to AP analysis is valuable for academic and professional practice as trends can be more
accurately described and explained and it can help improve projections of future trends. � 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Current studies of prescription drug use at the population
level are less accurate than they could potentially be. Such
studies commonly use a cross-sectional design (e.g., [1,2]).
This is a standard design in epidemiology because changes
in (age-specific) trends in each year can be attributed to
some event that occurred in that year. However, a cross-
sectional design masks the birth cohort dimension [3]. Indi-
viduals born in the same period, referred to as birth cohorts,
share formative experiences and other events, which affects
their behavior and health. Especially for population-level
drug utilization studies, ignoring differences between birth
cohorts might lead to distorted outcomes.

Since the 1980s, there has been a renewed interest in
methods incorporating the (birth) cohort dimension, next to
age and period, with important methodological contributions
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by Clayton and Schifflers [4]. Birth cohort effects can have
theoretical explanatory value; that is, they can capture
long-lasting effects, the determinants of which may be found
earlier in life, such as in utero exposure to famine [5], early
life morbidity [6,7], or cultural effects [8,9]. Birth cohort ef-
fects can also have predictive value; that is, modeling trends
by age, period, and birth cohort improves the accuracy of
models. The birth cohort dimension added significantly to
trend studies in demography (e.g., [10]) and epidemiology
(e.g., [7,11]). Because members of birth cohorts alive today
will also be alive in the future, current information about birth
cohorts can also improve predictions of future trends [12].

In pharmacoepidemiology, cross-sectional trends can ad-
ditionally lead to distorted outcomes because interventions
might have a different uptake and impact for different birth
cohorts because of differences between birth cohorts in per-
ception of preventive measures, differences between birth
cohorts in prescription and adherence culture, or guideline
changes that affect different birth cohorts differently.

The aim of the present study was to analyze the added
value of the birth cohort dimension in population-level
trend studies of prescription drug use by comparing an
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What is new?

Key finding
� Extending a conventional cross-sectional analysis of

prevalence of statin use with the birth cohort
dimension provides additional information on trends
and significantly improves the accuracy of themodel.

What this adds to what was known?
� Age-period-cohort (APC) analysis revealed patterns

that were masked by age-period analysis. For statin
use, the moving peak in prevalence toward increas-
ing age over time could be attributed to the 1930
birth cohort.

What is the implication?
� APC models help in the description and explana-

tion of trends and can improve predictions of future
trends. This is needed to aid policy makers and
others in taking informed measures for the future.

age-period (AP) analysis to a full age-period-cohort (APC)
analysis, taking statin use as an example. We studied trends
for males and females separately to compare whether the
pattern of their birth cohort effects were similar, in light
of possible gender differences in health and prescription
drug use. Statins are lipid-lowering drugs. Indications for
statin are hypercholesterolemia and dyslipidemia (ICD-10
E78), diabetes mellitus (E10, E14), ischemic heart disease
(I20eI25), and atherosclerosis (I70) [13]. Statin use was
chosen as the object of study because statins were intro-
duced fairly recently [2] and underwent changes in insight
and guidelines. In our country of study, the Netherlands,
prescription of statins was at first discouraged to persons
aged older than 70 years. In 2002, important studies showed
the drug’s effectiveness at older ages [14,15], and in 2006
the age restrictions were formally abolished [16]. These
changes are likely to have affected different birth cohorts
differently, thereby providing a relevant case for the study
of birth cohort effects.
2. Methods

2.1. Data

Outpatient pharmacy data were used from IADB.nl, which
contains pharmacy prescription information in the Nether-
lands, covering on average 500,000 persons annually [17]
(www.IADB.nl), with a period of growth in 1994e1998 from
approximately 100,000 to 500,000. The database’s pharmacy
information includes, among others, name of the drug,
anatomic-therapeutic-chemical (ATC) classification, and date
of prescription. With the exception of over-the-counter drugs
and in-hospital prescriptions, all prescriptions are included
regardless of prescriber, insurance, or reimbursement status.
Patients have a unique but anonymous identifier. Because of
high patient pharmacy commitment in the Netherlands and
advanced pharmacy software, the medication records for each
patient are virtually complete [18,19]. The database is repre-
sentative of prescribing practice in the Netherlands. The prev-
alence of drug use information from the IADB is routinely
compared with the national Drug Information System of the
Health Care Insurance Board [20]. Prevalence matches for
nearly all drugs, including statin. The database has been used
in previous studies on statin use [21,22].

2.2. Study population

Individuals of both sexes between ages 18 and 85 years
in the period 1994e2008, belonging to the birth cohorts
1911e1987, were included in the study. Total population
covered by the IADB pharmacies specified by age, sex,
and period was estimated with data from Statistics Nether-
lands. Age- and period-specific person-years at risk of drug
prescription was calculated by taking the average of the
population at the beginning of the year p in age a-1 and
the population at the end of the year p and age a.

2.3. Statin use

Individuals who received at least one prescription for sta-
tin in a calendar year were considered a user of statin in that
respective year. This is considered accurate because statin
continuance within 1 year is high [23]. Statins are coded
as C10AA in the ATC classification of the WHO [24].

2.4. Outcome measures

The primary outcome measures of this study are age-
and sex-specific prevalence of statin use, expressed per
1,000 population, and prevalence rate ratio (Box 1).

2.5. Graphical descriptive analysis

Age-standardized and age-specific prevalence by sex
was depicted in graphs by both period and birth cohort.
To improve visual clarity, prevalence was aggregated in
3-year age groups for the period graph and 3-year age
and birth cohort groups for the birth cohort graph.

Direct age standardization was applied to the overall
annual trend to control for the changing age composition
of the study population over time [25]. As the standard pop-
ulation, the age- and sex-specific IADB population in 2001
was used.

2.6. APC modeling

We modeled prevalence as a function of age, period, and
birth cohort. The formulation of our full APC model was
ln
�
lap

�
5mþ aa þ bp þ gc
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Box 1 Outcome measures

Prevalence of statin use

Prevalence of statin use can be interpreted as the number of users of statin per 1,000 individuals in the population. It
is calculated as

Users by sex in period p and birth cohort c

Person years at risk by sex in period p and birth cohort c
,1;000

Age, or actually age at December 31, was automatically assigned as it results from subtracting birth cohort from
period.

Prevalence rate ratio

In this study, the prevalence rate ratio is the proportion of the observed prevalence compared with the prevalence of
a baseline category. A prevalence rate ratio higher than 1 represents an increase relative to the baseline prevalence and
a prevalence rate ratio lower than 1 represents a decrease relative to the baseline prevalence. The prevalence rate ratio
was calculated by taking the exponent of the parameter estimates of the AP and APC models.

Box 2 Age, period, and cohort modeling

Model parameters Statistical notation

Age (A) ln[la]5 mþ aa
Ageþ drift (AD) ln[lad]5 mþ aaþ d

Ageþ period (AP) ln[lap]5 mþ aaþ bpþ d

Ageþ periodþ cohort
(APC)

ln[lap]5 mþ aaþ bpþ gc

ln[l] is the natural log of user prevalence, with the
number of users being Poisson distributed. m is the in-
tercept and a, d, b, and g are the age, drift, period,
and cohort effect, respectively. The variables for
age (a) and period ( p) had one baseline class. The
variable for cohort (c) had two baseline classes. The
variables were indexes a5 1, 2.67, 68, p5 1, 2.
14, 15, and c5 1, 2 .76, 77.
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where l represents prevalence; m represents the intercept;
and a, p, and c represent age, period, and birth cohort, re-
spectively. The APC model was fitted using a program
for Poisson regression and an offset term was used to rep-
resent person-years at risk of statin prescription for each pe-
riod and birth cohort-specific category. Age, period, and
birth cohort were measured as categorical variables. The
model was run separately for males and females.

There is a linear dependency between age, period, and
birth cohort (a 5 p� c), resulting in overidentification if
all three variables are included in the analysis [3,26]. We
dealt with this problem by applying the standard Clayton
and Schifflers approach [4]; we decomposed the prevalence
as the effect of age, the effect of the shared linearity of
period and birth cohort (referred to as drift), and nonlinear
period effects and nonlinear birth cohort effects. Drift can
be seen as the ‘‘overall slope’’ (e.g., prevalence increases
or decreases linearly over time) and nonlinear period and
nonlinear birth cohort effects represent deviations from this
slope.

To assess the difference in the age and period patterns
with and without controlling for the cohort dimension, we
compared the fitted patterns of the AP model with those
of the APC model. We show the resulting fitted patterns
by age, period, and birth cohort, expressed as prevalence
rate ratios with 95% confidence intervals (95% CIs). The
prevalence rate ratio was calculated by taking the exponent
of the parameter estimates. For the age parameter, age 18
years was taken as the baseline category. For the period pa-
rameter, one estimate was constrained to zero (1994),
thereby setting it as the baseline for period and thereby drift
is included in the period effect. This was considered reason-
able because of the strong growth of prevalence by period.
For birth cohort, two baseline categories (1923 and 1976)
had to be chosen on statistical grounds, thereby producing
only nonlinear birth cohort effects.

To assess the contribution of adding the birth cohort dimen-
sion to the model, we compared the goodness of fit of age (A),
age-drift (AD), AP, andAPC for the differentmodels (see Box
2). The deviance statistic, a measure of goodness of fit, was
used to derive the likelihood ratio test for model reductions.
The primary comparison was APC with AP, but we also com-
paredADwithA andAPwithAD. Each reduction in deviance
is expressed as a percentage reduction in deviance between the
age-only model and the full APCmodel, along with P-values.
We display one-sidedP-values because adding variables to the
model can only result in a decrease of deviance. Finally, the fit
of theAP and theAPCmodels to the datawas also tested using
a log-likelihood ratio test.
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3. Results

3.1. Prevalence of statin use

The number of patientswith at least one statin prescription
in a respective year ranges from 789 in 1994 (when 64,379
persons were in the study population aged 18e85 years) to
22,360 in 2008 (when 417,539 individuals were in the study
population aged 18e85 years). Overall, prevalence in the en-
tire study period taken together was 63 users per 1,000 pop-
ulation. There was a strong increase in age-standardized
prevalence over time from |10 users per 1,000 population
in 1994 to about |90 users per 1,000 in 2008, with a short
level period between 1997 and 1998 (Fig. 1). The slope
increased in the period 2003e2006 relative to the previous
periods but then leveled off in 2006. Approximately, 48.5%
of users were male. Overall, the prevalence of males was
about 30% higher than the prevalence of females.

3.2. Age-specific prevalence of statin use by period

The age-specific annual prevalence for both males and
females increased with age up to a certain point, and there-
after declined with age, in each period (Fig. 2). At ages
20e40 years, the number of users per 1,000 population
was close to zero. In 1994, the peak of the prevalence
(|40 per 1,000 users) was found at about age 63 years.
In 2001, the peak moved to about age 69 years and also
reached a higher level of |200 per 1,000 users for males
and |170 per 1,000 users for females. In 2008, prevalence
peaked at age category 78 years at |400 users per 1,000 for
males and |340 users per 1,000 for females. After the peak,
there was a strong decline in the prevalence with age. Over-
all, the slope became more steep over time.

3.3. Age-specific prevalence of statin use by birth cohort

An increase in prevalence with age could be seen for all
birth cohorts (Fig. 3), but was especially strong for those
Fig. 1. Age-standardized prevalence of statin use by period and sex in
the Netherlands, 1994e2008, ages 18e85 yr.
born between 1923 and 1946. Birth cohort 1929e1931 ex-
hibited the most statin users per 1,000 population when
compared with the other birth cohorts, and was responsible
for the moving age peak over time in prevalence as seen in
the age-specific cross-sectional figures. Furthermore, when
comparing the birth cohorts within an age group, it showed
that younger birth cohorts had a higher prevalence at the
same ages as older birth cohorts. These differences became
stronger with increasing age.

3.4. Comparing age and period patterns with and
without including the cohort dimension

When applying an AP model, the fitted patterns by age
show that, for both sexes, the prevalence rate ratio in-
creased from age 18 years (baseline) up to approximately
age 70 years and then declined, reaching higher levels for
males (400) than for females (200) (Fig. 4). The fitted pat-
terns by period of the AP model revealed a strong increase
in the prevalence rate ratios over time from 1994 (1) to
2006 (7.6 for males and 7 for females), and then became
approximately level to 2008.

When applying an APC model, thereby additionally
controlling for birth cohort, the prevalence rate ratio contin-
uously increased with age; it did not start to decline at age
70 years (Fig. 5). Additionally, controlling for age and birth
cohort, the period pattern (which included the drift) was
similar to the period pattern of the AP model but the prev-
alence rate ratios were smaller (6.7 in 2006 for males and
5.4 for females).

3.5. The fitted birth cohort patterns

Controlled for age and period, the nonlinear birth cohort
pattern showed very clearly the strong increase from the
1911 birth cohort (prevalence rate ratio of |0.1, 95% CI:
|0.02, |0.25) to about the 1930 birth cohort (prevalence rate
ratio of|1.5, 95%CI:|1.4,|1.6) for bothmales and females
separately (third panel of Fig. 5). For males, the prevalence
rate ratio in 1930e1946 remained level and then declined
with fluctuations to a prevalence rate ratio of 0.35 (95% CI:
0.16, 0.79) for the 1987 birth cohort. For females, the preva-
lence rate ratio gradually declined from 1930 onward to
about 1.13 (95% CI: 0.99, 1.29) for the 1950 birth cohort,
then showed strong fluctuations until birth cohort 1980 and
then declined until the 1987 birth cohort, where the preva-
lence rate ratio was 0.53 (95% CI: 0.30, 0.97).

3.6. Contribution of age, period, and birth cohort to the
model fit

All components of the APC model were significant at
the P! 0.005 (one-tailed) level (Table 1). Drift, the linear
component of both period and birth cohort, contributed
81.6% for males and 84.0% for females to the reduction
in deviance (a measure similar to residual variance). Non-
linear period effects contributed 5.1% for males and 3.6%



Fig. 2. Three-year age-specific prevalence of statin use by period and sex in the Netherlands, 1994e2008, ages 20e85 yr. To improve visual clar-
ity, prevalence of statin use is displayed in 3-yr age groups.
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for females. Nonlinear birth cohort effects were the second
strongest contributor for both sexes, contributing 13.3%
for males and 12.4% for females. The log-likelihood ratio
test of the AP model against the data resulted in a P-value
Fig. 3. Three-year age-specific prevalence of statin use by 3-yr birth c
1994e2008, ages 38e85 yr. To improve visual clarity, prevalence is displa
horts were excluded.
of !0.005 for both males and females, whereas the log-
likelihood ratio test of the APC model against the data re-
sulted in a P-value of O0.99 for both males and females.
The P-value of the Pearson chi-squared test for goodness
ohort (1911e1913 to 1968e1970) and sex in the Netherlands,
yed in 3-yr age by 3-yr birth cohort groups and the youngest birth co-



Fig. 4. Age-period model: fitted age and period effects in prevalence of statin use 1994e2008, ages 18e85 yr. The intercept is not included in the
above visualization of age and period for clearer interpretation of the prevalence rate ratios.
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of fit of the full APC model was also PO 0.99 for both
males and females.
4. Discussion

For statin use, we found that birth cohorts are, next to
age and period, of importance in describing and explaining
trends in drug prescription. Examining the trends from an
age-cohort perspective, next to the standard AP perspective,
showed that the shifting peak in prevalence to older ages
over time could be attributed to the 1930 birth cohort.
Fig. 5. Age-period-cohort model: fitted age, period, and cohort effects in prev
included in the above visualization of age, period, and cohort for clearer in
Furthermore, the APC model showed patterns that were
masked in the AP model; the prevalence rate ratio continu-
ously increased with age, instead of declining after age
70 years. In statistical terms, the full APC model is an
improvement over an AP model: there was a stronger de-
crease in deviance because of the addition of nonlinear
birth cohort (|12.9%) than because of the addition of non-
linear period (|4.4%). These additions were highly signif-
icant and similar for males and females. Finally, the
outcome of the log-likelihood ratio test for model fit indi-
cated that the full APC model provided a good fit to the
data, whereas the AP model did not.
alence of statin use 1994e2008, ages 18e85 yr. The intercept is not
terpretation of the prevalence rate ratios.



Table 1. Goodness-of-fit statistics of the models of statin by sex, the Netherlands, 1994e2008, ages 18e85 yr

Goodness of fit

Model Deviance Reduction Percentage reductiona (%) df
Model reduction test (one-

tailed P-value)b
Model fit to data test (one-

tailed P-value)c

Males
Age 27,331 d d 943 d !0.005
Age-drift 5,467 21,864 81.6 942 !0.005 !0.005
Age-period 4,104 1,363 5.1 929 !0.005 !0.005
Age-period-cohort 528 3,575 13.3 854 !0.005 O0.99

Females
Age 25,859 d d 943 d !0.005
Age-drift 4,561 21,298 84.0 942 !0.005 !0.005
Age-period 3,649 912 3.6 929 !0.005 !0.005
Age-period-cohort 518 3,132 12.4 854 !0.005 O0.99

a Reduction in deviance as a percentage of the difference between the age-only model and the full age-period-cohort model.
b Log-likelihood ratio test of model reductions in deviance comparing this model to the previous.
c Log-likelihood ratio test comparing the model to the data.
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4.1. Evaluation of data and methods

The study has several strengths. All of the data of the study
came from the same source, a representative database, and
the data were gathered and coded in the same manner during
the observation period. The shape of the overall prevalence
trend (Fig. 1) was comparable to that of another study of sta-
tin use in the Netherlands [1], although exact levels differed
because of age standardization and different operationaliza-
tions of the prevalence of statin use. Because of the large sam-
ple size, the study had enough power to detect even small
effects if they existed. We chose to use the standard Clayton
and Schifflers approach to APC modeling so as not to lose
potentially relevant trend fluctuations to parametric smooth-
ing, whichmay occur in other approaches (e.g., [27]). By tak-
ing single-year period by single-year birth cohort intervals,
we also had a more fine selection of data than is commonly
the case in studies using the Clayton and Schifflers ap-
proach. Finally, we chose prevalence as our primary outcome
measure because it better captures the total burden of statin
use in the population than other population measures, such
as incidence.

Statin use as defined in this study represents count data.
Because cell counts were 0 for 2.2% of the cells and were
low for approximately 30% of the cells, we applied a model
with a Poisson distribution. The log-likelihood ratio tests
and the Pearson chi-squared tests showed that the full
APC model with the Poisson distribution fit the data ade-
quately. Furthermore, the dispersion parameter (deviance
divided by degrees of freedom) (Table 1) indicated that
overdispersion was unlikely.

As we followed birth cohorts for 15 years, caution is
warranted in interpreting the birth cohort pattern as differ-
ent birth cohorts also represent different age groups; birth
cohorts born further in the past were at older ages during
the study period than younger birth cohorts. This can poten-
tially result in an overestimation of the differences between
birth cohorts. Conversely, for the same reason, birth cohort
effects can be underestimated as some birth cohort effects
may be latent; different birth cohorts may have different
trajectories in life.

4.2. Explanation of observed trends

In our study of statin use, including a birth cohort dimen-
sion in the analysis provided additional insight into the struc-
ture of trends. The age-specific graph for birth cohorts
indicated that the peak in prevalence was tied to the 1930
birth cohort. The APC model confirmed this by isolating
the (nonlinear) birth cohort effects from the age and period
effects. Furthermore, the APC model showed a continuous
increase of prevalence with age, unlike the age pattern in
the AP model where the increase turned into a decline at
the older ages. A continuous increase is, however, more in
linewith the increasing risk of cardiovascular diseasewith in-
creasing age [16]. Both the AP and APC models showed
a strong increase in prevalence with period, which was ex-
pected as the drug underwent strong growth since its intro-
duction. However, the growth was less in the APC model.
Thus, in cross-sectional analysis, what was now attributed
to birth cohort would either have been attributed to period
or to age, or would be overlooked: in our AP model the birth
cohort effects were partly attributed to age (the shape of the
age patterns differ) and partly to period (the prevalence rate
ratios of the period effect are larger for the AP model). This
shows that in cross-sectional analysis the long-term conse-
quences of a particular trend would not be recognized; the
AP model does not show that the peak of the prevalence
moves to older ages with time. Furthermore, trends may be
incorrectly explained if birth cohort effects are not recog-
nized as such.

The observed birth cohort pattern should be explained:
overall, we observed a steep positive slope from the 1911 to
the 1930 birth cohort and then a decline, with strong fluctua-
tions for females, toward the 1987 birth cohort. This pattern
maybe causedby theguideline change.The international stud-
ies which showed the effectiveness of statins above age 70
years were published in 2002 (the guidelines were formally
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changed in 2006). The 1930 birth cohort was approximately
age 70 years when these studies were published and therefore
had the right age at the right time. This birth cohort was aged
approximately 60 years when statins were introduced in the
Netherlands. Individuals in this age group had a higher risk
of cardiovascular disease than younger ages, while they were
in the age range for which evidence of the drug effectiveness
existed [28].By the time this birth cohort reached age 70years,
evidence for the effectiveness above age 70 years was about to
be published. When older birth cohorts reached this age, pre-
scription of statins would have been discouraged by the guide-
lines as the guidelines were still in effect at that time. In line
with this explanation,weexpect that younger birth cohortswill
eventuallyeas they ageealso show higher prevalence relative
to the birth cohorts born before 1930.

We performed additional descriptive analyses to find out
the potential role of birth cohortespecific cardiovascular
problems for the observed birth cohort pattern. Descriptive
graphs of prevalence trends of other cardiovascular medica-
tions (ACE inhibitors, angiotensin II receptor antagonists,
and b-adrenoreceptor blockers) were studied (data on file).
Their trends did not have the same overall shape, making it
unlikely that the birth cohort pattern is related to birth
cohortespecific cardiovascular problems. Also, the effect
of contraindications on statin prescription was considered.
The primary contraindication is liver disease [13]. Cur-
rently, no evidence exists to show that individuals born
around 1930 have a lower prevalence of liver disease (when
controlling for age) than other birth cohorts. The specific
shape of the prevalence trend may therefore indeed be
caused by the guideline changes. This is further supported
by the nearly identical birth cohort patterns for both sexes
although males and females generally have different health
trends and behaviors.
4.3. APC methodology in drug utilization studies

APC methodology is commonly used in studies of mor-
tality or disease incidence trends (e.g., [11,29,30]) and in
social research (e.g., [31e33]). As drug prescription should
be strongly related to mortality and disease trends, it is per-
haps surprising that there are few (or no) studies of drug pre-
scription using APC methods or that otherwise include
a birth cohort dimension. Some papers on illicit drug use that
use APC methodology do exist (e.g., [34]). The ‘‘Monitoring
the Future’’ series of studies on drug abuse by secondary
school students, conducted by the National Institutes of
Health and the National Institute of Drug Abuse, have used
APC methodology for describing current trends and antici-
pating future trends since at least 1988 and consider it a par-
ticular important contribution of the series [35].

Statin use in the Netherlands is a good case for the inves-
tigation of birth cohort effects because of the introduction
of age-specific guidelines, the effects of which remain with
each birth cohort as it ages. Applying APC analysis to other
drug types is likely to result in either stronger or weaker
birth cohort effects and different patterns, depending on
the drug.

We would expect especially strong cohort effects as a re-
sult of policy changes, such as the implementation or abol-
ishment of large-scale preventive intervention programs.
For example, there may be differences between birth
cohorts in vaccine coverage, especially as such programs
can have age-specific risk criteria [36]. For vaccines with
long-lasting protective effect (e.g., persistence of antibody
tithers), differences in coverage can have effects long after
a policy change took place.

Specific underlying health or behavioral differences
between birth cohorts may also result in clear birth cohort
effects in drug prescription trends as well. For example,
studies have found differences between birth cohorts in
smoking-related causes of disease and mortality such as
chronic obstructive pulmonary disease [37,38]. Trends of
drugs used in the treatment of this disease may therefore
have clear birth cohort effects as well. The underlying
cause of this is differences between birth cohorts in preva-
lence of smokers in the population.

Behavioral differences between birth cohorts in prescrip-
tion behavior, regardless of underlying health differences,
may also result in clear birth cohort effects. However, such
differences are more difficult to hypothesize, as research on
this topic is lacking.
4.4. Implications

The inclusion of the birth cohort dimension contributes
to (scientific) practice primarily in two ways. Firstly, as
demonstrated, birth cohort patterns provide additional in-
sight into the structure of trends. By proposing explanations
for the birth cohort effects and patterns that we have found,
the APC analysis also provides an incentive for further re-
search into the causes of trends. Secondly, birth cohort ef-
fects can be used to improve trend projections [12].
Because members of birth cohorts alive currently may also
be alive in the future, current birth cohort patterns may per-
sist in the future. This is the information that can be used in
the prediction of future trends. If birth cohort effects are
found to contribute more to trend explanation than period
effects, a cohort-wise projection will lead to more accurate
information about the future than a period-wise projection.
In particular, due to population aging and its associated
problems, accurate drug utilization projections are needed.
Drug utilization impacts quality of life, morbidity, and mor-
tality. Accurate information about future drug utilization in
populations allows policy makers and others to take in-
formed measures for the future.
4.5. Overall conclusion

This study demonstrated the usefulness of incorporating
a birth cohort dimension, next to age and period, in
population-level drug utilization studies. The birth cohort
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dimension is valuable for academic and professional prac-
tice as trends can be more accurately described and ex-
plained and as it can improve projections of future trends.
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