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Chapter 1

Program and introduction

Monday
• Rates and Survival
• Likelihood for rates
• Lifetables
• The Cox-model for rates
• (non)-Linear models: Estimates and predictions
• Follow-up data
• Models for tabulated data
• Age-Period and Age-Cohort models
• Practical: Age-Period and Age-Cohort models

Linear and curved effects
Tuesday

• Recap of Monday & practical
• Age-drift model
• Age at entry
• Age-Period-Cohort model
• Tabulation in the Lexis diagram
• APC-model for triangular data
• APC-model: Parametrization
• Practical: Age-Period-Cohort models

Wednesday
• Recap of Tuesday & practical
• APC-model as an interaction model
• Lee-Carter models as extension of APC-models
• Age-Diagnosis-Duration models: relation to APC models
• Practical: APC / Lee-Carter model

Thursday
• Recap of Wednesday & practical
• APC-models for several datasets
• Predicting future rates
• (time permitting) Continuous outcome APC models
• Practical: Prediction from APC models
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2 1.1 Time schedule APC models

1.1 Time schedule

Each day there will be 2 lectures of approximately 45 min. followed by one hour practical
computer practicals and a wrap-up of the practicals. This should fill the allocated time-slot
09–12.

1.2 Computing

Students are assumed to have a computer wit the most recent version of R, as to posess some
fluency in running R-code.

Specifically for this module, make sure that you have version 2.30 of the Epi package
installed. You can check this by running:

> library( Epi )
> sessionInfo()

The output of the latter command lists the version number of you attached packages. If you
do not have version 2.30 of the Epi package, please upgrade, for example by:

> update.packages(oldPkgs='Epi')

or by using the facilities in Rstudio.



Chapter 2

Practical exercises

2.1 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period model. It will give you the opportunity explore how to extract and and plot
parameter estimates from models. It is based on Danish male lung cancer incidence data in
5-year classes.

1. Read the data in the file lung5-M.txt, and make a table of the events and person-years:

lung <- read.table( "../data/lung5-M.txt", header=T )
with( lung , table( A ) )
with( lung , table( P ) )
round( ftable( xtabs( cbind(D,Y) ~ A + P,

data = lung ),
row.vars=c(3,1) ) )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and period (P) as class variables — note that
you can use factor on the variables in the model formula:

ap.1 <- glm( D ~ factor(A) + factor(P),
offset = log(Y/1000),
family = poisson,
data = lung )

summary( ap.1 )

Note that we use Y/1000 in order to get rates per 100,000 person-years. What do the
parameters refer to, e.g. which ones are rates and which ones are rate-ratios? Are they
on linear or log scale?

3. Fit the same model without intercept (use -1 in the model formula); call it ap.0 — we
shall refer to this subsequently. What do the parameters now refer to?

ap.0 <- glm( D ~ -1 + factor(A) + factor(P),
offset = log(Y/1000),
family = poisson,
data = lung )

summary( ap.0 )

3



4 2.1 Age-period model APC models

4. Now fit the same model again, but with the period 1968–72 as the reference period, by
using the relevel command for factors to make 1968 the first level:

ap.3 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968"),
offset = log(Y),
family = poisson,
data = lung )

Verify that 1968 actually is the reference level, for example by using ci.exp to inspect
the parameters.

5. Now extract the age-parameters from the model, by using the subset argument to
ci.exp:

( ap.cf <- ci.exp( ap.3, subset="A" ) )

6. Now plot the incidence rates as a function of age:

matplot( seq(40,85,5)+2.5, ci.exp( ap.3, subset="A" ),
type="l", lty=1, lwd=c(3,1,1), log="y", col=1 )

Alternatively you can use shaded c.i. (matshade is a function in the Epi package):

matshade( seq(40,85,5)+2.5, ci.exp( ap.3, subset="A" ),
lty=1, lwd=1, log="y", col=1, plot=TRUE )

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

( RR.cf <- ci.exp( ap.3, subset="P" ) )

Note that the reference group is missing, so we must stick 1s in the correct place. We
use the command rbind (row-bind):

( RR.cf <- rbind( RR.cf[1:5,], 1, RR.cf[6:10,] ) )

Now we have the same situation as for the age-specific rates, and can plot the relative
risks (relative to 1968) in precisely the same way as for the agespecific rates. Make a
line-plot of the relative risks with confidence intervals.

matshade( seq(1943,1993,5)+2.5, RR.cf,
lty=1, lwd=1, log="y", col=1, plot=TRUE )

8. However, the relevant rates may also be extracted directly from the model without
intercept, using the function ci.pred (remember to read the documentation for this!)
The point is to define a prediction data frame, that contains all explanatory variables
from the model:

nd <- data.frame( A = seq(40,85,5),
P = 1968,
Y = 1000 )

( rt <- ci.pred( ap.3, nd ) )
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Note that the person-years (Y) is also an explanatory variable (covariate); we entered
this with the value 1000, so we get the rates in events per 1000 PY (because Y is in units
of 1 person-year — the particular way Y enters the model specification is immaterial).

9. What ci.pred does is to give a prediction, that is a set of rates. If we want the
rate-ratios we are looking for the ratio between two sets of predictions, so not
surprisingly we must supply two data frames in order to get that. However this
approach does not allow on-the-fly creation of factors in the model formula; this must be
done in the data argument

ap.x <- glm( D ~ -1 + A + P,
offset = log(Y),
family = poisson,
data = transform(lung,A=factor(A),P=factor(P)) )

summary( ap.x )

In order to get the rate-ratio, two data frames are needed, one specifying the target (in
this case calendar years), and the other the reference. In principle with all covariates in
the model specified, but in some cases you can get away with only specifying the
covariates that are different between the two:

nd <- data.frame( P = seq(1943,1993,5) )
nr <- data.frame( P = 1968 )
( rrx <- ci.exp( ap.x, list(nd,nr) ) )

2.2 Age-cohort model

This exercise is aimed at familiarizing you with the parametrization of the age-cohort model.
It is a direct extension of the age-period exercise.

10. Data are classified by age and date of follow-up; the difference between date of follow-up
and age id the date of birth; try:

with( lung, table( P-A ) )

What does this table show?

11. Now fit a Poisson model with effects of age (A) and cohort (C) as factors. You will need
to form the variable C (cohort) as P − A first. What do the parameters refer to ?

12. Fit the same model, using the cohort 1908 as the reference cohort. What do the
parameters represent now?
Hint: Use the Relevel command for factors to make 1908 the first level.

13. What is the range of birth dates represented in the cohort 1908?

14. Extract the cohort-specific rate-ratio parameters and plot them against the date of birth
with 95% confidence intervals.

15. Now extract and plot the age-specific rates for the 1908 cohort against age. Then
overlay the estimates of the age-specific rates for the period 1968 from the age-period
model. Why are they so different? Where do they cross? And in particular, why do
they have different slopes?
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2.3 Linear and curved effects

In this exercise we will use the testisDK data from the Epi package, which contains the
number of cases of testis cancer in Denmark 1943–96:

1. First load the Danish testis cancer data, and inspect the dataset:

library( Epi )
sessionInfo()
data( testisDK )
str( testisDK )
head( testisDK )

Tabulate both events and person-years using stat.table, in say 10-year age-groups and
10-year periods of follow-up. In which ages are the age-specific testis cancer rates
highest?

2. Now fit a Poisson-model for the mortality rates with a linear term for age at follow-up
(current age, attained age):

ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
ci.exp( ml )

What do the parameters mean?

3. Work out the the predicted log-mortality rates for ages 25 to 45, say, by doing a
hand-calculation based on the coefficients:

( cf <- coef( ml ) )

4. However, we do not have the standard errors of these mortality rates, and hence neither
the confidence intervals. This is implemented in ci.pred; if we provide a data frame
with covariates as in the model we get predicted rates at points correponding to the
rows in the data frame:

nd <- data.frame( A = 15:65, Y = 10^5 )
head( ci.pred( ml, nd ) )

5. Use this machinery to derive and plot the mortality rates over the range from 15 to 65
years. Remember the plot=TRUE, otherwise matshade will try to ass the curve to an
existing plot.

matshade( nd$A, ci.pred( ml, nd ), plot=TRUE,
log="y", xlab="Age", ylab="Testis cancer incidence rate per 100,000 PY",
lwd=2, col="black" )

6. Now check if the mortality rates really are eksponentially increasing by age (that is
linearly incresing on the log-scale), by adding a quadratic term to the model. Note that
you must use the expression I(A^2) in the modeling in order to avoid that the “^” is
interpreted as part of the model formula:
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mq <- glm( D ~ A + I(A^2), offset=log(Y), family=poisson, data=testisDK )
ci.exp( mq, Exp=F )

Then plot the estimated rates under the quadratic model.

7. Repeat the same using a 3rd degree polynomial.

8. Instead of continuing with higher powers of age we could use fractions of powers, or we
could use splines, piecevise polynomial curves that fit nicely together at join points
(knots). This is implemented in the splines package, in the function ns, which returns
a matrix. There is a wrapper Ns in the Epi-package that automatically designate the
smallest and largest knots a boundary knots, beyond which the resulting curve is linear:

library( splines )
ms <- glm( D ~ Ns(A,knots=seq(15,65,10)),

offset = log(Y),
family = poisson,
data = testisDK )

matshade( nd$A, cbind( ci.pred( ms, nd ),
ci.pred( mc, nd ) ), plot=TRUE,

lwd=2, col=c("black","blue"), log="y", xlab="Age",
ylab="Testis cancer incidence rate per 100,000 PY" )

9. Now add a linear term in calendar time P to the model, and make a prediction of the
incidence rates in 1970, say:

msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P,
offset = log(Y),
family = poisson,
data = testisDK )

What is the average annual change in the incidence rates?

10. Extract the RR relative to 1970, by using the subset argument to ci.exp:

ci.exp( msp, subset="P" )

What is the annual relative increase in the testis cancer incidence rates?

11. Now illustrate the RR as a function of calendar time (P), by comparing the rates at
different times with the rates at a fixed reference point, 1970, say. What you need to do
here is is really to compute the ratio between two predictions: one for the times 1943
through 1993, and one for the fixed time point 1970. The model states that this ratio is
the same regardless of age, so we can supply two data frames (in a list) to ci.exp and
get the ratio of the predictions with confidence intervals. The result will be the same
regardless of the age we choose:

nl <- list( data.frame(A=50,P=1943:1996),
data.frame(A=50,P=1970))

RR <- ci.exp( msp, nl )
matshade( nl[[1]]$P, RR, plot=TRUE,

log="y", xlab="Age", ylab="Testis cancer incidence RR",
lty=1, lwd=2, col="black" )

abline( h=1, v=1970, lty=3 )
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12. Try to add a quadratic term to the period effect, and plot the resulting RR relative to
1970.

13. Now investigate if there is any non-linearity in period beyond the quadratic, by fitting a
spline for (P) as well, and comparing the models. Plot the resulting RR by year, relative
to 1970 too. You must define a contrast matrix corresponding to the years where the
prediction is made, as well as a matrix with the same number of rows, but with all rows
identical to the one corresponding to the reference year. You must use the differenec of
these two as the argument to ctr.mat in ci.exp.

14. Plot the estimated age-specific rates in 1970 from this model. Note that you need a
reference matrix for the period with all rows identical to the 1970 row, but this time
with the same number of rows as the age-prediciton points.

15. Form a new variable in the data frame, B=P-A, the date of birth (“cohort”), and repeat
the last analysis with this variable instead of P, including the prediction of age-specific
rates for some reference cohort as well as teh rate-ratios relative to this.

2.4 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the two
different ways of parametrizing this model. Like the two previous exercises it is based on the
male lung cancer data.

1. First read the data in the file lung5-M.txt and create the cohort variable:

lung <- read.table( "../data/lung5-M.txt", header=T )
lung$C <- lung$P - lung$A

Alternatively you can do:

lung <- transform( lung, C = P - A )

2. Fit a Poisson model with effects of age as class variable and period P as continuous
variable.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period.

Hint: When you center a variable on a reference value ref, say, by entering P-ref

directly in the model formula will cause a crash, because the “-” is interpreted as a
model operator. You must “hide” the minus from the model formula interpretation by
using the identity function, i.e. use: I(P-ref).

Now what do the parameters represent?

5. Fit a model with cohort as a continuous variable, using 1908 as the reference, and
without intercept. What do the resulting parameters represent?
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6. Compare the deviances and the slope estimates from the models with cohort drift and
period drift.

7. What is the relationship between the estimated age-effects in the two models?

Verify this empirically by converting one set of age-parameters to the other.

8. Plot the age-specific incidence rates from the two different models in the same panel.

9. The rates from the model are:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the log rate ratio relative to 1970.5
will be:

log RR = δ̂ × x

and the upper and lower confidence bands:

log RR = (δ̂ ± 1.96× s.e.(δ))× x

Now extract the slope parameter, and plot the rate-ratio functions as a function of
period.

2.5 Age-period-cohort model

The purpose of this exercise is to give an insigt in (some of) the parametrization possibilities
for teh APC-model.

1. Read the data in the file lung5-M.txt as in the previous exercises, and fit the three
models we discussed so far, the age-period, age-cohort and age-drift models.

lung <- read.table( "../data/lung5-M.txt", header=T )
str( lung )
m.AP <- glm( D ~ factor(A) + factor(P) + offset( log(Y) ),

family=poisson, data=lung )
m.AC <- glm( D ~ factor(A) + factor(P-A) + offset( log(Y) ),

family=poisson, data=lung )
m.Ad <- glm( D ~ factor(A) + P + offset( log(Y) ),

family=poisson, data=lung )

2. Compare the models that can be compared, with likelihood-ratio tetsts. You will want
to use anova (or specifically anova.glm) with the argument test="Chisq".

3. Next you should fit the same model without intercept, and with the first and last period
parameters and the 1908 cohort parameter set to 0. Before you do so a few practical
things must be fixed: You can merge the first and the last period level using the
Relevel function (look at the documentation for it — it is not the same as relevel).

lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )
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You can also use this function to make the 1908 cohort the first level of the cohort
factor:

lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

It is a good idea to tabulate the new factor against the old one (i.e. that variable from
which it was created) in order to meake sure that the relevelling actually is as you
intended it to be.

4. Now you can fit the model, using the factors you just defined. What do the parameters
now refer to?

5. Make a graph of the parameters versi age, period and cohort respectively. Remember to
take the exponential to convert the age-parameters to rates (and find out what the units
are) and the period and cohort parameters to rate ratios. Also use a log-scale for the
y-axis. You may want to use ci.exp to facilitate this. What do the three different set of
parameters mean?

6. A more credible parametrization of the APC-model can be obtained using the apc.fit

function form the Epi package. It offers different parametrizations of different models.
One possible model to use is the one we just fitted namely the model with one
parameter per level of age, period and cohort (using model=’factor’). Additional to
this we must specifiy the principle of parametrization:

• "ACP" gives age-specific rates, cohort specific rate ratios relative to cohort ref.c,
and period specific rate-ratio residuals, constrained to have 0 slope on average and
0 on average.

• "APC" gives age-specific rates, period specific rate ratios relative to period ref.p,
and cohort specific rate-ratio residuals, constrained to have 0 slope on average and
0 on average.

The paramtrization is dependent on what we mean by “0 slope on average and 0 on
average”. In essence, this boils down to choosing a definition of orthogonality —
essentially an inner product in the observation space, as explained in the lectures. The
default is to choose an inner product that weighs observations according to the number
of events in each unit of observation, proportional to the observed information about the
log-rate in each (minus the 2nd derivative of the log-likelihood w.r.t. the log-rate.) Now
fit the factor model with two different parametrizations:

f.cp <- apc.fit( lung, model = "factor", parm = "ACP", ref.c=1908 )
f.pc <- apc.fit( lung, model = "factor", parm = "APC", ref.p=1968 )

Inspect the resulting objects by:

names( f.cp )

What is the average drift?



Practical exercises 2.6 APC and Lee-Carter models 11

7. Now use the default plot method (plot.apc) to show the estimates in a single graph for
all three. You can add confidence intervals in various ways by using pc.lines or
pc.matshade:

plot( f.cp, lwd=1 )
matshade( f.cp$Age[,1], f.cp$Age[,-1] )

pc.matshade( f.cp$Per[,1], f.cp$Per[,-1] )
pc.matshade( f.cp$Coh[,1], f.cp$Coh[,-1] )
lines( f.pc, lwd=1, col="blue" )

matshade( f.pc$Age[,1], f.pc$Age[,-1], col="blue" )
pc.matshade( f.pc$Per[,1], f.pc$Per[,-1], col="blue" )
pc.matshade( f.pc$Coh[,1], f.pc$Coh[,-1], col="blue" )

8. Finally, try to fit a model with natural splines — this is the default model used by
apc.fit:

s.cp <- apc.fit( lung, parm = "ACP", ref.c=1908 )
matshade( s.cp$Age[,1], s.cp$Age[,-1], col="forestgreen" )

pc.matshade( s.cp$Per[,1], s.cp$Per[,-1], col="forestgreen" )
pc.matshade( s.cp$Coh[,1], s.cp$Coh[,-1], col="forestgreen" )

Are there major differences between the two types of models — which one produce the
more credible estimates? Comment in particular on the cohort estimates for the earliest
and latest cohorts.

2.6 APC and Lee-Carter models

This exercise is parallel to the example on male lung cancer from the lectures. The point is to
fit age-period-cohort models as well as Lee-Carter models and inspect their relative merits
and different fits to data on female lung cancer in Denmark.

1. Read the lung cancer data from the file lung-md.txt from the data repository, and
subset to women only (sex==2), and inspect no. of cases per 5-year age-class:

library( Epi )
lC <- read.table( "../data/lung-mf.txt", header=TRUE )
lF <- subset( lC, sex==2 )

2. Use xtabs to get an overview of cases and incidence rates (per 1000 PY, say), and
derive the rates for use with the function rateplot.

3. When fitting APC-models and Lee-Carter models we shall use natural splines for
description of effects, so we must devise knots on the age and time-scales for the splines.
Since the informtion in the data on event rates is in the number of cases, we would like
to place the n knots such that there is 1/n between each pair of successive knots and
1/2n below the first and obove the last knot. Now use the quantile function for this,
using for example (we do not necessarily want 8 knots):

quantile( rep( A,D), probs=(1:8-0.5)/8 )
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4. Use apc.fit to fit an APC-model to data using the chosen knots. You must
contemplate the type of parametrization and possible reference points on the perido and
cohort scales — read the help page for apc.fit.

5. Plot the estimated effects uisng plot.apc. You may contemplate using apc.frame for
increased control of the plot.

6. For comparison with the APC-model, fit the two Lee-Carter models, one with age-period
and one with age-cohort interaction, and compare the fit of these models with the fit of
the APC-model. You should use the LCa.fit function from the Epi package. In order
that models be comparable, you must use the same knots for age, period and cohort
effects. (Alternatively, you could try the lca.rh function from the ilc package).

7. Plot the estimated components of the Lee-Carter models. You can use the plot method
for LCa objects for this.

8. (This exercise is quite long-winded). In order to get a better view of the behaviour of
the different models, plot the predicted rates from the two Lee-Carter models over the
time-span of the data frame at select ages (say 50, 60, 70 and 80), using both period and
cohort as time-axis. Compare with the fits from the AP, AC and APC-models. Make
similar plots of the predicted age-specific rates for select period and cohorts, and again
compare the 5 different model fits.

2.7 Prediction of breast cancer rates

1. Read the breast cancer data from the text file:

library(Epi)
breast <- read.table("../data/breast.txt", header=T )

These data are tabulated be age, period and cohort, i.e. each observation correspond to
a triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to be
able to proper analyse data, compute the correct midpoints for each of the triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped rates.

4. Fit the age-period-cohort model with natural splines and plot the parameters (the
estimated splines) in a age-period-cohort display.

5. As a starting point for predictions, add the prediction of the period and cohort effects to
the plot of the effects, and in particular evaluate the trend in the period respectively
cohort trends. You will need to look into the single components of the apc object from
apc.fit. Are these trends invariant under reparametrization ? Which function(s) of
them are ?

6. Based on the model fitted, make a prediction of future rates of breast cancer:

• at the years 2020, 2025, 2030.
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• in the 1960, 1965 and 1970 generations.

Use extensions of the estimated period and cohort effects from the natural spline model
— note that you will have to refit the model with glm in order to make predictions with
ci.pred since the Model entry from the apc object is useless for this.

7. Now fit a model where the knots for period and cohort effecst are moved a bit
downward, so that the last piece from which the prediction is done is a bit longer. A
simple approach would be to omit the last knot in the natural splines for period and
cohort. Compute the identifiable slope at the end of the period resp. cohort effcts.

8. Now fit glm versions of these models and compare the predictions for the same dates
and cohorts as before between the three models.



Chapter 3

Basic concepts of rates and survival

The following is a summary of relations between various quantities used in analysis of
follow-up studies. They are ubiquitous in the analysis and reporting of results. Hence it is
important to be familiar with all of them and the relation between them.

3.1 Probability

Survival function:

S(t) = P{survival at least till t}
= P{T > t} = 1− P{T ≤ t} = 1− F (t)

where T is the variable “time of death”

Conditional survival function:

S(t|tentry) = P{survival at least till t| alive at tentry}
= S(t)/S(tentry)

Cumulative distribution function of death times (cumulative risk):

F (t) = P{death before t}
= P{T ≤ t} = 1− S(t)

Density function of death times:

f(t) = lim
h→0

P{death in (t, t+ h)} /h = lim
h→0

F (t+ h)− F (t)

h
= F ′(t)

Intensity:

λ(t) = lim
h→0

P{event in (t, t+ h] | alive at t} /h

= lim
h→0

F (t+ h)− F (t)

S(t)h
=
f(t)

S(t)

= lim
h→0
− S(t+ h)− S(t)

S(t)h
= − d logS(t)

dt

14
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The intensity is also known as the hazard function, hazard rate, mortality/morbidity
rate or simply “rate”.

Note that f and λ are scaled quantities, they have dimension time−1.

Relationships between terms:

− d logS(t)

dt
= λ(t)

m

S(t) = exp

(
−
∫ t

0

λ(u) du

)
= exp

(
−Λ(t)

)
The quantity Λ(t) =

∫ t

0
λ(s) ds is called the integrated intensity or the cumulative

rate. It is not an intensity (rate), it is dimensionless, despite its name.

λ(t) = − d log(S(t))

dt
= −S

′(t)

S(t)
=

F ′(t)

1− F (t)
=
f(t)

S(t)

The cumulative risk of an event (to time t) is:

F (t) = P{Event before time t} =

∫ t

0

λ(u)S(u) du = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for small values of the integrated
intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate

3.2 Statistics

Likelihood contribution from follow up of one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P{event at t4|entry at t0} = P{survive (t0, t1)| alive at t0} ×
P{survive (t1, t2)| alive at t1} ×
P{survive (t2, t3)| alive at t2} ×
P{event at t4| alive at t3}

Each term in this expression corresponds to one empirical rate1

(d, y) = (#deaths,#risk time), i.e. the data obtained from the follow-up of one person
in the interval of length y. Each person can contribute many empirical rates, most with
d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):

`(λ) = log
(
P{d events in y follow-up time}

)
= d log(λ)− λy

This is under the assumption that the rate (λ) is constant over the interval that the
empirical rate refers to.

1This is a concept coined by BxC, and so is not necessarily generally recognized.



16 3.3 Competing risks APC models

Log-likelihood for several persons. Adding log-likelihoods from a group of persons (only
contributions with identical rates) gives:

D log(λ)− λY,

where Y is the total follow-up time (Y =
∑

i yi), and D is the total number of failures
(D =

∑
i di), where the sums are over individuals’ contributions with the same rate, λ,

for example from the same age-class fro all individuals.

Note: The Poisson log-likelihood for an observation D with mean λY is:

D log(λY )− λY = D log(λ) +D log(Y )− λY

The term D log(Y ) does not involve the parameter λ, so the likelihood for an observed
rate (D, Y ) can be maximized by pretending that the no. of cases D is Poisson with
mean λY . But this does not imply that D follows a Poisson-distribution. It is entirely a
likelihood based computational convenience. Anything that is not likelihood based is
not justified.

A linear model for the log-rate, log(λ) = Xβ implies that

λY = exp
(
log(λ) + log(Y )

)
= exp

(
Xβ + log(Y )

)
Therefore, in order to get a linear model for log(λ) we must require that log(Y ) appear
as a variable in the model for D ∼ (λY ) with the regression coefficient fixed to 1, a
so-called offset-term in the linear predictor.

3.3 Competing risks

Competing risks: If there are more than one, say 3, causes of death, occurring with
(cause-specific) rates λ1, λ2, λ3, that is:

λc(a) = lim
h→0

P{death from cause c in (a, a+ h] | alive at a} /h, c = 1, 2, 3

The survival function is then:

S(a) = exp

(
−
∫ a

0

λ1(u) + λ2(u) + λ3(u) du

)
because you have to escape all 3 causes of death. The probability of dying from cause 1
before age a (the cause-specific cumulative risk) is:

F1(a) = P{dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du 6= 1− exp

(
−
∫ a

0

λ1(u) du

)
The term exp(−

∫ a

0
λ1(u) du) is sometimes referred to as the “cause-specific survival”,

but it does not have any probabilistic interpretation in the real world. It is the survival
under the assumption that only cause 1 existed and that the mortality rate from this
cause was the same as when the other causes were present too.
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Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes 1,
2 and 3 respectively:

1 = S(a) +

∫ a

0

λ1(u)S(u) du+

∫ a

0

λ2(u)S(u) du+

∫ a

0

λ3(u)S(u) du, ∀a

Subdistribution hazard Fine and Gray defined models for the so-called subdistribution
hazard, λ̃i(a). Recall the relationship between between the hazard (λ) and the
cumulative risk (F ):

λ(a) = −
d log

(
S(a)

)
da

= −
d log

(
1− F (a)

)
da

When more competing causes of death are present the Fine and Gray idea is to use this
transformation to the cause-specific cumulative risk for cause 1, say:

λ̃1(a) = −
d log

(
1− F1(a)

)
da

Here, λ̃1 is called the subdistribution hazard; as a function of F1(a) it depends on the
survival function S, which depends on all the cause-specific hazards:

F1(a) = P{dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du

The subdistribution hazard is merely a transformation of the cause-specific cumulative
risk. Namely the same transformation which in the single-cause case transforms the
cumulative risk to the hazard. It is a mathematical construct that is not interpretable as
a hazard despite its name.

3.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age (a)
integrated with respect to the distribution of age at death:

EL =

∫ ∞
0

af(a) da

where f is the density of the distribution of lifetime (age at death).

The relation between the density f and the survival function S is f(a) = −S ′(a), so
integration by parts gives:

EL =

∫ ∞
0

a
(
−S ′(a)

)
da = −

[
aS(a)

]∞
0

+

∫ ∞
0

S(a) da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
definition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.
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The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) =

∫ ∞
a

S(u)/S(a) du

Lifetime lost due to a disease is the difference between the expected residual lifetime for a
diseased person and a non-diseased (well) person at the same age. So all that is needed
is a(n estimate of the) survival function in each of the two groups.

LL(a) =

∫ ∞
a

SWell(u)/SWell(a)− SDiseased(u)/SDiseased(a) du

Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease in
question or not. That is whether we will include the possibility of a well person getting
ill and subsequently die. This does not show up in the formulae, but is a decision
required in order to devise an estimate of SWell.

Lifetime lost by cause of death is using the fact that the difference between the survival
probabilities is the same as the difference between the death probabilities. If several
causes of death (3, say) are considered then:

S(a) = 1− P{dead from cause 1 at a}
− P{dead from cause 2 at a}
− P{dead from cause 3 at a}

and hence:

SWell(a)− SDiseased(a) = P{dead from cause 1 at a|Diseased}
+ P{dead from cause 2 at a|Diseased}
+ P{dead from cause 3 at a|Diseased}
− P{dead from cause 1 at a|Well}
− P{dead from cause 2 at a|Well}
− P{dead from cause 3 at a|Well}

So we can conveniently define the lifetime lost due to cause 2, say, by:

LL2(a) =

∫ ∞
a

P{dead from cause 2 at u|Diseased & alive at a}

−P{dead from cause 2 at u|Well & alive at a} du

These quantities have the property that their sum is the total years of life lost due to
the disease:

LL(a) = LL1(a) + LL2(a) + LL3(a)

The terms in the integral are computed as (see the section on competing risks):

P{dead from cause 2 at x|Diseased & alive at a} =

∫ x

a

λ2,Dis(u)SDis(u)/SDis(a) du

P{dead from cause 2 at x|Well & alive at a} =

∫ x

a

λ2,Well(u)SWell(u)/SWell(a) du



Chapter 4

Solutions

4.1 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period model. It will give you the opportunity explore how to extract and and plot
parameter estimates from models. It is based on Danish male lung cancer incidence data in
5-year classes.

First load the Epi package:

library( Epi )
print( sessionInfo(), l=F )

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

Matrix products: default
BLAS: /usr/lib/openblas-base/libopenblas.so.0
LAPACK: /usr/lib/lapack/liblapack.so.3.0

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_2.30

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 zoo_1.8-0 MASS_7.3-50 compiler_3.4.4
[5] Matrix_1.2-14 plyr_1.8.4 parallel_3.4.4 tools_3.4.4
[9] survival_2.42-3 etm_1.0.1 Rcpp_0.12.12 splines_3.4.4
[13] grid_3.4.4 data.table_1.11.2 numDeriv_2016.8-1 lattice_0.20-35

1. First we read the data in the file lung5-M.txt, and make a table of the events and
person-years.

lung <- read.table( "../data/lung5-M.txt", header=T )
with( lung , table( A ) )

A
40 45 50 55 60 65 70 75 80 85
11 11 11 11 11 11 11 11 11 11

19
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with( lung , table( P ) )

P
1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
10 10 10 10 10 10 10 10 10 10 10

round( ftable( addmargins( xtabs( cbind(D,Y/1000) ~ A + P, data = lung ),
margin = 1 ),

row.vars=c(3,1) ), 0 )

P 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
A

D 40 80 81 73 99 82 97 86 90 116 149 91
45 135 163 208 226 252 284 263 251 257 265 251
50 197 292 442 508 560 580 657 608 591 493 446
55 261 404 596 772 1052 1075 1115 1218 1090 995 696
60 213 394 577 955 1342 1682 1654 1826 1885 1497 1113
65 141 273 491 868 1235 1856 2136 2231 2188 2193 1485
70 110 215 300 596 976 1448 1924 2283 2293 2157 1691
75 54 126 167 320 514 860 1213 1559 1824 1640 1221
80 20 57 87 157 220 390 573 753 881 837 716
85 7 10 23 48 72 110 176 213 307 286 262
Sum 1218 2015 2964 4549 6305 8382 9797 11032 11432 10512 7972

V2 40 694 755 769 749 757 710 695 756 941 1026 753
45 622 677 738 754 737 747 698 681 742 924 821
50 539 601 654 716 734 718 725 675 659 720 701
55 471 512 571 622 681 699 683 687 641 626 544
60 403 435 474 528 573 627 644 628 630 591 463
65 329 358 386 420 463 501 548 564 549 553 421
70 230 269 295 317 341 374 404 443 459 449 366
75 140 167 196 215 229 246 268 290 319 336 263
80 68 81 99 116 126 137 150 163 176 196 168
85 25 28 34 42 49 56 64 71 78 85 75
Sum 3521 3882 4217 4480 4691 4814 4880 4959 5194 5508 4575

The last table shows that the last period is shorter; it is only 4 years; the person-years
are approximately 80% of those in the previous yeras and previous age.

2. We fit a Poisson model with effects of age (A) and period (P) as class variables — note
that you can use factor on the variables in the model formula to get the
parametrization with one parameter per level:

ap.1 <- glm( D ~ factor(A) + factor(P),
offset = log(Y/1000),
family = poisson,
data = lung )

summary( ap.1 )

Call:
glm(formula = D ~ factor(A) + factor(P), family = poisson, data = lung,

offset = log(Y/1000))

Deviance Residuals:
Min 1Q Median 3Q Max

-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.43459 0.04192 -81.93 <2e-16
factor(A)45 0.95258 0.03673 25.93 <2e-16
factor(A)50 1.78237 0.03383 52.69 <2e-16
factor(A)55 2.41412 0.03265 73.94 <2e-16
factor(A)60 2.86259 0.03216 89.01 <2e-16
factor(A)65 3.15159 0.03201 98.47 <2e-16
factor(A)70 3.31784 0.03209 103.40 <2e-16
factor(A)75 3.30980 0.03261 101.50 <2e-16
factor(A)80 3.17640 0.03423 92.81 <2e-16
factor(A)85 2.90983 0.04024 72.32 <2e-16
factor(P)1948 0.39206 0.03629 10.80 <2e-16
factor(P)1953 0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P)1963 1.26666 0.03130 40.47 <2e-16
factor(P)1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.2 on 109 degrees of freedom
Residual deviance: 2723.5 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The intercept parameter refer to the log-rate (per unit of the offset variable, Y/1000,
that is per 100,000 PY) in the reference age-class (40) and reference period (1943) —
note that these do not appear among the A resp. P parameters.

The A-parameters refer to the log-rate-ratio relative to age group 40 — this is assume to
be the same in all periods. The P-parameters refer to the log-rate-ratio relative to
period group 1943 — this is assumed to be the same in all age-classes.

We can get the the rates and rate-ratios directly by ci.exp:

round( ci.exp(ap.1), 2 )

exp(Est.) 2.5% 97.5%
(Intercept) 0.03 0.03 0.03
factor(A)45 2.59 2.41 2.79
factor(A)50 5.94 5.56 6.35
factor(A)55 11.18 10.49 11.92
factor(A)60 17.51 16.44 18.65
factor(A)65 23.37 21.95 24.89
factor(A)70 27.60 25.92 29.39
factor(A)75 27.38 25.68 29.19
factor(A)80 23.96 22.41 25.62
factor(A)85 18.35 16.96 19.86
factor(P)1948 1.48 1.38 1.59
factor(P)1953 1.97 1.84 2.10
factor(P)1958 2.76 2.59 2.94
factor(P)1963 3.55 3.34 3.77
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factor(P)1968 4.42 4.17 4.70
factor(P)1973 4.92 4.63 5.22
factor(P)1978 5.37 5.06 5.69
factor(P)1983 5.47 5.15 5.80
factor(P)1988 4.95 4.67 5.25
factor(P)1993 4.60 4.33 4.88

3. When we fit the same model without intercept, the sequence of terms in the model is of
importance:

ap.0 <- glm( D ~ -1 + factor(A) + factor(P),
offset = log(Y/1000),
family = poisson,
data = lung )

round( ci.exp(ap.0), 3 )

exp(Est.) 2.5% 97.5%
factor(A)40 0.032 0.030 0.035
factor(A)45 0.084 0.078 0.089
factor(A)50 0.192 0.180 0.204
factor(A)55 0.360 0.340 0.382
factor(A)60 0.564 0.532 0.598
factor(A)65 0.754 0.711 0.798
factor(A)70 0.890 0.839 0.943
factor(A)75 0.883 0.832 0.937
factor(A)80 0.772 0.725 0.823
factor(A)85 0.592 0.549 0.638
factor(P)1948 1.480 1.378 1.589
factor(P)1953 1.966 1.839 2.101
factor(P)1958 2.758 2.589 2.938
factor(P)1963 3.549 3.338 3.774
factor(P)1968 4.425 4.166 4.699
factor(P)1973 4.915 4.631 5.217
factor(P)1978 5.365 5.057 5.692
factor(P)1983 5.469 5.155 5.801
factor(P)1988 4.951 4.666 5.254
factor(P)1993 4.598 4.329 4.884

When we put A before P we get the A-parameters as (log) rates in the reference period
(1943) and the P-parameters as rate-ratios relative to this. We see that these are the
same as in the previous model.

4. We now fit the same model again, but with the period 1968–72 as the reference period,
by using the relevel command for factors to make 1968 the first level:

ap.3 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968"),
offset = log(Y/1000),
family = poisson,
data = lung )

We see that 1968 actually is the reference level:

round( ci.exp( ap.3 ), 3 )



Solutions 4.1 Age-period model 23

exp(Est.) 2.5% 97.5%
factor(A)40 0.143 0.134 0.152
factor(A)45 0.370 0.354 0.386
factor(A)50 0.848 0.820 0.877
factor(A)55 1.595 1.550 1.641
factor(A)60 2.497 2.432 2.564
factor(A)65 3.334 3.249 3.421
factor(A)70 3.937 3.835 4.042
factor(A)75 3.905 3.795 4.019
factor(A)80 3.418 3.300 3.540
factor(A)85 2.618 2.479 2.764
relevel(factor(P), "1968")1943 0.226 0.213 0.240
relevel(factor(P), "1968")1948 0.335 0.319 0.351
relevel(factor(P), "1968")1953 0.444 0.426 0.463
relevel(factor(P), "1968")1958 0.623 0.601 0.646
relevel(factor(P), "1968")1963 0.802 0.776 0.829
relevel(factor(P), "1968")1973 1.111 1.079 1.144
relevel(factor(P), "1968")1978 1.213 1.179 1.248
relevel(factor(P), "1968")1983 1.236 1.202 1.271
relevel(factor(P), "1968")1988 1.119 1.087 1.152
relevel(factor(P), "1968")1993 1.039 1.008 1.072

— there is no 1968 parameter; it is the reference level for period.

5. We extract the age-parameters from the model, by using the subset argument to
ci.exp:

( ap.cf <- ci.exp( ap.3, subset="A" ) )

exp(Est.) 2.5% 97.5%
factor(A)40 0.1426419 0.1337940 0.1520748
factor(A)45 0.3697834 0.3539531 0.3863216
factor(A)50 0.8478539 0.8199413 0.8767167
factor(A)55 1.5947318 1.5498928 1.6408681
factor(A)60 2.4971972 2.4323484 2.5637749
factor(A)65 3.3340099 3.2493190 3.4209082
factor(A)70 3.9369963 3.8351257 4.0415728
factor(A)75 3.9054785 3.7951559 4.0190081
factor(A)80 3.4177553 3.2996154 3.5401251
factor(A)85 2.6180013 2.4793893 2.7643626

These are the age-specific incidence rates in the reference period; in this case the 1968
period.

6. We plot the incidence rates as a function of age using shaded c.i. (this is a function in
the Epi package):

matshade( seq(40,85,5)+2.5, ci.exp( ap.3, subset="A" ),
type="l", lty=1, lwd=1, log="y", col=1, plot=TRUE,
xlab="Age",
ylab="Male lung cancer incicdence rate per 1000 PY")

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

( RR.cf <- ci.exp( ap.3, subset="P" ) )
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Figure 4.1: Age-specific incidence rates of male lung cancer in Denmark in 1968. The shaded
area is the 95% c.i. — very narrow, ../graph/AP-agesh

exp(Est.) 2.5% 97.5%
relevel(factor(P), "1968")1943 0.2260104 0.2128257 0.2400119
relevel(factor(P), "1968")1948 0.3345003 0.3186216 0.3511705
relevel(factor(P), "1968")1953 0.4443021 0.4260752 0.4633088
relevel(factor(P), "1968")1958 0.6232309 0.6011356 0.6461383
relevel(factor(P), "1968")1963 0.8021069 0.7763218 0.8287485
relevel(factor(P), "1968")1973 1.1109511 1.0790196 1.1438275
relevel(factor(P), "1968")1978 1.2125932 1.1786324 1.2475325
relevel(factor(P), "1968")1983 1.2359544 1.2015891 1.2713025
relevel(factor(P), "1968")1988 1.1189707 1.0872878 1.1515769
relevel(factor(P), "1968")1993 1.0391496 1.0077481 1.0715295

Note that the reference group is missing, so we must stick 1s in the correct place. We
use the command rbind (row-bind):

( RR.cf <- rbind( RR.cf[1:5,], 1, RR.cf[6:10,] ) )

exp(Est.) 2.5% 97.5%
relevel(factor(P), "1968")1943 0.2260104 0.2128257 0.2400119
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relevel(factor(P), "1968")1948 0.3345003 0.3186216 0.3511705
relevel(factor(P), "1968")1953 0.4443021 0.4260752 0.4633088
relevel(factor(P), "1968")1958 0.6232309 0.6011356 0.6461383
relevel(factor(P), "1968")1963 0.8021069 0.7763218 0.8287485

1.0000000 1.0000000 1.0000000
relevel(factor(P), "1968")1973 1.1109511 1.0790196 1.1438275
relevel(factor(P), "1968")1978 1.2125932 1.1786324 1.2475325
relevel(factor(P), "1968")1983 1.2359544 1.2015891 1.2713025
relevel(factor(P), "1968")1988 1.1189707 1.0872878 1.1515769
relevel(factor(P), "1968")1993 1.0391496 1.0077481 1.0715295

Now we have the same situation as for the age-specific rates, and can plot the relative
risks (relative to 1968) in precisely the same way as for the age-specific rates:

matshade( seq(1943,1993,5)+2.5, RR.cf,
lty=1, lwd=1, log="y", col=1, plot=TRUE,
xlab="Calendar time", ylab="Rate ratio rel. to 1968--72")

abline( h=1, v=1970.5, lty=3 )

1950 1960 1970 1980 1990

0.2

0.4

0.6

0.8

1.0

1.2

Calendar time

R
at

e 
ra

tio
 r

el
. t

o 
19

68
−

−
72

Figure 4.2: Rate-ratios of male lung cancer in Denmark relative to the period 1968–72.
../graph/AP-APrrLung
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8. The relevant rates may also be extracted directly from the model without intercept,
using the function ci.pred (remember to read the documentation for this!)

The point is to define a prediction data frame, that contains all the explanatory
variables from the model:

nd <- data.frame( A = seq(40,85,5),
P = 1968,
Y = 1000 )

( rt <- ci.pred( ap.3, nd ) )

Estimate 2.5% 97.5%
1 0.1426419 0.1337940 0.1520748
2 0.3697834 0.3539531 0.3863216
3 0.8478539 0.8199413 0.8767167
4 1.5947318 1.5498928 1.6408681
5 2.4971972 2.4323484 2.5637749
6 3.3340099 3.2493190 3.4209082
7 3.9369963 3.8351257 4.0415728
8 3.9054785 3.7951559 4.0190081
9 3.4177553 3.2996154 3.5401251
10 2.6180013 2.4793893 2.7643626

Note that the person-years is also an explanatory variable (covariate); we entered this
with the value 1000, so we get the rates in events per 1000 PY (because Y is in units of 1
person-year — the particular way Y enters the model specification is immaterial).

9. What ci.pred does is to give a prediction, that is a set of rates. If we want the
rate-ratios we are looking for the ratio between two sets of predictions, so not
surprisingly we must supply two data frames. However this approach does not allow
on-the-fly creation of factors in the model formula; this must be done in the data

argument

ap.x <- glm( D ~ -1 + A + P,
offset = log(Y),
family = poisson,
data = transform(lung,A=factor(A),P=factor(P)) )

summary( ap.x )

Call:
glm(formula = D ~ -1 + A + P, family = poisson, data = transform(lung,

A = factor(A), P = factor(P)), offset = log(Y))

Deviance Residuals:
Min 1Q Median 3Q Max

-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
Estimate Std. Error z value Pr(>|z|)

A40 -10.34235 0.04192 -246.71 <2e-16
A45 -9.38977 0.03454 -271.89 <2e-16
A50 -8.55998 0.03145 -272.17 <2e-16
A55 -7.92822 0.03020 -262.48 <2e-16
A60 -7.47976 0.02970 -251.83 <2e-16
A65 -7.19075 0.02956 -243.26 <2e-16
A70 -7.02451 0.02970 -236.53 <2e-16
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A75 -7.03255 0.03031 -232.05 <2e-16
A80 -7.16595 0.03209 -223.33 <2e-16
A85 -7.43252 0.03847 -193.22 <2e-16
P1948 0.39206 0.03629 10.80 <2e-16
P1953 0.67592 0.03404 19.86 <2e-16
P1958 1.01434 0.03226 31.44 <2e-16
P1963 1.26666 0.03130 40.47 <2e-16
P1968 1.48717 0.03067 48.49 <2e-16
P1973 1.59239 0.03039 52.40 <2e-16
P1978 1.67994 0.03020 55.62 <2e-16
P1983 1.69902 0.03015 56.35 <2e-16
P1988 1.59958 0.03028 52.83 <2e-16
P1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 110 degrees of freedom
Residual deviance: 2.7235e+03 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

In order to get the rate-ratio, two data frames are needed, one specifying the target (in
this case calendar years), and the other the reference. In principle with all covariates in
the model specified, but in some cases we can get away with only specifying the
covariates that are different between the two:

nd <- data.frame( P = seq(1943,1993,5) )
nr <- data.frame( P = 1968 )
( rrx <- ci.exp( ap.x, list(nd,nr) ) )

exp(Est.) 2.5% 97.5%
1 0.2260104 0.2128257 0.2400119
2 0.3345003 0.3186216 0.3511705
3 0.4443021 0.4260752 0.4633088
4 0.6232309 0.6011356 0.6461383
5 0.8021069 0.7763218 0.8287485
6 1.0000000 1.0000000 1.0000000
7 1.1109511 1.0790196 1.1438275
8 1.2125932 1.1786324 1.2475325
9 1.2359544 1.2015891 1.2713025
10 1.1189707 1.0872878 1.1515769
11 1.0391496 1.0077481 1.0715295

The plot of the RR will look exatly as before. Although it seems a bit clumsy to do it
this way, its generality will make things much easier along the way.

4.2 Age-cohort model

This exercise is aimed at familiarizing you with the parametrization of the age-cohort model.
It is a direct extension of the age-period exercise.

10. Data are classified by age and date of follow-up; the difference between date of follow-up
and age is the date of birth. If we make a table of this difference:
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with( lung, table( P-A ) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933 1938 1943
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3

1948 1953
2 1

we get the number of observations for each level of birth Cohort. We see that the first
and last cohort contribute only one observations whereas the 1903 and 1908 cohorts
contribute 10 each.

11. Now we fit a Poisson model with effects of age (A) and cohort (C) as factors. We form
the factor variable as we did previously:

ac.0 <- glm( D ~ A + C,
offset = log(Y),
family = poisson,
data = transform(lung,A=factor(A),C=factor(P-A)) )

summary( ac.0 )

Call:
glm(formula = D ~ A + C, family = poisson, data = transform(lung,

A = factor(A), C = factor(P - A)), offset = log(Y))

Deviance Residuals:
Min 1Q Median 3Q Max

-7.2822 -2.0274 0.3573 2.0545 5.2834

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.83501 0.38038 -31.114 < 2e-16
A45 0.96843 0.03800 25.487 < 2e-16
A50 1.83467 0.03591 51.087 < 2e-16
A55 2.51168 0.03508 71.595 < 2e-16
A60 3.02924 0.03476 87.147 < 2e-16
A65 3.40740 0.03471 98.156 < 2e-16
A70 3.67325 0.03487 105.335 < 2e-16
A75 3.78630 0.03545 106.819 < 2e-16
A80 3.78402 0.03704 102.165 < 2e-16
A85 3.66814 0.04280 85.703 < 2e-16
C1863 0.01046 0.42031 0.025 0.980152
C1868 0.51345 0.38845 1.322 0.186240
C1873 0.82684 0.38231 2.163 0.030560
C1878 1.05336 0.38054 2.768 0.005639
C1883 1.41904 0.37972 3.737 0.000186
C1888 1.91197 0.37927 5.041 4.63e-07
C1893 2.28073 0.37909 6.016 1.78e-09
C1898 2.55794 0.37900 6.749 1.49e-11
C1903 2.76315 0.37895 7.292 3.06e-13
C1908 2.83415 0.37894 7.479 7.48e-14
C1913 2.81410 0.37901 7.425 1.13e-13
C1918 2.86228 0.37902 7.552 4.30e-14
C1923 2.91551 0.37906 7.691 1.45e-14
C1928 2.86546 0.37917 7.557 4.12e-14
C1933 2.86314 0.37936 7.547 4.44e-14
C1938 2.72290 0.37983 7.169 7.57e-13
C1943 2.68759 0.38066 7.060 1.66e-12
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C1948 2.85099 0.38263 7.451 9.27e-14
C1953 2.81411 0.39456 7.132 9.87e-13

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.18 on 109 degrees of freedom
Residual deviance: 829.63 on 81 degrees of freedom
AIC: 1744.7

Number of Fisher Scoring iterations: 4

As before the intercept parameter refer to the log-rate in reference age class (40) and
reference birth cohort (1858) — rates in a gropu that is not present in data at all!

12. We fit the same model, without intercept, using the cohort 1908 as the reference cohort.
What do the parameters represent now?

ac.r <- glm( D ~ -1 + A + relevel(C,'1908'),
offset = log(Y),
family = poisson,
data = transform(lung,A=factor(A),C=factor(P-A)) )

round( ci.exp( ac.r ), 3 )

exp(Est.) 2.5% 97.5%
A40 0.000 0.000 0.000
A45 0.000 0.000 0.000
A50 0.001 0.001 0.001
A55 0.002 0.001 0.002
A60 0.003 0.002 0.003
A65 0.004 0.004 0.004
A70 0.005 0.005 0.005
A75 0.005 0.005 0.006
A80 0.005 0.005 0.006
A85 0.005 0.005 0.005
relevel(C, "1908")1858 0.059 0.028 0.124
relevel(C, "1908")1863 0.059 0.041 0.085
relevel(C, "1908")1868 0.098 0.083 0.117
relevel(C, "1908")1873 0.134 0.121 0.149
relevel(C, "1908")1878 0.169 0.156 0.181
relevel(C, "1908")1883 0.243 0.230 0.257
relevel(C, "1908")1888 0.398 0.382 0.414
relevel(C, "1908")1893 0.575 0.556 0.595
relevel(C, "1908")1898 0.759 0.736 0.782
relevel(C, "1908")1903 0.931 0.906 0.958
relevel(C, "1908")1913 0.980 0.954 1.007
relevel(C, "1908")1918 1.029 1.000 1.058
relevel(C, "1908")1923 1.085 1.053 1.117
relevel(C, "1908")1928 1.032 0.997 1.068
relevel(C, "1908")1933 1.029 0.987 1.073
relevel(C, "1908")1938 0.895 0.846 0.946
relevel(C, "1908")1943 0.864 0.802 0.930
relevel(C, "1908")1948 1.017 0.914 1.131
relevel(C, "1908")1953 0.980 0.789 1.217

The A parameters (as output by ci.exp) are now the age-specific rates in the 1908
cohort, and the C parameters are the rate-ratios relative to the 1908 birth cohort.
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13. The 1908 birth cohort is for example represented in the period 1968 and age 60, that is
persons at risk in the period 1968-01-01 through 1972-12-31 while between their 60th

and 65th birthday. So the earliest born in that rane are those that just manage 1 day
before their 65th birthday in the period, that is persons born 1903-01-01. The latest
born are those that just manage to have their 60th birthday at the last day of the
period, that is those born 1912-12-31.

Thus the persons included in the cohort labeled 1908 are borm in the 10-year period
from 1903-01-01 to 1912-12-31.

14. In order to extract the cohort-specific rate-ratio parameters we use the same machinery
as for the period-RRs; note that the possibility of supplying two data frames only works
for models specified without too many bells and whistles:

ndc <- data.frame( C=seq(1858,1953,5) )
ndr <- data.frame( C=1908 )
try( RR.C <- ci.exp( ac.r, list(ndc,ndr) ) )

( RR.C <- ci.exp( ac.0, list(ndc,ndr) ) )

exp(Est.) 2.5% 97.5%
1 0.05876855 0.02796331 0.12350977
2 0.05938629 0.04146987 0.08504321
3 0.09820451 0.08277938 0.11650395
4 0.13435012 0.12110391 0.14904520
5 0.16850582 0.15647290 0.18146408
6 0.24290000 0.22987080 0.25666770
7 0.39765267 0.38150319 0.41448578
8 0.57498146 0.55558344 0.59505676
9 0.75865134 0.73613440 0.78185703
10 0.93146302 0.90603144 0.95760844
11 1.00000000 1.00000000 1.00000000
12 0.98015018 0.95413843 1.00687107
13 1.02853256 1.00032662 1.05753381
14 1.08476601 1.05335624 1.11711238
15 1.03180855 0.99700213 1.06783011
16 1.02941676 0.98736788 1.07325636
17 0.89472043 0.84629736 0.94591416
18 0.86367228 0.80177907 0.93034332
19 1.01698726 0.91442192 1.13105675
20 0.98016430 0.78931406 1.21716072

We can then plot these against the cohort:

matshade( ndc$C, RR.C, log='y', plot=TRUE,
xlab="Date of birth", ylab="Lung cancer incidence RR" )

abline( h=1, v=1908, lty=3 )

15. The age-specific rates for the 1908 cohort we get from ci.pred:

ai.coh <- ci.pred( ac.0, data.frame(A=factor(seq(40,85,5)),C='1908',Y=1000) )

We can then plot these, and at the same time include the age-specific rates from the
age-period model:
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Figure 4.3: Cohort RR of lung cancer relative to the 1908 cohort. ../graph/AP-cohRR

matshade( seq(40,85,5), cbind( rt, ai.coh ), col=c("black","blue"),
log="y", plot=TRUE )

abline( v=60, lty=3 )

The black curve is the age-specific rates from the age-period model, thus corresponds to
cross-sectional rates as of 1968, whereas the blue curve are age-specific rates in the 1908
cohort; so-called longitudinal rates. The two curves cross at 1968-1908=60 years — the
difference between the reference points — the predicted rates for 60 year old men in
1968, born in 1908. The curves show rates from two different models, so there is no
formal guarantee that the rates at (60,1968,1908) are the same.

Since the rates of lung cancer are increasing by calendar time it follows that the
longitudinal rates have a steeper slope by age than the cross-sectional. If there were a
general decrease in rates, the logituninal curves would be flatter than the cross-sectional.
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Figure 4.4: Age-specific rates of male lung cancer in Denmark. Black: cross-sectional rates as
of 1968, blue: longitudinal rates in the 1908 birth cohort. ../graph/AP-Aincmp
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4.3 Linear and curved effects

In this exercise we will use the testisDK data from the Epi package, which contains the
number of cases of testis cancer in Denmark 1943–96:

1. First we load the Danish testis cancer data, and inspect the dataset:

library( Epi )
sessionInfo()

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

Matrix products: default
BLAS: /usr/lib/openblas-base/libopenblas.so.0
LAPACK: /usr/lib/lapack/liblapack.so.3.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_DK.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] utils datasets graphics grDevices stats methods base

other attached packages:
[1] Epi_2.30

loaded via a namespace (and not attached):
[1] cmprsk_2.2-7 zoo_1.8-0 MASS_7.3-50 compiler_3.4.4
[5] Matrix_1.2-14 plyr_1.8.4 parallel_3.4.4 tools_3.4.4
[9] survival_2.42-3 etm_1.0.1 Rcpp_0.12.12 splines_3.4.4
[13] grid_3.4.4 data.table_1.11.2 numDeriv_2016.8-1 lattice_0.20-35

data( testisDK )
str( testisDK )

'data.frame': 4860 obs. of 4 variables:
$ A: num 0 1 2 3 4 5 6 7 8 9 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: num 1 1 0 1 0 0 0 0 0 0 ...
$ Y: num 39650 36943 34588 33267 32614 ...

head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33

We can tabulate both events (testis cancer diagnoses) and person-years using either
xtabs or stat.table, the latter is a bit more versatile, because we can get rates too:
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round( ftable( xtabs( cbind(D,PY=Y/1000) ~ I(floor(A/10)*10) +
I(floor(P/10)*10),

data=testisDK ),
row.vars=c(3,1) ), 1 )

I(floor(P/10) * 10) 1940 1950 1960 1970 1980 1990
I(floor(A/10) * 10)

D 0 10.0 7.0 16.0 18.0 9.0 10.0
10 13.0 27.0 37.0 72.0 97.0 75.0
20 124.0 221.0 280.0 535.0 724.0 557.0
30 149.0 288.0 377.0 624.0 771.0 744.0
40 95.0 198.0 230.0 334.0 432.0 360.0
50 40.0 79.0 140.0 151.0 193.0 155.0
60 29.0 43.0 54.0 83.0 82.0 44.0
70 18.0 26.0 35.0 41.0 40.0 32.0
80 7.0 9.0 13.0 19.0 18.0 21.0

PY 0 2604.7 4037.3 3885.0 3820.9 3070.9 2165.5
10 2135.7 3505.2 4004.1 3906.1 3847.4 2261.0
20 2225.5 2923.2 3401.6 4028.6 3941.2 2824.6
30 2195.2 3058.8 2856.2 3410.6 3968.8 2728.4
40 1874.9 2980.1 2986.8 2823.1 3322.6 2757.7
50 1442.8 2426.5 2796.6 2813.3 2635.0 2069.2
60 1041.9 1711.8 2055.1 2358.1 2357.3 1565.0
70 537.6 967.9 1136.1 1336.9 1538.0 1100.9
80 133.6 261.6 346.3 423.5 504.2 414.6

ST <- stat.table( list(A=floor(A/10)*10,
P=floor(P/10)*10),

list( D=sum(D),
Y=sum(Y/1000),

rate=ratio(D,Y,10^5) ),
margins=TRUE,
data=testisDK )

print( ST, digits=c(sum=0,rate=2) )

----------------------------------------------------------------
----------------------------P----------------------------

A 1940 1950 1960 1970 1980 1990 Total
----------------------------------------------------------------
0 10 7 16 18 9 10 70

2605 4037 3885 3821 3071 2166 19584
0.38 0.17 0.41 0.47 0.29 0.46 0.36

10 13 27 37 72 97 75 321
2136 3505 4004 3906 3847 2261 19659
0.61 0.77 0.92 1.84 2.52 3.32 1.63

20 124 221 280 535 724 557 2441
2226 2923 3402 4029 3941 2825 19345
5.57 7.56 8.23 13.28 18.37 19.72 12.62

30 149 288 377 624 771 744 2953
2195 3059 2856 3411 3969 2728 18218
6.79 9.42 13.20 18.30 19.43 27.27 16.21

40 95 198 230 334 432 360 1649
1875 2980 2987 2823 3323 2758 16745
5.07 6.64 7.70 11.83 13.00 13.05 9.85
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50 40 79 140 151 193 155 758
1443 2427 2797 2813 2635 2069 14183
2.77 3.26 5.01 5.37 7.32 7.49 5.34

60 29 43 54 83 82 44 335
1042 1712 2055 2358 2357 1565 11089
2.78 2.51 2.63 3.52 3.48 2.81 3.02

70 18 26 35 41 40 32 192
538 968 1136 1337 1538 1101 6617
3.35 2.69 3.08 3.07 2.60 2.91 2.90

80 7 9 13 19 18 21 87
134 262 346 423 504 415 2084
5.24 3.44 3.75 4.49 3.57 5.06 4.18

Total 485 898 1182 1877 2366 1998 8806
14192 21872 23468 24921 25185 17887 127525
3.42 4.11 5.04 7.53 9.39 11.17 6.91

----------------------------------------------------------------

Note that for this type of cancer the peak age-specific rates are in the 30es.

2. We then fit a Poisson-model for the mortality rates with a linear term for age:

ml <- glm( D ~ A, offset=log(Y), family=poisson, data=testisDK )
ci.exp( ml )

exp(Est.) 2.5% 97.5%
(Intercept) 5.682883e-05 0.0000545697 0.0000591815
A 1.005499e+00 1.0045507062 1.0064479370

The parameter labeled A gives the annual increase in mortality by age (0.55%/year), but
the intercept parameter is meaningless; it is the predicted mortality per 1 person-year
(because we used Y in the offset, and this is in units of person-years) for a 0 year old
male.

3. We can work out the predicted log-mortality rates for ages 25 to 45, say, by doing a
hand-calculation based on the coefficients:

( cf <- coef( ml ) )

(Intercept) A
-9.775466746 0.005483811

We now have the intercept (the log-rate) and the slopes for age and calendar time, so to
get the age-specific rates in ages 50 to 60 we just take the intercept and add the slope
mulitlied by the vector of ages.

round( cbind( 25:45, exp( cf[1] + cf[2]*(25:45) )*10^5 ), 3 )
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[,1] [,2]
[1,] 25 6.518
[2,] 26 6.554
[3,] 27 6.590
[4,] 28 6.626
[5,] 29 6.662
[6,] 30 6.699
[7,] 31 6.736
[8,] 32 6.773
[9,] 33 6.810
[10,] 34 6.848
[11,] 35 6.885
[12,] 36 6.923
[13,] 37 6.961
[14,] 38 7.000
[15,] 39 7.038
[16,] 40 7.077
[17,] 41 7.116
[18,] 42 7.155
[19,] 43 7.194
[20,] 44 7.234
[21,] 45 7.273

Note that we also multiplied by 105 in order to get the rates in units of cases per
100,000 person-years.

4. But we do not have the standard errors of these mortality rates, and hence neither the
confidence intervals. This is implemented in ci.pred; if we provide a data frame with
covariates as in the model we get predicted rates at points correponding to the rows in
the data frame, as well as confidence intervals:

nd <- data.frame( A = 15:65, Y = 10^5 )
head( ci.pred( ml, nd ) )

Estimate 2.5% 97.5%
1 6.170105 5.991630 6.353896
2 6.204034 6.028525 6.384652
3 6.238149 6.065547 6.415662
4 6.272452 6.102689 6.446937
5 6.306943 6.139944 6.478485
6 6.341624 6.177301 6.510319

5. We can now use this machinery to plot the mortality rates over the range from 15 to 65
years:

matshade( nd$A, ci.pred( ml, nd ), plot=TRUE,
lwd=2, col="black", log="y", xlab="Age",
ylab="Testis cancer incidence rate per 100,000 PY" )

6. Now suppose we want to see if the mortality rates really are exponentially increasing by
age (that is linearly on the log-scale), we could add a quadratic term to the model:

mq <- glm( D ~ A + I(A^2), offset=log(Y), family=poisson, data=testisDK )
ci.exp( mq, Exp=F )



Solutions 4.3 Linear and curved effects 37

Estimate 2.5% 97.5%
(Intercept) -12.365625166 -12.482504296 -12.248746037
A 0.180595889 0.174140158 0.187051619
I(A^2) -0.002325937 -0.002410829 -0.002241045

Note that we must use the function I() to prevent the “^” to be interpreted as part of
the model formula.

We can then plot the estimated rates using the same machinery, adding the previous
linear estimates for comparison:

matshade( nd$A, cbind( ci.pred( mq, nd ),
ci.pred( ml, nd ) ), plot=TRUE,

lwd=2, col=c("black","blue"), log="y", xlab="Age",
ylab="Testis cancer incidence rate per 100,000 PY" )
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Figure 4.5: Testis cancer incidence rates overall, modeled by 2nd degree polynomial, overlaid by
the previously estimated linear estimate. ../graph/cont-eff-qdr

Which indeed is dramatically different — we see that the model with quadratic effect
gives a much better fit; a deviance of 4800 on 1 d.f.:

anova( mq, ml, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ A + I(A^2)
Model 2: D ~ A
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4857 7815.8
2 4858 12648.0 -1 -4832.1 < 2.2e-16
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7. We could do the same using a 3rd degree polynomial:

mc <- glm( D ~ A + I(A^2) + I(A^3),
offset = log(Y),
family = poisson,
data = testisDK )

matshade( nd$A, cbind( ci.pred( mc, nd ),
ci.pred( mq, nd ) ), plot=TRUE,

lwd=2, col=c("black","blue"), log="y", xlab="Age",
ylab="Testis cancer incidence rate per 100,000 PY" )

Note the similarity to the previous code — the only thing that changes is the model the
prediction data frame is still the same.
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Figure 4.6: Testis cancer incidence rates overall, modelled by 3rd degree polynomial, with the
previously estimated 2nd degree curve in blue. ../graph/cont-eff-cub

Also the 3rd degree polynomial provides a further dramatic improvement in deviance:

anova( ml, mq, mc, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ A
Model 2: D ~ A + I(A^2)
Model 3: D ~ A + I(A^2) + I(A^3)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4858 12648.0
2 4857 7815.8 1 4832.1 < 2.2e-16
3 4856 6217.7 1 1598.1 < 2.2e-16
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8. Instead of continuing with higher powers of age we could use different non-integer
powers (“fractional polynomials”), or we could use splines, which are piecewise
polynomial curves that fits nicely together at join points (knots). This is implemented
in the splines package, in the function ns, which returns a matrix. There is a wrapper
Ns in the Epi-package that automatically designate the smallest and largest knots as
boundary knots, beyond which the resulting curve is linear:

library( splines )
ms <- glm( D ~ Ns(A,knots=seq(15,65,10)),

offset = log(Y),
family = poisson,
data = testisDK )

matshade( nd$A, cbind( ci.pred( ms, nd ),
ci.pred( mc, nd ) ), plot=TRUE,

lwd=2, col=c("black","blue"), log="y", xlab="Age",
ylab="Testis cancer incidence rate per 100,000 PY" )
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Figure 4.7: Testis cancer incidence rates overall, modeled by splines (black) and the correspond-
ing cubic model (blue); predicted rates using ci.pred. ../graph/cont-eff-spl

9. Now in addition to this we would like to see how the dependence on calendar was, so we
add a linear term in calendar time (period, P) to the model, and make a prediction for
1970, say:

msp <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P,
offset = log(Y),
family = poisson,
data = testisDK )

round( ci.exp( msp ), 3 )
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exp(Est.) 2.5% 97.5%
(Intercept) 0.000 0.000 0.000
Ns(A, knots = seq(15, 65, 10))1 8.327 7.453 9.305
Ns(A, knots = seq(15, 65, 10))2 5.472 4.793 6.247
Ns(A, knots = seq(15, 65, 10))3 1.007 0.894 1.133
Ns(A, knots = seq(15, 65, 10))4 13.405 11.074 16.226
Ns(A, knots = seq(15, 65, 10))5 0.459 0.423 0.497
P 1.024 1.023 1.026

The linar trend is 2.5% per year — the parameter estimate of the RR per 1 year is
1.024. The parameters from the spline terms are not interpretable per se, so the
age-effect can only be shown graphically. This can be done by adding a period reference
point to the prediction data frame:

nd <- cbind( nd, P=1970 )
head( nd )

A Y P
1 15 1e+05 1970
2 16 1e+05 1970
3 17 1e+05 1970
4 18 1e+05 1970
5 19 1e+05 1970
6 20 1e+05 1970

Note that cbind automatically will expand the 1 and the 1970 to match the number of
rows of As.

matshade( nd$A, cbind( ci.pred( msp, nd ),
ci.pred( ms , nd ) ), plot=TRUE,

log="y", xlab="Age", ylab="Testis cancer incidence rate in 1970 per 100,000 PY",
type="l", lty=1, lwd=2, col=c("black","blue") )

10. We would also like to see how the RR relative to 1970 is, so we select only the period
parameter, using the subset argument:

ci.exp( msp, subset="P" )

exp(Est.) 2.5% 97.5%
P 1.024235 1.022769 1.025704

So we have an increase of 2.4% per year as noted before.

11. If we want to illustrate the RR as a function of calendar time (P), we compare the rates
at different times with the rates at a fixed reference point, 1970, say.

However, what we are doing is really to compute the ratio between two predictions: one
for the times 1943 through 1993, and one for the fixed time point 1970. The model
states that this ratio is the same regardless of age, so we can supply two data frames (in
a list) to ci.exp and get the ratio of the predictions with confidence intervals. The
result will be the same regardless of the age we choose:
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Figure 4.8: Testis cancer incidence rate in 1970. Note the different level of the rates relative to
the overall plot (blue). ../graph/cont-eff-spl-P

nl <- list( data.frame(A=50,P=1943:1996),
data.frame(A=50,P=1970))

RR <- ci.exp( msp, nl )
matshade( nl[[1]]$P, RR, plot=TRUE,

log="y", xlab="Age", ylab="Testis cancer incidence RR",
lty=1, lwd=2, col="black" )

abline( h=1, v=1970, lty=3 )

12. As above we might like to see how it looks if we add a quadratic to the period effect:

msp2 <- glm( D ~ Ns(A,knots=seq(15,65,10)) + P + I(P^2),
offset = log(Y),
family = poisson,
data = testisDK )

But the prediction of RRs in the new model is exactly the same as before:

RR <- ci.exp( msp2, nl )
matshade( nl[[1]]$P, RR, plot=TRUE,

log="y", xlab="Age", ylab="Testis cancer incidence RR",
lty=1, lwd=2, col="black" )

abline( h=1, v=1970, lty=3 )

13. But we would like also to see if there were some non-linearity beyond the quadratic,
with period as well, so we fit a spline for period (P) as well
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Figure 4.9: Testis cancer incidence rate-ratio relative to 1970. ../graph/cont-eff-spl-P1

mssp <- glm( D ~ Ns(A,knots=seq(15,65,10)) +
Ns(P,knots=seq(1950,1990,10)),
offset=log(Y), family=poisson, data=testisDK )

anova( msp, msp2, mssp, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ Ns(A, knots = seq(15, 65, 10)) + P
Model 2: D ~ Ns(A, knots = seq(15, 65, 10)) + P + I(P^2)
Model 3: D ~ Ns(A, knots = seq(15, 65, 10)) + Ns(P, knots = seq(1950,

1990, 10))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4853 4805.8
2 4852 4792.3 1 13.500 0.0002386
3 4850 4787.9 2 4.488 0.1060323

We see that there is definitely a non-linear effect of calendar time (the quadratic is very
significant), but also that the spline effect does not add much beyond the quadratic
effect.

We can graph the RR by period, using the same code as before:

matshade( nl[[1]]$P, ci.exp( mssp, nl ), plot=TRUE,
log="y", xlab="Date of FU", ylab="Testis cancer incidence RR",
lty=1, lwd=2, col="black" )

abline( h=1, v=1970, lty=3 )

14. But for this model we would also like to see the estimated age-specific rates in say 1970.
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Figure 4.10: Testis cancer incidence rate-ratio relative to 1970. ../graph/cont-eff-spl-P2

matshade( nd$A, ci.pred( mssp, newdata=nd ), plot=TRUE,
log="y", xlab="Age", ylab="Testis cancer incidence in 1970",
lty=1, lwd=1, col="black" )
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Figure 4.11: Incidence rates of testis cancer in 1950 per 100,000 PY.
../graph/cont-eff-splA-Pspl
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Figure 4.12: Testis cancer rates as of 1970. ../graph/cont-eff-spl-splP
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15. Finally with this in place we could do the same for a model where we had replaced P,
the data of follow-up by the the date of birth, B=P-A (cohort, that is), and chosen 1936
as reference:

testisDK <- transform( testisDK, B = P - A )
mAB <- glm( D ~ Ns(A,knots=seq(15,65,10)) +

Ns(B,knots=seq(1900,1970,5)),
offset=log(Y), family=poisson, data=testisDK )

nd <- data.frame( A=15:65, B=1936, Y=10^5 )
nb <- data.frame( A=40, B=1854:1996, Y=10^5 )
nr <- data.frame( A=40, B=1936, Y=10^5 )
par( mfrow=c(1,2) )
matshade( nd$A, ci.pred( mAB, newdata=nd ), plot=TRUE,

log="y", xlab="Age",
ylab="Testis cancer incidence per 100,000 PY, in 1908 birth cohort",
type="l", lty=1, lwd = 2, col="black",
ylim=c(1,20) )

matshade( nb$B, ci.exp( mAB, ctr.mat=list(nb,nr) ), plot=TRUE,
log="y", xlab="Age", ylab="Testis cancer incidence RR",
type="l", lty=1, lwd=c(3,1,1), col="black",
ylim=c(1,20)/4 )

abline( h=1, v=1936, lty=3 )
rect( cal.yr("1914-07-28"), 0.01, cal.yr("1918-11-11"), 10, col="#0000BB44", border="transparent")
rect( cal.yr("1939-09-01"), 0.01, cal.yr("1945-05-05"), 10, col="#0000BB44", border="transparent")
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Figure 4.13: Incidence rates of testis cancer in the 1936 birth cohort (left), and RR relative to
this (right). We see that there is a considerable effect of birth cohort — it seems to be an effect
og being born during the 1st or 2nd world war (blue shaded areas). ../graph/cont-eff-finB
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16. As an extra exploratory add-on we check out how this works using penalized splines, as
implemented in gam from the mgcv package. The prediction machinery will only work
properly for gam models if the offset is specified in the model formula.

library( mgcv )
mAB <- gam( D ~ s(A,k=40) + s(B,k=40) + offset(log(Y)),

family=poisson, data=testisDK )
gam.check( mAB )

Method: UBRE Optimizer: outer newton
full convergence after 5 iterations.
Gradient range [-3.636088e-11,7.6031e-10]
(score -0.09509876 & scale 1).
Hessian positive definite, eigenvalue range [0.0003441317,0.001268341].
Model rank = 79 / 79

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(A) 39.0 22.0 0.93 0.025
s(B) 39.0 13.1 0.95 0.205

par( mfrow=c(1,2) )
matshade( nd$A, ci.pred( mAB, newdata=nd ), plot=TRUE,

log="y", xlab="Age",
ylab="Testis cancer incidence per 100,000 PY, in 1908 birth cohort",
type="l", lty=1, lwd = 2, col="black",
ylim=c(1,20) )

matshade( nb$B, ci.exp( mAB, ctr.mat=list(nb,nr) ), plot=TRUE,
log="y", xlab="Age", ylab="Testis cancer incidence RR",
type="l", lty=1, lwd=c(3,1,1), col="black",
ylim=c(1,20)/4 )

abline( h=1, v=1936, lty=3 )
rect( cal.yr("1914-07-28"), 0.01, cal.yr("1918-11-11"), 10, col="#0000BB33", border="transparent")
rect( cal.yr("1939-09-01"), 0.01, cal.yr("1945-05-05"), 10, col="#0000BB33", border="transparent")
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Figure 4.14: Results from gam modeling with penalized splines. Incidence rates of testis cancer
in the 1936 birth cohort (left), and RR relative to this (right). We see that there is a considerable
effect of birth cohort — it seems to be an effect of being born during the 1st or 2nd world war
(blue shaded areas). ../graph/cont-eff-fingam
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4.4 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the two
different ways of parametrizing this model. Like the two previous exercises it is based on the
male lung cancer data.

1. First we read the data in the file lung5-M.txt and create the cohort variable:

lung <- read.table( "../data/lung5-M.txt", header=T )
lung$C <- lung$P - lung$A
table( lung$C )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933 1938 1943
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3

1948 1953
2 1

2.

3. We fit the model to have age-parameters that refer to the period 1968–72. The midpoint
of this period is 1970.5, but the periods are coded by their left endpoint, so we need to
enter the value which makes the period 1968–72 appear as 0 in the modelling, in this
case 1968:

mp <- glm( D ~ -1 + factor(A) + I(P-1968),
offset = log(Y),
family = poisson,
data = lung )

round( ci.lin( mp ), 3 )

Estimate StdErr z P 2.5% 97.5%
factor(A)40 -9.109 0.031 -293.874 0 -9.170 -9.048
factor(A)45 -8.160 0.020 -410.865 0 -8.198 -8.121
factor(A)50 -7.316 0.014 -532.685 0 -7.343 -7.289
factor(A)55 -6.669 0.010 -635.353 0 -6.689 -6.648
factor(A)60 -6.215 0.009 -700.201 0 -6.232 -6.197
factor(A)65 -5.928 0.008 -711.117 0 -5.945 -5.912
factor(A)70 -5.766 0.009 -664.004 0 -5.783 -5.749
factor(A)75 -5.778 0.010 -551.170 0 -5.798 -5.757
factor(A)80 -5.914 0.015 -399.872 0 -5.943 -5.885
factor(A)85 -6.179 0.026 -239.209 0 -6.229 -6.128
I(P - 1968) 0.023 0.000 90.699 0 0.023 0.024

The parameters now represent the log-rates in each of the age-classes in the period
1968–72. The period-parameter is the the annual change in log-rates.

However it would be more natural to have the coding of the age and period variables by
the midpoint of the intervals, so we would do:

lung <- transform( lung, A=A+2.5, P=P+2.5 )
mp <- glm( D ~ -1 + factor(A) + I(P-1970.5) + offset( log(Y) ),

family=poisson, data=lung )
ci.lin( mp )[,1:2]
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Estimate StdErr
factor(A)42.5 -9.1092495 0.0309971546
factor(A)47.5 -8.1595330 0.0198594053
factor(A)52.5 -7.3156964 0.0137336273
factor(A)57.5 -6.6687226 0.0104960856
factor(A)62.5 -6.2145792 0.0088754237
factor(A)67.5 -5.9283121 0.0083366244
factor(A)72.5 -5.7664159 0.0086843126
factor(A)77.5 -5.7777950 0.0104827785
factor(A)82.5 -5.9141170 0.0147900073
factor(A)87.5 -6.1787946 0.0258301029
I(P - 1970.5) 0.0233067 0.0002569689

4. We now fit the same model, but with cohort as the continuous variable, centered around
1908:

mc <- glm( D ~ -1 + factor(A) + I(C-1908) + offset( log(Y) ),
family=poisson, data=lung )

ci.lin( mc )[,1:2]

Estimate StdErr
factor(A)42.5 -9.5753836 0.0317010811
factor(A)47.5 -8.5091336 0.0205578133
factor(A)52.5 -7.5487634 0.0142616192
factor(A)57.5 -6.7852561 0.0107586856
factor(A)62.5 -6.2145792 0.0088754237
factor(A)67.5 -5.8117785 0.0081553406
factor(A)72.5 -5.5333488 0.0084736086
factor(A)77.5 -5.4281945 0.0104021596
factor(A)82.5 -5.4479829 0.0148625870
factor(A)87.5 -5.5961271 0.0259850279
I(C - 1908) 0.0233067 0.0002569689

5. We see that the estimated slope (the drift!) is exactly the same as in the period-model,
but the age-estimates are not.

Moreover the two are really the same model just parametrized differently; the residual
deviances are the same:

c( summary( mp )$deviance,
summary( mc )$deviance )

[1] 6417.381 6417.381

6. If we write how the cohort model is parametrized we have:

log(λap) = αa + β(c− 1908)

= αa + β(p− a− 1908)

= [αa + β(62.5− a)] + β(p− 1970.5)

The expression in the square brackets are the age-parameters in the age-period model.
Hence, the age parameters are linked by a simple linear relation, which is easily verified
empirically:
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ap <- ci.lin( mp )[1:10,1]
ac <- ci.lin( mc )[1:10,1]
c.sl <- ci.lin( mc )[11,1]
a.pt <- seq(40,85,5)
cbind( ap, ac + c.sl*(62.5-a.pt) )

ap
factor(A)42.5 -9.109250 -9.050983
factor(A)47.5 -8.159533 -8.101266
factor(A)52.5 -7.315696 -7.257430
factor(A)57.5 -6.668723 -6.610456
factor(A)62.5 -6.214579 -6.156312
factor(A)67.5 -5.928312 -5.870045
factor(A)72.5 -5.766416 -5.708149
factor(A)77.5 -5.777795 -5.719528
factor(A)82.5 -5.914117 -5.855850
factor(A)87.5 -6.178795 -6.120528

7. matshade( a.pt + 2.5, cbind( ci.exp( mp, subset="A" ),
ci.exp( mc, subset="A" ) ) * 10^5, plot=TRUE,

log="y", xlab="Age", ylab="Lung cancer incidence rates / 100,000",
lty=1, lwd=1, col=c("black","blue") )

8. The relative risks are from the model:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the relative risk will be:

RR = δ̂ × x

and the upper and lower confidence bands:

RR = (δ̂ ± 1.96× s.e.(δ))× x

We can find the estimated RRs with confidence intervals using a suitable 1-column
contrast matrix. We of course need a separate one for period and cohort since these
cover different time-spans:

p.pt <- seq(min(lung$P),max(lung$P),,10)+2.5
c.pt <- seq(min(lung$C),max(lung$C),,10)
ctr.p <- cbind( p.pt - 1970.5 )
ctr.c <- cbind( c.pt - 1908 )
matshade( c.pt, ci.exp( mc, subset="C", ctr.mat=ctr.c ), plot=TRUE,

log="y", xlab="Calendar time", ylab="Rate ratio", xlim=c(1850,2000),
type="l", lty=1, lwd=1, col="blue" )

matshade( p.pt, ci.exp( mp, subset="P", ctr.mat=ctr.p ),
type="l", lty=1, lwd=1, col="black" )

abline( h=1, lty=3 )
points( c(1908,1970.5), c(1,1), pch=16 )

The effect of time (the drift) is the same for the two parametrizations, but the
age-specific rates refer either to cross-sectional rates (period drift) or longitudinal rates
(cohort drift).
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Figure 4.15: Age-specific rates from the age-drift model (left) and the rate-ratios as estimated
under the two different parametrizations.
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4.5 Age-period-cohort model

We will need the results from the age-period, the age-cohort and the age-drift models in this
exercise so we briefly fit these models after we have read data.

1. Read the data in the file lung5-M.txt as in the previous exercises, and fit the three
models we discussed so far:

lung <- read.table( "../data/lung5-M.txt", header=T )
str( lung )

'data.frame': 110 obs. of 4 variables:
$ A: int 40 40 40 40 40 40 40 40 40 40 ...
$ P: int 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 ...
$ D: int 80 81 73 99 82 97 86 90 116 149 ...
$ Y: num 694046 754770 769441 749264 757240 ...

m.AP <- glm( D ~ factor(A) + factor(P) + offset( log(Y) ),
family=poisson, data=lung )

m.AC <- glm( D ~ factor(A) + factor(P-A) + offset( log(Y) ),
family=poisson, data=lung )

m.Ad <- glm( D ~ factor(A) + P + offset( log(Y) ),
family=poisson, data=lung )

2. We then fit the age-period-cohort model. Note that there is no such variable as the
cohort in the dataset; we have to compute this as P − A. This is best done on the fly
instead of cluttering up the data frame with another variable. In the same go we fit the
simplest model with age alone:

m.APC <- glm( D ~ factor(A) + factor(P) + factor(P-A),
offset = log(Y),
family = poisson,
data = lung )

m.A <- glm( D ~ factor(A),
offset = log(Y),
family = poisson,
data = lung )

3. We can use anova.glm to test the different models in a sequence that gives all the valid
comparisons:

anova( m.A, m.Ad, m.AP, m.APC, m.AC, m.Ad, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ factor(A)
Model 2: D ~ factor(A) + P + offset(log(Y))
Model 3: D ~ factor(A) + factor(P) + offset(log(Y))
Model 4: D ~ factor(A) + factor(P) + factor(P - A)
Model 5: D ~ factor(A) + factor(P - A) + offset(log(Y))
Model 6: D ~ factor(A) + P + offset(log(Y))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 100 15103.0
2 99 6417.4 1 8685.6 < 2.2e-16
3 90 2723.5 9 3693.9 < 2.2e-16
4 72 208.5 18 2514.9 < 2.2e-16
5 81 829.6 -9 -621.1 < 2.2e-16
6 99 6417.4 -18 -5587.8 < 2.2e-16
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The successive tests refer to:

(a) linear effect of period/cohort

(b) non-linear effect of period

(c) non-linear effect of cohort (in the presence of period)

(d) non-linear effect of period (in the presence of cohort)

(e) non-linear effect of cohort

Clearly, with the large amounts of data that we are dealing with, all of the tests are
strongly significant, but comparing the likelihood ratio statistics there is some indication
that the period curvature (non-linear component) is stronger than the cohort one.

4. When we want to fit models where some of the factor levels are merged or sorted as the
first one, we use the Relevel function to do this (remember to read the help page for
Relevel, which is not the same as relevel):

lung$Pr <- Relevel( factor(lung$P), list("first & last"=c("1943","1993") ) )
lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

We of course check that the results of these operations are as we would like them to be:

with( lung, table(P,Pr) )

Pr
P first & last 1948 1953 1958 1963 1968 1973 1978 1983 1988
1943 10 0 0 0 0 0 0 0 0 0
1948 0 10 0 0 0 0 0 0 0 0
1953 0 0 10 0 0 0 0 0 0 0
1958 0 0 0 10 0 0 0 0 0 0
1963 0 0 0 0 10 0 0 0 0 0
1968 0 0 0 0 0 10 0 0 0 0
1973 0 0 0 0 0 0 10 0 0 0
1978 0 0 0 0 0 0 0 10 0 0
1983 0 0 0 0 0 0 0 0 10 0
1988 0 0 0 0 0 0 0 0 0 10
1993 10 0 0 0 0 0 0 0 0 0

with( lung, table(P-A,Cr) )

Cr
1908 1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1913 1918 1923 1928 1933

1858 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1863 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1868 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
1873 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
1878 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
1883 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
1888 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0
1893 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
1898 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0
1903 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
1908 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1913 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0
1918 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0
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1923 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0
1928 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0
1933 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
1938 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1943 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1948 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1953 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cr
1938 1943 1948 1953

1858 0 0 0 0
1863 0 0 0 0
1868 0 0 0 0
1873 0 0 0 0
1878 0 0 0 0
1883 0 0 0 0
1888 0 0 0 0
1893 0 0 0 0
1898 0 0 0 0
1903 0 0 0 0
1908 0 0 0 0
1913 0 0 0 0
1918 0 0 0 0
1923 0 0 0 0
1928 0 0 0 0
1933 0 0 0 0
1938 4 0 0 0
1943 0 3 0 0
1948 0 0 2 0
1953 0 0 0 1

5. We can now fit the models with these factors:

m.APC1 <- glm( D ~ -1 + factor(A) + factor(Pr) + factor(Cr),
offset = log(Y),
family = poisson,
data = lung )

round( m.APC1$coef, 3 )

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60 factor(A)65
-9.329 -8.335 -7.455 -6.769 -6.242 -5.850

factor(A)70 factor(A)75 factor(A)80 factor(A)85 factor(Pr)1948 factor(Pr)1953
-5.568 -5.440 -5.425 -5.527 0.095 0.105

factor(Pr)1958 factor(Pr)1963 factor(Pr)1968 factor(Pr)1973 factor(Pr)1978 factor(Pr)1983
0.200 0.249 0.311 0.296 0.294 0.249

factor(Pr)1988 factor(Cr)1858 factor(Cr)1863 factor(Cr)1868 factor(Cr)1873 factor(Cr)1878
0.103 -2.640 -2.647 -2.150 -1.851 -1.645

factor(Cr)1883 factor(Cr)1888 factor(Cr)1893 factor(Cr)1898 factor(Cr)1903 factor(Cr)1913
-1.310 -0.853 -0.521 -0.272 -0.079 0.005

factor(Cr)1918 factor(Cr)1923 factor(Cr)1928 factor(Cr)1933 factor(Cr)1938 factor(Cr)1943
0.089 0.180 0.166 0.198 0.089 0.086

factor(Cr)1948 factor(Cr)1953
0.293 0.308

The age-coefficients are log-rates (where the rates are in units person-year−1, the cohort
parameters are log-rate-ratios relative to a trend from the first to the last period.
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6. We can use ci.exp to extract the parameters with confidence limits from this model:

A.eff <- ci.exp( m.APC1, subset="A" )
P.eff <- rbind( c(1,1,1),

ci.exp( m.APC1, subset="P" ),
c(1,1,1) )

C.ref <- match( "1908", levels( with(lung,factor(P-A)) ) )
C.eff <- rbind( ci.exp( m.APC1, subset="C" )[1:(C.ref-1),],

c(1,1,1),
ci.exp( m.APC1, subset="C" )[C.ref:(nlevels(lung$Cr)-1),] )

In order to plot these we need the time points on the respective scales:

A.pt <- sort( unique( lung$A ) ) + 2.5
P.pt <- sort( unique( lung$P ) ) + 2.5
C.pt <- sort( unique( lung$P-lung$A ) )

Then we can plot the estimated effects

par( mfrow=c(1,3), las=2 )
matshade( A.pt, A.eff, plot=TRUE,

xlab="Age", ylab="Rates", log="y" )
matshade( P.pt, P.eff, plot=TRUE,

xlab="Period", ylab="RR", log="y" )
abline( h=1 )
matshade( C.pt, C.eff, plot=TRUE,

xlab="Cohort", ylab="RR", log="y" )
abline( h=1 )
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Figure 4.16: Estimates of the age-period-cohort model effects — with first and last period as
reference and cohort 1908 as reference.
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This is is not a particularly informative plot, as the scales are all different — the rates
are between 10−4 and 5× 10−3, whereas the cohort RRs are between 0.05 and slightly
more than 1. So if we rescale the rate to rates per 1000, and then demand that all
display have y-axis from 0.05 to 5, we get comparable displays:

par( mfrow=c(1,3), las=2 )
matshade( A.pt, A.eff*1000, plot=TRUE,

xlab="Age", ylab="Rates", ylim=c(0.1,4), log="y" )
matshade( P.pt, P.eff, plot=TRUE,

xlab="Period", ylab="RR", ylim=c(0.1,4)/2, log="y" )
abline( h=1 )
matshade( C.pt, C.eff, plot=TRUE,

xlab="Cohort", ylab="RR", ylim=c(0.1,4)/2, log="y" )
abline( h=1 )
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Figure 4.17: Estimates of the age-period-cohort model estimates, scaled displays.

The parameters in this model represent age-specific rates, that approximates the rates
in the 1980 cohort (as predicted. . . ), cohort RRs relative to this cohort, and finally
period ”residual” RRs.

But note an explicit decision has been made as to how the period residuals are defined;
namely as the deviations from the line between the periods 1943 and 1993.

7. We now fit the model with two cohorts aliased and one period as fixpoint. To decide
which of the cohort to alias (and define as the first level of the factor) we tabulate no of
observations and no of cases

with( lung, table(P-A) )
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1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933 1938 1943
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3

1948 1953
2 1

with( lung, tapply(D,list(P-A),sum) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928
7 30 134 371 752 1436 2822 4668 6934 9305 10873 10468 9438 8010 5040

1933 1938 1943 1948 1953
3036 1536 827 400 91

Rater arbitrarily we decide on 1878 and 1933; the numbers of these in the cohort
numbers are computed by:

( C.ref.pos <- with( lung, match( c("1878","1933"), levels( factor(P-A) ) ) ) )

[1] 5 16

( P.ref.pos <- with( lung, match( "1973", levels( factor(P) ) ) ) )

[1] 7

lung$Cx <- Relevel( factor(lung$P-lung$A), list("first-last"=c("1878","1933") ) )
lung$Px <- Relevel( factor(lung$P), "1973" )

With these definitions we can now fit the model with the alternative parametrization:

m.APC2 <- glm( D ~ -1 + factor(A) + factor(Px) + factor(Cx) + offset( log(Y) ),
family=poisson, data=lung )

We note that it is only the parametrization that differs; the fitted model is the same:

c(summary( m.APC )$deviance,
summary( m.APC1 )$deviance,
summary( m.APC2 )$deviance )

[1] 208.5476 208.5476 208.5476

8. We use the same points for the age, period and cohort as before, but now extract the
parameters in a slightly different way:

A.Eff <- ci.exp( m.APC2, subset="A" )
P.Eff <- ci.exp( m.APC2, subset="P" )
nP <- nrow(P.Eff)
P.Eff <- rbind( P.Eff[1:(P.ref.pos-1),],c(1,1,1),P.Eff[P.ref.pos:nP,])
C.Eff <- ci.exp( m.APC2, subset="C" )
nC <- nrow(C.Eff)
C.Eff <- rbind(C.Eff[1:(C.ref.pos[1]-1),],

c(1,1,1),
C.Eff[(C.ref.pos[1]):(C.ref.pos[2]-2),],
c(1,1,1),
C.Eff[(C.ref.pos[2]-1):nC,] )
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We can now plot the two sets of parameters in the same plots:

par( mfrow=c(1,3), las=2, mar=c(4,3,0.5,0.5), mgp=c(3,1,0)/1.6 )
matshade( A.pt, cbind(A.eff,A.Eff)*1000, plot=TRUE,

xlab="Age", ylab="Rates", ylim=c(0.1,4),
log="y", col=c("black","blue") )

matshade( P.pt, cbind(P.eff,P.Eff), plot=TRUE,
xlab="Period", ylab="RR", ylim=c(0.1,4)/2,
log="y", col=c("black","blue") )

abline( h=1 )
points( c(1943,1993,1973)+2.5, rep(1,3), pch=16, col=c("black","blue")[c(1,1,2)])
matshade( C.pt, cbind(C.eff,C.Eff), plot=TRUE,

xlab="Cohort", ylab="RR", ylim=c(0.1,4)/2,
log="y", col=c("black","blue") )

points( c(1878,1933,1908), rep(1,3), pch=16, col=c("black","blue")[c(2,2,1)])
abline( h=1 )

It is clear from the estimates that very different displays can be obtained from different
parametrizations. So something more interpretable may be needed. . .
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Figure 4.18: Estimates of the age-period-cohort model estimates, from the two different
parametrizations. ../graph/APC-parm3

9. A more credible parametrization of the APC-model can be obtained using the apc.fit

function from the Epi package. It offers different parametrizations of different models.
One possible model to use is the one we just fitted namely the model with one
parameter per level of age, period and cohort (using model=’factor’). Additional to
this we must specifiy the principle of parametrization:

• "ACP" gives age-specific rates, cohort specific rate ratios relative to cohort ref.c,
and period specific rate-ratio residuals, constrained to have 0 slope on average and
0 on average.
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• "APC" gives age-specific rates, period specific rate ratios relative to period ref.p,
and cohort specific rate-ratio residuals, constrained to have 0 slope on average and
0 on average.

The paramtrization is dependent on what we mean by “0 slope on average and 0 on
average”. In essence, this boils down to choosing a definition of orthogonality —
essentially an inner product in the observation space, as explained in the lectures.

The default is to choose an inner product that weighs observations according to the
number of events in each unit of observation, proportional to the observed information
about the log-rate in each (minus the 2nd derivative of the log-likelihood w.r.t. the
log-rate.)

Now fit the factor model with two different parametrizations:

f.cp <- apc.fit( lung, model = "factor", parm = "ACP", ref.c=1908, scale=1000 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 100 15103.0
Age-drift 99 6417.4 1 8685.6 < 2.2e-16
Age-Cohort 81 829.6 18 5587.8 < 2.2e-16
Age-Period-Cohort 72 208.5 9 621.1 < 2.2e-16
Age-Period 90 2723.5 -18 -2514.9 < 2.2e-16
Age-drift 99 6417.4 -9 -3693.9 < 2.2e-16

f.pc <- apc.fit( lung, model = "factor", parm = "APC", ref.p=1968, scale=1000 )

[1] "ML of APC-model Poisson with log(Y) offset : ( APC ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 100 15103.0
Age-drift 99 6417.4 1 8685.6 < 2.2e-16
Age-Cohort 81 829.6 18 5587.8 < 2.2e-16
Age-Period-Cohort 72 208.5 9 621.1 < 2.2e-16
Age-Period 90 2723.5 -18 -2514.9 < 2.2e-16
Age-drift 99 6417.4 -9 -3693.9 < 2.2e-16

names( f.pc )

[1] "Type" "Model" "Age" "Per" "Coh" "Drift" "Ref" "Anova"

One of the components of the result is teh Drift which is the average secular trend
extracted from the model (for the given inner product)

f.cp$Drift

exp(Est.) 2.5% 97.5%
APC (D-weights) 1.01987 1.019272 1.020468
A-d 1.02358 1.023065 1.024096

f.pc$Drift
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exp(Est.) 2.5% 97.5%
APC (D-weights) 1.01987 1.019272 1.020468
A-d 1.02358 1.023065 1.024096

The drift is independent of the chosen parametrization, but different from the drift
parameter in the age-drift model. It also depends on the chosen inner product — of
which 4 possible are directly available in apc.fit:

( drifts <- rbind(
apc.fit( lung, model="factor", dr="d", pr=FALSE )$Drift,
apc.fit( lung, model="factor", dr="r", pr=FALSE )$Drift,
apc.fit( lung, model="factor", dr="y", pr=FALSE )$Drift,
apc.fit( lung, model="factor", dr="n", pr=FALSE )$Drift)[c(2,1,3,5,7),] )

No reference period given:
Reference period for age-effects is chosen as
the median date of birth for persons with event: 1913 .
No reference period given:
Reference period for age-effects is chosen as
the median date of birth for persons with event: 1913 .
No reference period given:
Reference period for age-effects is chosen as
the median date of birth for persons with event: 1913 .
No reference period given:
Reference period for age-effects is chosen as
the median date of birth for persons with event: 1913 .

exp(Est.) 2.5% 97.5%
A-d 1.023580 1.023065 1.024096
APC (D-weights) 1.019870 1.019272 1.020468
APC (Y2/D-weights) 1.017361 1.015949 1.018775
APC (Y-weights) 1.021348 1.020444 1.022253
APC (1-weights) 1.032769 1.031537 1.034003

It appears that in this case the drift allocated by the naive inner producr allocates the
largest increase (3.3%/year), whereas the other options are in the vicinity of 2%/year.

10. The default plot method (plot.apc) to show the estimates in a single graph for all three
allowing comparison of effects because the scaling of both x- and y-axis is the same for
all effects. We add confidence intervals in various ways by using pc.matshade:

par( mar=c(3,4,0,4), las=1 )
plot( f.cp, lwd=1, r.txt="Male lungcancer incidence in Denmark, per 1000 PY" )

cp.offset RR.fac
1765 1

matshade( f.cp$Age[,1], f.cp$Age[,-1] )
pc.matshade( f.cp$Per[,1], f.cp$Per[,-1] )
pc.matshade( f.cp$Coh[,1], f.cp$Coh[,-1] )

matshade( f.pc$Age[,1], f.pc$Age[,-1], col="blue" )
pc.matshade( f.pc$Per[,1], f.pc$Per[,-1], col="blue" )
pc.matshade( f.pc$Coh[,1], f.pc$Coh[,-1], col="blue" )
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Figure 4.19: The factor APC-model for male lung cancer in Denmark, using cohort major
(black) or period major (blue) paramtrization. ../graph/APC-pc-cp

11. Finally, we fit a model with natural splines — this is the default model used by
apc.fit; the default is to use 5 knots for each of the three effects, placed so that the
number of events between each pair of knots is the same. We add the estimates from
this to the plots of the previous models:

s.cp <- apc.fit( lung, parm = "ACP", ref.c=1908, scale=1000 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 105 15242.0
Age-drift 104 6564.0 1 8678.0 < 2.2e-16
Age-Cohort 101 1016.4 3 5547.6 < 2.2e-16
Age-Period-Cohort 98 419.3 3 597.1 < 2.2e-16
Age-Period 101 2910.5 -3 -2491.3 < 2.2e-16
Age-drift 104 6564.0 -3 -3653.5 < 2.2e-16

par( mar=c(3,4,0,4), las=1 )
plot( f.cp, lwd=1, r.txt="Male lungcancer incidence in Denmark, per 1000 PY" )
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cp.offset RR.fac
1765 1

matshade( f.cp$Age[,1], f.cp$Age[,-1] )
pc.matshade( f.cp$Per[,1], f.cp$Per[,-1] )
pc.matshade( f.cp$Coh[,1], f.cp$Coh[,-1] )

matshade( f.pc$Age[,1], f.pc$Age[,-1], col="blue" )
pc.matshade( f.pc$Per[,1], f.pc$Per[,-1], col="blue" )
pc.matshade( f.pc$Coh[,1], f.pc$Coh[,-1], col="blue" )

matshade( s.cp$Age[,1], s.cp$Age[,-1], col="forestgreen" )
pc.matshade( s.cp$Per[,1], s.cp$Per[,-1], col="forestgreen" )
pc.matshade( s.cp$Coh[,1], s.cp$Coh[,-1], col="forestgreen" )
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Figure 4.20: The factor APC-model for male lung cancer in Denmark, using cohort major
(black) or period major (blue) paramtrization, with the cohort major parametrization of the
spline model overlaid in green. ../graph/APC-pc-cp-sp

We see that there are no major differences between the two types of models — the
advantage is that the smooth effects are more credible from a substantial point of view.
The factor model bases the effects associated with the first and last few cohorts on very
little information; it does not use the quantitative information about the date of birth
(cohort).
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The curves from the last model suggests that there is not much difference between birth
cohorts after 1910, and that seem to be a calendar time decline in rates. However we
should keep in mind that the model is also compatible with a decrease in cohort effects
and a steep increase in period effects.

Incidentally, the estimated drifts are also different from those from the factor model:

Dr <- cbind( drifts, rbind(
apc.fit( lung, dr="d", parm="APC", pr=FALSE )$Drift,
apc.fit( lung, dr="r", parm="APC", pr=FALSE )$Drift,
apc.fit( lung, dr="y", parm="APC", pr=FALSE )$Drift,
apc.fit( lung, dr="n", parm="APC", pr=FALSE )$Drift)[c(2,1,3,5,7),] )

No reference period given:
Reference period for age-effects is chosen as
the median date of event: 1978 .
No reference period given:
Reference period for age-effects is chosen as
the median date of event: 1978 .
No reference period given:
Reference period for age-effects is chosen as
the median date of event: 1978 .
No reference period given:
Reference period for age-effects is chosen as
the median date of event: 1978 .

colnames( Dr )[c(1,4)] <- c("Factor","Spline")
round( (Dr-1)*100, 2 )

Factor 2.5% 97.5% Spline 2.5% 97.5%
A-d 2.36 2.31 2.41 2.36 2.31 2.41
APC (D-weights) 1.99 1.93 2.05 1.98 1.92 2.04
APC (Y2/D-weights) 1.74 1.59 1.88 1.63 1.53 1.74
APC (Y-weights) 2.13 2.04 2.23 2.09 2.01 2.17
APC (1-weights) 3.28 3.15 3.40 3.26 3.19 3.34

Thus, there is no such thing as an “identifiable trend”.
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4.6 APC and Lee-Carter models

This exercise is parallel to the example on male lung cancer from the lectures. The point is to
fit age-period-cohort models as well as Lee-Carter models and inspect their relative merits
and different fits to data on female lung cancer in Denmark.

1. First we read the lung-cancer data and subset it to women only:

library( Epi )
lC <- read.table( "../data/lung-mf.txt", header=TRUE )
lF <- subset( lC, sex==2 )
head( lF )

sex A P C Y D A5 P5 C5
5401 2 40.66667 1943.333 1902.667 14631.33 0 40 1943 1898
5402 2 40.33333 1943.667 1903.333 14488.00 1 40 1943 1903
5403 2 40.66667 1944.333 1903.667 14457.67 0 40 1943 1903
5404 2 40.33333 1944.667 1904.333 15011.00 1 40 1943 1903
5405 2 40.66667 1945.333 1904.667 14912.83 0 40 1943 1903
5406 2 40.33333 1945.667 1905.333 14946.83 0 40 1943 1903

2. In order to get a rough picture of data, we tabulate the data in 5-year classes by age and
period (using rates per 1000):

t5 <- xtabs( cbind(D,Y=Y/1000) ~ A5 + P5, data=lF )
str( t5 )

xtabs [1:10, 1:11, 1:2] 15 23 28 53 44 67 35 29 16 5 ...
- attr(*, "dimnames")=List of 3
..$ A5: chr [1:10] "40" "45" "50" "55" ...
..$ P5: chr [1:11] "1943" "1948" "1953" "1958" ...
..$ : chr [1:2] "D" "Y"
- attr(*, "call")= language xtabs(formula = cbind(D, Y = Y/1000) ~ A5 + P5, data = lF)

r5 <- t5[,,"D"]/t5[,,"Y"]

These rates are now fed to rateplot to give a rough graphical overview of the rates

par( mfrow=c(2,2),mar=c(3,3,0,0),oma=c(0,0,1,0),mgp=c(3,1,0)/1.6,bty="n",las=1 )
rateplot( r5*100, ylab="", col=heat.colors(20)[1:20], lwd=3 )
mtext( "Lung cancer rates per 100,000 PY in Danish women", outer=TRUE )

3. When fitting APC-models and Lee-Carter models we will use natural splines for
description of effects, so we must devise knots on the age and time-scales for the splines.
Since the information in the data on event rates is in the number of cases, we would like
to place the n knots such that there is 1/n between each pair of successive knots and
1/2n below the first and above the last knot.

We then devise 6 knots (number taken out of thin air) for each term:

nk <- 6
( a.kn <- with( lF, quantile( rep( A,D), probs=(1:nk-0.5)/nk ) ) )



Solutions 4.6 APC and Lee-Carter models 65

40 50 60 70 80

2

5

10

20

50

100

200

Age at diagnosis

40 50 60 70 80

2

5

10

20

50

100

200

Age at diagnosis

1950 1960 1970 1980 1990

2

5

10

20

50

100

200

Date of diagnosis

1860 1880 1900 1920 1940

2

5

10

20

50

100

200

Date of birth

Lung cancer rates per 100,000 PY in Danish women

Figure 4.21: Lung cancer rates in Danish women, by 5-year classes. ../graph/LCa-lungF-rates

8.333333% 25% 41.66667% 58.33333% 75% 91.66667%
50.33333 58.66667 64.33333 68.66667 74.33333 80.66667

( p.kn <- with( lF, quantile( rep(P ,D), probs=(1:nk-0.5)/nk ) ) )

8.333333% 25% 41.66667% 58.33333% 75% 91.66667%
1963.333 1975.667 1982.667 1987.333 1991.667 1995.333

( c.kn <- with( lF, quantile( rep(P-A,D), probs=(1:nk-0.5)/nk ) ) )

8.333333% 25% 41.66667% 58.33333% 75% 91.66667%
1892.667 1906.500 1914.333 1920.667 1926.667 1936.333

4. The fitting of the APC-model and the sub-models is done by the function apc.fit:

APC <- apc.fit( lF, npar=list(A=a.kn,P=p.kn,C=c.kn),
ref.p=1980, ref.c=1930, scale=10^3 )
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[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5394 17825.4
Age-drift 5393 6620.7 1 11204.7 < 2.2e-16
Age-Cohort 5389 6281.6 4 339.1 < 2.2e-16
Age-Period-Cohort 5385 5997.0 4 284.6 < 2.2e-16
Age-Period 5389 6448.2 -4 -451.2 < 2.2e-16
Age-drift 5393 6620.7 -4 -172.5 < 2.2e-16

Because of the very large number of events, the non-linear effects of both period and
cohort are strongly significant, the period effect a little less so, though.

5. We can then plot the estimated effects using plot.apc — remember that the object APC
is of class apc:

par( mar=c(3,4,0,4), mgp=c(3,1,0)/1.6, las=1, bty="n")
plot( APC, "Female lung cancer in Danmark per 100,000 PY", col="red" )

cp.offset RR.fac
1765 1

6. For comparison we fit the two Lee-Carter models — note we are

LCaP <- LCa.fit( lF, npar=list(a=a.kn,p=p.kn,pi=a.kn,c=c.kn,ci=a.kn),
a.ref=60, p.ref=1980, model="APa",
VC=TRUE, quiet=FALSE )

Deviances: model(AT) model(A) Rel. diff.
Iteration 1 6128.423 6144.707 0.0521808
Iteration 2 6128.230 6128.233 0.0026883
Iteration 3 6128.230 6128.230 0.0000005
LCa.fit convergence in 3 iterations, deviance: 6128.23 on 5384 d.f.
...using 2 seconds.
...computing Hessian by numerical differentiation...
...done - in 0.8 seconds.

LCaC <- LCa.fit( lF, npar=list(a=a.kn,p=p.kn,pi=a.kn,c=c.kn,ci=a.kn),
a.ref=60, p.ref=1930, model="ACa",
VC=T, quiet=FALSE )

Deviances: model(AT) model(A) Rel. diff.
Iteration 1 6210.612 6241.592 0.0114222
Iteration 2 6161.526 6183.765 0.0093514
Iteration 3 6125.760 6142.015 0.0067974
Iteration 4 6099.897 6111.621 0.0049733
Iteration 5 6081.539 6089.830 0.0035782
Iteration 6 6068.762 6074.512 0.0025217
Iteration 7 6060.024 6063.944 0.0017427
Iteration 8 6054.136 6056.771 0.0011843
Iteration 9 6050.215 6051.967 0.0007939
Iteration 10 6047.628 6048.782 0.0005265
Iteration 11 6045.933 6046.688 0.0003463
Iteration 12 6044.827 6045.320 0.0002264
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Figure 4.22: Standard plot of APC-effects for female lung cancer in Denmark 1943–1997.
../graph/LCa-lungF-plotAPC

Iteration 13 6044.110 6044.429 0.0001473
Iteration 14 6043.645 6043.852 0.0000955
Iteration 15 6043.345 6043.478 0.0000618
Iteration 16 6043.151 6043.237 0.0000399
Iteration 17 6043.026 6043.081 0.0000258
Iteration 18 6042.945 6042.981 0.0000166
Iteration 19 6042.893 6042.916 0.0000107
Iteration 20 6042.860 6042.875 0.0000069
Iteration 21 6042.838 6042.848 0.0000044
Iteration 22 6042.825 6042.831 0.0000029
Iteration 23 6042.816 6042.820 0.0000018
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Iteration 24 6042.810 6042.812 0.0000012
Iteration 25 6042.806 6042.808 0.0000008
LCa.fit convergence in 25 iterations, deviance: 6042.808 on 5384 d.f.
...using 15.2 seconds.
...computing Hessian by numerical differentiation...
...done - in 1.1 seconds.

We can compare the fit as measured by deviance between the Lee-Carter models and
the APC-model and its submodels:

round( rbind( c( LCaP$df, LCaP$dev ),
c( LCaC$df, LCaC$dev ) ), 1 )

[,1] [,2]
[1,] 5384 6128.2
[2,] 5384 6042.8

APC$Anova

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5394 17825.4
Age-drift 5393 6620.7 1 11204.7 < 2.2e-16
Age-Cohort 5389 6281.6 4 339.1 < 2.2e-16
Age-Period-Cohort 5385 5997.0 4 284.6 < 2.2e-16
Age-Period 5389 6448.2 -4 -451.2 < 2.2e-16
Age-drift 5393 6620.7 -4 -172.5 < 2.2e-16

We see that the APC-model provides a better fit to data as judged by the deviance, but
also that the cohort-version of the Lee-Carter model is much better than the
period-version — and of course that the Lee-Carter models are better than the
age-period, resp. age-cohort models, simply because they are extensions of these.

7. We can plot the estimated effects with the devised plot method for LCa objects:

par( mfrow=c(2,3) )
plot( LCaP )
plot( LCaC )
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Figure 4.23: Estimated effects from the Lee-Carter model with period-interaction (top pan-
els), resp. cohort-interaction (bottom panels) for female lung cancer in Denmark 1943–97.
Obviously some instability has crept in in the cohort model (bottom) — remains to be fixed.
../graph/LCa-lungF-LCaplot
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8. We may get a better view of the behaviour of the different models, we can plot the
predicted rates over the time-span of the data frame at select ages, in this case 50, 60, 70
and 80. We put NAs between the age-classes in order to be able to plot rates in one go:

p.pt <- 1950:1997 ; np <- length(p.pt)
a.pt <- 5:8*10 ; na <- length(a.pt)
nd <- data.frame( A = rep(a.pt,each=np+1),

P = rep(c(NA,p.pt), na),
Y = 1000 )[-1,]

The models fitted in the apc.fit are using specially designed matrices designed to give
the desired parametrizations and are therefore not suitable for predictions, so we fit the
models explicitly:

AP <- glm( D ~ Ns(A,knots=a.kn)+Ns(P,knots=p.kn),
offset=log(Y), family=poisson, data=lF )

AC <- glm( D ~ Ns(A,knots=a.kn)+ Ns(P-A,knots=c.kn),
offset=log(Y), family=poisson, data=lF )

APC <- glm( D ~ Ns(A,knots=a.kn)+Ns(P,knots=p.kn)+Ns(P-A,knots=c.kn),
offset=log(Y), family=poisson, data=lF )

With these models we can now produce the fitted rates under each of the models:

fAP <- ci.pred( AP , nd )
fAC <- ci.pred( AC , nd )
fAPC <- ci.pred( APC, nd )
fLCaP <- predict( LCaP, nd, sim=10000 )*1000
fLCaC <- predict( LCaC, nd, sim=10000 )*1000

And then we can show the age-specific rates both by period and cohort:

ppm <-
function( prd, mod )
{
matplot( nd$P-nd$A, prd, type="l", lwd=c(2,1,1), lty=c(1,3,3), col="black", log="y",

ylim=c(0.05,3), xlim=1860+c(0,90), ylab="", xlab="Date of birth" )
text( 1860, 2, mod, adj=c(0,1) )
matplot( nd$P , prd, type="l", lwd=c(2,1,1), lty=c(1,3,3), col="black", log="y",

ylim=c(0.05,3), xlim=1920+c(0,90), ylab="", xlab="Date of event" )
text( 1920, 2, mod, adj=c(0,1) )
}
par( mfcol=c(2,5), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
ppm( fAP , "Age-Period")
ppm( fLCaP, "Lee-Carter-Period")
ppm( fAPC , "Age-Period-Cohort")
ppm( fLCaC, "Lee-Carter Cohort")
ppm( fAC , "Age-Cohort")

We could also show age-specific rates at select dates or age-specific rates in select
cohorts, which most conveniently are derived by redefining the nd prediction data frame.
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Figure 4.24: Comparison of predicted rates from different models, top panels are rates in ages
50, 60, 70 and 80 as they evolve by date of birth; bottom panels as they evolve by date of
observation. ../graph/LCa-lungF-fL-cmpt

# Age-specific rates by period
p.pt <- 1950+0:4*10 ; np <- length(p.pt)
a.pt <- 40:90 ; na <- length(a.pt)
nd <- data.frame( A = rep(a.pt, np),

P = rep(p.pt,each=na),
Y = 1000 )

nd <- rbind( nd[ 1:na,], NA,
nd[1*na+1:na,], NA,
nd[2*na+1:na,], NA,
nd[3*na+1:na,], NA,
nd[4*na+1:na,] )

pAP <- ci.pred( AP , nd )
pAC <- ci.pred( AC , nd )
pAPC <- ci.pred( APC, nd )
pLCP <- predict( LCaP, nd, sim=10000 )*1000
pLCC <- predict( LCaC, nd, sim=10000 )*1000
# Age-specific rates by cohort
c.pt <- 1870+0:8*10 ; nc <- length(c.pt)
a.pt <- 40:90 ; na <- length(a.pt)
nc <- data.frame( A = rep(a.pt, nc),

C = rep(c.pt,each=na),
Y = 1000 )

nc <- rbind( nc[ 1:na,], NA,
nc[1*na+1:na,], NA,
nc[2*na+1:na,], NA,
nc[3*na+1:na,], NA,
nc[4*na+1:na,], NA,
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nc[5*na+1:na,], NA,
nc[6*na+1:na,], NA,
nc[7*na+1:na,], NA,
nc[8*na+1:na,] )

nc$P <- nc$C + nc$A
nc <- subset( nc, (P>1943 & P<2000) | is.na(A) )
cAP <- ci.pred( AP , nc )
cAC <- ci.pred( AC , nc )
cAPC <- ci.pred( APC , nc )
cLCP <- predict( LCaP, nc, sim=10000 )*1000
cLCC <- predict( LCaC, nc, sim=10000 )*1000

ppm <-
function( prp, prc, mod )
{
matplot( nd$A, prp, type="l", lty=1, lwd=c(3,1,1), col="black", log="y",

ylim=c(0.02,2), xlim=c(30,90), ylab="", xlab="Age" )
text( 30, 2, mod, adj=c(0,1) )
matplot( nc$A, prc, type="l", lty=1, lwd=c(3,1,1), col="black", log="y",

ylim=c(0.02,2), xlim=c(30,90), ylab="", xlab="Age" )
text( 30, 2, mod, adj=c(0,1) )
}
par( mfcol=c(2,5), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
ppm( pAP , cAP , "Age-Period")
ppm( pLCP, cLCP, "Lee-Carter-Period")
ppm( pAPC, cAPC, "Age-Period-Cohort")
ppm( pLCC, cLCC, "Lee-Carter Cohort")
ppm( pAC , cAC , "Age-Cohort")
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Figure 4.25: Comparison of predicted rates from different models, top panels are age-specific
rates at dates 1950, 1960, . . . 1990; bottom panels are age-spcific rates for dates of birth 1870,
1880,. . . 1950. ../graph/LCa-lungF-fL-cmpa
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4.7 Prediction of breast cancer rates

1. First we read the data and take an overview:

library( Epi )
breast <- read.table("../data/breast.txt", header=T )
str( breast )

'data.frame': 10980 obs. of 5 variables:
$ A: int 0 0 0 0 0 0 0 0 0 0 ...
$ P: int 1943 1943 1944 1944 1945 1945 1946 1946 1947 1947 ...
$ C: int 1942 1943 1943 1944 1944 1945 1945 1946 1946 1947 ...
$ D: int 0 0 0 0 0 0 0 0 0 0 ...
$ Y: num 18649 19946 19854 21265 21236 ...

summary( breast )

A P C D Y
Min. : 0.0 Min. :1943 Min. :1853 Min. : 0.00 Min. : 385.2
1st Qu.:22.0 1st Qu.:1958 1st Qu.:1905 1st Qu.: 0.00 1st Qu.:11059.5
Median :44.5 Median :1973 Median :1928 Median : 9.00 Median :14538.3
Mean :44.5 Mean :1973 Mean :1928 Mean :12.11 Mean :13555.2
3rd Qu.:67.0 3rd Qu.:1988 3rd Qu.:1951 3rd Qu.:21.00 3rd Qu.:17767.2
Max. :89.0 Max. :2003 Max. :2003 Max. :69.00 Max. :22549.0

2. The variables A, P and C are just the left end points of the 1-year classes forming the
Lexis triangles, so we must replace these with the correct triangle means. Recall that
the upper triangles are characterized by the cohort being from the previous year, i.e.
that p− a− c = 1.

breast <- transform( breast, up = P-A-C )
breast <- transform( breast, A = A+(1+up)/3,

P = P+(2-up)/3,
C = C+(1+up)/3 )

with( breast, summary( P-A-C ) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.274e-13 -2.274e-13 0.000e+00 0.000e+00 2.274e-13 2.274e-13

head( breast )

A P C D Y up
1 0.6666667 1943.333 1942.667 0 18648.83 1
2 0.3333333 1943.667 1943.333 0 19946.50 0
3 0.6666667 1944.333 1943.667 0 19853.67 1
4 0.3333333 1944.667 1944.333 0 21265.00 0
5 0.6666667 1945.333 1944.667 0 21235.67 1
6 0.3333333 1945.667 1945.333 0 22407.00 0

3. In order to use ratetab we must produce a matrix classified by age and period in
suitable intervals. This can be done choosing a tabulation interval length and then using
this in producing the tables. This approach enables a simple way of experimenting with
the length. Figure ?? shows the results.
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ti <- 4
rt <- with( subset( breast, A>30 ),

tapply( D, list(floor( A /ti)*ti+ti/2,
floor((P-1943)/ti)*ti+ti/2+1943), sum ) /

tapply( Y, list(floor( A /ti)*ti+ti/2,
floor((P-1943)/ti)*ti+ti/2+1943), sum ) * 10^5 )

par( mfrow=c(2,2), mar=c(3,3,0,0), oma=c(0,0,1,1), mgp=c(3,1,0)/1.6 )
rateplot( rt, which= c( "ap", "ac", "pa", "ca"),

col=heat.colors(22), ann=TRUE )



76 4.7 Prediction of breast cancer rates APC models

30 40 50 60 70 80 90

10

20

50

100

200

Age at diagnosis

R
at

es

 1945

 1953

 1961 1969
 1977
 1985

 1993

 2001

30 40 50 60 70 80 90

10

20

50

100

200

Age at diagnosis

R
at

es

 1859

 1867 1875
 1883

 1891
 1899

 1907

 1915

 1923 1931

 1939

 1947

 1955
 1963

 1971

1950 1970 1990 2010

10

20

50

100

200

Date of diagnosis

R
at

es

 30

 38

 46

 54
 62

 70

 78

 86

1860 1900 1940 1980

10

20

50

100

200

Date of birth

R
at

es

 30

 38

 46

 54
 62

 70

 78

 86

Figure 4.26: Danish breast cancer rates in 4-year age and period intervals.
../graph/brcapr-ratetab
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4. We use apc.fit to fit a model with age, period and cohort effects as natural splines
(the default), and the plot method for apc objects to plot the estimated effects:

par( mfrow=c(1,1), mar=c(3,3,1,3) )
m1 <- apc.fit( subset( breast, A>30 ),

npar = c(8,6,10),
ref.c = 1920,
scale = 10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 7312 16427.7
Age-drift 7311 10364.3 1 6063.4 < 2.2e-16
Age-Cohort 7303 9297.4 8 1066.9 < 2.2e-16
Age-Period-Cohort 7299 9208.2 4 89.2 < 2.2e-16
Age-Period 7307 10267.8 -8 -1059.7 < 2.2e-16
Age-drift 7311 10364.3 -4 -96.4 < 2.2e-16

plot( m1 )

cp.offset RR.fac
1764 100
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Figure 4.27: Estimates of age- period- and cohort effects plotted the default way. Note that
Clemmesen’s hook shows up very clearly in the age-effect. ../graph/brcapr-apcfit-1

The plot (figure 4.27) is not impressive, so we fine-tune the details by defining them
explicit in apc.frame. This piece of code is made by copying the definition of all
parameters from the help page and successively filling them in with suitable values:

par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
fp <- apc.frame( a.lab = seq(30,90,10),

cp.lab = seq(1860,2005,20),
r.lab = c(c(1,2,5)*10,c(1,2,5)*100),

# rr.lab = r.lab / rr.ref,
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rr.ref = 100,
a.tic = seq(30,90,5),
cp.tic = seq(1855,2005,5),
r.tic = c(9,1:9*10,1:5*100),

# rr.tic = r.tic / rr.ref,
tic.fac = 1.3,
a.txt = "Age",
cp.txt = "Calendar time",
r.txt = "Rate per 100,000 person-years",
rr.txt = "Rate ratio",

gap = 8,
col.grid = gray(0.85),

sides = c(1,2,4) )
lines( m1, ci=T, col="red" )

matshade( m1$Age[,1], m1$Age[,-1], col="red" )
pc.matshade( m1$Per[,1], m1$Per[,-1], col="red" )
pc.matshade( m1$Coh[,1], m1$Coh[,-1], col="red" )
pc.points( 1920, 1, pch=16, col="red" )
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Figure 4.28: Estimates of age- period- and cohort effects plotted after fine tuning the display
using apc.frame ../graph/brcapr-apcfit-2

5. In order to extend the period and cohort effects beyond the range where we have data
support (that is the range available in the elements Age, Per and Coh of the apc object
m1), we first define the prediction points and the anchor points on the period scale. We
could use arbitrary anchor points, or we could use the last knot and the highest
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observed period/cohort, and use the property that the natural splines are linear beyond
the last knot.

This is simply using the fitted model beyond the observed data, so predicting rates
becomes very simple this way.

We illustrate the parameter extrapolations used we must find the last knot and the last
point (well, any point beyond the last knot), use these as anchor points and then draw a
straight line through the predictions at these two points. We compute the predicted
values at the end and at 2020:

# Last knot and last point on period scale
( P.rf <- c( max(m1$Knots$Per), max(m1$Per[,1]) ) )

[1] 2000.667 2003.667

# Last point plus one 20 years ago
( P.pt <- P.rf[2] + 0:1*20 )

[1] 2003.667 2023.667

# Linear interpolation of log-rates at the two reference points
( Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y )

[1] -0.02962215 -0.05586549

# Liner extrapoltion throug these two points to the future points
( P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2]) )

[1] -0.05586549 -0.23082109

The same thing done on the cohort scale:

( C.rf <- c( max( m1$Knots$Coh ), max( m1$Coh[,1] ) ) )

[1] 1950.667 1973.333

( C.pt <- C.rf[2] + 0:1*20 )

[1] 1973.333 1993.333

( Cp <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.rf )$y )

[1] 0.4427635 0.2324068

( C.eff <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt-C.rf[2]) )

[1] 0.23240679 0.04679793

Finally, these are added to the plot of the effects, after we have re-drawn the frame with
a calendar-time axis extending to 2020 (remember that the P.eff and the C.eff are
log-RRs, and hence we need to take the exp before plotting):
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par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
fp <- apc.frame( a.lab = seq(30,90,10),

cp.lab = seq(1860,2020,20),
r.lab = c(c(1,2,5)*10,c(1,2,5)*100),

# rr.lab = r.lab / rr.ref,
rr.ref = 100,
a.tic = seq(30,90,5),
cp.tic = seq(1855,2025,5),
r.tic = c(9,1:9*10,1:5*100),

# rr.tic = r.tic / rr.ref,
tic.fac = 1.3,
a.txt = "Age",
cp.txt = "Calendar time",
r.txt = "Rate per 100,000 person-years",
rr.txt = "Rate ratio",

gap = 8,
col.grid = gray(0.85),

sides = c(1,2,4) )
lines( m1, frame.par=fp, ci=T, col="red", lwd=c(4,1,1), knots=TRUE )
lines( P.pt-fp[1], exp(P.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )
lines( C.pt-fp[1], exp(C.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )
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Figure 4.29: Estimates of age- period- and cohort effects with the linear extension of the period
and cohort effects used for prediction of future rates. ../graph/brcapr-apcfit-3

6. The fitted model gives an age-effect, a period effect and a cohort effect; the apc object
contains representations of these three effects as matrices with the age-values and the
estimated effects (with c.i.s) at these values and similarly for the period and cohort
effects.
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Since the model fitted is using natural splines with linear effects for the part beyond the
last knot, we will automatically get a prediction based on a linear extension of these if
we just use the ci.pred on the model.

However, the fitted model object is based on the design matrices derived from the
parametrization, so it does not lend itself easily to predictions. Hence we fit the model
with an arbitrary parametrization using the knots used.

M1 <- glm( D ~ Ns( A, knots=m1$Knots$Age ) +
Ns( P , knots=m1$Knots$Per ) +
Ns( P-A, knots=m1$Knots$Coh )[,-1],
family = poisson,
offset = log(Y),
data = subset( breast, A>30 ) )

Note that we have omitted the first column of the cohort term in order to get a model
matrix of full rank. Formally there is no need for this, but we will be spared warnings
from R that prediction from rank-deficient models may be misleading.

We can check that we actually did fit the same model as apc.fit:

c( M1$deviance, m1$Model$deviance )

[1] 9208.167 9208.167

summary( fitted(M1) - fitted(m1$Model) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.487e-13 -5.507e-14 -2.132e-14 -2.412e-14 0.000e+00 1.776e-13

So if we want to predict age-specific rates in 2020–30 and in the 1960–70 cohorts
respectively we just set up prediction data frames and use them with the ci.pred

function. This is where the convenience of the natural splines come in:

a.pt <- seq(30,90,1/10)
Pfr <- rbind( data.frame(A=a.pt,P=2020,Y=1000), NA,

data.frame(A=a.pt,P=2030,Y=1000) )
Cfr <- rbind( data.frame(A=a.pt,P=a.pt+1960,Y=1000), NA,

data.frame(A=a.pt,P=a.pt+1970,Y=1000) )
prP <- ci.pred( M1, Pfr )
prC <- ci.pred( M1, Cfr )

These predicted rates are easily plotted together:

( ct <- c(0,which( is.na( prP[,1] ) ),nrow(prP)+1 ) )

602
0 602 1204

for( i in 1:2 )
{

wh <- (ct[i]+1):(ct[i+1]-1)
matshade( Pfr$A[wh], cbind( prP, prC )[wh,], plot=(i==1),

log="y", las=1, xlim=c(25,90), xlab="Age",
ylab="Predicted breast cancer incidence per 1000 PY",
type="l", lwd=1, lty=1, col=c("red","forestgreen") )

}
text( rep(29.5,2), prP[c(1,603),1], paste(c(2020,2030)), col="red", adj=1, cex=0.8 )
text( rep(29.5,2), prC[c(1,603),1], paste(c(1960,1970)), col="forestgreen", adj=1, cex=0.8 )
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Figure 4.30: Predicted age-specific breast cancer incidence rates for the dates (1. Jan-
uary) 2020 and 2030 (red), and for the birth cohorts (1. January) 1960 and 1970 (green).
../graph/brcapr-pred1

7. In order to explore the robustness of the prediction machinery we fit a model where we
omitted the last knot of the period effect and subsequently the the last knot of the
cohort effect too. First we would like to see the parameters in the same plot as before,
so we use apc.fit to derive the parametrization:

mp <- apc.fit( subset(breast, A>30),
npar=list(A=m1$Knots$Age,

P=m1$Knots$Per[-length(m1$Knots$Per)],
C=m1$Knots$Coh),

ref.c=1920, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 7312 16427.7
Age-drift 7311 10364.3 1 6063.4 < 2.2e-16
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Age-Cohort 7303 9297.4 8 1066.9 < 2.2e-16
Age-Period-Cohort 7300 9222.5 3 74.9 3.815e-16
Age-Period 7308 10292.6 -8 -1070.1 < 2.2e-16
Age-drift 7311 10364.3 -3 -71.7 1.862e-15

mpc <- apc.fit( subset(breast, A>30),
npar=list(A=m1$Knots$Age,

P=m1$Knots$Per[-length(m1$Knots$Per)],
C=m1$Knots$Coh[-length(m1$Knots$Coh)]),

ref.c=1920, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 7312 16427.7
Age-drift 7311 10364.3 1 6063.4 < 2.2e-16
Age-Cohort 7304 9351.5 7 1012.8 < 2.2e-16
Age-Period-Cohort 7301 9275.3 3 76.1 < 2.2e-16
Age-Period 7308 10292.6 -7 -1017.2 < 2.2e-16
Age-drift 7311 10364.3 -3 -71.7 1.862e-15

We then plot the estimates from these models together with the estimates from the first
one — recall that the two latter models have one, resp. two parameters less that the
first one we fitted.

par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
fp <- apc.frame( a.lab = seq(30,90,10),

cp.lab = seq(1860,2020,20),
r.lab = c(c(1,2,5)*10,c(1,2,5)*100),

# rr.lab = r.lab / rr.ref,
rr.ref = 100,
a.tic = seq(30,90,5),
cp.tic = seq(1855,2025,5),
r.tic = c(9,1:9*10,1:5*100),

# rr.tic = r.tic / rr.ref,
tic.fac = 1.3,
a.txt = "Age",
cp.txt = "Calendar time",
r.txt = "Rate per 100,000 person-years",
rr.txt = "Rate ratio",

gap = 8,
col.grid = gray(0.85),

sides = c(1,2,4) )
lines( m1 , frame.par=fp, ci=T, col="black", lwd=c(3,1,1), knots=TRUE )
lines( mp , frame.par=fp, ci=T, col="red" , lty=1, lwd=c(3,1,1) )
lines( mpc, frame.par=fp, ci=T, col="limegreen", lty=3, lwd=c(3,1,1) )

We see that the difference in the parameter components between the three models is
minimal, but this does not necessarily not necessarily the predictions; so in line with the
previous set-up, we compute the slope of the period and cohort effects from the two
models and compare them with the previous one:
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Figure 4.31: Estimated APC-effects from the three different models. The dotted lines are the
models where successively the last period (in red) and cohort (in green) knot were removed.
../graph/brcapr-apcfit-4

pr.slopes <- matrix( NA, 3, 3 )
rownames( pr.slopes ) <- c("Org","-lastP","-lastPC")
colnames( pr.slopes ) <- c("P-slope","C-slope","P-C-slope")
pr.slopes["Org","P-slope"] <- diff(Pp)/diff(P.rf)
pr.slopes["Org","C-slope"] <- diff(Cp)/diff(C.rf)

Here are then the calculations from the models where the last knots have been removed
for the period, respectively both period and cohort effects:

( P.rf <- c( max( mp$Knots$Per ), max( mp$Per[,1] ) ) )

[1] 1994.333 2003.667

P.pt <- P.rf[2] + 0:20
Pp <- approx( mp$Per[,1], log(mp$Per[,2]), P.rf )$y
P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])
( C.rf <- c( max( mp$Knots$Coh ), max( mp$Coh[,1] ) ) )

[1] 1950.667 1973.333

C.pt <- C.rf[2] + 0:20
Cp <- approx( mp$Coh[,1], log(mp$Coh[,2]), C.rf )$y
C.eff <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt-C.rf[2])
pr.slopes["-lastP","P-slope"] <- diff(Pp)/diff(P.rf)
pr.slopes["-lastP","C-slope"] <- diff(Cp)/diff(C.rf)
( P.rf <- c( max( mpc$Knots$Per ), max( mpc$Per[,1] ) ) )
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[1] 1994.333 2003.667

P.pt <- P.rf[2] + 0:20
Pp <- approx( mpc$Per[,1], log(mpc$Per[,2]), P.rf )$y
P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])
( C.rf <- c( max( mpc$Knots$Coh ), max( mpc$Coh[,1] ) ) )

[1] 1941.667 1973.333

C.pt <- C.rf[2] + 0:20
Cp <- approx( mpc$Coh[,1], log(mpc$Coh[,2]), C.rf )$y
C.eff <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt-C.rf[2])
pr.slopes["-lastPC","P-slope"] <- diff(Pp)/diff(P.rf)
pr.slopes["-lastPC","C-slope"] <- diff(Cp)/diff(C.rf)
pr.slopes[,3] <- pr.slopes[,1] + pr.slopes[,2]
round( pr.slopes, 4 )

P-slope C-slope P-C-slope
Org -0.0087 -0.0093 -0.0180
-lastP -0.0022 -0.0095 -0.0117
-lastPC -0.0027 -0.0016 -0.0043

round( 100*(exp(pr.slopes)-1), 4 )

P-slope C-slope P-C-slope
Org -0.8710 -0.9238 -1.7867
-lastP -0.2211 -0.9491 -1.1680
-lastPC -0.2665 -0.1602 -0.4262

We see that overall period/cohort drift that will be used in the predictions will be
annual decreases of 2.2% and 1.1% depending on the models chosen.

8. In order to make the predictions based on the models we fit them in the guise of
classical glm models (again leaving out a non-identifiable column of the predictor to
avoid warnings when predicting):

Mp <- glm( D ~ Ns( A, knots=mp$Knots$Age ) +
Ns( P , knots=mp$Knots$Per ) +
Ns( P-A, knots=mp$Knots$Coh )[,-1],
family = poisson,
offset = log(Y),
data = subset( breast, A>30 ) )

Mpc <- glm( D ~ Ns( A, knots=mpc$Knots$Age ) +
Ns( P , knots=mpc$Knots$Per ) +
Ns( P-A, knots=mpc$Knots$Coh )[,-1],
family = poisson,
offset = log(Y),
data = subset( breast, A>30 ) )

With these models fitted we can compute the predictions and compare with those based
on the first fitted model (which does not have any sacred status relative to the others).
We already devised the prediction frames so it’s quite simple:

prPp <- ci.pred( Mp, Pfr )
prCp <- ci.pred( Mp, Cfr )
prPpc <- ci.pred( Mpc, Pfr )
prCpc <- ci.pred( Mpc, Cfr )
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But due to the excess number of curves we plot the different period and cohort
predictions separately (and without c.i.s):

par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
matplot( Pfr$A, cbind( prP[,1], prPp[,1], prPpc[,1] ),

log="y", las=1, xlim=c(25,90), xlab="Age", ylim=c(0.1,6),
ylab="Predicted breast cancer incidence per 100,000 PY",
type="l", lwd=3, lty=1, col=c("gray","limegreen","red") )

matplot( Pfr$A, cbind( prC[,1], prCp[,1], prCpc[,1] ),
log="y", las=1, xlim=c(25,90), xlab="Age", ylim=c(0.1,6),
ylab="Predicted breast cancer incidence per 100,000 PY",
type="l", lwd=3, lty=1, col=c("gray","limegreen","red") )
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Figure 4.32: Prediction of cross-sectional rates in 2020, 2025 and 2030 (top down, left panel)
and cohorts 1960, 1965 and 1970 (top down, right panel) with the standard knots (gray),
and (green) last period knot omitted resp. (red) both last period and cohort knot omitted.
../graph/brcapr-predx

From figure 4.32 it is seen what could be expected from the parameter estimates,
namely that the predictions from the later models are higher because the overall
decrease in rates is deemed smaller by the later models. Thus again a confirmation that
prediction of future rates is a risky business.
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