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SUMMARY 
This paper shows how to fit excess and relative risk regression models to interval censored survival data, and 
how to implement the models in standard statistical software. The methods developed are used for the 
analysis of HIV infection rates in a cohort of Danish homosexual men. 

1. INTRODUCTION 

Interval censored data arise when dates of occurrence of events are not known exactly but only by 
intervals, that is, when it is either known that an event occurred between two dates of testing, or 
only that no event has occurred by some date. Such data may arise when people are tested for some 
(typically asymptomatic) condition like HIV-positivity at fixed dates, but where not all have been 
tested on all occasions, so that for some people we may only know, for example, that HIV-infection 
occurred during two or three adjacent intervals. Data of this kind are often termed ‘panel data’. 

A special case is grouped data, where the status of everyone is known at all of a set of fixed time 
points. Grouped data are easily handled by standard methods because the likelihood factorizes to 
a set of conditional probabilities. The interval censoring problem becomes non-trivial when the 
status of some people is unknown at some time points. 

Sometimes the event of interest is ill-defined in terms of exact date of occurrence, because 
a substantial span of time may pass from event to symptoms (for example, onset of cirrhosis of the 
liver). If ascertainment of the condition is retrospective through hospital records or the like, we 
may have interval censoring where the intervals in which events are known to have occurred have 
no or very few common endpoints between individuals. This can also arise with panel data if the 
time scale of interest is not calendar time, but, for example, age. 

Censoring with no or few common endpoints is in principle not different from the first kind, 
since we can define (a very large) number of fixed intervals by using all endpoints occurring in the 
data. In the ‘non-parametric’ setting, as discussed by Peto,’ Turnbull’ and Becker and M e l b ~ e , ~  
this may create some problems with standard errors of estimates, since these methods essentially 
estimate one parameter per interval. 

This paper extends the method of Becker and Melbye to regression models for the intensities of 
the underlying process. Both additive excess risk models and additive and multiplicative relative 
risk models will be considered. In this extension it is necessary to assume piecewise constant 
intensities, but this will not in practice be a serious limitation of the models. 
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Table I. Pattern of diagnosis among 297 Danish homosexuals 

Last seen First seen HIV-positive Total 
HIV-negative 

12/81 04/82 03/83 09/84 04/87 05/89 Never 

Never 24 2 26 
Dec 81 4 1 10 3 4 61 83 
Apr 82 4 1 8 13 
Mar 83 3 2 15 20 
Sep 84 5 1 22 28 
Apr 87 1 34 35 
May 89 92 92 
Total 24 4 7 13 9 8 232 297 

2. HIV-INFECTION AMONG DANISH HOMOSEXUALS 

A cohort of homosexual men from two cities in Denmark has been examined for HIV-antibody 
positivity on six different dates: December 1981; April 1982; February 1983; September 1984; 
April 1987, and May 1989. Not everyone appeared for examination at all dates. A total of 297 
people have been tested at least once, and 65 diagnosed with infection. Table I shows the 
time-pattern of diagnoses of HIV-infections in the dataset. A more detailed description of the 
study may be found in Melbye et aL4 

A question of interest, apart from the description of the intensity of HIV-infection in Denmark 
by calendar time, is to assess whether sexual habits, as measured by the number of sexual partners 
per year, influence the infection rates. To this end, year of birth, contact with people from the 
U.S.A. and number of partners per year were used as covariates. 

A preliminary (and indeed frequently used) analysis is based on imputing event dates as the 
midpoint between the last date seen well and the first date seen ill for each patient, and then 
calculating a Kaplan-Meier estimator of the cumulative proportion infected. This requires 
assignment of a date when individuals who are infected at first contact are assumed to have been 
uninfected; the estimate of the cumulative proportion infected will depend on this choice. 

Figure 1 shows Kaplan-Meier estimates of the cumulative proportion infected resulting from 
choosing different dates when everyone is assumed uninfected. There are considerable differences 
between these estimates initially, but these disappear around 1988, partly because the infection 
rate has fallen dramatically by then. The simple approach of just imputing event dates can give 
misleading results, depending on arbitrary assumptions. A curve showing the estimate based on 
the method of Becker and Melbye3 is superimposed; this shows that some 30 per cent are 
HIV-positive by 1990. 

2.1. Regression analysis 

A question of interest is whether there are differences in the rate of seroconversion between 
subgroups in the cohort. This can be addressed by estimating the cumulative infection rate for 
subgroups of the cohort. However, with covariates such as age and number of partners which 
have a large number of values, this procedure quickly becomes unfeasible. 

It is therefore desirable to use regression models where the influence of covariates can be 
assessed on some suitable scale. The usual choice of scale is relative risk, leading to proportional 
hazards models, which can be formulated either as multiplicative in the covariates (Cox model) or 
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Figure 1. Cumulative fraction of HIV-positive in a cohort of Danish homosexual men, as estimated in the piecewise 
constant intensity model (with 95 per cent confidence limits based on likelihood profiles) (solid lines), and as estimated by 
the Kaplan-Meier method using the dates June 78, December 79 and June 81, respectively, as dates of no infection present 

(broken lines) 

additive on the relative risk scale. Another choice is the additive excess risk model, where the 
covariates act additively on the hazard scale. These models will be considered in detail below. 

To introduce regression models I first review and rephrase the ideas of Becker and M e l b ~ e . ~  

3. ESTIMATION OF INTENSITIES FROM INTERVAL CENSORED DATA 

It is assumed that the condition studied is irreversible, so that once an event has occurred, the 
individual is removed from the population at risk. Also, it is assumed that entry into the study 
population is independent of the disease status at entry. 

Further, the censoring process, which determines the time when data on individuals are 
available, should not involve the parameters of interest, that is, the parameters in the conditional 
likelihood for the event process given the censoring p r o ~ e s s . ~  

This is for example the case if data arise from panel studies in which subjects are invited for 
testing at some fixed times. The assumption implies in this case that the occurrence of an event 
does not alter the probability of appearing for testing. If the event causes a dramatic increase in 
mortality, then this may not be fulfilled. 

3.1. A piecewise constant intensity model 

Consider data from a study of P people observed for the occurrence of some event, where for each 
person, p ,  we know the date of entry, t pe ,  a latest date known without the event, t,, (which is the 
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Figure 2. Construction of covariates x i p j  for the piecewise constant intensity model. Circles represent the last date seen 
before the ‘event’, dots the first date seen after 

censoring date for those not known to experience the event), and for people for whom the event 
has occurred, an earliest date known to be after the event, t p d .  

Let the time axis, t, be divided into intervals I , :  to < t < t , ,  12: t l  < t < t l ,  ... , and put 
ti = t i  - t i -  Assume that the intensity of events is constant within each I i ,  equal to Ai, say. The 
dates t,,, tpw,  tpa need not be in the set {to,  t ,  , . . . }, or indeed in any other prespecified set of dates. 
In this setting one may only know that the event occurred between two dates, none of which need 
be endpoints of the intervals Ii. 

Under this model the contribution to the likelihood from person p will be: 

Pr(no event from t,, to tpw)  x (1 - Pr(no event from t,, to t p d  Ino event till t,,)} 

where sp i  is the time in I i  during which it is known that person p has not experienced an event 
(that is Iin(tpe, t,,)) and rpi is the time in Ii during which an event may have occurred (that is 
Iin(tpw, t p d ) ) ,  see Figure 2. In most cases spi and rpi are either 0 or ei, and spi + rPi < fi. 

The contribution to the likelihood from a single individual is thus equal to the likelihood from 
two independent Bernoulli trials, ypl = 1 and ypo = 0, with success probabilities exp( - xi AisPi) 
and exp( - C i  Airpi), respectively. If either t,, = t,, (the patient is only seen well at entry ) or 
tpd = + co (the patient is last seen well), one of these contributions will be equal to one, and can 
thus be left out of consideration. 

The full likelihood from the study of P people is the product of P terms of form (l), and 
equivalent to the likelihood from 2P independent Bernoulli trials, yPj = j, j = 0, 1, with success 
probabilities (mean): 

where 

- spi j = 1 
- rpi j = 0. 

x. . = 
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The intensities, Ai,  can be estimated as parameters in a generalized linear model with logarithmic 
link function, by pretending that the y P i s  are independent Bernoulli variates. This can be achieved 
fairly easily in many standard statistical programs. 

3.2. Persons first seen diseased 

Formally it is assumed that a latest date without the event of intere t is known for everyone, but 
this may not be the case in all applications. One could then arbitrarily assume that everyone is 
event-free at to,  say. This could be age zero if the time scale is age, or some early date if the time 
scale is calendar time. The intensity estimated for the interval Zl from to to t l  will then depend on 
the choice of to through 6, = tl - to. If t l  is chosen earlier than the first observed date after an 
event (tl < min,{tpd}), the estimate of A,/, and thus of the prevalence at t l ,  1 - exp(- A l l l ) ,  will 
be independent of the choice of to. 

3.3. Estimating the survival function 

TAe survival function, S ( t )  = exp{ - 1; A(s) ds}, t i -  < t < t i  may be estimated by 
S ( t )  = exp( - c::: Xj( t j  - t j -  1) - Xi(t - ti- l)>. Confidence intervals for the survival function at 
these points can be derived from this expression and an estimated variance-covariance matrix of 

Another possibility is to construct confidence intervals by finding the values of S ( t j ) , j  = 1,2, . . . 
for which minus twice the log-likelihood maximized over the remaining parameters exceeds the 
minimal value of ~ ’ ( 1 ) ~  - u ,  for some suitably chosen CI. However, this procedure requires that S ( t i ) ,  
or equivalently, - ln{S(ti)) = Ai = I:=, A,/,, is a parameter in the model. The A’s are linear 
functions of the A’s; for n = 3 (leaving out the ( p , j )  subscripts on the x’s): 

A xl, . .. ,An .  

and in general 

n n -  1 

so the integrated intensity at the end of each interval can be estimated directly by using 
the covariates x i / l i  - xi+ l//i+ 1,  i = 1, ... , n  - 1 instead of xl, . .. ,xn- and x n / t n  instead 
of x,. 

Note that for panel studies where each individual has been at risk for an entire interval of 
constant intensity or not at all, the variates xi//, are either 0 or - 1, so the reparameterization 
amounts to the inversion of a lower triangular matrix of - 1s. 

Using this reparametrization we can directly compute estimates of the survival function as 
SG = exp( - A,) as well as confidence intervals for the survival function, either as transformed 
intervals from the integrated intensity scale: 

or by using the &method: - A -  

[S(t,) - z1 -u/@.(Ai)s(t i) ,  S(ti) + 21 -a,2s2.(Ai)sE] (3) 

where z1 - a / Z  is the 1 - c(/2 quantile of the standard normal distribution. 
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In drawing the survival function and the corresponding confidence limits, we may use the 
underlying assumption of constant intensity, and connect the points ( t i ,  S ( t i ) )  by exponential 
curves, that is the curve ( t ,  S ( t ) ) ,  where: 

Under the piecewise constant intensity model this will be the maximum likelihood estimate of the 
survival function at the intermediate points, and for likelihood based confidence intervals it will 
result in likelihood based confidence intervals at the intermediate points as well. The latter are 
shown in Figure 2. 

4. REGRESSION MODELS 

Suppose that, for each individual, a set of covariates, z = ( z p l ,  . . . , zpK)  is recorded and that the 
influence of these on the intensity of events is of interest. In the framework of models with 
piecewise constant intensities a number of models will be considered. 

First, the (additive) excess risk model, where the covariate effects are described by adding 
a linear term in the covariates to a baseline hazard: 

li(z) = li(0) + c P k Z k .  
k 

Second, the multiplicative relative risk model (proportional hazards model), where the covariate 
effects are described by multiplying the baseline hazard by a multiplicative term in the covariates: 

Finally, the additive relative risk model, where the multiplicative term is replaced by an additive 
one: 

In the followingj is omitted from the subscripts, and p represents not the individuals, but the units 
in the generated dataset of ‘Bernoulli’ variables, i indexes the interval and thus the underlying 
intensities l i ,  and k indexes the covariates. 

4.1. The excess risk model 

The likelihood for the data under the (additive) excess risk model is constructed by replacing the 
terms li  in the likelihood for the simple case (1) above by the terms Ai + CkPkzkr which leads to 
a Bernoulli likelihood for independent observations with success probability (mean): 

so the inclusion of the covariates z l ,  ... , zK  in the model for the intensities means that the 
variables Z k x i x i  should be added to the regression model used for the Bernoulli data. The 
estimated coefficients associated with these variables in the regression analysis will then be the 
excess intensity associated with an increase of one in the covariates. 
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Thus the additive excess risk model for the intensities leads to a likelihood that may be 
maximized by a program that can perform maximum likelihood estimation in a Bernoulli model 
with logarithmic link function. 

4.2. Relative risk models 

4.2. I .  Multiplicative relative risk 

The likelihood for the data under the multiplicative relative risk model (Cox model, proportional 
hazards model) is constructed by replacing the terms li in the likelihood for the simple case above 
by the terms li  exp(Ck pkzk), which leads to a Bernoulli likelihood for independent observations 
with success probability (mean): 

For fixed p's  this is a generalized linear model; the parameters are the A's and the covariates 
xiexp(&flkzk), the error distribution is Bernoulli and the link is logarithmic. For fixed A's it is 
also a generalized linear model; the parameters are the p's,  the covariates zk and the error 
distribution Bernoulli, the link log-log and the offset In( - X i  lixi). 

This suggests the following fitting algorithm: 

1. Fit a model as given in Section 2, to obtain initial estimates of the 2s .  
2. Fix the Zs, and fit the model with covariates zk, log-log-link and offset In( - x i  lixi) to 

3. Fix the p's ,  form the covariates xiexp(xkpkzk), and fit a model with these covariates and 

4. Repeat 2 and 3 until convergence. 

If this algorithm converges to a point, it will be a stationary point of the likelihood function. An 
algorithm such as this, where one set of parameters is estimated while another set is held fixed, will 
yield variances of the parameter estimates in one of the sets (the ps or the A's) that are estimates 
of the conditional variances given the value of the maximum likelihood estimates of the parameters 
in the other set, and as such underestimate the marginal variances, since conditional variances 
are never greater than marginal variances. Confidence intervals for parameters in models estimated 
this way should accordingly not be constructed using the approximate standard errors from 
the (conditional) log-likelihood, but, for example, by calculating the profile likelihood for the 
parameters and using the X2-approximation to minus twice the log-likelihood ratio. 

obtain estimates of the p's .  

log-link. 

4.2.2. Additive relative risk 

The likelihood under this model is constructed by replacing the term exp(Ck BkZk) by (1 + Ck P k Z k )  

in ( 5 )  leading to a Bernoulli likelihood for independent observations with mean (success prob- 
ability): 

pp(z) = exp {F l i X i p (  -k F flkzkp)} 
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For fixed p’s this is a generalized linear model; the parameters are the A’s and the covariates 
(1 + x k & z k ) X i ,  the error distribution is Bernoulli and the link is logarithmic. For fixed 2 s  it is 
also a generalized linear model; the parameters are the p’s, the covariates ZkziAixi, the error 
distribution Bernoulli, the link logarithmic and the offset xi &xi .  

The fitting algorithm above thus applies again, with obvious modifications and with the same 
reservations about variances of parameter estimates. 

5. PRACTICALITIES 

5.1. Parameter constraints 

The parameters in the model must satisfy Ai > 0 (at least in the model without covariates and in 
the regression models if z = 0 is a covariate value in the data). For the additive excess risk models 
one must further assume that Ai + C k  B k Z k  > 0, that is Ck P k Z k  > - min { Ai} and for the additive 
relative risk models that Ck/3kzk > - 1 for all values of z in the data. 

These constraints are fairly easily checked in actually fitted models; if they are not fulfilled, one 
must inspect the data to see if the assumptions made are unrealistic, for example, if the chosen 
number of intervals (number of A’s) is too big. In such cases the number of intervals must be 
reduced, for example, by combining adjacent intervals. 

5.2. Data layout 

For Bernoulli trials (with log-link function), an observation of y p  = 1 with covariate vector 
(xl, . . . , xa) ,  say, in which all xi are non-zero, has the same likelihood as a independent observa- 
tions y r ’ ,  ... ,$, all equal to 1, with covariate vectors (xl,O, ... ,O), (0,x2, ... ,O), ... , 
(0, . . . ,O, xo), respectively. Choosing this latter form of data layout avoids problems with negative 
estimates for the intensities if such covariate patterns can be generated corresponding to all A’s; 
a negative estimate yields a fitted value exceeding 1 for such units, and this will never be the case 
at a maximum for the likelihood. 

This procedure does not, however, guarantee that the usual fitting algorithm converges, but it 
has been my experience that this coding of data actually removes some difficulties with conver- 
gence. 

For the regression models these remarks only apply to the x’s, not to the covariates (the z’s); 
these should be coded in the same way for all the ‘independent’ Bernoulli variables generated. 

Since we have generated a dataset of Bernoulli variables we may condense the dataset to one of 
binomial trials by collecting all units with the same covariate pattern, and thus simplify the 
analysis. This is most likely to give substantial reductions in the number of units for analysis if the 
number of intervals, and thereby the number of variables (x’s), is fairly small. 

5.3. Standard errors of parameter estimates 

The estimation algorithms outlined above are based on the fact that the likelihood function for 
observation of P people is equal to that of a number of independent Bernoulli trials larger than P. 
However, data do not come from independent Bernoulli trials, so in software, where standard 
errors are based on the expectation of the second derivative of the log-likelihood function (the 
expected information), as for many statistical programs, notably GLIM, we get estimated 
standard errors calculated under a model different from the one we are actually analysing (albeit 
a model with the same likelihood function). 
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Table 11. Deviance differences relative to model without regression terms 
for models for infection intensities among 297 Danish homosexual men: 
AER*, additive excess risk model with separate regression parameters for 
the period prior to the first examination; AER, additive excess risk model; 
ARR, additive relative risk model; MRR, Multiplicative relative risk model. 
The variables in the models are: BTH, year of birth; BT, 1 {BTH > 1950); 
PTN, annual number of partners; PT, 1 {PTN > 11); LPT, logz(PTN); US, 

contact with person from the USA. 

Regression terms Model type 
AER* AER ARR MRR 

None 
BT 
BTH 
PT 
PTN 
LPT 
us 
BT + PT 
BT + PTN 
BT + LPT 
BT + US 
BTH + PT 
BTH + PTN 
BTH + LPT 
BTH + US 
PT + US 
PTN + US 
LPT + US 
BT + PT + U S  
BT + PTN + US 
BT + LPT + US 
BTH + PT + US 
BTH + PTN + US 
BTH + LPT + US 

0.00 
023  
0.70 
6.04 
9.89 
4.69 
3.88 
8.73 

12.67 
7.19 
4.14 
735 

10.94 
5.28 
4.24 
9.25 

12.70 
7.62 

11.77 
15.32 
9.7 1 

10.43 
13.55 
7.98 

0.00 
0.05 
0.00 
5.95 
9.30 
3.70 
3.30 
6.83 
9.86 
4.28 
3.39 
5.97 
9.35 
3.83 
3.30 
7.06 

10.29 
5.79 
7.99 

10.94 
6.47 
7.05 

10.41 
5.98 

0.00 
063 
1.44 
8.72 
8.79 
9.12 
7.3 1 
8.8 1 
9.46 
9.15 
7.64 
9.75 

11.29 
10.51 
8.73 

11.74 
12.67 
11.78 
11.78 
13.08 
11.83 
12.83 
14.72 
13.15 

0.00 
0.63 
1.48 
8.72 

10.40 
5-66 
7.3 1 
8.78 

10.72 
5.79 
6-56 
9.58 

12.00 
7.14 
8.51 

12.76 
14.76 
11.50 
12.76 
14.91 
11.52 
13.70 
16.23 
12.69 

Standard errors of parameter estimates should therefore be based on the observed values of the 
second derivative of the log-likelihood function (Appendix I). 

5.4. Starting values 

With a link function (like the logarithm) which imposes constraints on the value of the linear 
predictor, one may encounter problems in defining a proper set of starting values for the linear 
predictor. For binomial data with reasonably large denominators one can often use the link 
function of the observed proportions, but in the case of Bernoulli data, the observed proportions 
will be either 0 or 1. 

In practice this problem can often be overcome by fitting an ordinary logistic regression model 
with covariates x l ,  . . . , x,, and then use the logarithm of the fitted values from this model as 
starting values for the linear predictor. 
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6. REGRESSION ANALYSIS OF HIV-INFECTION AMONG 
DANISH HOMOSEXUAL MEN 

I have fitted a number of models to the dataset of HIV-infection in the cohort of Danish 
homosexuals for combinations of the variables year of birth, contact with people from the U.S.A. 
and number of partners per year. 

Minus twice the log-likelihood ratio between the regression models and the model without 
covariate appears in Table 11, where it is seen that the best fitting model is that with PTN 
(number of partners per year) and US (contacts with people from U.S.A.) for the relative risk 
models. The additive excess risk model renders US non-significant, apparently because the 
influence of US simply is not additive on the intensity scale (compare the fit of the models with US 
as the only covariate). Neither of the models are significantly improved by adding the year of 
birth, in either form. The estimates of the regression parameters from the models with PTN and 
US are: 

(i) Additive excess risk model: 

ER = 0000718 x PTN + 0.0123 x US (years-'). 

Thus, the infection rate increases by 0.7 per cent per year for every ten partners. People 
with contacts in the U.S.A. have rates which are 1.2 per cent per year higher. 

(ii) Multiplicative relative risk: 

RR = exp(0.0106 PTN + 0.507 US). 

In this model an increase of 10 partners give an increase in relative risk of 100 (e0.lo6 - 1) 
per cent = 11 per cent, whereas those with contacts in the U.S.A. have a relative risk of 
e0.507 = 1.66 compared with those who have none. 

(iii) Additive relative risk: 

RR = 1 + 0.0335 PTN + 0.995 U S .  

In this model an increase of 10 partners increases the relative risk by 034, whereas 
people with contacts in the U.S.A. have a relative risk which is 1.00 higher than those 
without. 

Figure 3 shows the estimated cumulative probability of being infected for men with 10 annual 
partners, with and without contacts in the U.S.A. respectively, for each of the three models. The 
additive excess risk model shows a smaller difference between those with and those without 
U.S.A. contacts, which may be attributed to this effect not being additive on the intensity scale. 

The addition of the dichotomous variable US to the additive excess risk model gives a deviance 
reduction of only 3.30, a much poorer fit than the corresponding relative risk model that produce 
a deviance reduction of 7.3 (Table 11). Note that the two relative risk models are identical if only 
a single categorical covariate is included. 

Adding PTN to the relative risk model with US produces substantial decreases in  deviance; 5-4 
and 7.5 for the additive and multiplicative relative risk models, respectively. Thus the two relative 
risk models provide much the same fit to the data. The rather small difference between the 
deviance reductions suggests that it is difficult to discriminate between the two in this dataset. 
From Figure 3 it is also apparent that the fit of the two models is quite similar. 
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Figure 3. Estimated cumulative fraction infected estimated by three different regression models (additive ER -; additive 
R R  ---; multiplicative RR . . . )  for 10 partners per year (PTN = 10) and for contact with people from the U.S.A.: none 

(US = 0, lower curves) and some (US = 1, upper curves) 

7. DISCUSSION 

The models presented here represent a slightly more limited approach than Becker and Melbye 
by assuming a model of piecewise constant intensities, where the intervals of constant intensities 
need not coincide with any intervals formed by the observations. Becker and Melbye do not 
assume any parametric form for the hazard, they simply estimate the survival probabilities (or 
equivalently, the integrated hazard) at time points where there are observations. Thus, they 
assume that the number of time points is small compared with the number of events. If the 
number of time points is large the approach proposed by Becker and Melbye would not be useful 
in the construction of standard errors of parameter estimates because of the large number of 
parameters estimated. 

The assumption of piecewise constant intensities allows one to keep the number of estimated 
parameters in reasonable balance with the available information from the data, without sacrifi- 
cing precision, and still enables use of standard statistical software. 

Finkelsteid developed a proportional hazards model for interval censored data, and proposed 
to fit it by Newton-Raphson iteration. She used the In(- ln[S(ti)]), that is the log of the 
integrated hazard as parameters. Finkelstein’s approach is fully parametric too, and also has 
a potentially large number of parameters, except for panel data. She proposed to resolve the 
problems that this may cause for standard errors of parameter estimates by a suitable grouping of 
data prior to analysis. This is in reality the same as assuming piecewise constant intensities, 
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because the parameters used will be the integrated intensity at the grouping points. Thus the 
number of intervals (number of parameters) that we can entertain depends crucially on the 
available amount of data. If a lot of events are recorded throughout the time scale, it is of course 
possible to use a large number of intervals each with a parameter to describe the hazard, whereas 
a scarcity of data could ultimately force us to assume a constant hazard. Empirical studies suggest 
that this has surprisingly little influence on the estimates of the regression parameters and their 
estimated standard errors.’ 

In a piecewise constant intensity model, Finkelstein’s parameterization corresponds to using 
the log of the hazards as parameters. As hazards necessarily are positive, this parameterization 
seems more reasonable to use for calculation of approximate confidence intervals. In Appendix I 
are shown the second derivatives of the log-likelihood with respect to the hazards and the 
regression parameters. If the log-hazard were used as a parameter instead, one would get the 
second derivatives with respect to this parameter simply by multiplying the expressions for the 
derivatives with respect to la& by ,?a& and the expressions for the derivatives with respect to &/?b 

The advantage of the approach developed here is that standard software may be used for 
estimation, and that a variety of different models may be accommodated in the framework. The 
price to pay is the assumption of piecewise constant intensities, but this is not a serous limitation 
if there are sufficient data available. On the other hand, if the data are scarce then likelihood 
based methods may not be the best choice anyway. The drawback is that the standard errors that 
are produced by standard programs are not reliable, partly because they may be based on the 
expected information (expectation taken under a wrong model), and partly because for the 
relative risk models they are conditional standard errors. .Thus it is necessary to resort to explicit 
evaluation of the observed information (Appendix I), or to construction of confidence intervals 
by profile likelihood. The latter is recommendable in any case for the additive excess risk models 
where the parameter estimates cannot be expected to be symmetrically distributed. 

by l a .  

APPENDIX I 

This appendix contains the expressions for the second derivatives of the log-likelihood functions 
for the three models. These are necessary for evaluation of the observed information needed to 
give the approximate covariance matrix of the parameter estimates. 

The additive excess risk model has second derivatives of the log-likelihood function which are 

where p = exp{ X i  l ixi  + Ck xi)}. In the simple model without regression parameters the 
first of these expressions with p = exp(Cilixi) is the second derivative of the log-likelihood 
function. 
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The multiplicative relative risk model has second derivatives of the log-likelihood function 
which are 

where p = exp{Ci~ixiexp(C,Ijkzk)}. 
The additive relative risk model has second derivatives of the log-likelihood function which are 
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