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Auf ’m Hennekamp 65,
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In a recent article, Carstensen [1] gives a concise and excellent guide to the analysis of disease
rates from a Lexis diagram by the age–period–cohort model. Starting from the classical approach,
modelling age, period and cohort effects by categorical variables (class variables, factors), the
author particularly considers the ‘natural approach’ to model effects in continuous time by para-
metric smooth functions (e.g. B-splines) of means of triangular subsets of the Lexis diagram.
This approach saves fitting two separate models to data classified by age, period and cohort, un-
like in the classical factor model [2]. Practical recommendations for parameterization of models
and presentation of estimated effects are given and an implementation of the methods for R is
introduced.

It is an essential precondition for the application of the proposed methods that disease cases and
person time at risk (person-years) can be tabulated with respect to age, calendar time (period) and
date of birth (cohort) for a triangular subset of the Lexis diagram (Figure 1). While cases from
registers (dates of birth and diagnosis are typically known) can easily be allocated to 1× 1× 1-year
triangles of the Lexis diagram, the availability of population figures will normally be the limiting
factor.

In his article, Carstensen [1] presents formulas for the estimation of population risk time for
triangular age–period–cohort subsets of the Lexis diagram based on population data in 1-year
age classes for each calendar year, which are available for most countries. The derivation of the
formulas traces back to lecture notes by Sverdrup [3], an earlier version of which has also been
referenced by Hoem [4, 5].

However, the formulas for population risk time presented are obviously flawed. Thus, results
based on the proposed modelling approach are potentially inaccurate, although there may be only
slight bias in the estimation of person-years—bias will be largest in older age groups due to higher
mortality.

In this letter, we derive corrected formulas for the estimation of population risk time in triangular
subsets of the Lexis diagram.
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Figure 1. Lexis diagram: the vertical thick lines show the population figures at the beginning of year p in
1-year age classes a − 1 (La−1,p) and a (La,p), and at the beginning of year p + 1 in 1-year age classes
a (La,p+1) and a+ 1 (La+1,p+1) years. Based on these figures, population risk time can be estimated for
the triangular subsets Aa,p and Ba+1,p . The line between points 1 and 2 corresponds to a potential life
line section of a person in age � at the beginning of year p. � determines the maximum potential risk
time contributed to subsets Aa,p and Ba+1,p . Time elapsed between crossing points of the life line with
date p (point 1) and age a + 1 (point 2) is (a + 1− �), and that between crossing points with age a + 1

(point 2) and date p + 1 (point 3) is (� − a).

ESTIMATION OF PERSON-YEARS IN TRIANGULAR SUBSETS
OF THE LEXIS-DIAGRAM

In short, the Lexis diagram is an age by calendar time coordinate system in which individual lives
are represented by line segments with unit slope. It is supposed that the Lexis diagram is subdivided
into 1-year classes with respect to age, calendar time and date of birth, and that population data
are available stratified by age and calendar year in 1-year classes. The situation is illustrated in
Figure 1 (according to Carstensen). The aim is to estimate population risk time for the triangular
subsets Aa,p and Ba+1,p of the Lexis diagram.

Following Carstensen’s notation, we let a refer to 1-year age classes and p to calendar years
(period). The population size in age class a at the beginning of the year p is denoted by La,p.

When assuming ages of the persons La,p to be equally distributed within age class a and deaths
(La,p−La+1,p+1) to be equally distributed over year p∗ (corresponding to subset Aa,p ∪ Ba+1,p)—
thus half of these deaths occur in Aa,p and half in Ba+1,p—risk time contributions of the persons

∗It has to be emphasized that formulas for deceased persons in Table I presume that deaths, i.e. person risk times
are equally distributed in triangular subsets (see also [1, p. 3040 and Appendix A]), and not that mortality rates
are constant in triangular subsets, as is misleadingly stated on p. 3023 in [1].

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1557–1564



LETTER TO THE EDITOR 1559

Table I. Estimates of population risk time for triangular subsets of the Lexis diagram.

Risk time in Aa,p Risk time in Ba+1,p

Survivors (La+1,p+1) La+1,p+1 · 1
2 py La+1,p+1 · 1

2 py

Deceased in Aa,p
1
2 (La,p − La+1,p+1) · 1

4 py —

Deceased in Ba+1,p
1
2 (La,p − La+1,p+1) · 1

2 py
1
2 (La,p − La+1,p+1) · 1

4 py

All persons (La,p) ( 38 La,p + 1
8 La+1,p+1) · 1py ( 18 La,p + 3

8 La+1,p+1) · 1py
py, Person-year.

La,p to Aa,p and Ba+1,p are estimated stratified by survival status with respect to year p according
to the formulas in Table I. A detailed derivation is given in the Appendix.

According to the estimates in Table I, the total risk time in age class a and year p—corresponding
to subset Aa,p ∪ Ba,p—is best estimated by 1

8 La−1,p+ 3
8 La,p+ 3

8 La,p+1+ 1
8 La+1,p+1 person-years

and not by 1
2 La,p + 1

2 La,p+1 person-years, as commonly done.
The risk time of 0-year olds in year p born in year p can be approximated by subtracting the

risk time in A0,p from the available estimate of the risk time among 0-year olds in year p (subset
A0,p ∪ B0,p), i.e.

1
2 (L0,p + L0,p+1) − ( 38 L0,p + 1

8 L1,p+1) person-years

= 1
8 L0,p + 1

2 L0,p+1 − 1
8 L1,p+1 person-years

Note that, according to Carstensen’s formulas, the average risk time in Aa,p was estimated as 1
3

person-year for both persons dying in Aa,p and persons dying in Ba+1,p. This obviously cannot
be valid, because persons dying in Ba+1,p have been under risk throughout subset Aa,p but not
throughout Ba+1,p, and therefore contributed risk time to Aa,p must exceed the risk time in Ba+1,p,
like in our corrected formulas. The flaw in Carstensen’s derivation is that he presumes a uniform
two-dimensional measure over triangular subsets Aa,p and Ba+1,p; thus he disregards the fact that
maximum potential risk time of a person in Aa,p and Ba+1,p is determined by the person’s age
at the beginning of year p. In fact, risk times have to be properly considered conditionally on the
age at entrance into Aa,p, according to ‘life lines’ in the Lexis diagram.

APPENDIX

Derivation of risk time

Let TS denote the risk time of a person in a subset S ∈ {Aa,p, Ba+1,p, Aa,p ∪ Ba+1,p} (Figure 1).
Then, the average risk time of persons La,p can formally be estimated as the expectation of the
risk time in subset S (denoted by E(TS)). E(TS) itself can be calculated as an expectation of the
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conditional expectation of the risk time with respect to the age �, a���a + 1, at the beginning
of year p (denoted by E(TS|�)), that is by integration of E(TS|�) with respect to the uniform
measure over the 1-year age class ‘a’, when assuming age � of persons La,p at the beginning of
year p to be equally distributed within the 1-year age class ‘a’ (pdf: f (�) = 1, a���a + 1):

E(TS) = E(E(TS|�, a���a + 1))=
∫ a+1

a
E(TS|�) · f (�) d� =

∫ a+1

a
E(TS|�) d�

The conditional risk time E(TS|�) that a person contributes to S ∈ {Aa,p, Ba+1,p, Aa,p ∪ Ba+1,p}
and thus the expectation of E(TS|�) in the subset depends on whether the person survives year p
or dies in subsets Aa,p or Ba+1,p. In each case, the conditional risk time TS of a person is assumed
to be equally distributed over the respective subset of the Lexis diagram (pdf of TS denoted as
g(t |�), 0�t�1, a���a + 1).

Risk time of survivors of year p

Clearly, the survivors La+1,p+1 of year p have been at risk throughout the year p. Thus, under
the above assumptions, the average risk time contribution of survivors to each of the triangular
subsets Aa,p and Ba+1,p will be 1

2 year. The total risk time for both subsets Aa,p and Ba+1,p will
be La+1,p+1 · 1

2 person-years.
Formally, the risk time contribution of a survivor of year p, who has been in age �, a���a+1,

at the beginning of year p, to subset Aa,p is (a+1−�). Therefore, the average risk time in Aa,p is∫ a+1

a
E(TAa,p |�) d� =

∫ a+1

a
(a + 1 − �) d�=

∫ 1

0
(1 − �) d� = 1

2
person-year

and the risk time contribution to Ba+1,p is (� − a), giving the average risk time in Ba+1,p as∫ a+1

a
E(TBa+1,p |�) d� =

∫ a+1

a
(� − a) d�=

∫ 1

0
� d� = 1

2
person-year

Risk time of deceased in year p

Deceased in Aa,p ∪ Ba+1,p. Since risk time TAa,p∪Ba+1,p is assumed to be equally distributed in
Aa,p ∪ Ba+1,p, the respective pdf is given by g(t |�) = 1, 0�t�1, a���a + 1. Thus, the average
risk time of the deceased of persons La,p in Aa,p ∪ Ba+1,p is

∫ a+1

a
E(TAa,p∪Ba+1,p |�) d� =

∫ a+1

a

(∫ 1

0
t · g(t |�) dt

)
d� =

∫ a+1

a

(∫ 1

0
t · 1 dt

)
d�

=
∫ 1

0

(∫ 1

0
t dt

)
d�=

∫ 1

0

1

2
d� = 1

2
person-year

Deceased in Aa,p. Persons dying in Aa,p contribute no risk time to Ba+1,p.
For a person who entered subset Aa,p at age �, a���a + 1, and died in Aa,p the risk time

is assumed to be equally distributed on the interval [0, a + 1 − �], giving the respective pdf as
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g(t |�) = 1/(a + 1 − �), 0�t�1, a���a + 1. Hence, the average risk time in Aa,p is given by∫ a+1

a
E(TAa,p |�) d� =

∫ a+1

a

(∫ a+1−�

0
t · g(t |�) dt

)
d�=

∫ a+1

a

(∫ a+1−�

0
t · 1

(a + 1 − �)
dt

)
d�

=
∫ 1

0

(∫ 1−�

0
t · 1

(1 − �)
dt

)
d� =

∫ 1

0

1 − �

2
d� = 1

4
person-year

Deceased in Ba+1,p. A person who entered Aa,p at age �, a���a + 1, and died in Ba+1,p has
been under risk throughout Aa,p and contributes a risk time of (a + 1 − �) person-year in Aa,p.
Thus, the average risk time in Aa,p is given by∫ a+1

a
E(TAa,p |�) d� =

∫ a+1

a
(a + 1 − �) d�=

∫ 1

0
(1 − �) d� = 1

2
person-year

The risk time of such a person in Ba+1,p varies on [0, �−a] and is assumed to be equally distributed,
giving the respective pdf as g(t |�) = 1/(�− a), 0�t�1, a���a+ 1. Hence, the average risk time
in Ba+1,p is estimated by∫ a+1

a
E(TAa,p |�) d� =

∫ a+1

a

(∫ �−a

0
t · g(t |�) dt

)
d� =

∫ a+1

a

(∫ �−a

0
t · 1

� − a
dt

)
d�

=
∫ 1

0

(∫ �

0
t · 1

�
dt

)
d� =

∫ 1

0

�

2
d� = 1

4
person-year

REFERENCES

1. Carstensen B. Age–period–cohort models for the Lexis diagram. Statistics in Medicine 2007; 26(15):3018–3045.
DOI: 10.1002/sim.2764.

2. Osmond C, Gardner MJ. Age, period, cohort models. Non-overlapping cohorts don’t resolve the identification
problem. American Journal of Epidemiology 1989; 129(1):31–35.

3. Sverdrup E. Statistiske metoder ved dødelikhetsundersøkelser (in Norwegian). Statistical Memoirs. Institute of
Mathematics, University of Oslo, 1967.

4. Hoem JM. Fertility rates and reproduction rates in a probabilistic setting. Biométrie-Praximétrie 1969; 10(1):38–66.
5. Hoem JM. Correction note. Biométrie-Praximétrie 1970; 11(1):20.

Published online 11 September 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.3041

AUTHOR’S REPLY

Age–period–cohort models for the Lexis diagram,
Statistics in Medicine 2007; 26:3018–3045

I thank Joachim Rosenbauer and Klaus Strassburger (R&S) for their interest in the paper and the
derivations of the population risk time [1].

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1557–1564



1562 AUTHOR’S REPLY

1. ASSUMPTIONS ABOUT DISTRIBUTION OF DEATHS

The core of their argument is that computation of risk time in age× period× cohort subsets of a
Lexis diagram should be done conditional to the age at entry into the upper triangle sets, termed
A both in my paper and their letter.

R&S derive precisely what I in the paper only asserted by handwaving, namely that the con-
tribution of risk time in the sets A and B from persons in age class a at calendar time p, who
survive to time p + 1 (and hence at that time in age class a + 1), is on average 1

2 year in each.
Underlying the calculation is the perfectly reasonable assumption that the distribution of ages at
time p among those surviving to time p + 1 is uniform on the interval [a, a + 1]—the integration
is with respect to age at time p using the uniform measure on [a, a + 1]. This assumption is only
approximately the same as the assumption of a uniform age distribution for all persons alive at
p (La,p) if mortality rates do not vary dramatically by age. The same arguments will hold in the
case of computing the risk time for all those who die in the set A∪B.

But R&S use exactly the same argument and assumptions when they compute the risk time
separately in each of the sets A and B from persons who die in these sets, particularly the assumption
of uniform age distribution at time p. However in the case of deaths this is highly untenable. Given
that a person has died in the set A makes it much more likely that the person entered at an early
age and had a long exposure.

Hence, the computation by R&S is correct but relies on different assumptions, which I consider
counterintuitive.

2. A SMALL SIMULATION STUDY

To illustrate this I carried out a small simulation study as follows: R&S use the assumption that
the age at time p for persons who die in either A or B is uniformly distributed over the interval
[a, a + 1], and in order to complete the computations the additional assumption that the time of
death given entry age � is uniformly distributed on [p, p + 1− �]. This is sufficient to simulate a
number of deaths in each of A and B. Once this is done, the empirical distribution of ages at p and
of the risk time in each of the sets can be computed. Similarly, the assumptions that I use in my
paper, uniform distribution of deaths over A∪B, are easily simulated and the same computations
on the simulated sample carried out.

The difference between the two approaches is illustrated in Figure 1. The top part represents
800 deaths in each of A and B with ages at p uniformly distributed and deaths uniformly distributed
within the possible follow-up (R&S assumptions). The lower half represents 1600 deaths uniformly
distributed over A and B (my assumptions).

The assumptions that R&S make imply a very odd clumping of deaths in the corners of A and
B, which is indeed difficult to find a justification for. The assumptions that I make in the paper
induces a highly skewed distributions of age at p, given death in either A or B, which however is
a perfectly sensible consequence.

The empirical means of the risk time for the deaths based on the simulated samples are shown
too, demonstrating that the formulae derived by R&S and me are actually reproduced in the
simulations.

R&S note that in my derivation persons who die in B contribute on average the same amount
of risk time in A and B, which they find odd since anyone who dies in B has lived through A.
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Figure 1. Results from simulation of deaths by two approaches. Top half: uniform distribution of age at
start—a very strange assumption and not recommendable. Bottom half: uniform distribution of deaths
over A and B—reasonable approximation in practise. The R program that does the simulation and the plot

is available as http://staff.pubhealth.ku.dk/∼bxc/APC/R/Rosenbauer-Strassburger.R.

But not all persons dying in B have spent the same time in A; the shorter the time spent in A, the
longer the time spent in B. That is the intuitive explanation—the mathematical one is in my paper.

3. CONCLUSION

My derivation in the paper [2] is correct and based on demographically sensible assumptions; the
derivation by R&S is correct but based on assumptions that are highly unlikely to be relevant in
any practical circumstances.
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Therefore, the formulae given in my paper [2] are those that should be used in practice.
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