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An overview of APC models

I Data in a Lexis diagram — and where they come from.

I Simple graphs of rates

I Simple AP and AC models

I APC models as they usually are

I APC models as they should be

I Parameters vs. fitted values

I Practical use in forecasting

Slides with code in R only briefly covered
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Population occurrence rates

I Population rates occur in calendar time

I . . . depend very strongly on age

I describe how rates have evolved

I predict how they will evolve in the future
I Rates as a function of age and calendar time:

I data representation
I modeling
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Models for tabulated data

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in
Diabetes Incidence over Time
Emory University, Rollins School of Public Health,June 2019
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Conceptual set-up

Follow-up of the entire (male) population from 1943–2006 w.r.t.
occurrence of testis cancer:

I Split follow-up time for all about 4 mil. men in 1-year classes
by age and calendar time (y).

I Allocate testis cancer event (d = 0, 1) to each.

I Analyze all 200, 000, 000 records by a Poisson model.
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Realistic set-up

I Tabulate the follow-up time and events by age and period.

I 100 age-classes.

I 65 periods (single calendar years).

I 6500 aggregate records of (D ,Y ).

I Analyze by a Poisson model

I . . . note: I have not specified how the model looks
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Practical set-up

I Tabulate only events (as obtained from the cancer registry) by
age and period.

I 100 age-classes.
I 65 periods (single calendar years).
I 6500 aggregate records of D .
I Estimate the population follow-up based on census data from

Statistics Denmark (Ypop).
. . . or get it from the human mortality database.

I If disease is common: tabulate follow-up after diagnosis
(Ydis), and subtract from population follow-up.

I Analyze (D ,Y ) by Poisson model.
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Lexis diagram 1
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1 Named after the German statistician and economist William
Lexis (1837–1914), who devised this diagram in the book
“Einleitung in die Theorie der Bevölkerungsstatistik” (Karl J.
Trübner, Strassburg, 1875).
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Register data

Classification of cases (Dap) by age at diagnosis and date of
diagnosis, and population (Yap) by age at risk and date at risk, in
compartments of the Lexis diagram, e.g.:

> fCtable( xtabs( cbind(D,Y) ~ A + P, data=ts ), col.vars=3:2, w=8 )

D Y
P 1943 1948 1953 1958 1943 1948 1953 1958

A
15 2 3 4 1 773,812 744,217 794,123 972,853
20 7 7 17 8 813,022 744,706 721,810 770,859
25 28 23 26 35 790,501 781,827 722,968 698,612
30 28 43 49 51 799,293 774,542 769,298 711,596
35 36 42 39 44 769,356 782,893 760,213 760,452
40 24 32 46 53 694,073 754,322 768,471 749,912
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In analysis format:

> ts

A P D Y
1 15 1943 2 773812
2 20 1943 7 813022
3 25 1943 28 790501
4 30 1943 28 799293
5 35 1943 36 769356
6 40 1943 24 694073
7 15 1948 3 744217
8 20 1948 7 744706
9 25 1948 23 781827
10 30 1948 43 774542
11 35 1948 42 782893
12 40 1948 32 754322
13 15 1953 4 794123
14 20 1953 17 721810
15 25 1953 26 722968
16 30 1953 49 769298
17 35 1953 39 760213
18 40 1953 46 768471
19 15 1958 1 972853
20 20 1958 8 770859
21 25 1958 35 698612
22 30 1958 51 711596
23 35 1958 44 760452
24 40 1958 53 749912
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Tabulated data

Once data are in tabular form, models are restricted:

I Rates must be assumed constant in each cell of the table /
subset of the Lexis diagram.

I With large cells (5× 5 years) it is customary to put a separate
parameter on each cell or on each levels of classifying factors.

I Output from the model will be rates and rate-ratios.

I Since we use multiplicative Poisson, usually the log rates and
the log-RR are reported

Models for tabulated data (tab-mod) 13/ 1



Age-Period and Age-Cohort
models

Bendix Carstensen
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Register data — rates

Rates in “tiles” of the Lexis diagram:

λ(a, p) = Dap/Yap

Descriptive epidemiology based on disease registers:
How do the rates vary by age and time:

I Age-specific rates across periods.

I Age-specific rates across cohorts.

I Age-standardized rates as a function of calendar time.
(Weighted averages of the age-specific rates).
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Lexis diagram: data
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> library( Epi )
> data( testisDK )
> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33

> ts <- transform( subset( testisDK, A>14 & A<60 ),
+ A = floor( A /5)*5 +2.5,
+ P = floor((P-1943)/5)*5+1943+2.5 )
> ts$C <- ts$P - ts$A
> trate <- xtabs( D ~ A + P, data = ts ) /
+ xtabs( Y ~ A + P, data = ts ) * 100000
> trate[1:5,1:6]

P
A 1945.5 1950.5 1955.5 1960.5 1965.5 1970.5
17.5 1.2923036 0.9405857 1.6370257 1.3362759 1.4264867 3.4340862
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22.5 3.6899378 4.1627194 6.3728682 6.3565492 5.7274822 8.0657826
27.5 6.9576174 7.9301414 8.7140826 11.7375624 11.3753792 10.6996275
32.5 7.0061961 8.5211703 10.6590661 12.3665762 14.7122260 16.1068525
37.5 6.8888785 7.1529555 7.3663549 8.8105514 13.9126492 17.6571019

> par( mfrow=c(2,2) )
> rateplot( trate, col=gray(2:15/18), lwd=3, ann=TRUE )
> wh = c("ap","ac","pa","ca")
> for( ptp in wh ) {
+ pdf( paste("./graph/AP-AC-",ptp,".pdf",sep=""), height=6, width=8 )
+ par( mar=c(3,3,1,1, mgp=c(3,1,0)/1.6, bty="n", las=1 ))
+ rateplot( trate, which=ptp,
+ col=gray(2:15/18), lwd=3, ann=TRUE, a.lim=c(15,60) )
+ dev.off()
+ }
>
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> library( Epi )
> par( mar=c(3,3,.1,.1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> layout( mat=cbind(1,2),width=c(6,10) )
> for( ptp in c("pa","ca") )
+ rateplot( trate, which=ptp,
+ col=gray(2:15/18), lwd=3, ann=TRUE, a.lim=c(15,60) )
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Period or cohort?

1950 1960 1970 1980 1990 2000

1

2

5

10

20

Date of diagnosis

R
at

es

 17.5

 27.5
 37.5

 47.5

 57.5

1880 1900 1920 1940 1960 1980

1

2

5

10

20

Date of birth

R
at

es

 17.5

 27.5
 37.5

 47.5

 57.5

Age-Period and Age-Cohort models (AP-AC) 18/ 1



Age-Period model

Rates are proportional between periods:

λ(a, p) = aa × bp or log[λ(a, p)] = αa + βp

Choose p0 as reference period, where βp0 = 0

log[λ(a, p0)] = αa + βp0 = αa
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Fitting the A-P model in R I

Reference period is the 5th period (1970.5 ∼ 1968–72):

> ap <- glm( D ~ factor(A) - 1 + relevel( factor(P), "1970.5" ) +
+ offset( log(Y/10^5) ),
+ family=poisson, data=ts )
> # summary( ap )
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Estimates with confidence intervals

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( seq(17.5,57.5,5), ci.exp(ap,subset="A"), plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1970)" )
> matshade( seq(1945.5,1995.5,5),
+ rbind( ci.exp(ap,subset="P")[1:5 ,], 1,
+ ci.exp(ap,subset="P")[6:10,] ), plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20)/5,
+ xlab="Date of follow-up", ylab="Rate ratio" )
> abline( h = 1)
> points( 1970.5, 1, pch=16 )
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Estimates from Age-Period model

20 30 40 50

1

2

5

10

20

Age

Te
st

is
 c

an
ce

r 
ra

te
 p

er
 1

00
,0

00
 P

Y
 (

19
70

)

1950 1960 1970 1980 1990

0.2

0.5

1.0

2.0

Date of follow−up
R

at
e 

ra
tio ●

Age-Period and Age-Cohort models (AP-AC) 22/ 1



Age-cohort model

Rates are proportional between cohorts:

λ(a, c) = aa × cc or log[λ(a, p)] = αa + γc

Choose c0 as reference cohort, where γc0 = 0

log[λ(a, c0)] = αa + γc0 = αa
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Fitting the A-C model in R I

Reference cohort is the 1933 cohort:

> ac <- glm( D ~ factor(A) - 1 + relevel( factor(C), "1933" ) +
+ offset( log(Y/10^5) ),
+ family=poisson, data=ts )
> summary( ac )

Call:
glm(formula = D ~ factor(A) - 1 + relevel(factor(C), "1933") +

offset(log(Y/10^5)), family = poisson, data = ts)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.0796 -0.9538 -0.1620 0.5767 3.9525

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(A)17.5 0.61513 0.07534 8.165 3.23e-16
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Fitting the A-C model in R II
factor(A)22.5 1.89965 0.05342 35.558 < 2e-16
factor(A)27.5 2.46911 0.04842 50.990 < 2e-16
factor(A)32.5 2.70635 0.04695 57.639 < 2e-16
factor(A)37.5 2.71211 0.04758 57.006 < 2e-16
factor(A)42.5 2.58676 0.04993 51.803 < 2e-16
factor(A)47.5 2.36542 0.05459 43.327 < 2e-16
factor(A)52.5 2.18192 0.06098 35.782 < 2e-16
factor(A)57.5 2.01519 0.06939 29.041 < 2e-16
relevel(factor(C), "1933")1888 -1.77316 0.41400 -4.283 1.84e-05
relevel(factor(C), "1933")1893 -1.05641 0.19017 -5.555 2.77e-08
relevel(factor(C), "1933")1898 -0.79897 0.12600 -6.341 2.28e-10
relevel(factor(C), "1933")1903 -0.87599 0.10389 -8.432 < 2e-16
relevel(factor(C), "1933")1908 -0.76707 0.08352 -9.184 < 2e-16
relevel(factor(C), "1933")1913 -0.56290 0.07006 -8.035 9.36e-16
relevel(factor(C), "1933")1918 -0.56702 0.06683 -8.484 < 2e-16
relevel(factor(C), "1933")1923 -0.36836 0.06124 -6.015 1.79e-09
relevel(factor(C), "1933")1928 -0.18832 0.05903 -3.190 0.001421
relevel(factor(C), "1933")1938 0.08958 0.05439 1.647 0.099585
relevel(factor(C), "1933")1943 -0.03107 0.05443 -0.571 0.568091
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Fitting the A-C model in R III
relevel(factor(C), "1933")1948 0.18088 0.05256 3.441 0.000579
relevel(factor(C), "1933")1953 0.42239 0.05309 7.956 1.77e-15
relevel(factor(C), "1933")1958 0.62544 0.05421 11.537 < 2e-16
relevel(factor(C), "1933")1963 0.75687 0.05727 13.215 < 2e-16
relevel(factor(C), "1933")1968 0.75183 0.06799 11.057 < 2e-16
relevel(factor(C), "1933")1973 0.87343 0.09373 9.318 < 2e-16
relevel(factor(C), "1933")1978 1.19601 0.17340 6.898 5.29e-12

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 29193.6 on 2430 degrees of freedom
Residual deviance: 2767.8 on 2403 degrees of freedom
AIC: 8972.2

Number of Fisher Scoring iterations: 5

Age-Period and Age-Cohort models (AP-AC) 26/ 1



Estimates with confidence intervals

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( seq(17.5,57.5,5), ci.exp(ac,subset="A"), plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1933 cohort)" )
> matshade( seq(1888,1978,5),
+ rbind( ci.exp(ac,subset="C")[1:9 ,], 1,
+ ci.exp(ac,subset="C")[10:18,] ), plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20)/5,
+ xlab="Date of birth", ylab="Rate ratio" )
> abline( h = 1)
> points( 1933, 1, pch=16 )
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Estimates from Age-Cohort model

20 30 40 50

1

2

5

10

20

Age

Te
st

is
 c

an
ce

r 
ra

te
 p

er
 1

00
,0

00
 P

Y
 (

19
33

 c
oh

or
t)

1900 1920 1940 1960 1980

0.2

0.5

1.0

2.0

Date of birth
R

at
e 

ra
tio ●

Age-Period and Age-Cohort models (AP-AC) 28/ 1



Hang on:

Age, period and cohort are quantitative variables

I but the models we fitted does not use this feature

I they are exchangeable models for the A, P and C effects

I meaning that you can exhange the names of two age-classes
and still get the same fit

I models do not use the fact that 50 < 55 < 60.

I we need parametric models for the A, P and C effects

log
(
λ(a, p)

)
= f (a)+g(p) log

(
λ(a, p)

)
= f (a)+h(p−a)
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Parametric models

I f , g and h are smooth, continuous functions:

log
(
λ(a, p)

)
= f (a)+g(p) log

(
λ(a, p)

)
= f (a)+h(p−a)

I Data is discrete (1-year, 5-year) intervals

I Models are continuous, prediction at any value for a, p or c

I Reference is now to a specific age or data — not an
age-band or period

I Results are functions to be shown as curves

I in the form of predictions and

I contrasts between predictions (RR between p and pref)
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Quantitative, natural splines I

> library(splines)
> ap <- glm( D ~ Ns(A,knots=seq(15,50,,4)) +
+ Ns(P,knots=seq(1950,1990,,5)),
+ offset = log(Y/10^5),
+ family = poisson, data=ts )
> round( ci.lin(ap), 4 )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 0.0499 0.0712 0.7011 0.4833 -0.0896 0.1895
Ns(A, knots = seq(15, 50, , 4))1 1.2480 0.0475 26.2816 0.0000 1.1549 1.3411
Ns(A, knots = seq(15, 50, , 4))2 3.5475 0.1394 25.4553 0.0000 3.2743 3.8206
Ns(A, knots = seq(15, 50, , 4))3 -0.1530 0.0322 -4.7525 0.0000 -0.2161 -0.0899
Ns(P, knots = seq(1950, 1990, , 5))1 0.5795 0.0616 9.4032 0.0000 0.4587 0.7003
Ns(P, knots = seq(1950, 1990, , 5))2 0.8348 0.0409 20.4259 0.0000 0.7547 0.9149
Ns(P, knots = seq(1950, 1990, , 5))3 1.2830 0.0744 17.2465 0.0000 1.1372 1.4288
Ns(P, knots = seq(1950, 1990, , 5))4 0.8935 0.0359 24.8785 0.0000 0.8231 0.9639
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Quantitative, natural splines II
> ac <- glm( D ~ Ns(A,knots=seq(15,50,,4)) +
+ Ns(C,knots=seq(1910,1965,,9)),
+ offset = log(Y/10^5),
+ family = poisson, data=ts )

Age-Period and Age-Cohort models (AP-AC) 32/ 1



Period model predicions I

> ndA <- data.frame( A=15:60, P=1970 , Y=1 )
> ndP <- data.frame( A=30 , P=1945:1995, Y=1 )
> ndRp <- data.frame( A=30 , P=1970 , Y=1 )
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( ndA$A,
+ ci.pred(ap,ndA)*10^5, # <- predicted rates using ndA
+ plot=TRUE, log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1970)" )
> matshade( ndP$P,
+ ci.exp(ap,list(ndP,ndRp)), # <- RR comparing ndP vs. ndRp
+ plot=TRUE, xlab="Date of follow-up", ylab="Rate ratio" )
> abline( h = 1, v=1970 )
> points( 1970, 1, pch=16 )
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Estimates from Age-Period model
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Cohort model I

> ndA <- data.frame( A=15:60, C=1930 , Y=1 )
> ndC <- data.frame( A=30 , C=1890:1975, Y=1 )
> ndRc <- data.frame( A=30 , C=1930 , Y=1 )
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( ndA$A, ci.pred(ac,ndA)*10^5, plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1930 cohort)" )
> matshade( ndC$C, ci.exp(ac,list(ndC,ndRc)), plot=TRUE,
+ xlab="Date of birth", ylab="Rate ratio", xlim=c(1890,1920), ylim=c(0.3,1) )
> abline( h = 1, v=1930 )
> abline( v=c(1940,1945), col=gray(0.7) )
> points( 1930, 1, pch=16 )
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> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( ndA$A, ci.pred(ac,ndA)*10^5, plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1930 cohort)" )
> matshade( ndC$C, ci.exp(ac,list(ndC,ndRc)), plot=TRUE,
+ xlab="Date of birth", ylab="Rate ratio" )
> lo <- ndC$C<=1910
> hi <- ndC$C>=1965
> matshade( ndC$C[lo], ci.exp(ac,list(ndC,ndRc))[lo,], col="limegreen" )
> matshade( ndC$C[hi], ci.exp(ac,list(ndC,ndRc))[hi,], col="limegreen" )
> abline(v=c(1910,1965),lty=3,col=gray(0.5))
> abline( h = 1, v=1930 )
> abline( v=c(1940,1945), col=gray(0.7) )
> points( 1930, 1, pch=16 )
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Estimates from Age-Cohort model
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Age-drift model

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in
Diabetes Incidence over Time
Emory University, Rollins School of Public Health,June 2019

http://BendixCarstensen/APC Ad

http://BendixCarstensen/APC


Linear effect of period:

log[λ(a, p)] = αa + βp = αa + β(p − p0)

that is, βp = β(p − p0).

Linear effect of cohort:

log[λ(a, p)] = α̃a + γc = α̃a + γ(c − c0)

that is, γc = γ(c − c0)
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Age and linear effect of period:

> apd <- glm( D ~ factor( A ) - 1 + I(P-1970.5) +
+ offset( log( Y ) ),
+ family=poisson )
> summary( apd )

Call:
glm(formula = D ~ factor(A) - 1 + I(P - 1970.5) + offset(log(Y)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.97593 -0.77091 0.02809 0.95914 2.93076

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(A)17.5 -3.58065 0.06306 -56.79 <2e-16
...
factor(A)57.5 -3.17579 0.06256 -50.77 <2e-16
I(P - 1970.5) 0.02653 0.00100 26.52 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 89358.53 on 81 degrees of freedom
Residual deviance: 126.07 on 71 degrees of freedomAge-drift model (Ad) 38/ 1



Age and linear effect of cohort:

> acd <- glm( D ~ factor( A ) - 1 + I(C-1933) +
+ offset( log( Y ) ),
+ family=poisson )
> summary( acd )

Call:
glm(formula = D ~ factor(A) - 1 + I(C - 1933) + offset(log(Y)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.97593 -0.77091 0.02809 0.95914 2.93076

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(A)17.5 -4.11117 0.06760 -60.82 <2e-16
...
factor(A)57.5 -2.64527 0.06423 -41.19 <2e-16
I(C - 1933) 0.02653 0.00100 26.52 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 89358.53 on 81 degrees of freedom
Residual deviance: 126.07 on 71 degrees of freedomAge-drift model (Ad) 39/ 1



What goes on?
p = a + c p0 = a0 + c0

αa + β(p − p0) = αa + β
(
a + c − (a0 + c0)

)
= αa + β(a − a0)︸ ︷︷ ︸

cohort age-effect

+β(c − c0)

The two models are the same.
The parametrization is different.

The age-curve refers either
• to a period (cross-sectional rates) or
• to a cohort (longitudinal rates).
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Age-Period-Cohort model

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in
Diabetes Incidence over Time
Emory University, Rollins School of Public Health,June 2019

http://BendixCarstensen/APC APC-cat

http://BendixCarstensen/APC


The age-period-cohort model

log[λ(a, p)] = αa + βp + γc

I Three effects:

I a — Age (at diagnosis)
I p — Period (of diagnosis)
I c — Cohort (of birth)

I No assumptions about the shape of effects.

I Levels of A, P and C are assumed exchangeable

I i.e. no assumptions about the relationship between parameter
estimates and the scaled values of A, P and C
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Fitting the model in R I

> m.apc <- glm( D ~ 0 + factor(A) + factor(P) + factor(C),
+ offset = log(Y), family = poisson, data = tc )
> round( ci.lin( m.apc ), 4 )

Estimate StdErr z P 2.5% 97.5%
factor(A)17.5 -11.3989 0.2332 -48.8886 0.0000 -11.8559 -10.9419
factor(A)22.5 -10.2022 0.2552 -39.9849 0.0000 -10.7023 -9.7021
factor(A)27.5 -9.7634 0.2755 -35.4328 0.0000 -10.3035 -9.2233
factor(A)32.5 -9.6795 0.2974 -32.5482 0.0000 -10.2624 -9.0966
factor(A)37.5 -9.8283 0.3201 -30.7015 0.0000 -10.4557 -9.2009
factor(A)42.5 -10.1047 0.3435 -29.4182 0.0000 -10.7779 -9.4315
factor(A)47.5 -10.5268 0.3676 -28.6390 0.0000 -11.2472 -9.8064
factor(A)52.5 -10.8863 0.3921 -27.7650 0.0000 -11.6548 -10.1179
factor(A)57.5 -11.2709 0.4082 -27.6079 0.0000 -12.0710 -10.4707
factor(P)1950.5 0.2029 0.0825 2.4598 0.0139 0.0412 0.3645
factor(P)1955.5 0.4204 0.0908 4.6297 0.0000 0.2424 0.5984
factor(P)1960.5 0.6410 0.1055 6.0769 0.0000 0.4343 0.8477
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Fitting the model in R II
factor(P)1965.5 0.8214 0.1241 6.6199 0.0000 0.5782 1.0645
factor(P)1970.5 1.0644 0.1444 7.3689 0.0000 0.7813 1.3474
factor(P)1975.5 1.2780 0.1665 7.6738 0.0000 0.9516 1.6044
factor(P)1980.5 1.4344 0.1896 7.5651 0.0000 1.0628 1.8060
factor(P)1985.5 1.5058 0.2134 7.0565 0.0000 1.0875 1.9240
factor(P)1990.5 1.5880 0.2356 6.7396 0.0000 1.1262 2.0498
factor(C)1893 0.5056 0.4289 1.1786 0.2385 -0.3351 1.3463
factor(C)1898 0.5644 0.3840 1.4699 0.1416 -0.1882 1.3170
factor(C)1903 0.2843 0.3556 0.7995 0.4240 -0.4126 0.9812
factor(C)1908 0.2068 0.3284 0.6299 0.5288 -0.4367 0.8504
factor(C)1913 0.2230 0.3034 0.7350 0.4624 -0.3717 0.8177
factor(C)1918 0.0271 0.2815 0.0964 0.9232 -0.5246 0.5789
factor(C)1923 0.0328 0.2597 0.1263 0.8995 -0.4762 0.5418
factor(C)1928 0.0215 0.2394 0.0900 0.9283 -0.4478 0.4909
factor(C)1933 0.0252 0.2199 0.1145 0.9088 -0.4058 0.4561
factor(C)1938 -0.0724 0.2027 -0.3572 0.7209 -0.4696 0.3248
factor(C)1943 -0.3528 0.1871 -1.8862 0.0593 -0.7195 0.0138
factor(C)1948 -0.3047 0.1731 -1.7606 0.0783 -0.6440 0.0345
factor(C)1953 -0.1792 0.1626 -1.1020 0.2705 -0.4978 0.1395
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Fitting the model in R III
factor(C)1958 -0.1174 0.1558 -0.7532 0.4513 -0.4228 0.1881
factor(C)1963 -0.1088 0.1541 -0.7062 0.4801 -0.4108 0.1932
factor(C)1968 -0.1681 0.1623 -1.0353 0.3005 -0.4863 0.1501
factor(C)1973 0.0000 0.0000 NaN NaN 0.0000 0.0000
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No. of parameters

A has 9(A) levels
P has 10(P) levels
C=P-A has 18(C = A+ P − 1) levels
Age-drift model has A+ 1 = 10 parameters
Age-period model has A+ P − 1 = 18 parameters
Age-cohort model has A+ C − 1 = 26 parameters
Age-period-cohort model has A+ P + C − 3 = 34 parameters:

> length( coef(m.apc) ) ; sum( !is.na(coef(m.apc)) )

[1] 35

[1] 34

The missing parameter is because of the identifiability problem.
Age-Period-Cohort model (APC-cat) 46/ 1



A, P, C effects

> par( mfrow=c(1,3), mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6 )
> m.apc <- glm( D ~ 0 + factor(A) + factor(P) + factor(C),
+ offset = log(Y), family = poisson, data = tc )
> #
> matshade( seq(17.5,57.5,5), ci.exp(m.apc,subset="A")*10^5, plot=TRUE,
+ log="y", ylab="Incidence per 100,000 PY", xlab="Age", ylim=c(0.5,10) )
> #
> matshade( seq(1945.5,1990.5,5), rbind(1,ci.exp(m.apc,subset="P")), plot=TRUE,
+ log="y", ylab="Period RR", xlab="Date of FU", ylim=c(0.5,10) )
> abline( h=1 )
> #
> matshade( seq(1888,1973,5), rbind(1,ci.exp(m.apc,subset="C")), plot=TRUE,
+ log="y", ylab="Cohort RR", xlab="Date of birth", ylim=c(0.5,10) )
> abline( h=1 )
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A, P, C effects, different reference

> m.apc <- glm( D ~ 0 + factor(A) + relevel(factor(P),6) +
+ Relevel(factor(C),c(4,1:3,5:13,15:18,14)),
+ offset = log(Y), family = poisson, data = tc )
> #
> par( mfrow=c(1,3), mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6 )
> matshade( seq(17.5,57.5,5), ci.exp(m.apc,subset="A")*10^5, plot=TRUE,
+ log="y", ylab="Incidence per 100,000 PY", xlab="Age", ylim=c(0.5,10)*3 )
> #
> matshade( seq(1945.5,1990.5,5), rbind(1,ci.exp(m.apc,subset="P"))[c(2:6,1,7:10),], plot=TRUE,
+ log="y", ylab="Period RR", xlab="Date of FU", ylim=c(0.5,10)/2 )
> abline( h=1 ) ; points( 1970.5, 1, pch=16 )
> #
> matshade( seq(1888,1973,5), rbind(1,ci.exp(m.apc,subset="C"))[c(2:4,1,5:13,18,14:17),], plot=TRUE,
+ log="y", ylab="Cohort RR", xlab="Date of birth", ylim=c(0.5,10)/2 )
> abline( h=1 ); points( c(1903,1953), c(1,1), pch=16 )
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Test for effects

> tc.acp <- apc.fit( tc, model="factor", ref.c=1943, print.AOV=FALSE )

> print( tc.acp$Anova, digits=4 )

Model Mod.df. Mod.dev. df. dev. Pr(>Chi) dev/df H0
1 Age 81 1114.65 NA NA NA NA
2 Age-drift 80 131.77 1 982.879 9.458e-216 982.879 zero drift
3 Age-Cohort 64 70.20 16 61.570 2.840e-07 3.848 Coh eff|dr.
4 Age-Period-Cohort 56 38.78 8 31.418 1.183e-04 3.927 Per eff|Coh
5 Age-Period 72 122.23 16 83.451 3.950e-11 5.216 Coh eff|Per
6 Age-drift 80 131.77 8 9.538 2.990e-01 1.192 Per eff|dr.
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Tabulation in the Lexis diagram

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in
Diabetes Incidence over Time
Emory University, Rollins School of Public Health,June 2019

http://BendixCarstensen/APC Lexis-tab

http://BendixCarstensen/APC
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Calendar time

A
ge

1983 1984 1985 1986 1987 1988
30

31

32

33

34

35

7
38.1

7
38.1

5
38.0

8
38.1

14
38.3

3
38.2

9
38.1

7
38.0

5
38.0

9
38.1

10
38.2

8
38.3

9
38.2

6
38.0

7
38.0

9
38.1

11
38.2

10
38.3

5
38.8

12
38.1

7
37.9

13
38.0

8
38.1

8
38.2

13
40.3

8
38.7

4
38.0

6
37.9

11
38.0

11
38.1

8
42.3

12
40.2

5
38.7

5
38.0

11
37.9

6
38.0

1988

35 Testis cancer cases in
Denmark.

Male person-years in
Denmark.

Tabulation in the Lexis diagram (Lexis-tab) 55/ 1



Tabulation of register data

Calendar time

A
ge

1983 1984 1985 1986 1987 1988
30

31

32

33

34

35

5 1 1 3 10 0
19.0

6
19.2

4
18.9

5
19.0

4
19.2

3
19.2 19.1

6
19.1

0
19.1

1
18.9

4
19.2

3
19.2

6
19.1

19.0
7

18.9
4

19.2
5

18.9
7

19.0
2

19.2 19.2

6
18.9

3
19.0

4
19.1

5
18.9

6
19.2

6
19.2

19.3
3

19.0
3

18.9
4

19.1
5

19.0
4

19.1 19.2

3
19.1

6
18.8

3
19.0

8
19.1

3
18.9

2
19.2

19.7
6

19.2
4

18.9
5

18.9
5

19.2
6

19.0 19.0

7
19.3

4
19.1

3
18.8

3
19.0

8
19.1

4
18.9

21.0
4

19.7
1

19.2
3

18.9
3

18.9
7

19.2 19.0

4
20.1

8
19.2

2
19.0

2
18.8

5
19.1

2
19.1

22.2
4

20.9
3

19.6
3

19.2
6

18.9
4

18.9 19.2

Testis cancer cases in
Denmark.

Male person-years in
Denmark.

Subdivision by year of
birth (cohort).

Tabulation in the Lexis diagram (Lexis-tab) 56/ 1



Major sets in the Lexis diagram

A-sets: Classification by age and period. ( )

B-sets: Classification by age and cohort. ( �
�

�
� )

C-sets: Classification by cohort and period. (
�
�

�
�

)

The mean age, period and cohort for these sets is just the mean of
the tabulation interval.

The mean of the third variable is found by using a = p − c.
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Analysis of rates from a complete observation in a Lexis diagram
need not be restricted to these classical sets classified by two
factors.

We may classify cases and risk time by all three factors
Lexis triangles:

Upper triangles: age and period, earliest born cohort. ( �
� )

Lower triangles: age and period, latest born cohort. ( �
� )
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Mean a, p and c during FU in triangles

Modeling requires that each set (=observation in the dataset) be
assigned a value of age, period and cohort. So for each triangle we
need:

I mean age at risk.

I mean date at risk.

I mean cohort at risk.
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Tabulation by age, period and cohort

1980 1981 1982 1983
60

61

62

63

A
ge

Calendar time

●

● 611
3

612
3

19202
3

19211
3

19821
3

19822
3

A

B

L62,1981

L61,1981

L60,1980

L61,1980

Gives triangular sets
with differing mean
age, period and
cohort:

These are correct
midpoints for age,
period and cohort
must be used in
modeling.
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From population figures to risk time

Population figures in the form
of size of the population at
certain date are available from
most statistical bureaus.

This corresponds to
population sizes along the
vertical lines in the diagram.

We want risk time figures for
the population in the squares
and triangles in the diagram.
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● ● ● ● ● ● ● ● ● ● ●
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● ● ● ● ● ● ● ● ● ● ●
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Summary:

Population risk time
(N2Y):

A: (1
3
La,p+

1
6
La+1,p+1)× 1y

B: (1
6
La−1,p+

1
3
La,p+1)× 1y

Mean age, period and
cohort:
1
3 into the interval. 1980 1981 1982 1983

60

61

62

63

A
ge

Calendar time

●

● 611
3

612
3

19202
3

19211
3

19821
3

19822
3

A

B

L62,1981

L61,1981

L60,1980

L61,1980

Tabulation in the Lexis diagram (Lexis-tab) 62/ 1



APC-model: Parametrization

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in
Diabetes Incidence over Time
Emory University, Rollins School of Public Health,June 2019

http://BendixCarstensen/APC APC-par

http://BendixCarstensen/APC


Age-Period-Cohort model

log(λap) = αa + βp + γc = f (a) + g(p) + h(c)

. . . but c = p − q ⇔ p − a − c = 0

log(λap) = f (a) + g(p) + h(c) + γ(p − a − c)

= f (a) − µp + µc − γa +

g(p) + µp + γp +

h(c) − µc − γc

A decision on parametrization is needed.
. . . it must be external to the model.
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Parametrization principle

The problem is to choose µa , µc and γ according to some
(external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific
rates in a cohort c0 after adjustment for the period effect.

2. The cohort function is 0 at a reference cohort c0, interpretable
as log-RR relative to cohort c0.

3. The period function is 0 on average with 0 slope, interpretable
as log-RR relative to the age-cohort prediction. (residual
log-RR).

This will yield cohort age-effects a.k.a. longitudinal age effects.

Biologically interpretable: what happens in the lifespan of a cohort?
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Period-major parametrization

I Alternatively, the period function could be constrained to be 0
at a reference date, p0.

I Age-effects would refer to age apecific rates at p0
I Cohort effects constrained to be 0 on average with 0 slope.

I Gives period or cross-sectional age-effects

Bureaucratically interpretable: what was seen at a given date?
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Implementation:

1. Obtain any set of parameters f (a), g(p), h(c).

2. Extract the trend from the period effect (find µ and β):

g̃(p) = ĝ(p)− (µ+ βp)

(regression of ĝ(p) on p)

3. Decide on a reference cohort c0.

4. Use the functions:

f̃ (a) = f̂ (a) + µ + βa + ĥ(c0) + βc0
g̃(p) = ĝ(p) − µ − βp
h̃(c) = ĥ(c) + βc − ĥ(c0) − βc0
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“Extract the trend”

I Not a well-defined concept:

I Regress ĝ(p) on p for all units in the dataset.
I Regress ĝ(p) on p for all different values of p.
I Weighted regression — what weights?

I A better founded solution is needed. . .
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I Regress ĝ(p) on p for all units in the dataset.
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I Regress ĝ(p) on p for all different values of p.
I Weighted regression — what weights?

I A better founded solution is needed. . .

APC-model: Parametrization (APC-par) 67/ 1



“Extract the trend”

I Not a well-defined concept:
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“Extract the trend”
I A solution from linear algebra:

I Take the columns from the parametric period effect,
I projection on the orthogonal to (1, p)
I requires an innner product in the observation space
I should be an inner product using person-years as weights

I Stepwise process:
I Fit Age-Cohort model
I compute the predicted values for the observed data
I use the log of these as offset in a model with only Period
I longitudinal age-effects, cohort with a reference and period as

residuals

I Both implemented in apc.fit
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ML and residual modeling

> library( Epi )
> data( testisDK )
> head( testisDK )

A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
5 4 1943 0 32614.00
6 5 1943 0 32020.33

> mm <- apc.fit( data=testisDK, ref.c=1935, parm="ACP" , npar=c(6,5,8), scale=10^5)

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 4854 6008.406 NA NA NA NA
2 Age-drift 4853 4864.393 1 1144.01295 8.976155e-251 1144.012949
3 Age-Cohort 4847 4758.975 6 105.41779 1.853664e-20 17.569631
4 Age-Period-Cohort 4844 4704.333 3 54.64241 8.184605e-12 18.214135
5 Age-Period 4850 4846.349 6 142.01605 3.762037e-28 23.669341
6 Age-drift 4853 4864.393 3 18.04415 4.307234e-04 6.014716

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.

> mr <- apc.fit( data=testisDK, ref.c=1935, parm="AC-P", npar=c(6,5,8), scale=10^5 )

[1] "Sequential modelling Poisson with log(Y) offset : ( AC-P ):\n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/df

1 Age 4854 6008.406 NA NA NA NA
2 Age-drift 4853 4864.393 1 1144.01295 8.976155e-251 1144.012949
3 Age-Cohort 4847 4758.975 6 105.41779 1.853664e-20 17.569631
4 Age-Period-Cohort 4844 4704.333 3 54.64241 8.184605e-12 18.214135
5 Age-Period 4850 4846.349 6 142.01605 3.762037e-28 23.669341
6 Age-drift 4853 4864.393 3 18.04415 4.307234e-04 6.014716

H0
1
2 zero drift
3 Coh eff|dr.
4 Per eff|Coh
5 Coh eff|Per
6 Per eff|dr.

> par( mar=c(3,4,0.1,4), mgp=c(3,1,0)/1.6, las=1 )
> fp <- plot( mm, shade=TRUE, r.txt="Testis cancer rate per 100,000 PY",
+ lty=c("solid","21")[c(1,1,2)], lend="butt")
> lines( mr, shade=TRUE, col="red", lty=c("solid","21")[c(1,1,2)], lend="butt")
> text( 1995-fp[1], c(0.16,0.11)/fp[2], c("Maximum Likelihood","Seqential"),
+ adj=c(1,0), col=1:2 )
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Two ways of fixing parameters
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Parametrization of the APC model is arbitrary

I Separation of the three effects relies on arbitrary principles,
e.g.:

I Age is the primary effect
I Cohort the secondary, reference c0
I Period is the residual
I Inner product for trend extraction

I . . . or sequential fitting of models (different model)
I There is no magical fix that allows you to escape this, it comes

from using variables a, p and p − a
I Any fix has some (hidden) assumption(s)
I . . . but the fitted values are the same (except for the

sequential method).
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from using variables a, p and p − a
I Any fix has some (hidden) assumption(s)
I . . . but the fitted values are the same (except for the

sequential method).
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APC-models for DM in Denmark
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An APC Analytic Approach to Analyzing and Predicting National Trends in
Diabetes Incidence over Time
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Age-Period-Cohort analysis of DM in Denmark
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Incidence rates
I T1D:

I peaks ages 15–40, weak increase for men, weak decrease for women.
I decrease after age 40
I peak rates at 10-20 cases per 100,000 PY (2015)
I change by calendar time: −3.5% /year

I T2D:
I peaks ages 65–80
I decrease after 80
I peak rates at 7–10 cases per 1000 PY (2015)
I change by calendar time: 3.3% /year
I very irregular calendar time pattern
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Age-Period-Cohort analysis of DM in Denmark

I Alternative to showing the (arbitrarily fixed) age-, period- and
cohort-components, is to show the predicted rates

I . . . for a fixed age (50 years, say) as a function of calendar time

I The natural splines constrain P and C components to be linear
at the end, so easy to extrapolate rates at any desired age into
the future

I . . . but may overshoot
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Age-Period-Cohort analysis of DM in Denmark
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Predictions for total DM
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Future rates for total DM
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Projection scenarios for incidence rates
I Incidence rates (6 scenarios)

I Simple linear projection of period and cohort effects
I Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved
I Simple linear increase in incidence rates 2017–2030:

0%/year, 2%/year, 4%/year, 6%/year,

I Mortality rates (3 scenarios)
I Simple linear projection of period and cohort effects
I Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved
I Constant rates as of 2017
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Future number of prevalent cases
1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)
2. Use incidence rates to predict the fraction of non-DM that will

be DM one month later (and one month older)
3. Use mortality for DM to predict the fraction of the prevalent

cases that will survive one month (and be one month older)
4. Use mortality for non-DM to predict how many of the non-DM

will survive one month (and be one month older)
5. From this we know the prevalence of DM as of 2017-02-01, in

one month older age
6. Multiply with population forecast from Statistics Denmark to

get the number of prevalent cases at any future time
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Future number of prevalent cases (M/W)
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Future number of prevalent cases (M/W)

I Total no. prevalent cases increase from 287,000 in 2017 to
467,000 in 2030.

I The population of DM cases will be older — the over-80 will
increase from 13 to 20%

I The incidence raes are erratic toward the end of the
observation period, so prediction to 2040 is not feasible

I Scenarios with 2%, resp. 4% annual increase from 2017 level
of incidence gives predictions of 445,000 and 482,000 prevalent
cases.
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Mehodological points

I Incidence and mortality in tables by age, period and cohort in
1-year classes (Lexis triangles)

I Score the correct mean age, period and cohort in each
I Model with smooth functions for age, period and cohort — a

kind of parametric smoothing of the rates over the Lexis
diagram

I Use the predicted rates in 1-month steps to project future
prevalence

I Small steps important — we assume that DM and death
cannot occur in the same interval. 1 year intervals rendes this
too probable

I The parametric compnent of age, period and cohort can only
be derived using explicit constraints (3 of them to be precise)APC-models for DM in Denmark (DMreg) 87/ 1
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More

A complete account of all analyses is in:
http://bendixcarstensen.com/DMreg/NewAna.pdf
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