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Chapter 1

Theory and technicalities

1.1 Defining years of life lost (YLL)

. . . to diabetes or any other disease for that matter.
The general concept in calculation of “years lost to. . . ” is the comparison of the expected

lifetime between two groups of persons; one with and one without disease (DM). The
expected lifetime is the area under the survival curve, so basically the exercise requires that
two survival curves deemed relevant are available.

The years of life lost is really the area between the survival curves for those “Well”,
SW (t), and for those “Diseased”, SD(t):

YLL =

∫ ∞

0

SW (t)− SD(t) dt

The time t could of course be age, but it could also be “time after age 50” and the survival
curves compared would then be survival curves conditional on survival till age 50, and the
YLL would be the years of life lost for a 50-year old person with diabetes.

1.2 Constructing the survival curves

YLL can be computed in two different ways, depending on the way the expected lifetime of
a person without diabetes is computed:

• Assume that the person is immune to diabetes — using only the non-DM mortality
rates throughout for calculation of expected life time.

• Assume that the person can get diabetes and thereby see an increased mortality, thus
involving all three rates shown in figure 1.1.

The former gives a higher YLL because the comparison is to persons assumed immune to
DM (and yet with the same mortality as non-immune prior to diagnosis), the latter gives a
more realistic picture of the comparison of group of persons with and without diabetes at a
given age that can be interpreted in the real world.

The differences can be illustrated by figure 1.1; the immune approach corresponds to an
assumption of λ(t) = 0 in the calculation of the survival curve for a person in the “Well”
state.

Calculation of the survival of a diseased person already in the “DM” state is unaffected
by assumptions about λ.
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Figure 1.1: Illness-death model describing diabetes incidence and -mortality.

1.2.1 Computing integrals

The practical calculations of survival curves and YLL involves calculation of (cumulative)
integrals of rates and functions of these. This is easy if we have a closed form expression of
the function at any time point — as will be the case if we model rates by smooth
parametric functions:

• Compute the value of the function (that is the rates) at the midpoints of a sequence
of narrow intervals — for example one-month intervals of age, say.

• Take the cumulative sum of these values — they will be a very close approximation
to the integrals evaluated at the end of the interval.

• If the intervals are really small (like 1/100 year), the distinction between the value at
the middle and at the end of each interval becomes irrelevant.

Note that in the above it is assumed that the rates are given in units corresponding to the
interval length — or more precisely, as the cumulative rates over the interval.

In the functions devised below, the length of the intervals and unit of rates is separated
out in order to be able to recovers the actual age scale properly.

1.2.2 Immune approach

In this case both survival functions are the usual simple transformation of the cumulative
rates:

SW (a) = exp

(
−
∫ a

0

µW (u) du

)
, SD(a) = exp

(
−
∫ a

0

µD(u) du

)
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1.2.2.1 Conditional survival functions

If we want the conditional survival functions given survival to age A, say, they are just:

SW (a|A) = SW (a)/SW (A), SD(a|A) = SD(a)/SD(A)

1.2.3 Non-immune approach

The survival function for a person without disease (at age 0) is (see figure 1.1):

S(a) = P {Well}(a) + P {DM}(a)

In the appendix of the paper [2] is an indication of how to compute the probability of being
in any of the four states shown in figure 1.1, which I shall repeat here:

In terms of the rates, the probability of being in the “Well” box is simply the probability
of escaping both death (at a rate of µW (a)) and diabetes (at a rate of λ(a)):

P {Well} (a) = exp

(
−
∫ a

0

µW (u) + λ(u)

)
du

The probability of being alive with diabetes at age a, is computed given that diabetes
occurred at age s < a and then integrated over s from 0 to a:

P {DM} (a) =

∫ a

0

P {survive to s, DM diagnosed at s}

× P {survive with DM from s to a} ds

=

∫ a

0

λ(s) exp

(
−
∫ s

0

µW (u) + λ(u) du

)
× exp

(
−
∫ a

s

µD(u) du

)
ds

Sometimes we will use a version where the mortality among diabetes patients depend both
on age a and duration of diabetes d, µD(a, d), in which case we get:

P {DM} (a) =

∫ a

0

λ(s) exp

(
−
∫ s

0

µW (u) + λ(u) du

)
× exp

(
−
∫ a

s

µD(u, u− s) du

)
ds

because the integration variable u is the age-scale and the second integral refers to
mortality among persons diagnosed at age s, that is, with duration u− s at age u.

1.2.3.1 Conditional survival functions

Unlike the immune approach, the conditional survival function in the more realistic case is
not just a ratio of the unconditional to the value at the conditioning age, A, say. This
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would amount to conditioning on being merely alive at age A, but what we want is to
condition on being in the “Well” state at age A.

The formulae for the conditional probabilities of being either in “Well” or “DM”, given
being in “Well” at age A are basically replicates of the unconditional, albeit with changes in
integration limits:

P {Well|Well at A} (a) = exp

(
−
∫ a

A

µW (u) + λ(u)

)
du

P {DM|Well at A} (a) =

∫ a

A

λ(s) exp

(
−
∫ s

A

µW (u) + λ(u) du

)
× exp

(
−
∫ a

s

µD(u, u− s) du

)
ds

. . . but not implemented yet.

1.3 Implementation

We devise a functions that wraps these formulæ up for practical use. We shall assume that
the functions µW , µD and λ are given as vectors corresponding to equidistantly (tightly)
spaced ages from 0 to K where K is the age where everyone an safely be assumed dead.

Thus we can define the function with these three arguments and the interval length of
course. However, first we define a simple function that computes the survival function from
a vector of mortality rates, and optionally the conditional survival given being alive at
prespecified ages:

> options( keep.source=TRUE )
> source( "yll.R" )
> surv1

function( int, mu, A=0, age.in=0 )
{
# Computes the survival function from age A till the end, assuming
# that mu is a vector of mortalities in intervals of length int.
# int and mu should be in compatible units that is T and T^-1 for
# some unit T (months, years, ...)

# age-class boundaries
age <- 0:length(mu)*int + age.in

# cumulative rates and survival at the boundaries
Mu <- c( 0, cumsum( mu )*int )
Sv <- exp( -Mu )
surv <- data.frame( age=age, surv=Sv )

# if a vector of conditioning ages A is given
if( length(A)>1 )
{
j <- 2
for( ia in A )

{
j <- j+1
cA <- which( diff(age>ia)==1 )
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surv <- cbind( surv, pmin( 1, surv$surv/(surv$surv[cA]) ) )
colnames( surv )[j] <- paste( "S(a)|A=", ia, sep="" )
}

}
return( surv )
}

We also define a function that computes the survival function for a non-diseased person
that may become diseased with rate lam and after that die at a rate of muD (corresponding
to the formulae above):

> surv2

function( int, muW, muD, lam, A=0, age.in=0 )
{
# check the vectors
if( length(muW) != length(muD) |

length(muD) != length(lam) )
stop( "Vectors with rates must have same length:\n",

"length(muW)=", length(muW),
", length(muD)=", length(muD),
", length(lam)=", length(lam) )

# First the workhorse that computes the survival function for a
# person in Well assuming that the mortality rate from this state is
# muW, disease incidence is in lam, and mortality in the diseased
# state is muD, and that all refer to constant rates intervals of
# length int starting from age.in, conditional on survival to A
wsurv2 <-
function( int, muW, muD, lam, A=0, age.in=0 )
{
# age-class boundaries - note one longer that rate vectors refers to
# boundaries of intervals not midpoints
age <- 0:length(muW)*int + age.in

# cumulative rates at the boundaries, given survival to A
MuW <- cumsum( c( 0, muW ) * ( age > A ) ) * int
MuD <- cumsum( c( 0, muD ) * ( age > A ) ) * int
Lam <- cumsum( c( 0, lam ) * ( age > A ) ) * int

# probability of being well
pW <- exp( -( Lam + MuW ) )

# probability of diagnosis at s --- first term in the integral for
# P(DM at a). Note that we explicitly add a 0 at the start so we get a
# probability of 0 of transition at the first age point
Dis <- c(0,lam) * ( age > A ) * exp( -(Lam+MuW) ) * int

# for each age (age[ia]) we compute the integral over the range
# [0,age] of the product of the probability of diagnosis and the
# probability of surviving from diagnosis till age ia
pDM <- Dis * 0
for( ia in 1:length(age) )

pDM[ia] <- sum( Dis[1:ia] * exp( -(MuD[ia]-MuD[1:ia]) ) )
# 1st term as function of s (1:ia)

# 2nd term integral range s:age
# upper integration limit is age (ia) and the lower
# limit is the intermediate age (at DM) (1:ia)

# Finally, we add the probabilities of being in Well resp. DM to get
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# the overall survival:
surv <- data.frame( age = age, surv = pDM + pW )
return( surv )
}

# survival from start
surv <- wsurv2( int, muW, muD, lam, A=0, age.in=age.in )

# add columns for conditioning ages
if( A[1] != 0 | length(A) > 1 )

{
for( j in 1:length(A) )

{
surv <- cbind( surv,

wsurv2( int, muW, muD, lam, A=A[j], age.in=age.in )[,2] )
colnames( surv )[2+j] <- paste( "S(a|", A[j], ")", sep="" )

}
}

# done!
return( surv )
}

Finally we devised a function using these to compute the years of life lost to diabetes:

> yll

function( int,
muW,
muD,
lam = NULL,
A = 0,

age.in = 0,
immune = is.null(lam) )

{
# Computes years of life lost under different scenarios
if( !immune & is.null(lam) ) stop( "'lam' is required when immune=FALSE\n" )

sD <- surv1( int=int, muD, A = A, age.in = age.in )
if( immune ) sW <- surv1( int=int, muW, A = A, age.in = age.in )
else sW <- surv2( int=int, muW, muD, lam, A = A, age.in = age.in )
apply( (sW-sD)[,-1], 2, sum ) * int
}



Chapter 2

Analyses based on modified DM
definition

As noted above the calculations of YLL requires access to (age-specific) rates of incidence
of DM and mortality for persons with and without DM.

2.1 Modeling mortality and incidence data

We read in the dataset of DM and population mortality and incidence, TT:

> library( Epi )
> clear()
> load( file="./data/FU-m.Rda" )
> lls()
name mode class size

1 Lx list Lexis data.frame 382873 23
2 TT list data.frame 6732 9

The dataset TT contains deaths and person-years for persons with and without diabetes:

> head( TT )
sex A P U Y.nD Y.DM D.DM D.nD X

1 F 0 1995 0 17025.50 0.0000000 0 137 0
2 F 0 1995 1 17100.54 0.1300479 0 16 2
3 F 0 1996 0 16468.06 1.4401095 0 134 4
4 F 0 1996 1 17067.30 1.8617385 0 23 4
5 F 0 1997 0 16434.00 0.0000000 0 152 0
6 F 0 1997 1 16499.84 1.9890486 0 14 2

For each combination of sex, age, period and date of birth in 1 year age groups, we have
the person-years in the “Well” (Y.nD) and the “DM” (Y.DM) states, as well as the number of
deaths from these (D.nD, D.DM) and the number of incident diabetes cases from the “Well”
state (X).

In order to compute the years of life lost to diabetes and how this has changed over time,
we fit models for the mortality and incidence of both groups (and of course, separately for
men and women). The models we use will be age-period-cohort models [1] providing
estimated mortality rates for ages 0–99 and dates 1.1.1995–1.1.2012.

First we transform the age and period variables to reflect the mean age and period in
each of the Lexis triangles. Moreover we restrict the dataset to age over 30:

7



8 Analyses based on modified DM definition YLL 2012

> TT <- transform( TT,
+ A=A+(1+U)/3,
+ P=P+(2-U)/3 )
> TT <- subset( TT, A>30 )
> head(TT)

sex A P U Y.nD Y.DM D.DM D.nD X
817 F 30.33333 1995.667 0 20917.25 130.2464 0 7 21
818 F 30.66667 1995.333 1 20301.18 114.6509 1 8 22
819 F 30.33333 1996.667 0 21728.44 138.3943 1 7 15
820 F 30.66667 1996.333 1 21000.00 132.9959 0 6 12
821 F 30.33333 1997.667 0 20302.66 138.5038 0 8 13
822 F 30.66667 1997.333 1 21755.12 142.7118 1 12 15

With the correct age and period coding in the Lexis triangles, we fit models for the
mortalities and incidences.

> # Knots used in all models
> ( a.kn <- seq(20,95,,6) )

[1] 20 35 50 65 80 95

> ( p.kn <- seq(1996,2011,,4) )

[1] 1996 2001 2006 2011

> ( c.kn <- seq(1910,1980,,6) )

[1] 1910 1924 1938 1952 1966 1980

> mW.m <- glm( D.nD ~ -1 + Ns(A ,knots=a.kn,int=TRUE) +
+ Ns( P,knots=p.kn,ref=2005) +
+ Ns(P-A,knots=c.kn,ref=1950),
+ offset = log(Y.nD),
+ family = poisson,
+ data = subset( TT, sex=="M" ) )
> mD.m <- update( mW.m, D.DM ~ . , offset=log(Y.DM) )
> lW.m <- update( mW.m, X ~ . )
> # Model for women
> mW.f <- update( mW.m, data = subset( TT, sex=="F" ) )
> mD.f <- update( mD.m, data = subset( TT, sex=="F" ) )
> lW.f <- update( lW.m, data = subset( TT, sex=="F" ) )

A brief overview of fitted models:

> summary( mW.m )

Call:
glm(formula = D.nD ~ -1 + Ns(A, knots = a.kn, int = TRUE) + Ns(P,

knots = p.kn, ref = 2005) + Ns(P - A, knots = c.kn, ref = 1950),
family = poisson, data = subset(TT, sex == "M"), offset = log(Y.nD))

Deviance Residuals:
Min 1Q Median 3Q Max

-4.6106 -0.7956 -0.0260 0.7856 4.0744

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

Ns(A, knots = a.kn, int = TRUE)1 -5.874756 0.052687 -111.503 < 2e-16
Ns(A, knots = a.kn, int = TRUE)2 -5.504688 0.013646 -403.381 < 2e-16
Ns(A, knots = a.kn, int = TRUE)3 -4.088264 0.015119 -270.397 < 2e-16
Ns(A, knots = a.kn, int = TRUE)4 0.401564 0.031838 12.613 < 2e-16
Ns(A, knots = a.kn, int = TRUE)5 -10.383934 0.101896 -101.907 < 2e-16
Ns(A, knots = a.kn, int = TRUE)6 5.191821 0.061174 84.870 < 2e-16
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Ns(P, knots = p.kn, ref = 2005)1 -0.271900 0.009576 -28.393 < 2e-16
Ns(P, knots = p.kn, ref = 2005)2 -0.626226 0.017191 -36.429 < 2e-16
Ns(P, knots = p.kn, ref = 2005)3 -0.391096 0.010608 -36.867 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)1 0.129823 0.026342 4.928 8.29e-07
Ns(P - A, knots = c.kn, ref = 1950)2 0.359271 0.035737 10.053 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)3 0.388545 0.052632 7.382 1.56e-13
Ns(P - A, knots = c.kn, ref = 1950)4 0.591133 0.034024 17.374 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)5 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 50379227.5 on 2346 degrees of freedom
Residual deviance: 3225.3 on 2333 degrees of freedom
AIC: 18644

Number of Fisher Scoring iterations: 4

> summary( mD.m )

Call:
glm(formula = D.DM ~ Ns(A, knots = a.kn, int = TRUE) + Ns(P,

knots = p.kn, ref = 2005) + Ns(P - A, knots = c.kn, ref = 1950) -
1, family = poisson, data = subset(TT, sex == "M"), offset = log(Y.DM))

Deviance Residuals:
Min 1Q Median 3Q Max

-3.6726 -0.7862 -0.0350 0.6565 3.5854

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

Ns(A, knots = a.kn, int = TRUE)1 -3.91676 0.18578 -21.083 < 2e-16
Ns(A, knots = a.kn, int = TRUE)2 -4.25080 0.03835 -110.852 < 2e-16
Ns(A, knots = a.kn, int = TRUE)3 -3.32148 0.04228 -78.561 < 2e-16
Ns(A, knots = a.kn, int = TRUE)4 0.23310 0.12268 1.900 0.05742
Ns(A, knots = a.kn, int = TRUE)5 -8.83861 0.42360 -20.865 < 2e-16
Ns(A, knots = a.kn, int = TRUE)6 4.24223 0.24130 17.581 < 2e-16
Ns(P, knots = p.kn, ref = 2005)1 -0.34199 0.03031 -11.284 < 2e-16
Ns(P, knots = p.kn, ref = 2005)2 -0.68440 0.05960 -11.483 < 2e-16
Ns(P, knots = p.kn, ref = 2005)3 -0.44970 0.03803 -11.824 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)1 0.03760 0.09124 0.412 0.68024
Ns(P - A, knots = c.kn, ref = 1950)2 0.03009 0.12951 0.232 0.81625
Ns(P - A, knots = c.kn, ref = 1950)3 -0.01333 0.18957 -0.070 0.94396
Ns(P - A, knots = c.kn, ref = 1950)4 0.34329 0.12127 2.831 0.00464
Ns(P - A, knots = c.kn, ref = 1950)5 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2168369.3 on 2346 degrees of freedom
Residual deviance: 2505.2 on 2333 degrees of freedom
AIC: 13077

Number of Fisher Scoring iterations: 5

> summary( lW.m )

Call:
glm(formula = X ~ Ns(A, knots = a.kn, int = TRUE) + Ns(P, knots = p.kn,

ref = 2005) + Ns(P - A, knots = c.kn, ref = 1950) - 1, family = poisson,
data = subset(TT, sex == "M"), offset = log(Y.nD))

Deviance Residuals:
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Min 1Q Median 3Q Max
-3.5697 -0.9055 -0.1018 0.7188 4.7695

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

Ns(A, knots = a.kn, int = TRUE)1 -5.35537 0.05394 -99.280 < 2e-16
Ns(A, knots = a.kn, int = TRUE)2 -5.21078 0.01571 -331.731 < 2e-16
Ns(A, knots = a.kn, int = TRUE)3 -4.40972 0.01769 -249.338 < 2e-16
Ns(A, knots = a.kn, int = TRUE)4 -0.92822 0.03435 -27.020 < 2e-16
Ns(A, knots = a.kn, int = TRUE)5 -14.48496 0.11201 -129.314 < 2e-16
Ns(A, knots = a.kn, int = TRUE)6 1.61428 0.07267 22.214 < 2e-16
Ns(P, knots = p.kn, ref = 2005)1 0.15510 0.01184 13.096 < 2e-16
Ns(P, knots = p.kn, ref = 2005)2 0.70554 0.02188 32.249 < 2e-16
Ns(P, knots = p.kn, ref = 2005)3 0.41807 0.01019 41.038 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)1 -0.15646 0.03334 -4.693 2.70e-06
Ns(P - A, knots = c.kn, ref = 1950)2 -0.15984 0.03974 -4.023 5.75e-05
Ns(P - A, knots = c.kn, ref = 1950)3 0.02831 0.04880 0.580 0.562
Ns(P - A, knots = c.kn, ref = 1950)4 -0.41270 0.05467 -7.549 4.40e-14
Ns(P - A, knots = c.kn, ref = 1950)5 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 51827886.8 on 2346 degrees of freedom
Residual deviance: 3437.5 on 2333 degrees of freedom
AIC: 16313

Number of Fisher Scoring iterations: 4

> summary( mW.f )

Call:
glm(formula = D.nD ~ -1 + Ns(A, knots = a.kn, int = TRUE) + Ns(P,

knots = p.kn, ref = 2005) + Ns(P - A, knots = c.kn, ref = 1950),
family = poisson, data = subset(TT, sex == "F"), offset = log(Y.nD))

Deviance Residuals:
Min 1Q Median 3Q Max

-5.6388 -0.8786 -0.0531 0.8244 4.4918

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

Ns(A, knots = a.kn, int = TRUE)1 -6.15121 0.07166 -85.842 < 2e-16
Ns(A, knots = a.kn, int = TRUE)2 -5.88659 0.01672 -352.092 < 2e-16
Ns(A, knots = a.kn, int = TRUE)3 -4.59063 0.01873 -245.036 < 2e-16
Ns(A, knots = a.kn, int = TRUE)4 0.53981 0.04598 11.740 < 2e-16
Ns(A, knots = a.kn, int = TRUE)5 -12.10048 0.14717 -82.221 < 2e-16
Ns(A, knots = a.kn, int = TRUE)6 6.14339 0.08799 69.818 < 2e-16
Ns(P, knots = p.kn, ref = 2005)1 -0.28596 0.01208 -23.678 < 2e-16
Ns(P, knots = p.kn, ref = 2005)2 -0.62624 0.02298 -27.249 < 2e-16
Ns(P, knots = p.kn, ref = 2005)3 -0.41693 0.01499 -27.812 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)1 0.46986 0.03640 12.907 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)2 0.42634 0.05025 8.485 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)3 0.58089 0.07562 7.681 1.57e-14
Ns(P - A, knots = c.kn, ref = 1950)4 0.65908 0.04683 14.075 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)5 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 53928882.4 on 2346 degrees of freedom
Residual deviance: 3756.9 on 2333 degrees of freedom
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AIC: 18854

Number of Fisher Scoring iterations: 4

> summary( mD.f )

Call:
glm(formula = D.DM ~ Ns(A, knots = a.kn, int = TRUE) + Ns(P,

knots = p.kn, ref = 2005) + Ns(P - A, knots = c.kn, ref = 1950) -
1, family = poisson, data = subset(TT, sex == "F"), offset = log(Y.DM))

Deviance Residuals:
Min 1Q Median 3Q Max

-3.6212 -0.8634 -0.0347 0.6446 3.5400

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

Ns(A, knots = a.kn, int = TRUE)1 -4.95179 0.26173 -18.920 < 2e-16
Ns(A, knots = a.kn, int = TRUE)2 -4.49632 0.05345 -84.127 < 2e-16
Ns(A, knots = a.kn, int = TRUE)3 -3.78809 0.05821 -65.077 < 2e-16
Ns(A, knots = a.kn, int = TRUE)4 -0.28424 0.16795 -1.692 0.0906
Ns(A, knots = a.kn, int = TRUE)5 -9.01373 0.57962 -15.551 < 2e-16
Ns(A, knots = a.kn, int = TRUE)6 3.83692 0.32642 11.754 < 2e-16
Ns(P, knots = p.kn, ref = 2005)1 -0.33168 0.04063 -8.164 3.23e-16
Ns(P, knots = p.kn, ref = 2005)2 -0.73643 0.08060 -9.137 < 2e-16
Ns(P, knots = p.kn, ref = 2005)3 -0.41871 0.05334 -7.850 4.17e-15
Ns(P - A, knots = c.kn, ref = 1950)1 0.11242 0.12639 0.889 0.3738
Ns(P - A, knots = c.kn, ref = 1950)2 -0.08348 0.18169 -0.459 0.6459
Ns(P - A, knots = c.kn, ref = 1950)3 -0.13046 0.26564 -0.491 0.6234
Ns(P - A, knots = c.kn, ref = 1950)4 0.27266 0.16588 1.644 0.1002
Ns(P - A, knots = c.kn, ref = 1950)5 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1903561 on 2346 degrees of freedom
Residual deviance: 2435 on 2333 degrees of freedom
AIC: 12249

Number of Fisher Scoring iterations: 5

> summary( lW.f )

Call:
glm(formula = X ~ Ns(A, knots = a.kn, int = TRUE) + Ns(P, knots = p.kn,

ref = 2005) + Ns(P - A, knots = c.kn, ref = 1950) - 1, family = poisson,
data = subset(TT, sex == "F"), offset = log(Y.nD))

Deviance Residuals:
Min 1Q Median 3Q Max

-4.4643 -0.9514 -0.1813 0.6851 10.5994

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

Ns(A, knots = a.kn, int = TRUE)1 -5.86371 0.06092 -96.255 < 2e-16
Ns(A, knots = a.kn, int = TRUE)2 -5.76902 0.01838 -313.904 < 2e-16
Ns(A, knots = a.kn, int = TRUE)3 -4.82916 0.02021 -238.972 < 2e-16
Ns(A, knots = a.kn, int = TRUE)4 -1.21470 0.03677 -33.031 < 2e-16
Ns(A, knots = a.kn, int = TRUE)5 -14.49467 0.11813 -122.704 < 2e-16
Ns(A, knots = a.kn, int = TRUE)6 1.21315 0.07346 16.515 < 2e-16
Ns(P, knots = p.kn, ref = 2005)1 0.11364 0.01316 8.633 < 2e-16
Ns(P, knots = p.kn, ref = 2005)2 0.72039 0.02415 29.835 < 2e-16
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Ns(P, knots = p.kn, ref = 2005)3 0.37585 0.01118 33.630 < 2e-16
Ns(P - A, knots = c.kn, ref = 1950)1 -0.11591 0.03323 -3.488 0.000487
Ns(P - A, knots = c.kn, ref = 1950)2 -0.20183 0.04094 -4.930 8.21e-07
Ns(P - A, knots = c.kn, ref = 1950)3 0.38937 0.05357 7.269 3.63e-13
Ns(P - A, knots = c.kn, ref = 1950)4 -0.20239 0.04934 -4.102 4.10e-05
Ns(P - A, knots = c.kn, ref = 1950)5 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 55755779.6 on 2346 degrees of freedom
Residual deviance: 4641.7 on 2333 degrees of freedom
AIC: 17548

Number of Fisher Scoring iterations: 4

We can make an overview plot of the estimated mortality and incidence effects:

2.2 Residual life time and years lost to DM

We now collect the estimated years of life lost classified by method (immune assumption or
not), sex, age and calendar time:

> source( "yll.R" )
> a.ref <- 30:90
> p.ref <- 1995:2012
> aYLL <- NArray( list( type = c("Imm","Sus","Dif","Ex%"),
+ sex = levels( TT$sex ),
+ age = a.ref,
+ date = p.ref ) )
> str( aYLL )

logi [1:4, 1:2, 1:61, 1:18] NA NA NA NA NA NA ...
- attr(*, "dimnames")=List of 4
..$ type: chr [1:4] "Imm" "Sus" "Dif" "Ex%"
..$ sex : chr [1:2] "M" "F"
..$ age : chr [1:61] "30" "31" "32" "33" ...
..$ date: chr [1:18] "1995" "1996" "1997" "1998" ...

> system.time(
+ for( ip in p.ref )
+ {
+ nd <- data.frame( A = seq(30,90,0.2)+0.1,
+ P = ip,
+ Y.nD = 1,
+ Y.DM = 1 )
+ muW.m <- ci.pred( mW.m, nd )[,1]
+ muD.m <- ci.pred( mD.m, nd )[,1]
+ lam.m <- ci.pred( lW.m, nd )[,1]
+ muW.f <- ci.pred( mW.f, nd )[,1]
+ muD.f <- ci.pred( mD.f, nd )[,1]
+ lam.f <- ci.pred( lW.f, nd )[,1]
+ aYLL["Imm","M",,paste(ip)] <- yll( int=0.2, muW.m, muD.m, lam=NULL, A=a.ref, age.in=30 )[-1]
+ aYLL["Imm","F",,paste(ip)] <- yll( int=0.2, muW.f, muD.f, lam=NULL, A=a.ref, age.in=30 )[-1]
+ aYLL["Sus","M",,paste(ip)] <- yll( int=0.2, muW.m, muD.m, lam=lam.m, A=a.ref, age.in=30 )[-1]
+ aYLL["Sus","F",,paste(ip)] <- yll( int=0.2, muW.f, muD.f, lam=lam.f, A=a.ref, age.in=30 )[-1]
+ } )

user system elapsed
11.392 0.020 11.412
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> aYLL[3,,,] <- aYLL[1,,,] - aYLL[2,,,]
> aYLL[4,,,] <- (aYLL[1,,,] - aYLL[2,,,]) / aYLL[2,,,] * 100
> round( ftable( aYLL[,,seq(1,61,10),], col.vars=c(3,2) ), 1 )

age 30 40 50 60 70 80 90
sex M F M F M F M F M F M F M F

type date
Imm 1995 12.8 12.4 11.0 11.2 8.7 9.6 6.2 7.1 3.8 4.4 1.7 1.9 0.0 0.0

1996 12.6 12.0 10.9 10.8 8.6 9.2 6.2 6.9 3.7 4.3 1.6 1.8 0.0 0.0
1997 12.4 11.5 10.7 10.4 8.5 8.8 6.1 6.6 3.7 4.1 1.6 1.8 0.0 0.0
1998 12.2 11.1 10.5 10.0 8.4 8.5 6.0 6.4 3.7 4.0 1.6 1.7 0.0 0.0
1999 12.0 10.7 10.4 9.6 8.2 8.2 6.0 6.1 3.6 3.8 1.6 1.6 0.0 0.0
2000 11.8 10.3 10.2 9.2 8.1 7.8 5.9 5.9 3.6 3.7 1.6 1.6 0.0 0.0
2001 11.6 9.9 10.0 8.9 7.9 7.6 5.7 5.7 3.5 3.5 1.5 1.5 0.0 0.0
2002 11.3 9.6 9.7 8.6 7.7 7.3 5.6 5.5 3.4 3.4 1.5 1.5 0.0 0.0
2003 11.0 9.4 9.5 8.4 7.5 7.1 5.5 5.3 3.3 3.3 1.4 1.4 0.0 0.0
2004 10.8 9.1 9.2 8.1 7.3 6.9 5.3 5.1 3.3 3.2 1.4 1.4 0.0 0.0
2005 10.5 8.9 9.0 7.9 7.1 6.7 5.2 5.0 3.2 3.1 1.3 1.3 0.0 0.0
2006 10.3 8.7 8.8 7.7 6.9 6.5 5.0 4.9 3.1 3.1 1.3 1.3 0.0 0.0
2007 10.1 8.5 8.6 7.5 6.8 6.3 4.9 4.7 3.0 3.0 1.3 1.3 0.0 0.0
2008 9.9 8.4 8.5 7.4 6.7 6.2 4.8 4.6 3.0 2.9 1.2 1.2 0.0 0.0
2009 9.8 8.2 8.3 7.2 6.5 6.0 4.7 4.5 2.9 2.8 1.2 1.2 0.0 0.0
2010 9.6 8.0 8.2 7.0 6.4 5.8 4.7 4.3 2.9 2.7 1.2 1.2 0.0 0.0
2011 9.5 7.9 8.1 6.9 6.3 5.7 4.6 4.2 2.8 2.6 1.2 1.1 0.0 0.0
2012 9.4 7.7 8.0 6.7 6.2 5.5 4.5 4.1 2.8 2.5 1.2 1.1 0.0 0.0

Sus 1995 11.8 11.6 10.1 10.5 8.0 8.9 5.8 6.7 3.5 4.2 1.6 1.9 0.0 0.0
1996 11.6 11.1 9.9 10.1 7.8 8.6 5.7 6.4 3.5 4.1 1.6 1.8 0.0 0.0
1997 11.3 10.6 9.7 9.6 7.7 8.2 5.6 6.2 3.5 3.9 1.6 1.7 0.0 0.0
1998 11.1 10.2 9.5 9.2 7.5 7.8 5.5 5.9 3.4 3.8 1.6 1.6 0.0 0.0
1999 10.8 9.8 9.3 8.8 7.3 7.5 5.4 5.6 3.4 3.6 1.5 1.6 0.0 0.0
2000 10.6 9.4 9.1 8.4 7.2 7.2 5.3 5.4 3.3 3.5 1.5 1.5 0.0 0.0
2001 10.3 9.0 8.8 8.1 7.0 6.9 5.1 5.2 3.3 3.3 1.5 1.5 0.0 0.0
2002 10.1 8.7 8.6 7.8 6.8 6.6 5.0 5.0 3.2 3.2 1.4 1.4 0.0 0.0
2003 9.8 8.5 8.4 7.6 6.6 6.4 4.9 4.8 3.1 3.1 1.4 1.4 0.0 0.0
2004 9.6 8.3 8.1 7.4 6.4 6.2 4.7 4.7 3.0 3.0 1.3 1.3 0.0 0.0
2005 9.3 8.1 7.9 7.2 6.2 6.1 4.6 4.6 2.9 2.9 1.3 1.3 0.0 0.0
2006 9.1 7.9 7.7 7.0 6.0 5.9 4.5 4.4 2.8 2.8 1.2 1.3 0.0 0.0
2007 8.9 7.7 7.5 6.8 5.9 5.7 4.3 4.3 2.8 2.8 1.2 1.2 0.0 0.0
2008 8.7 7.5 7.3 6.6 5.7 5.5 4.2 4.1 2.7 2.7 1.2 1.2 0.0 0.0
2009 8.5 7.3 7.1 6.4 5.6 5.3 4.1 4.0 2.6 2.6 1.2 1.2 0.0 0.0
2010 8.3 7.1 6.9 6.2 5.4 5.1 4.0 3.9 2.6 2.5 1.2 1.1 0.0 0.0
2011 8.1 6.9 6.8 6.0 5.2 5.0 3.9 3.7 2.5 2.4 1.1 1.1 0.0 0.0
2012 7.9 6.7 6.6 5.8 5.1 4.8 3.8 3.6 2.5 2.3 1.1 1.0 0.0 0.0

Dif 1995 1.0 0.8 0.9 0.7 0.7 0.6 0.5 0.4 0.2 0.2 0.1 0.0 0.0 0.0
1996 1.0 0.8 1.0 0.8 0.8 0.6 0.5 0.4 0.2 0.2 0.1 0.0 0.0 0.0
1997 1.1 0.9 1.0 0.8 0.8 0.7 0.5 0.5 0.2 0.2 0.1 0.0 0.0 0.0
1998 1.1 0.9 1.0 0.8 0.9 0.7 0.5 0.5 0.2 0.2 0.1 0.0 0.0 0.0
1999 1.2 0.9 1.1 0.8 0.9 0.7 0.6 0.5 0.2 0.2 0.1 0.0 0.0 0.0
2000 1.2 0.9 1.1 0.8 0.9 0.7 0.6 0.5 0.3 0.2 0.1 0.0 0.0 0.0
2001 1.2 0.9 1.1 0.8 0.9 0.7 0.6 0.5 0.3 0.2 0.1 0.0 0.0 0.0
2002 1.2 0.9 1.1 0.8 0.9 0.7 0.6 0.5 0.3 0.2 0.1 0.0 0.0 0.0
2003 1.2 0.9 1.1 0.8 0.9 0.7 0.6 0.5 0.3 0.2 0.1 0.0 0.0 0.0
2004 1.2 0.9 1.1 0.8 0.9 0.6 0.6 0.4 0.2 0.2 0.0 0.0 0.0 0.0
2005 1.2 0.8 1.1 0.8 0.9 0.6 0.6 0.4 0.2 0.2 0.0 0.0 0.0 0.0
2006 1.2 0.8 1.1 0.8 0.9 0.6 0.6 0.4 0.2 0.2 0.0 0.0 0.0 0.0
2007 1.2 0.9 1.1 0.8 0.9 0.6 0.6 0.4 0.3 0.2 0.0 0.0 0.0 0.0
2008 1.2 0.9 1.1 0.8 0.9 0.7 0.6 0.4 0.3 0.2 0.0 0.0 0.0 0.0
2009 1.3 0.9 1.2 0.8 1.0 0.7 0.6 0.5 0.3 0.2 0.1 0.0 0.0 0.0
2010 1.4 0.9 1.3 0.9 1.0 0.7 0.7 0.5 0.3 0.2 0.1 0.0 0.0 0.0
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2011 1.4 1.0 1.3 0.9 1.1 0.7 0.7 0.5 0.3 0.2 0.1 0.0 0.0 0.0
2012 1.5 1.0 1.4 0.9 1.1 0.8 0.7 0.5 0.3 0.2 0.1 0.0 0.0 0.0

Ex% 1995 8.3 7.0 9.0 7.1 9.2 7.0 8.0 6.4 5.9 5.0 3.1 2.6 0.0 0.0
1996 8.9 7.5 9.6 7.6 9.9 7.5 8.6 6.9 6.2 5.3 3.2 2.7 0.0 0.0
1997 9.6 8.1 10.3 8.2 10.6 8.0 9.2 7.4 6.5 5.6 3.4 2.8 0.0 0.0
1998 10.3 8.7 11.0 8.8 11.4 8.6 9.9 7.9 6.9 5.9 3.5 3.0 0.0 0.0
1999 10.9 9.2 11.7 9.3 12.1 9.1 10.5 8.4 7.3 6.2 3.6 3.1 0.0 0.0
2000 11.5 9.7 12.4 9.8 12.8 9.6 11.1 8.8 7.6 6.5 3.7 3.2 0.0 0.0
2001 11.9 10.1 12.9 10.2 13.3 10.0 11.6 9.1 7.8 6.7 3.7 3.2 0.0 0.0
2002 12.2 10.3 13.2 10.4 13.6 10.2 11.9 9.3 8.0 6.8 3.7 3.2 0.0 0.0
2003 12.4 10.3 13.4 10.5 13.9 10.2 12.1 9.4 8.1 6.9 3.7 3.2 0.0 0.0
2004 12.5 10.4 13.6 10.6 14.1 10.3 12.4 9.4 8.3 6.9 3.7 3.2 0.0 0.0
2005 12.7 10.5 13.8 10.8 14.4 10.4 12.6 9.5 8.4 7.0 3.7 3.2 0.0 0.0
2006 13.0 10.7 14.2 11.0 14.8 10.7 13.0 9.7 8.7 7.1 3.8 3.2 0.0 0.0
2007 13.6 11.1 14.9 11.5 15.5 11.1 13.7 10.1 9.2 7.4 3.9 3.3 0.0 0.0
2008 14.3 11.6 15.7 12.2 16.5 11.8 14.5 10.7 9.8 7.9 4.1 3.5 0.0 0.0
2009 15.3 12.4 16.8 13.0 17.7 12.6 15.6 11.4 10.5 8.4 4.4 3.7 0.0 0.0
2010 16.4 13.3 18.1 14.0 19.1 13.7 16.9 12.3 11.4 9.1 4.7 4.0 0.0 0.0
2011 17.6 14.2 19.5 15.2 20.7 14.9 18.4 13.3 12.4 9.8 5.1 4.3 0.0 0.0
2012 18.9 15.3 21.1 16.4 22.4 16.2 19.9 14.4 13.5 10.6 5.5 4.7 0.0 0.0

We now have the relevant points for the graph showing YLL to diabetes for men and
women by age, and calendar year, both under the immunity and susceptibility models for
the calculation of YLL.

> plyll <- function(wh){
+ par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
+ matplot( a.ref, aYLL[wh,"M",,],
+ type="l", lty=1, col="blue", lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
+ abline(v=50,h=1:10,col=gray(0.7))
+ text( 90, 11, "Men", col="blue", adj=1 )
+ text( 40, aYLL[wh,"M","40","1995"], "1995", adj=c(0,0), col="blue" )
+ text( 43, aYLL[wh,"M","44","2012"], "2012", adj=c(1,1), col="blue" )
+
+ matplot( a.ref, aYLL[wh,"F",,],
+ type="l", lty=1, col="red", lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
+ abline(v=50,h=1:10,col=gray(0.7))
+ text( 90, 11, "Women", col="red", adj=1 )
+ text( 40, aYLL[wh,"F","40","1995"], "1995", adj=c(0,0), col="red" )
+ text( 43, aYLL[wh,"F","44","2012"], "2012", adj=c(1,1), col="red" )
+ }
> plyll("Imm")

> plyll("Sus")

From figure ?? we see that for men aged 50 the years lost to diabetes has decreased from
a bit over 8 to a bit less than 6 years, and for women from 8.5 to 5 years; so a greater
improvement for women.

It is illustrative to see the lines for men and women overlaid in the same plot — here side
by side for the two different approaches to computation of YLL:
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Figure 2.1: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes, assuming the persons without diabetes at
a given age remain free from diabetes (immunity assumption). The lines refer to date of
evaluation; the top lines refer to 1.1.1995 the bottom ones to 1.1.2012. Blue curves are men,
red women.

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matplot( a.ref, cbind(aYLL["Imm","M",,],aYLL["Imm","F",,]),
+ type="l", lty=1, col=rep(c("blue","red"),each=18), lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
> abline(v=50,h=1:10,col=gray(0.7))
> text( 40, aYLL["Imm","F","40","1995"], "1995", adj=c(0,0) )
> text( 43, aYLL["Imm","F","44","2012"], "2012", adj=c(1,1) )
> mtext( "Immunity to DM", side=3 )
> matplot( a.ref, cbind(aYLL["Sus","M",,],aYLL["Sus","F",,]),
+ type="l", lty=1, col=rep(c("blue","red"),each=18), lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
> abline(v=50,h=1:10,col=gray(0.7))
> text( 40, aYLL["Sus","F","40","1995"], "1995", adj=c(0,0) )
> text( 43, aYLL["Sus","F","44","2012"], "2012", adj=c(1,1) )
> mtext( "Susceptible to DM", side=3 )

From figure 2.3 we see that the improvement has been larger for women than for men,
but it should be remembered that women have a longer life expectancy then men. Under
the (unrealistic) assumption of immunity the improvement in years of life lost to DM for
50-year old women were from 9.6 to 5.5 years and for men from 8.7 to 6.2 years. Under the
more realistic assumption that the non-diseased comparison group is allowed to acquire
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Figure 2.2: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes, allowing the persons without diabetes at a
given to contract diabetes and thus be subject to higher mortality. The lines refer to date of
evaluation; the top lines refer to 1.1.1995 the bottom ones to 1.1.2012. Blue curves are men,
red women.

diabetes after the conditioning age, the drop in YLL for women were from 8.9 to 4.8 and
for men from 8 to 5.1 years.

Also from the tables above we see that the general pattern in the difference between the
naive (Immune) and the more realistic (Susceptible) is an overestimation of the years of life
lost by about 1 year, or some 5–10%. That is not dramatic, but certainly neither negligible.

2.2.1 For the poster

For the poster we devise 3 separate plots of the YLL:

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n" )
> matplot( a.ref, aYLL["Sus","M",,],
+ type="l", lty=1, col="blue", lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
> abline(v=50,h=1:10,col=gray(0.7))
> text( 90, 11, "Men", col="blue", adj=1 )
> text( 40, aYLL["Sus","M","40","1995"], "1995", adj=c(0,0), col="blue" )
> text( 43, aYLL["Sus","M","44","2012"], "2012", adj=c(1,1), col="blue" )

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n" )
> matplot( a.ref, aYLL["Sus","F",,],
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Figure 2.3: Years of life lost to DM: the difference in expected residual life time at different
ages between persons with and without diabetes. The left panel is based on an assumption
that persons without DM at a given age will not contract DM; the right panel is based on a
model where persons at a given age can contract diabetes and thus transfer to a state with
higher mortality. The lines refer to date of evaluation; the top lines refer to 1.1.1995 the
bottom ones to 1.1.2012. Blue curves are men, red women.

+ type="l", lty=1, col="red", lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
> abline(v=50,h=1:10,col=gray(0.7))
> text( 90, 11, "Women", col="red", adj=1 )
> text( 40, aYLL["Sus","F","40","1995"], "1995", adj=c(0,0), col="red" )
> text( 43, aYLL["Sus","F","44","2012"], "2012", adj=c(1,1), col="red" )

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, las=1, bty="n" )
> matplot( a.ref, cbind(aYLL["Sus","M",,],aYLL["Sus","F",,]),
+ type="l", lty=1, col=rep(c("blue","red"),each=18), lwd=1:2,
+ ylim=c(0,12), xlab="Age",
+ ylab="Years lost to DM", yaxs="i" )
> matlines( a.ref, aYLL["Sus","M",,c("1995","2012")],
+ type="l", lwd=1:2, lty=1, col="blue" )
> abline(v=50,h=1:10,col=gray(0.7))
> text( 40, aYLL["Sus","F","40","1995"], "1995", adj=c(0,0), col=gray(0.5) )
> text( 43, aYLL["Sus","F","44","2012"], "2012", adj=c(1,1), col=gray(0.5) )
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