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Material and methods 1

1 Material and methods

1.1 Probability model

The following is to some extent a repetition of standard theory from demography /
probability theory, and the extension to several age-classes and time-varying incidence and
mortality rates is if not straight-forward, then a part of many curricula in demography and
probability theory.

Diabetes incidence and mortality in the population can be described by a 3-state model,
with three transition rates (Figure 1). If each of these rates is assumed to depend on sex,
and continuously on age, calendar time and date of birth, it is possible to use the
age-distribution of prevalent diabetes patients at the start of the observation period (1
January 1996) in conjunction with the incidence and mortality rates over the period to
predict the age-specific prevalence at the end of the period, 1 January 2017.

Likewise we can take the observed age-specific prevalences at 1 January 2017 and apply
projected future rates for the period (say) 2017–2040 to predict age-specific prevalences at
any date in that period.

In practice this is done by using a sex-, age- and period-specific transition probabilities
between the three states “noDM”, “DM” and “Dead” (Figure 1). In each step, the
population at a given time in a given (say 1-month) age-class with and without diabetes is
updated for one month, so that we know how many there are in the three states the next
month — being one month older.

Specifically, we considered transitions over a small interval of length ` and with the
notation PnoDM,DM(`) for P{DM at (a+ `, p+ `) | noDM at (a, p)}, the following transition

no DM

DM

Deadλ

µND

µDM

no DM

DM

Dead

no DM

DM

Dead

Figure ESM 1: States and transition rates used: λ: Incidence rate, µnD: mortality rate in
persons without diabetes, µDM: mortality rate in persons with diabetes. Prevalence of diabetes
is the fraction in state ”DM” relative to all in states ”noDM” and ”DM”.
Each rate is modeled separately for men and women, using an age-period-cohort model with
continuous smooth effects.
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probabilities were used:

PnoDM,noDM(`) = exp
(
−(λ+ µnD)`

)
≈ 1− (λ+ µnD)`

PDM,DM(`) = exp
(
−µDM`

)
≈ 1− µDM`

PnoDM,DM(`) =
λ

λ+ µnD

(
1− exp

(
−(λ+ µnD)`

))
≈ λ`

PnoDM,Dead(`) =
µnD

λ+ µnD

(
1− exp

(
−(λ+ µnD)`

))
≈ µnD`

PDM,Dead(`) = 1− exp
(
−µDM`

)
≈ µDM`

The rates are assumed to depend on a and p, but this has been left out of the formulae for
clarity of exposition. We chose ` to be as small as one month, since the formulae above are
only valid if the probability of two transitions “no DM”→“DM”→ “Dead” occurring in one
interval is negligible. If we had used an interval length of 1 year, our predictions would
have been inaccurate because of this. Using 1 month intervals will render the updating
machinery sufficiently accurate to predict the prevalences at the end of the study period.

1.1.1 Projecting prevalences

To the extent we are only interested in the prevalences, the above formulae can be used to
predict the fraction of persons alive with and without diabetes at (a, p) who at (a+ `, p+ `)
are dead, alive with resp. without diabetes. The immediate result will be in terms of the
fraction of persons alive at (a, p) who are in each category at (a+ `, p+ `). But from that
we can compute the prevalence by dividing by the proportion alive (with or without
diabetes). This is what we have done, “prevalence” in this context refers to a proportion.

1.2 Prevalence and rates 1996–2017

For the no. of prevalent cases at each of the dates 1 January 1996 through 1 January 2017,
we fitted separate log-link binomial models for men and women using natural splines
(restricted cubic splines) to describe the age-dependence. These models provided estimates
of diabetes prevalence as a continuous function of age for each of the dates 1 January
1996–2017.

We fitted age-period-cohort models [1] for the period 1996-2016 for diabetes incidence
rates and mortality among persons with and without diabetes, separately for each sex.
Effects of age, date of follow-up (period) and date of birth (cohort) were modeled by
natural splines (restricted cubic splines). The models thus provide predicted incidence and
mortality rates as continuous functions of age and date of follow-up, so that we can predict
rates at any age and date during the study period 1996–2016.

Since we only use the age-period-cohort (APC) models for prediction of rates, the usual
identification problem of the parametrization of effects in APC models is not relevant here.

We estimated the average time trend from the APC models using the observed number
of events as weights as described in Carstensen [1].

1.3 Demographic components

We used the models fitted to predict the incidence and mortality rates at the midpoint of
all 252 months from 1 January 1996 through 1 January 2017 at the start of each of 1200 1
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month age-classes between 0 and 100 years, i.e. we used ` = 1 month (formally 365.25/12
days). For updating the prevalence in age class (a, a+ `) at time p to the prevalence in
age-class (a+ `, a+ 2`) at time p+ `, we used rates predicted at age a+ ` at time p+ `

2
. As

a check on the appropriateness of the calculations, the predicted prevalences from this
projection at the end of the study period is compared with the actual observed prevalences
as smoothed by the binomial regression of the 2016 data.

The same exercise was then repeated in scenarios where we fixed the (age-specific)
incidence and/or mortality rates to be as in 1996. The difference between predicted
prevalences under these scenarios and the actually observed will then represent the
contributions to the prevalence in 2016 from increasing incidence and decreasing mortality
respectively.

The contribution from changing incidence rates were computed in two different ways:

1. Difference between results with 1996-fixed resp. observed incidence rates using the
mortality rates as observed over the period.

2. Difference between results with 1996-fixed resp. observed incidence rates using the
mortality rates fixed at the 1996 level.

— and vice versa for the contribution from the changing mortality rates.
The contributions from changing incidence resp. mortality were taken as the average of

the two approaches for each.
Finally, we took the difference between the observed prevalences in 1996 and those

predicted for 2017-01-01 by fixing both incidence and mortality rates to the 1996 level
throughout, as the component of prevalence attributable to the demographic imbalance in
1996 — the change in prevalence occurring because incidence and mortality rates in 1996
were not in a steady-state equilibrium with equal number of incident cases of DM and
deaths among DM patients.

1.4 Projection of rates 2017–2040

We fitted log-link binomial models for the no. of prevalent cases at 2017-01-01 using
natural splines (restricted cubic splines), providing estimates of diabetes prevalence as a
continuous function of age at 2017-01-01, separately for men and women.

The age-period-cohort (APC) models [1] for incidence and mortality rates for the period
1996–2016 were used as basis for prediction of future rates. A naive prediction based on
extrapolation of linear effects from natural spline components [2] is highly unrealistic with
the shape of the incidence rates we see in Denmark [3]. We therefore set up 5 further
scenarios for projection of incidence rates and 3 different scenarios for mortality rates
(rates for persons with and without diabetes are treated similarly); a total of 18 scenarios
combined; all based on APC models for the rates:

• Incidence rates:

– Naive projection from spline models

– Attenuate the projection from spline models, halving the increase in rates every
5 years

– Fix rates at the levels of 2017-01-01
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– Increase rates from the level at 2017-01-01 by 2%/year

– Increase rates from the level at 2017-01-01 by 4%/year

– Increase rates from the level at 2017-01-01 by 6%/year

• Mortality rates

– Naive projection from spline models

– Fix rates at the levels of 2017-01-01

– Attenuate the projection from spline models, halving the decrease in mortality
rates every 5 years

1.5 Models for rate projection

1.5.1 Attenuation of predictions

The following is an empirical approach to adjust rates predicted into the future. We use a
damping mechanism, taking an approach that does not rely on any particular
mathematical form of the predictions, but merely on the predictions being available in
suitably small intervals.

Suppose we have prediction of future rates (or log-rates) λ(a, p) from an APC-model
(well, this goes for any model) — estimated occurrence rates in the period-direction.

A slope-attenuation can be numerically implemented by using the empirical gradients of
the predictions, so suppose that for a fixed value of age (a) the rates are in the vector f and
the corresponding dates (p) in the vector t. In practise t will be the “prediction time”, that
is the time sice the starting date of prediction (in this scenario 2017-01-01)

The empirical slopes between successive time points is simply diff(f)/diff(t). We can
attenuate these slopes by multiplying them by dτ where d is the chosen damping factor and
τ is the midpoint of the interval. Mathematically, the machinery is briefly to differentiate f
w.r.t. to t, apply the damping factor to f ′ and integrate the result to get a function on the
original scale.

# difference on t-scale
dt <- diff(t)
# interval mdpoints
mt <- t[-1] - dt/2
# f derivative
df <- diff(f) / dt
# attenuated f derivative
ddf <- df * dd^mt
# this should give the original function back
iof <- c( f[1], f[1] + cumsum( df)*dt )
# this is the attenuated function
idf <- c( f[1], f[1] + cumsum(ddf)*dt )

Now this is easily implemented in a function which takes the function values f, times t and
damping factor as arguments.

1.5.2 Adding a drift to a prediction

For the diabetes incidence we have observed that the incidence rates show a dramatically
increasing tendency over the last year of observation (≈ 15−−20%/year), hence we may
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want not only to investigate a scenario where rates are kept or attenuated to constant, but
also one where we simply let the rates increase by some (arbitrarily chosen) fixed amount,
say 4% per year. This is only going to be used for the incidence rates as a sensitivity
analysis.

To this end we update the damping function just outlined by allowing adding a trend
(drift) in time on top of the attenuated prediction; we phase it in quadratically over a
period of `, by the function q — a parabola with slope 0 at 0 and slope δ at `, and a linear
function with slope δ beyond `, defined as:

q(t) =

{
0<t< ` :

(
δ/(2`)

)
t2

`< t<∞ : −δ`/2 + δt

We see that q(0) = 0, and using the first line of the definition, the value at t = ` is:
q(`) =

(
δ/(2`)

)
`2 = δ`/2, which is also obtained using the second line of the definition.

Moreover, the slopes are identical at ` too: q′(t) = tδ/`|t=` = δ.
In R-code this function becomes:

qs <-
function( t, ell, delta ) ifelse( t < ell, delta / ell / 2 * t^2,

delta * t - delta * ell / 2 )

. . . which is incorporated in a general function for adjusting projected rates defined below.

1.5.3 Implementation of damping and adding

We implement this attenuation and slope addition in a function damp which takes 6
arguments:

f — a vector of predicted function values (rates or log-rates) to be modified by damping
and/or addition of a trend

t — an ordered vector of time points where f is given. Need not be equidistant. Note that
t-t[1] is used as exponent to the damping factor, so results will be invariant under
translation of t. Basically we are considering time since the first t.

h — a scalar, the halving time for the slope. In the function it is converted to a damping
factor which will be elevated to the power of t, thus dependent on the scaling of t:
For halving time h we have dh = 0.5⇔ d = 0.51/h.

delta — scalar; the extra slope added to the predictions, beyond ell (t≥ell), before ell

the addition is a quadratic starting at 0 and a slope fitting with the linear at ell.
This is an additive factor, so a 10% increase per unit of t is obtained by delta=0.1,
correponding to a multiplier of 1.1.

ell — scalar; the run-in interval (on the t-scale) for the extra slope.

logf — logical indicating whether the supplied f represent log-rates or rates. In any case
the attenuation is made on the log-rate scale.

With this, a value of 0 for h produces an immediately flat (constant) modified curve,
corresponding to a fixing of rates at t = 0. Likewise a choice of 0 for the interval length
ell corresponds to an immediate start of an added slope of delta. Thus the function will
accommodate at scenarios considered.
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damp <-
function( f, t, h, delta = 0, # added slope (% per t unit),

ell = 0, # phase-in interval for added slope
logf = FALSE ) # is f a vector of log-rates

{
# all operations are on log-rates so if we have rates make them log
if( !logf ) f <- log( f )
# compute the damping factor from half-time
d <- 0.5^(1/h)
# make sure t start at 0
t <- t - t[1]
# difference between timepoints of prediction
dt <- diff(t)
# midpoints of intervals
mt <- t[-1] - dt/2
# slopes in each interval
dfdt <- diff(f) / dt
# attenuated slopes
atdf <- dfdt * d^mt
# function values after attenuating the slope
idf <- f[1] + cumsum(c(0,atdf*dt))
# remember delta is taken as being in % per t
delta <- delta/100
# add the extra slope to this
idf <- idf + ifelse( t < ell, delta/(2*ell)*t^2,

delta*(t-ell/2) )
if( !logf ) idf <- exp( idf )
idf
}

We can illustrate the damping effect in a number of different ways. First, the time it takes
to reduce the slope to say, 50, 10 and 1% (ζ, say) of the original one, is illustrated by
simply solving:

dt = ζ ⇔ t log(d) = log(ζ) ⇔ t = log(ζ)/ log(d)

This is the left panel in figure 2; the other one illustrates the resulting damped / amended
curves relative to an arbitrary constant slope:

par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
clr <- rainbow(3)
d <- seq(0,1,,200)
zeta <- c(0.5,0.1,0.01)
matplot( d, outer( d, zeta, function(d,zeta) log(zeta)/log(d) ),

type="l", lwd=4, lty=1, col=clr,
ylim=c(0,25), xlab="Damping factor",
ylab=paste( "Time to reduction to ",

paste( round(zeta*100,1), collapse=", "),
"%, respectively", sep="" ) )

abline( v=c(0.92, 0.88, 0.7) )
abline( h=0:10, lty=2, col=gray(0.8) )
axis( at=c(0.92, 0.88, 0.7), las=2, side=1 )
text( 0.1, 23+0:2, paste(round(zeta*100),"%"), col=clr, adj=1, font=2 )
# right plot
clr <- c("black",rainbow(7))
tt <- seq( 0,25,0.1)
ff <- 2 + 0.4 * tt
t0 <- 8
t <- (tt-t0)[tt>=t0]
f <- ff[tt>=t0]
plot( tt, ff, lty=1, lwd=5, type="l", ylim=c(2,12),

xlab="Time", ylab="Damped effect")
matlines( t+t0, cbind( f, damp(f,t,h=5),

damp(f,t,h=Inf),
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damp(f,t,h=10,delta=5,ell=5),
damp(f,t,h=2 ,delta=5,ell=5),
damp(f,t,h=2),
damp(f,t,h=2 ,delta=-5,ell=5) ),

lty=1, lwd=c(5,rep(3,6)), type="l", col=clr,
xlab="Time", ylab="Damped effect")

text( 5, 12-0:6/2, c( "Half-time",
formatC( c(5,Inf,10,2,2,2), format="f", digits=2 ) ),

font=2, col=clr, adj=1 )
text( 7, 12-0:6/2, c( "Added slope / yr",

formatC( c(0,0,1/20,abs(1:-1)/20), format="f", digits=2 ) ),
font=2, col=clr, adj=0 )

text( 6.9, 12-6/2, "-", font=2, col=clr[7], adj=1 )
segments( c(t0,t0+5), 1,

c(t0,t0+5), 8:9 )
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Figure ESM 2: The left panel shows the time to reduction of the slope of a curve to 50,
10 and 1% of the original for different values of the damping factor. The right hand panel
illustrates the damp function for attenuation of effects and addition of linear terms for various
combinations of the two. The two vertical black lines indicate the starting point of the
attenuation and the end of the phase-in of the added slope.
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1.6 Detailed documentation

A full account of all calculations is available in the chapters “Components of prevalence”,
“Analysis and prediction of rates” and “Predicting prevalence of diabetes” in:
http://bendixcarstensen.com/DMreg/NewAna.pdf
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Table ESM 1: Events and person-years (in 1000s) in the Danish population in the 21 year
study period 1996–2016 (3-year intervals). Only follow up till 100 years of age.

No diabetes Diabetes

DM diag Deaths P-years Deaths P-years

Men 1996–1998 20,502 78,885 7,715,200 9,076 145,141
1999–2001 21,901 74,519 7,766,999 10,279 179,389
2002–2004 28,083 71,680 7,810,245 11,505 219,973
2005–2007 26,719 67,787 7,842,954 12,144 266,133
2008–2010 34,118 65,825 7,916,764 13,420 314,841
2011–2013 40,043 61,410 7,956,646 15,031 386,881
2014–2016 31,937 60,230 8,066,473 16,613 435,714

1996–2016 203,303 480,336 55,075,282 88,068 1,948,073

Women 1996–1998 16,962 80,783 7,908,376 8,489 135,558
1999–2001 17,980 79,691 7,959,048 9,270 161,353
2002–2004 23,918 76,751 7,997,847 9,866 194,132
2005–2007 20,387 72,678 8,029,151 10,582 229,208
2008–2010 25,069 70,084 8,102,806 11,035 261,108
2011–2013 32,162 65,296 8,149,037 11,571 315,245
2014–2016 23,883 62,950 8,234,517 12,881 352,422

1996–2016 160,361 508,233 56,380,782 73,694 1,649,027

M+W 1996–1998 37,464 159,668 15,623,576 17,565 280,700
1999–2001 39,881 154,210 15,726,047 19,549 340,742
2002–2004 52,001 148,431 15,808,092 21,371 414,105
2005–2007 47,106 140,465 15,872,105 22,726 495,342
2008–2010 59,187 135,909 16,019,570 24,455 575,949
2011–2013 72,205 126,706 16,105,683 26,602 702,126
2014–2016 55,820 123,180 16,300,990 29,494 788,137

1996–2016 363,664 988,569 111,456,064 161,762 3,597,100
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Figure ESM 3: Observed (full lines) and predicted (broken lines) prevalence of DM in Den-
mark (from low to high) 1997, 2001,ldots,2017. The observed prevalences are smoothed using
natural splines. The predicted prevalences are based on the prevalences as of 1995 and es-
timated rates from age-period-cohort models for the incidence and mortality rates for the
transitions in figure 1. Men in blue, women in red; thin gray lines represent fit from age-
period models.
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of the changes in diabetes prevalence in the period 1996–2016, based on prevalence in 1996
and models for incidence and mortality in the period. Men in blue, women in red. The white
area at the bottom represents the age-specific prevalences at 1 January 1996, and the upper
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Figure ESM 5: Fraction of the prevalent cases at different times attributable to a) declin-
ing mortality (bottom, full color), b) increasing incidence (middle, pale color) and c) inci-
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Figure ESM7: Observed (till 2017) and predicted (from 2017) diabetes incidence rates 1996–
2040 for ages 20, 30,. . . ,90 (dark to bright colour). The vertical dotted line indicates the end
of data and start of prediction.
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Figure ESM8: Observed (till 2017) and predicted (from 2017) diabetes incidence rates 1996–
2030 for man at ages 20, 30,. . . ,90 (dark to bright colour). The vertical dotted line indicates
the end of data and start of prediction.
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Figure ESM9: Observed (till 2017) and predicted (from 2017) diabetes incidence rates 1996–
2030 for women at ages 20, 30,. . . ,90 (dark to bright colour). The vertical dotted line
indicates the end of data and start of prediction.
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Figure ESM10: Observed (till 2017) and predicted (from 2017) no.of diabetes patients 1996–
2030 with mortality rates predicted form the APC model. Numbers are combined for men and
women, and subdivided by 10-year age-groups in different gray tones. The top right panel is
the prediction on which we base our conclusions. The vertical dotted line indicates the end
of data and start of prediction.
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Figure ESM11: Observed (till 2017) and predicted (from 2017) no.of diabetes patients 1996–
2030 using attenuated mortality rates. Numbers are combined for men and women, and
subdivided by 10-year age.groups in different gray tones. The middle right panel is the pre-
diction on which we base our conclusions. The vertical dotted line indicates the end of data
and start of prediction.
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Figure ESM12: Observed (till 2017) and predicted (from 2017) no.of diabetes patients 1996–
2030 using mortality rates fixed at the 2017 level. Numbers are combined for men and
women, and subdivided by 10-year age.groups in different gray tones. The vertical dotted
line indicates the end of data and start of prediction.
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