An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time

Bendix Carstensen Steno Diabetes Center Copenhagen, Gentofte, Denmark http://BendixCarstensen.com

CDC, Atlanta, June 2019

An overview of APC models

- Data in a Lexis diagram - and where they come from.

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are
- APC models as they should be

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are
- APC models as they should be
- Parameters vs. fitted values

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are
- APC models as they should be
- Parameters vs. fitted values
- Practical use in forecasting

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are
- APC models as they should be
- Parameters vs. fitted values
- Practical use in forecasting

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are
- APC models as they should be
- Parameters vs. fitted values
- Practical use in forecasting

Slides with code in \mathbf{R} only briefly covered

An overview of APC models

- Data in a Lexis diagram - and where they come from.
- Simple graphs of rates
- Simple AP and AC models
- APC models as they usually are
- APC models as they should be
- Parameters vs. fitted values
- Practical use in forecasting

Slides with code in \mathbf{R} only briefly covered

Population occurrence rates

- Population rates occur in calendar time

Population occurrence rates

- Population rates occur in calendar time
- ... depend very strongly on age

Population occurrence rates

- Population rates occur in calendar time
- ... depend very strongly on age
- describe how rates have evolved

Population occurrence rates

- Population rates occur in calendar time
- ... depend very strongly on age
- describe how rates have evolved
- predict how they will evolve in the future

Population occurrence rates

- Population rates occur in calendar time
- ... depend very strongly on age
- describe how rates have evolved
- predict how they will evolve in the future
- Rates as a function of age and calendar time:

Population occurrence rates

- Population rates occur in calendar time
- ... depend very strongly on age
- describe how rates have evolved
- predict how they will evolve in the future
- Rates as a function of age and calendar time:
- data representation

Population occurrence rates

- Population rates occur in calendar time
- ... depend very strongly on age
- describe how rates have evolved
- predict how they will evolve in the future
- Rates as a function of age and calendar time:
- data representation
- modeling

Models for tabulated data

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time
CDC, Atlanta,June 2019
http://BendixCarstensen/APC

Conceptual set-up

Follow-up of the entire (male) population from 1943-2006 w.r.t. occurrence of testis cancer:

- Split follow-up time for all about 4 mil. men in 1-year classes by age and calendar time (y).
- Allocate testis cancer event $(d=0,1)$ to each.
- Analyze all 200, 000, 000 records by a Poisson model.

Realistic set-up

- Tabulate the follow-up time and events by age and period.
- 100 age-classes.
- 65 periods (single calendar years).
- 6500 aggregate records of (D, Y).
- Analyze by a Poisson model
- . . . note: I have not specified how the model looks

Practical set-up

- Tabulate only events (as obtained from the cancer registry) by age and period.
- 100 age-classes.
- 65 periods (single calendar years).
- 6500 aggregate records of D.
- Estimate the population follow-up based on census data from Statistics Denmark ($Y_{\text {poop }}$).
... or get it from the human mortality database.
- If disease is common: tabulate follow-up after diagnosis ($Y_{\text {dis }}$), and subtract from population follow-up.
- Analyze (D, Y) by Poisson model.

Lexis diagram ${ }^{1}$

Disease registers record events.

Official statistics collect population data.

${ }^{1}$ Named after the German statistician and economist William Lexis (1837-1914), who devised this diagram in the book "Einleitung in die Theorie der Bevölkerungsstatistik" (Karl J. Trübner, Strassburg, 1875).

EINLEITUNG

in DIE

THEORIE

DER

BEVÖLKERUNGSSTATISTIK

!
von
W. LEXIS

* de. der stantswisgemschipten und der philosophie,

0. PROFES
+8,

STRASSBLTG
KARL J.TRCBNER

Lexis diagram

Registration of:

cases (D)
risk time,
person-years (Y)
in subsets of the Lexis diagram.

Lexis diagram

Registration of:

cases (D)
risk time, person-years (Y)
in subsets of the Lexis diagram.

Rates available in each subset.

Register data

Classification of cases ($D_{a p}$) by age at diagnosis and date of diagnosis, and population ($Y_{a p}$) by age at risk and date at risk, in compartments of the Lexis diagram, e.g.:

```
> fCtable( xtabs( cbind(D,Y) ~ A + P, data=ts ), col.vars=3:2, w=8 )
```

	D				Y			
P	1943	1948	1953	1958	1943	1948	1953	1958
A								
15	2	3	4	1	773,812	744, 217	794, 123	972,853
20	7	7	17	8	813,022	744,706	721,810	770,859
25	28	23	26	35	790,501	781, 827	722,968	698,612
30	28	43	49	51	799,293	774,542	769,298	711,596
35	36	42	39	44	769,356	782,893	760,213	760,452
40	24	32	46	53	694,073	754, 322	768,471	749,912

In analysis format:

```
> ts
\begin{tabular}{lll} 
A & P & Y
\end{tabular}
1 15 1943 2 773812
2 20 1943 7 813022
3 25 1943 28 790501
4
5
6 40 1943 24 694073
7}15151948 3744421
8 20 1948 7 744706
9
10}3019484377454
11 35 1948 42 782893
1240 1948 32 754322
13}151953479412
14 20 1953 17 721810
15}2519532672296
16 30 1953 49769298
17 35 1953 39 760213
```


Tabulated data

Once data are in tabular form, models are restricted:

- Rates must be assumed constant in each cell of the table / subset of the Lexis diagram.
- With large cells (5×5 years) it is customary to put a separate parameter on each cell or on each levels of classifying factors.
- Output from the model will be rates and rate-ratios.
- Since we use multiplicative Poisson, usually the log rates and the log-RR are reported

Age-Period and Age-Cohort models

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time CDC, Atlanta,June 2019
http://BendixCarstensen/APC

Register data - rates

Rates in "tiles" of the Lexis diagram:

$$
\lambda(a, p)=D_{a p} / Y_{a p}
$$

Descriptive epidemiology based on disease registers: How do the rates vary by age and time:

- Age-specific rates across periods.

Register data - rates

Rates in "tiles" of the Lexis diagram:

$$
\lambda(a, p)=D_{a p} / Y_{a p}
$$

Descriptive epidemiology based on disease registers: How do the rates vary by age and time:

- Age-specific rates across periods.
- Age-specific rates across cohorts.

Register data - rates

Rates in "tiles" of the Lexis diagram:

$$
\lambda(a, p)=D_{a p} / Y_{a p}
$$

Descriptive epidemiology based on disease registers:
How do the rates vary by age and time:

- Age-specific rates across periods.
- Age-specific rates across cohorts.
- Age-standardized rates as a function of calendar time. (Weighted averages of the age-specific rates).

"Synthetic" cohorts

Events and risk time in cells along the diagonals are among persons with roughly same date of birth.

Successively overlapping 10-year periods.

Lexis diagram: data

55	$\begin{gathered} 6 \\ 471.0 \end{gathered}$	$\begin{gathered} 14 \\ 512.8 \end{gathered}$	$\begin{gathered} 16 \\ 571.1 \end{gathered}$	$\begin{gathered} 25 \\ 622.5 \end{gathered}$	$\begin{gathered} 26 \\ 680.8 \end{gathered}$	$\begin{gathered} 29 \\ 698.2 \end{gathered}$	$\begin{gathered} 28 \\ 683.8 \end{gathered}$	$\begin{gathered} 43 \\ 686.4 \end{gathered}$	$\begin{gathered} 42 \\ 640.9 \end{gathered}$	$\begin{gathered} 34 \\ 627.7 \end{gathered}$	$\begin{gathered} 45 \\ 544.8 \end{gathered}$
	$\begin{gathered} 16 \\ 539.4 \end{gathered}$	$\begin{gathered} 28 \\ 600.3 \end{gathered}$	$\begin{gathered} 22 \\ 653.9 \end{gathered}$	$\begin{gathered} 27 \\ 715.4 \end{gathered}$	$\begin{gathered} 46 \\ 732.7 \end{gathered}$	$\begin{gathered} 36 \\ 718.3 \end{gathered}$	$\begin{gathered} 50 \\ 724.2 \end{gathered}$	$\begin{gathered} 49 \\ 675.5 \end{gathered}$	$\begin{gathered} 61 \\ 660.8 \end{gathered}$	$\begin{gathered} 64 \\ 721.1 \end{gathered}$	$\begin{gathered} 51 \\ 701.5 \end{gathered}$
45	$\begin{gathered} 29 \\ 622.1 \end{gathered}$	$\begin{gathered} 30 \\ 676.7 \end{gathered}$	$\begin{gathered} 37 \\ 737.9 \end{gathered}$	$\begin{gathered} 54 \\ 753.5 \end{gathered}$	$\begin{gathered} 45 \\ 738.1 \end{gathered}$	$\begin{gathered} 64 \\ 746.4 \end{gathered}$	$\begin{gathered} 63 \\ 698.2 \end{gathered}$	$\begin{gathered} 66 \\ 682.4 \end{gathered}$	$\begin{gathered} 92 \\ 743.1 \end{gathered}$	$\begin{gathered} 86 \\ 923.4 \end{gathered}$	$\begin{gathered} 96 \\ 817.8 \end{gathered}$
	$\begin{gathered} 35 \\ 694.1 \end{gathered}$	$\begin{gathered} 47 \\ 754.3 \end{gathered}$	$\begin{gathered} 65 \\ 768.5 \end{gathered}$	$\begin{gathered} 64 \\ 749.9 \end{gathered}$	$\begin{gathered} 67 \\ 756.5 \end{gathered}$	$\begin{gathered} 85 \\ 709.8 \end{gathered}$	$\begin{gathered} 103 \\ 696.5 \end{gathered}$	$\begin{gathered} 119 \\ 757.8 \end{gathered}$	$\begin{gathered} 121 \\ 940.3 \end{gathered}$	$\begin{gathered} 155 \\ 1023.7 \end{gathered}$	$\begin{gathered} 126 \\ 754.5 \end{gathered}$
$\underset{\sim}{0}$	$\begin{gathered} 53 \\ 769.4 \end{gathered}$	$\begin{gathered} 56 \\ 782.9 \end{gathered}$	$\begin{gathered} 56 \\ 760.2 \end{gathered}$	$\begin{gathered} 67 \\ 760.5 \end{gathered}$	$\begin{gathered} 99 \\ 711.6 \end{gathered}$	$\begin{gathered} 124 \\ 702.3 \end{gathered}$	$\begin{gathered} 142 \\ 767.5 \end{gathered}$	$\begin{gathered} 152 \\ 951.9 \end{gathered}$	$\begin{gathered} 188 \\ 1035.7 \end{gathered}$	$\begin{gathered} 209 \\ 948.6 \end{gathered}$	$\begin{gathered} 199 \\ 763.9 \end{gathered}$
35	$\begin{gathered} 56 \\ 799.3 \end{gathered}$	$\begin{gathered} 66 \\ 774.5 \end{gathered}$	$\begin{gathered} 82 \\ 769.3 \end{gathered}$	$\begin{gathered} 88 \\ 711.6 \end{gathered}$	$\begin{gathered} 103 \\ 700.1 \end{gathered}$	$\begin{gathered} 124 \\ 769.9 \end{gathered}$	$\begin{gathered} 164 \\ 960.4 \end{gathered}$	$\begin{gathered} 207 \\ 1045.3 \end{gathered}$	$\begin{gathered} 209 \\ 955.0 \end{gathered}$	$\begin{gathered} 258 \\ 957.1 \end{gathered}$	$\begin{gathered} 251 \\ 821.2 \end{gathered}$
25	$\begin{gathered} 55 \\ 790.5 \end{gathered}$	$\begin{gathered} 62 \\ 781.8 \end{gathered}$	$\begin{gathered} 63 \\ 723.0 \end{gathered}$	$\begin{gathered} 82 \\ 698.6 \end{gathered}$	$\begin{gathered} 87 \\ 764.8 \end{gathered}$	$\begin{gathered} 103 \\ 962.7 \end{gathered}$	$\begin{gathered} 153 \\ 1056.1 \end{gathered}$	$\begin{gathered} 201 \\ 960.9 \end{gathered}$	$\begin{gathered} 214 \\ 956.2 \end{gathered}$	$\begin{gathered} 268 \\ 1031.6 \end{gathered}$	$\begin{gathered} 194 \\ 835.7 \end{gathered}$
	$\begin{gathered} 30 \\ 813.0 \end{gathered}$	$\begin{gathered} 31 \\ 744.7 \end{gathered}$	$\begin{gathered} 46 \\ 721.8 \end{gathered}$	$\begin{gathered} 49 \\ 770.9 \end{gathered}$	$\begin{gathered} 55 \\ 960.3 \end{gathered}$	$\begin{gathered} 85 \\ 1053.8 \end{gathered}$	$\begin{gathered} 110 \\ 967.5 \end{gathered}$	$\begin{gathered} 140 \\ 953.0 \end{gathered}$	$\begin{gathered} 151 \\ 1019.7 \end{gathered}$	$\begin{gathered} 150 \\ 1017.3 \end{gathered}$	$\begin{gathered} 112 \\ 760.9 \end{gathered}$
$\begin{array}{l\|c} & 10 \\ 15 & 773.8 \\ \hline \end{array}$		$\begin{gathered} 7 \\ 744.2 \end{gathered}$	$\begin{gathered} 13 \\ 794.1 \end{gathered}$	$\begin{gathered} 13 \\ 972.9 \end{gathered}$	$\begin{gathered} 15 \\ 1051.5 \end{gathered}$	$\begin{gathered} 33 \\ 961.0 \end{gathered}$	$\begin{gathered} 35 \\ 952.5 \end{gathered}$	$\begin{gathered} 37 \\ 1011.1 \end{gathered}$	$\begin{gathered} 49 \\ 1005.0 \end{gathered}$	$\begin{gathered} 51 \\ 929.8 \end{gathered}$	$\begin{gathered} 41 \\ 670.2 \end{gathered}$
1943											
		Calendar time									

Testis cancer cases in Denmark.

Male person-years in Denmark.

> library(Epi)
> data(testisDK)
> head(testisDK)

```
    A P D Y
1 0 1943 1 39649.50
2 1 1943 1 36942.83
3 2 1943 0 34588.33
4 3 1943 1 33267.00
541943 0 32614.00
6 5 1943 0 32020.33
> ts <- transform( subset( testisDK, A>14 & A<60 ),
+ A = floor( A /5)*5 +2.5,
+ P = floor(( }P-1943)/5)*5+1943+2.5 
> ts$C <- ts$P - ts$A
> trate <- xtabs( D ~ A + P, data = ts ) /
+ xtabs( Y ~ A + P, data = ts ) * 100000
> trate[1:5,1:6]
```

	P						
A	1945.5	1950.5	1955.5	1960.5	1965.5	1970.5	
17.5	1.2923036	0.9405857	1.6370257	1.3362759	1.4264867	3.4340862	

22.5	3.6899378	4.1627194	6.3728682	6.3565492	5.7274822	8.0657826
27.5	6.9576174	7.9301414	8.7140826	11.7375624	11.3753792	10.6996275
32.5	7.0061961	8.5211703	10.6590661	12.3665762	14.7122260	16.1068525
37.5	6.8888785	7.1529555	7.3663549	8.8105514	13.9126492	17.6571019

```
> par( mfrow=c(2,2) )
> rateplot( trate, col=gray(2:15/18), lwd=3, ann=TRUE )
> wh = c("ap","ac","pa","ca")
> for( ptp in wh ) {
+ pdf( paste("./graph/AP-AC-",ptp,".pdf",sep=""), height=6, width=8 )
+ par( mar=c(3,3,1,1, mgp=c(3,1,0)/1.6, bty="n", las=1 ))
+ rateplot( trate, which=ptp,
    col=gray(2:15/18), lwd=3, ann=TRUE, a.lim=c(15,60) )
    dev.off()
    }
>
```

> library(Epi)
> $\operatorname{par}(\operatorname{mar}=c(3,3, .1, .1), \operatorname{mgp}=c(3,1,0) / 1.6, \mathrm{bty}=" n "$, las=1)
> layout (mat=cbind (1,2), width=c $(6,10)$)
> for (ptp in c("pa","ca"))

+ rateplot(trate, which=ptp, col=gray(2:15/18), lwd=3, ann=TRUE, a.lim=c $(15,60)$)

Period or cohort?

Age-Period model

Rates are proportional between periods:

$$
\lambda(a, p)=a_{a} \times b_{p} \quad \text { or } \quad \log [\lambda(a, p)]=\alpha_{a}+\beta_{p}
$$

Choose p_{0} as reference period, where $\beta_{p_{0}}=0$

$$
\log \left[\lambda\left(a, p_{0}\right)\right]=\alpha_{a}+\beta_{p_{0}}=\alpha_{a}
$$

Fitting the A-P model in R I

Reference period is the 5th period (1970.5 ~1968-72):

```
> ap <- glm( D ~ factor(A) - 1 + relevel( factor(P), "1970.5" ) +
    offset( log(Y/10^5) ),
    family=poisson, data=ts )
> # summary( ap )
```


Estimates with confidence intervals

```
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( seq(17.5,57.5,5), ci.exp(ap,subset="A"), plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1970)" )
> matshade( seq(1945.5,1995.5,5),
+ rbind( ci.exp(ap,subset="P")[1:5 ,], 1,
    ci.exp(ap,subset="P")[6:10,] ), plot=TRUE,
    log="y", lwd=2, ylim=c(1,20)/5,
    xlab="Date of follow-up", ylab="Rate ratio" )
> abline( h = 1)
> points( 1970.5, 1, pch=16 )
```


Estimates from Age-Period model

Age-cohort model

Rates are proportional between cohorts:

$$
\lambda(a, c)=a_{a} \times c_{c} \quad \text { or } \quad \log [\lambda(a, p)]=\alpha_{a}+\gamma_{c}
$$

Choose c_{0} as reference cohort, where $\gamma_{c_{0}}=0$

$$
\log \left[\lambda\left(a, c_{0}\right)\right]=\alpha_{a}+\gamma_{c_{0}}=\alpha_{a}
$$

Fitting the A-C model in R I

Reference cohort is the 1933 cohort:

```
> ac <- glm( D ~ factor(A) - 1 + relevel( factor(C), "1933" ) +
    offset( log(Y/10^5) ),
    family=poisson, data=ts )
> summary( ac )
Call:
glm(formula = D ~ factor(A) - 1 + relevel(factor(C), "1933") +
    offset(log(Y/10^5)), family = poisson, data = ts)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-3.0796 & -0.9538 & -0.1620 & 0.5767 & 3.9525
\end{tabular}
Coefficients:
factor(A) 17.5
\[
\begin{array}{rrr}
\text { Estimate Std. Error } z \text { value } \operatorname{Pr}(>|z|) \\
0.61513 & 0.07534 & 8.1653 .23 \mathrm{e}-16
\end{array}
\]
```


Fitting the A-C model in R II

factor (A) 22.5 factor(A) 27.5 factor (A) 32.5 factor (A) 37.5 factor (A) 42.5 factor (A) 47.5 factor (A) 52.5 factor(A)57.5 relevel(factor (C) relevel(factor(C), relevel(factor (C) relevel(factor (C) relevel(factor (C) relevel(factor (C) relevel(factor (C), relevel(factor(C), relevel(factor (C) relevel(factor (C) relevel(factor(C),
1.89965

0.05342	35.558	$<2 \mathrm{e}-16$
0.04842	50.990	$<2 \mathrm{e}-16$
0.04695	57.639	$<2 \mathrm{e}-16$
0.04758	57.006	$<2 \mathrm{e}-16$
0.04993	51.803	$<2 \mathrm{e}-16$
0.05459	43.327	$<2 \mathrm{e}-16$
0.06098	35.782	$<2 \mathrm{e}-16$
0.06939	29.041	$<2 \mathrm{e}-16$
0.41400	-4.283	$1.84 \mathrm{e}-05$
0.19017	-5.555	$2.77 \mathrm{e}-08$
0.12600	-6.341	$2.28 \mathrm{e}-10$
0.10389	-8.432	$<2 \mathrm{e}-16$
0.08352	-9.184	$<2 \mathrm{e}-16$
0.07006	-8.035	$9.36 \mathrm{e}-16$
0.06683	-8.484	$<2 \mathrm{e}-16$
0.06124	-6.015	$1.79 \mathrm{e}-09$
0.05903	-3.190	0.001421
0.05439	1.647	0.099585
0.05443	-0.571	0.568091

Fitting the A-C model in R III

1 (factor(C)	"1933")1948	8	0.05256	41	0.00057
(C)	"1933")1953	0.42239	0.05309	7.956	$1.77 \mathrm{e}-15$
actor (C),	"1933")1958	0.62544	0.05421	11.537	< 2e-16
level (factor(C),	"1933")1963	0.75687	0.05727	13.215	< 2e-16
evel (factor(C),	"1933")1968	0.75183	0.06799	11.057	$<2 \mathrm{e}-16$
evel (factor(C),	"1933")1973	0.87343	0.09373	9.318	< 2e-16
level (factor(C),	"1933")1978	1.19601	0.17340	6.898	$5.29 \mathrm{e}-1$

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 29193.6 on 2430 degrees of freedom Residual deviance: 2767.8 on 2403 degrees of freedom AIC: 8972.2

Number of Fisher Scoring iterations: 5

Estimates with confidence intervals

```
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( seq(17.5,57.5,5), ci.exp(ac,subset="A"), plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1933 cohort)" )
> matshade( seq(1888,1978,5),
+ rbind( ci.exp(ac,subset="C")[1:9 ,], 1,
    ci.exp(ac,subset="C")[10:18,] ), plot=TRUE,
    log="y", lwd=2, ylim=c(1,20)/5,
    xlab="Date of birth", ylab="Rate ratio" )
> abline( h = 1)
> points( 1933, 1, pch=16 )
```


Estimates from Age-Cohort model

Hang on:

Age, period and cohort are quantitative variables

Hang on:

Age, period and cohort are quantitative variables

- but the models we fitted does not use this feature

Hang on:

Age, period and cohort are quantitative variables

- but the models we fitted does not use this feature
- they are exchangeable models for the A, P and C effects

Hang on:

Age, period and cohort are quantitative variables

- but the models we fitted does not use this feature
- they are exchangeable models for the A, P and C effects
- meaning that you can exhange the names of two age-classes and still get the same fit

Hang on:

Age, period and cohort are quantitative variables

- but the models we fitted does not use this feature
- they are exchangeable models for the A, P and C effects
- meaning that you can exhange the names of two age-classes and still get the same fit
- models do not use the fact that $50<55<60$.

Hang on:

Age, period and cohort are quantitative variables

- but the models we fitted does not use this feature
- they are exchangeable models for the A, P and C effects
- meaning that you can exhange the names of two age-classes and still get the same fit
- models do not use the fact that $50<55<60$.
- we need parametric models for the A, P and C effects

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

- Data is discrete (1-year, 5-year) intervals

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

- Data is discrete (1-year, 5-year) intervals
- Models are continuous, prediction at any value for a, p or c

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

- Data is discrete (1-year, 5-year) intervals
- Models are continuous, prediction at any value for a, p or c
- Reference is now to a specific age or data - not an age-band or period

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

- Data is discrete (1-year, 5-year) intervals
- Models are continuous, prediction at any value for a, p or c
- Reference is now to a specific age or data - not an age-band or period
- Results are functions to be shown as curves

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

- Data is discrete (1-year, 5-year) intervals
- Models are continuous, prediction at any value for a, p or c
- Reference is now to a specific age or data - not an age-band or period
- Results are functions to be shown as curves
- in the form of predictions and

Parametric models

- f, g and h are smooth, continuous functions:

$$
\log (\lambda(a, p))=f(a)+g(p) \quad \log (\lambda(a, p))=f(a)+h(p-a)
$$

- Data is discrete (1-year, 5-year) intervals
- Models are continuous, prediction at any value for a, p or c
- Reference is now to a specific age or data - not an age-band or period
- Results are functions to be shown as curves
- in the form of predictions and
- contrasts between predictions (RR between p and $p_{\text {ref }}$)

Quantitative, natural splines I

```
> library(splines)
> ap <- glm( D ~ Ns(A,knots=seq(15,50,,4)) +
+ Ns(P,knots=seq(1950,1990, ,5)),
+ offset = log(Y/10^5),
+ family = poisson, data=ts )
> round( ci.lin(ap), 4 )
```

(Intercept)
Estimate StdErr
$0.0499 \quad 0.0712 \quad 0.7011 \quad 0.4833-0.0896 \quad 0.18$
$1.2480 \quad 0.0475 \quad 26.2816 \quad 0.0000 \quad 1.1549 \quad 1.34$
$\begin{array}{lllll}3.5475 & 0.1394 & 25.4553 & 0.0000 & 3.2743\end{array} 3.82$
$-0.15300 .0322-4.75250 .0000-0.2161-0.08$
$\begin{array}{llllll}0.5795 & 0.0616 & 9.4032 & 0.0000 & 0.4587 & 0.700\end{array}$
$\begin{array}{llllll}0.8348 & 0.0409 & 20.4259 & 0.0000 & 0.7547 & 0.91\end{array}$
z P 2.5\%

```
Ns(A, knots = seq(15, 50, , 4))1
Ns(A, knots = seq(15, 50, , 4))2
Ns(A, knots = seq(15, 50, , 4))3
Ns(P, knots = seq(1950, 1990, , 5))1
Ns(P, knots = seq(1950, 1990, , 5))2
Ns(P, knots = seq(1950, 1990, , 5))3
Ns(P, knots = seq(1950, 1990, , 5))4
```

 \(1.2830 \quad 0.0744 \quad 17.2465 \quad 0.0000 \quad 1.1372 \quad 1.428\)
 $0.89350 .035924 .87850 .0000 \quad 0.8231 \quad 0.96$

Quantitative, natural splines II

```
> ac <- glm( D ~ Ns(A,knots=seq(15,50, 4)) +
    Ns (C, knots=seq(1910, 1965, ,9)),
    offset = log(Y/10^5),
    family = poisson, data=ts )
```


Period model predicions I

```
\(>\) ndA <- data.frame ( \(A=15: 60, P=1970 \quad, Y=1\) )
\(>\) ndP <- data.frame ( \(A=30\), \(P=1945: 1995, Y=1\) )
> ndRp <- data.frame ( \(A=30\), \(P=1970 \quad, Y=1\) )
\(>\operatorname{par}(\operatorname{mfrow}=c(1,2), \operatorname{mar}=c(3,3,1,1), \operatorname{mgp}=c(3,1,0) / 1.6, \mathrm{bty}=" n ", \operatorname{las}=1)\)
> matshade( ndA\$A,
\(+\quad\) ci.pred (ap,ndA)*10^5, \# <- predicted rates using ndA
+ plot=TRUE, log="y", lwd=2, ylim=c(1,20), xlab="Age",
\(+\quad y l a b=" T e s t i s\) cancer rate per 100,000 PY (1970)" )
> matshade( ndP\$P,
\(+\quad\) ci.exp(ap,list(ndP,ndRp)), \# <- RR comparing ndP vs. ndRp
+ plot=TRUE, xlab="Date of follow-up", ylab="Rate ratio" )
> abline( h = 1, v=1970 )
> points ( 1970, 1, pch=16 )
```


Estimates from Age-Period model

Cohort model I

```
> ndA <- data.frame( A=15:60, C=1930 , Y=1 )
> ndC <- data.frame( A=30 , C=1890:1975, Y=1 )
> ndRc <- data.frame( A=30 , C=1930 , Y=1 )
> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1 )
> matshade( ndA$A, ci.pred(ac,ndA)*10^5, plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ ylab="Testis cancer rate per 100,000 PY (1930 cohort)" )
> matshade( ndC$C, ci.exp(ac,list(ndC,ndRc)), plot=TRUE,
+ xlab="Date of birth", ylab="Rate ratio" )#, xlim=c(1890,1920), ylim=c
> abline( h = 1, v=1930 )
> abline( v=c(1940,1945), col=gray(0.7) )
> points( 1930, 1, pch=16 )
```

```
\(>\operatorname{par}(\operatorname{mfrow}=c(1,2), \operatorname{mar}=c(3,3,1,1), \operatorname{mgp}=c(3,1,0) / 1.6, \mathrm{bty=}=\mathrm{n} ", \mathrm{las=1})\)
> matshade( ndA\$A, ci.pred(ac,ndA)*10^5, plot=TRUE,
+ log="y", lwd=2, ylim=c(1,20), xlab="Age",
+ \(y l a b=" T e s t i s ~ c a n c e r ~ r a t e ~ p e r ~ 100,000 ~ P Y ~(1930 ~ c o h o r t) " ~) ~\)
> matshade( ndC\$C, ci.exp(ac,list(ndC,ndRc)), plot=TRUE,
+ xlab="Date of birth", ylab="Rate ratio" )
> lo <- ndC\$C<=1910
> hi <- ndC\$C>=1965
> matshade( ndC\$C[lo], ci.exp(ac,list(ndC,ndRc))[lo,], col="limegreen" )
> matshade( ndC\$C[hi], ci.exp(ac,list(ndC,ndRc))[hi,], col="limegreen" )
> abline ( \(v=c(1910,1965), 1 t y=3, c o l=\operatorname{gray}(0.5)\) )
> abline( \(h=1, v=1930\) )
> abline( v=c(1940,1945), col=gray(0.7) )
> points( 1930, 1, pch=16 )
```


Estimates from Age-Cohort model

Estimates from Age-Cohort model

Age-drift model

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time
CDC, Atlanta, June 2019
http://BendixCarstensen/APC

Linear effect of period:

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}=\alpha_{a}+\beta\left(p-p_{0}\right)
$$

that is, $\beta_{p}=\beta\left(p-p_{0}\right)$.

Linear effect of cohort:

$$
\log [\lambda(a, p)]=\tilde{\alpha}_{a}+\gamma_{c}=\tilde{\alpha}_{a}+\gamma\left(c-c_{0}\right)
$$

that is, $\gamma_{c}=\gamma\left(c-c_{0}\right)$

Age and linear effect of period:

```
> apd <- glm( D ~ factor( A ) - 1 + I(P-1970.5) +
+ offset( log( Y ) ),
+ family=poisson )
> summary( apd )
Call:
glm(formula = D ~ factor(A) - 1 + I(P - 1970.5) + offset(log(Y)), family = poissor
Deviance Residuals:
    Min 1Q Median
-2.97593 -0.77091 0.02809 0.95914 2.93076
```

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
factor (A) 17.5-3.58065 $0.06306-56.79<2 \mathrm{e}-16$
factor (A) 57.5-3.17579 $0.06256-50.77<2 e-16$
$\begin{array}{llll}I\end{array}(P-1970.5) ~ 0.02653 \quad 0.00100 \quad 26.52<2 e-16$
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 89358.53 on 81 degrees of freedom Age-driRtasidural deviance: 126.07 on 71 degrees of freedom

Age and linear effect of cohort:

```
> acd <- glm( D ~ factor( A ) - 1 + I(C-1933) +
+ offset( log( Y ) ),
+ family=poisson )
> summary( acd )
Call:
glm(formula = D ~ factor(A) - 1 + I(C - 1933) + offset(log(Y)), family = poisson)
Deviance Residuals:
    Min 1Q Median
    0.95914 2.93076
```

Coefficients:

	Estimate	Std. Error z value	$\operatorname{Pr}(>\|z\|)$	
factor (A) 17.5	-4.1117	0.06760	-60.82	$<2 \mathrm{e}-16$
factor (A)57.5	-2.64527	0.06423	-41.19	$<2 \mathrm{e}-16$
I(C - 1933)	0.02653	0.00100	26.52	$<2 \mathrm{e}-16$

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 89358.53 on 81 degrees of freedom Age-driRtasidural deviance: 126.07 on 71 degrees of freedom

What goes on?

$$
\begin{aligned}
& p=a+c \quad p_{0}=a_{0}+c_{0} \\
& \alpha_{a}+\beta\left(p-p_{0}\right)=\alpha_{a}+\beta\left(a+c-\left(a_{0}+c_{0}\right)\right) \\
&=\underbrace{\alpha_{a}+\beta\left(a-a_{0}\right)}_{\text {cohort age-effect }}+\beta\left(c-c_{0}\right)
\end{aligned}
$$

The two models are the same.
The parametrization is different.
The age-curve refers either

- to a period (cross-sectional rates) or
- to a cohort (longitudinal rates).

AgedriWhaich age-curve is period and which is cohort?

Age-Period-Cohort model

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time
CDC, Atlanta, June 2019
http://BendixCarstensen/APC

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:
- a - Age (at diagnosis)

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:
- a - Age (at diagnosis)
- p - Period (of diagnosis)

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:
- a - Age (at diagnosis)
- p - Period (of diagnosis)
- c - Cohort (of birth)

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:
- a - Age (at diagnosis)
- p - Period (of diagnosis)
- c - Cohort (of birth)
- No assumptions about the shape of effects.

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:
- a - Age (at diagnosis)
- p - Period (of diagnosis)
- c - Cohort (of birth)
- No assumptions about the shape of effects.
- Levels of A, P and C are assumed exchangeable

The age-period-cohort model

$$
\log [\lambda(a, p)]=\alpha_{a}+\beta_{p}+\gamma_{c}
$$

- Three effects:
- a - Age (at diagnosis)
- p - Period (of diagnosis)
- c - Cohort (of birth)
- No assumptions about the shape of effects.
- Levels of A, P and C are assumed exchangeable
- i.e. no assumptions about the relationship between parameter estimates and the scaled values of A, P and C

Fitting the model in R I

```
> m.apc <- glm( D ~ 0 + factor(A) + factor(P) + factor(C),
+ offset = log(Y), family = poisson, data = tc )
> round( ci.lin( m.apc ), 4 )
```

	Es	StdErr	z	P	2.5\%	,
factor(A) 17.5	-11.3989	0.2332	-48.8886	0.0000	-11.8559	10.
factor(A)22.5	-10.2022	0.2552	-39.9849	0.0000	-10.7023	-9.7021
factor(A)27.5	-9.7634	0.2755	-35.4328	0.0000	-10.3035	-9.2233
factor(A) 32.5	-9.6795	0.2974	-32.5482	0.0000	-10.2624	-9.0966
factor(A) 37.5	-9.8283	0.3201	-30.7015	0.0000	-10.4557	-9.2009
factor(A)42.5	-10.1047	0.3435	-29.4182	0.0000	-10.7779	-9.4315
factor(A)47.5	-10.5268	0.3676	-28.6390	0.0000	-11.2472	-9.8064
factor(A) 52.5	-10.8863	0.3921	-27.7650	0.0000	-11.6548	-10.1179
factor(A)57.5	-11.2709	0.4082	-27.6079	0.0000	-12.0710	-10.4707
factor (P) 1950.5	0.2029	0.0825	2.4598	0.0139	0.0412	0.3645
factor (P) 1955.5	0.4204	0.0908	4.6297	0.0000	0.2424	0.5984
factor(P) 1960.5	0.6410	0.1055	6.0769	0.0000	0.4343	0.8477

Fitting the model in R II

factor(P) 1965.5	14	41	9	000	2	1.0645
or (P) 1970.5	1.0644	0.1444	7.3689	0.0000	0.7813	1.
factor (P) 1975.5	1.2780	0.1665	7.6738	0.0000	0.9516	1.604
factor (P) 1980.5	1.4344	0.1896	7.5651	0.0000	1.0628	1.8060
factor (P) 1985.5	1.5058	0.2134	7.0565	0.0000	1.0875	1.9240
factor (P) 1990.5	1.5880	0.2356	6.7396	0.0000	1.1262	2.04
factor(C) 1893	0.5056	0.4289	1.1786	0.2385	-0.3351	1.3463
factor (C) 1898	0.5644	0.3840	1.4699	0.1416	-0.1882	1.3170
factor (C) 1903	0.2843	0.3556	0.7995	0.4240	-0.4126	0.98
factor (C) 1908	0.2068	0.3284	0.6299	0.5288	-0.4367	0.8504
factor(C) 1913	0.2230	0.3034	0.7350	0.4624	-0.3717	0.8177
factor(C) 1918	0.0271	0.2815	0.0964	0.9232	-0.5246	0.5789
factor (C) 1923	0.0328	0.2597	0.1263	0.8995	-0.4762	0.541
factor(C) 1928	0.0215	0.2394	0.0900	0.9283	-0.4478	0.4909
factor (C) 1933	0.0252	0.2199	0.1145	0.9088	-0.4058	0.4561
factor(C) 1938	-0.0724	0.2027	-0.3572	0.7209	-0.4696	0.3248
factor (C) 1943	-0.3528	0.1871	-1.8862	0.0593	-0.7195	0.0138
factor (C) 1948	-0.3047	0.1731	-1.7606	0.0783	-0.6440	0.034
factor(C) 1953	-0.1792	0.1626	-1.1020	0.2705	-0.4978	0.13

Fitting the model in R III

factor (C) 1958	-0.1174	0.1558	-0.7532	0.4513	-0.4228	0.1881
factor (C) 1963	-0.1088	0.1541	-0.7062	0.4801	-0.4108	0.1932
factor (C) 1968	-0.1681	0.1623	-1.0353	0.3005	-0.4863	0.1501
factor (C) 1973	0.0000	0.0000	NaN	NaN	0.0000	0.0000

No. of parameters

A has $9(A)$ levels
P has $10(P)$ levels
$\mathrm{C}=\mathrm{P}-\mathrm{A}$ has $18(C=A+P-1)$ levels
Age-drift model has $A+1=10$ parameters
Age-period model has $A+P-1=18$ parameters
Age-cohort model has $A+C-1=26$ parameters Age-period-cohort model has $A+P+C-3=34$ parameters:
> length(coef(m.apc)) ; sum(!is.na(coef(m.apc)))
[1] 35
[1] 34
The missing parameter is because of the identifiability problem.

A, P, C effects

```
> par( mfrow=c(1,3), mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6 )
> m.apc <- glm( D ~ 0 + factor(A) + factor(P) + factor(C),
    offset = log(Y), family = poisson, data = tc )
> #
> matshade( seq(17.5,57.5,5), ci.exp(m.apc,subset="A")*10^5, plot=TRUE,
+ log="y", ylab="Incidence per 100,000 PY", xlab="Age", ylim=c(0.5,10)
> #
> matshade( seq(1945.5,1990.5,5), rbind(1,ci.exp(m.apc,subset="P")), plot=TRUE,
+ log="y", ylab="Period RR", xlab="Date of FU", ylim=c(0.5,10) )
> abline( h=1 )
> #
> matshade( seq(1888,1973,5), rbind(1,ci.exp(m.apc,subset="C")), plot=TRUE,
+ log="y", ylab="Cohort RR", xlab="Date of birth", ylim=c(0.5,10) )
> abline( h=1 )
```


A, P, C effects

A, P, C effects, different reference

```
> m.apc <- glm( D ~ 0 + factor(A) + relevel(factor(P),6) +
                        Relevel(factor(C),c(4,1:3,5:13,15:18,14)),
    offset = log(Y), family = poisson, data = tc )
#
> par( mfrow=c(1,3), mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6 )
> matshade( seq(17.5,57.5,5), ci.exp(m.apc,subset="A")*10^5, plot=TRUE,
+ log="y", ylab="Incidence per 100,000 PY", xlab="Age", ylim=c(0.5,10)*.
> #
> matshade( seq(1945.5,1990.5,5), rbind(1,ci.exp(m.apc,subset="P"))[c(2:6,1,7:10)
+ log="y", ylab="Period RR", xlab="Date of FU", ylim=c(0.5,10)/2 )
> abline( h=1 ) ; points( 1970.5, 1, pch=16 )
> #
> matshade( seq(1888,1973,5), rbind(1,ci.exp(m.apc,subset="C"))[c(2:4,1,5:13,18,14
+ log="y", ylab="Cohort RR", xlab="Date of birth", ylim=c(0.5,10)/2 )
> abline( h=1 ); points( c(1903,1953), c(1,1), pch=16 )
```


A, P, C effects

Test for effects

```
> tc.acp <- apc.fit( tc, model="factor", ref.c=1943, print.AOV=FALSE )
> print( tc.acp$Anova, digits=4 )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Model & Mod.df & Mod & df. & dev. & \(\operatorname{Pr}(>\mathrm{Chi})\) & dev/df & HO \\
\hline 1 & Age & 81 & 1114.65 & NA & NA & NA & NA & \\
\hline 2 & Age-drift & 80 & 131.77 & 1 & 982.879 & \(9.458 \mathrm{e}-216\) & 982.879 & zero drift \\
\hline 3 & Age-Cohort & 64 & 70.20 & 16 & 61.570 & \(2.840 \mathrm{e}-07\) & 3.848 & Coh effldr. \\
\hline 4 & Age-Period-Cohort & 56 & 38.78 & 8 & 31.418 & \(1.183 \mathrm{e}-04\) & 3.927 & Per efflCoh \\
\hline 5 & Age-Period & 72 & 122.23 & 16 & 83.451 & \(3.950 \mathrm{e}-11\) & 5.216 & Coh eff|Per \\
\hline 6 & Age-drift & 80 & 131.77 & 8 & 9.538 & \(2.990 e^{-01}\) & 1.192 & Per effldr. \\
\hline
\end{tabular}
```


Tabulation in the Lexis diagram

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time
CDC, Atlanta, June 2019
http://BendixCarstensen/APC

Tabulation of register data

Testis cancer cases in Denmark.

Male person-years in Denmark.

Tabulation of register data

Testis cancer cases in Denmark.

Male person-years in Denmark.

Tabulation of register data

Testis cancer cases in

 Denmark.Male person-years in Denmark.

Tabulation of register data

Testis cancer cases in Denmark.

> Male person-years in Denmark.

Tabulation of register data

Testis cancer cases in Denmark.

Male person-years in Denmark.

Subdivision by year of birth (cohort).

Major sets in the Lexis diagram

A-sets: Classification by age and period. (\square)

Major sets in the Lexis diagram

A-sets: Classification by age and period. (\square)
B-sets: Classification by age and cohort. (\square)

Major sets in the Lexis diagram

A-sets: Classification by age and period. (\square)
B-sets: Classification by age and cohort. (\square)
C-sets: Classification by cohort and period. (§)

Major sets in the Lexis diagram

A-sets: Classification by age and period. (\square)
B-sets: Classification by age and cohort. (\square)
C-sets: Classification by cohort and period. (§)

Major sets in the Lexis diagram

A-sets: Classification by age and period. (\square)
B-sets: Classification by age and cohort. (\square)
C-sets: Classification by cohort and period. (\downarrow
The mean age, period and cohort for these sets is just the mean of the tabulation interval.

The mean of the third variable is found by using $a=p-c$.

Lexis triangles

Analysis of rates from a complete observation in a Lexis diagram need not be restricted to these classical sets classified by two factors.

Lexis triangles

Analysis of rates from a complete observation in a Lexis diagram need not be restricted to these classical sets classified by two factors.

We may classify cases and risk time by all three factors Lexis triangles:

Lexis triangles

Analysis of rates from a complete observation in a Lexis diagram need not be restricted to these classical sets classified by two factors.

We may classify cases and risk time by all three factors Lexis triangles:

Upper triangles: age and period, earliest born cohort. (∇)

Lexis triangles

Analysis of rates from a complete observation in a Lexis diagram need not be restricted to these classical sets classified by two factors.

We may classify cases and risk time by all three factors Lexis triangles:

Upper triangles: age and period, earliest born cohort. (∇) Lower triangles: age and period, latest born cohort. (\triangle)

Mean a, p and c during $\mathbf{F U}$ in triangles

Modeling requires that each set (=observation in the dataset) be assigned a value of age, period and cohort. So for each triangle we need:

- mean age at risk.

Mean a, p and c during $\mathbf{F U}$ in triangles

Modeling requires that each set (=observation in the dataset) be assigned a value of age, period and cohort. So for each triangle we need:

- mean age at risk.
- mean date at risk.

Mean a, p and c during $\mathbf{F U}$ in triangles

Modeling requires that each set (=observation in the dataset) be assigned a value of age, period and cohort. So for each triangle we need:

- mean age at risk.
- mean date at risk.
- mean cohort at risk.

Tabulation by age, period and cohort

Gives triangular sets with differing mean age, period and cohort:

These are correct midpoints for age, period and cohort must be used in modeling.

From population figures to risk time

Population figures in the form of size of the population at certain date are available from most statistical bureaus.

From population figures to risk time

Population figures in the form of size of the population at certain date are available from most statistical bureaus.

This corresponds to population sizes along the vertical lines in the diagram.

From population figures to risk time

Population figures in the form of size of the population at certain date are available from most statistical bureaus.

This corresponds to population sizes along the vertical lines in the diagram.
We want risk time figures for the population in the squares and triangles in the diagram.

Summary:

Population risk time (N2Y):

A: $\left(\frac{1}{3} \mathrm{~L}_{a, p}+\right.$

$$
\left.\frac{1}{6} \mathrm{~L}_{a+1, p+1}\right) \times 1 \mathrm{y}
$$

B: $\left(\frac{1}{6} \mathrm{~L}_{a-1, p}+\right.$

$$
\left.\frac{1}{3} \mathrm{~L}_{a, p+1}\right) \times 1 \mathrm{y}
$$

Mean age, period and cohort:
$\frac{1}{3}$ into the interval.

APC-model: Parametrization

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time
CDC, Atlanta, June 2019
http://BendixCarstensen/APC

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but
$c=p-q \quad \Leftrightarrow \quad p-a-c=0$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but

$$
\begin{gathered}
c=p-q \quad \Leftrightarrow \quad p-a-c=0 \\
\log \left(\lambda_{a p}\right)=f(a)+g(p)+h(c)
\end{gathered}
$$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but

$$
c=p-q \quad \Leftrightarrow \quad p-a-c=0
$$

$$
\log \left(\lambda_{a p}\right)=f(a)+g(p)+h(c)+\gamma(p-a-c)
$$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but

$$
c=p-q \quad \Leftrightarrow \quad p-a-c=0
$$

$$
\begin{array}{rlrl}
\log \left(\lambda_{a p}\right)= & f(a)+g(p)+h(c)+ & \gamma(p-a-c) \\
= & f(a) & -\gamma a+ \\
& g(p) & +\gamma p+ \\
& h(c) & & -\gamma c
\end{array}
$$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but

$$
c=p-q \quad \Leftrightarrow \quad p-a-c=0
$$

$$
\begin{array}{rlr}
\log \left(\lambda_{a p}\right)= & f(a)+g(p)+h(c)+\gamma(p-a-c) \\
= & f(a)-\mu_{p} & -\gamma a+ \\
& g(p)+\mu_{p} & +\gamma p+ \\
& h(c) r & -\gamma c
\end{array}
$$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but

$$
c=p-q \quad \Leftrightarrow \quad p-a-c=0
$$

$$
\begin{aligned}
\log \left(\lambda_{a p}\right)= & f(a)+g(p)+h(c)+\gamma(p-a-c) \\
= & f(a)-\mu_{p}+\mu_{c}-\gamma a+ \\
& g(p)+\mu_{p}+\gamma p+ \\
& h(c) \quad-\mu_{c}-\gamma c
\end{aligned}
$$

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

...but

$$
\begin{aligned}
c=p-q \quad & \Leftrightarrow \quad p-a-c=0 \\
\log \left(\lambda_{a p}\right)= & f(a)+g(p)+h(c)+\gamma(p-a-c) \\
= & f(a)-\mu_{p}+\mu_{c}-\gamma a+ \\
& g(p)+\mu_{p}-\gamma p+ \\
& h(c) \quad-\mu_{c}-\gamma c
\end{aligned}
$$

A decision on parametrization is needed.

Age-Period-Cohort model

$$
\log \left(\lambda_{a p}\right)=\alpha_{a}+\beta_{p}+\gamma_{c}=f(a)+g(p)+h(c)
$$

... but

$$
c=p-q \quad \Leftrightarrow \quad p-a-c=0
$$

$$
\begin{aligned}
\log \left(\lambda_{a p}\right)= & f(a)+g(p)+h(c)+\gamma(p-a-c) \\
= & f(a)-\mu_{p}+\mu_{c}-\gamma a+ \\
& g(p)+\mu_{p} \quad+\gamma p+ \\
& h(c) \quad-\mu_{c}-\gamma c
\end{aligned}
$$

A decision on parametrization is needed.
. . . it must be external to the model.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific rates in a cohort c_{0} after adjustment for the period effect.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific rates in a cohort c_{0} after adjustment for the period effect.
2. The cohort function is 0 at a reference cohort c_{0}, interpretable as $\log -\mathrm{RR}$ relative to cohort c_{0}.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific rates in a cohort c_{0} after adjustment for the period effect.
2. The cohort function is 0 at a reference cohort c_{0}, interpretable as $\log -\mathrm{RR}$ relative to cohort c_{0}.
3. The period function is 0 on average with 0 slope, interpretable as log-RR relative to the age-cohort prediction. (residual $\log -R R)$.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific rates in a cohort c_{0} after adjustment for the period effect.
2. The cohort function is 0 at a reference cohort c_{0}, interpretable as $\log -\mathrm{RR}$ relative to cohort c_{0}.
3. The period function is 0 on average with 0 slope, interpretable as $\log -\mathrm{RR}$ relative to the age-cohort prediction. (residual $\log -R R)$.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific rates in a cohort c_{0} after adjustment for the period effect.
2. The cohort function is 0 at a reference cohort c_{0}, interpretable as $\log -\mathrm{RR}$ relative to cohort c_{0}.
3. The period function is 0 on average with 0 slope, interpretable as $\log -\mathrm{RR}$ relative to the age-cohort prediction. (residual $\log -R R)$.
This will yield cohort age-effects a.k.a. longitudinal age effects.

Parametrization principle

The problem is to choose μ_{a}, μ_{c} and γ according to some (external!) criterion for the functions.

1. The age-function should be interpretable as log age-specific rates in a cohort c_{0} after adjustment for the period effect.
2. The cohort function is 0 at a reference cohort c_{0}, interpretable as $\log -\mathrm{RR}$ relative to cohort c_{0}.
3. The period function is 0 on average with 0 slope, interpretable as $\log -\mathrm{RR}$ relative to the age-cohort prediction. (residual $\log -R R)$.
This will yield cohort age-effects a.k.a. longitudinal age effects.
Biologically interpretable: what happens in the lifespan of a cohort?

Period-major parametrization

- Alternatively, the period function could be constrained to be 0 at a reference date, p_{0}.

Period-major parametrization

- Alternatively, the period function could be constrained to be 0 at a reference date, p_{0}.
- Age-effects would refer to age apecific rates at p_{0}

Period-major parametrization

- Alternatively, the period function could be constrained to be 0 at a reference date, p_{0}.
- Age-effects would refer to age apecific rates at p_{0}
- Cohort effects constrained to be 0 on average with 0 slope.

Period-major parametrization

- Alternatively, the period function could be constrained to be 0 at a reference date, p_{0}.
- Age-effects would refer to age apecific rates at p_{0}
- Cohort effects constrained to be 0 on average with 0 slope.
- Gives period or cross-sectional age-effects

Period-major parametrization

- Alternatively, the period function could be constrained to be 0 at a reference date, p_{0}.
- Age-effects would refer to age apecific rates at p_{0}
- Cohort effects constrained to be 0 on average with 0 slope.
- Gives period or cross-sectional age-effects

Period-major parametrization

- Alternatively, the period function could be constrained to be 0 at a reference date, p_{0}.
- Age-effects would refer to age apecific rates at p_{0}
- Cohort effects constrained to be 0 on average with 0 slope.
- Gives period or cross-sectional age-effects

Bureaucratically interpretable: what was seen at a given date?

Implementation:

1. Obtain any set of parameters $f(a), g(p), h(c)$.

Implementation:

1. Obtain any set of parameters $f(a), g(p), h(c)$.
2. Extract the trend from the period effect (find μ and β):

$$
\tilde{g}(p)=\hat{g}(p)-(\mu+\beta p)
$$

(regression of $\hat{g}(p)$ on p)

Implementation:

1. Obtain any set of parameters $f(a), g(p), h(c)$.
2. Extract the trend from the period effect (find μ and β):

$$
\tilde{g}(p)=\hat{g}(p)-(\mu+\beta p)
$$

(regression of $\hat{g}(p)$ on p)
3. Decide on a reference cohort c_{0}.

Implementation:

1. Obtain any set of parameters $f(a), g(p), h(c)$.
2. Extract the trend from the period effect (find μ and β):

$$
\tilde{g}(p)=\hat{g}(p)-(\mu+\beta p)
$$

(regression of $\hat{g}(p)$ on p)
3. Decide on a reference cohort c_{0}.
4. Use the functions:

$$
\begin{aligned}
& \tilde{f}(a)=\hat{f}(a)+\mu+\beta a+\hat{h}\left(c_{0}\right)+\beta c_{0} \\
& \tilde{g}(p)=\hat{g}(p)-\mu-\beta p \\
& \tilde{h}(c)=\hat{h}(c) \quad+\beta c-\hat{h}\left(c_{0}\right)-\beta c_{0}
\end{aligned}
$$

"Extract the trend"

- Not a well-defined concept:

"Extract the trend"

- Not a well-defined concept:
- Regress $\hat{g}(p)$ on p for all units in the dataset.

"Extract the trend"

- Not a well-defined concept:
- Regress $\hat{g}(p)$ on p for all units in the dataset.
- Regress $\hat{g}(p)$ on p for all different values of p.

"Extract the trend"

- Not a well-defined concept:
- Regress $\hat{g}(p)$ on p for all units in the dataset.
- Regress $\hat{g}(p)$ on p for all different values of p.
- Weighted regression - what weights?

"Extract the trend"

- Not a well-defined concept:
- Regress $\hat{g}(p)$ on p for all units in the dataset.
- Regress $\hat{g}(p)$ on p for all different values of p.
- Weighted regression - what weights?
- A better founded solution is needed...

"Extract the trend"

- A solution from linear algebra:

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights
- Stepwise process:

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights
- Stepwise process:
- Fit Age-Cohort model

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights
- Stepwise process:
- Fit Age-Cohort model
- compute the predicted values for the observed data

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights
- Stepwise process:
- Fit Age-Cohort model
- compute the predicted values for the observed data
- use the log of these as offset in a model with only Period

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights
- Stepwise process:
- Fit Age-Cohort model
- compute the predicted values for the observed data
- use the log of these as offset in a model with only Period
- longitudinal age-effects, cohort with a reference and period as residuals

"Extract the trend"

- A solution from linear algebra:
- Take the columns from the parametric period effect,
- projection on the orthogonal to $(1, p)$
- requires an innner product in the observation space
- should be an inner product using person-years as weights
- Stepwise process:
- Fit Age-Cohort model
- compute the predicted values for the observed data
- use the log of these as offset in a model with only Period
- longitudinal age-effects, cohort with a reference and period as residuals
- Both implemented in apc.fit

ML and residual modeling

```
> library( Epi )
> data( testisDK )
> head( testisDK )
```

| | | A | P | D |
| ---: | ---: | ---: | ---: | ---: |$\quad Y$

> mm <- apc.fit(data=testisDK, ref.c=1935, parm="ACP" , npar=c (6,5,8), scale=10~!
[1] "ML of APC-model Poisson with $\log (Y)$ offset : (ACP): \n"
Model Mod. df. Mod. dev. Test df. Test dev. Pr(>Chi) Test dev/
$\begin{array}{lrrrrrr}1 & \text { Age } & 4854 & 6008.406 & \text { NA } & \text { NA } & \text { NA }\end{array}$
$\begin{array}{lrrrrrr}1 & \text { Age } & 4854 & 6008.406 & \text { NA } & \text { NA } & \text { NA }\end{array}$
2 Age-drift $48534864.393 \quad 11144.01295$ 8.976155e-251 1144.012؛
3 Age-Cohort $4847 \quad 4758.975 \quad \begin{array}{lllll}6 & 105.41779 & 1.853664 e-20 & 17.5696\end{array}$
4 Age-Period-Cohort $4844 \quad 4704.333 \quad 3 \quad 54.64241 \quad 8.184605 \mathrm{e}-12 \quad 18.214$
5 Age-Period $4850 \quad 4846.349 \quad 6 \quad 142.01605$ 3.762037e-28 23.669

Two ways of fixing parameters

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}
- Period is the residual

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}
- Period is the residual
- Inner product for trend extraction

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}
- Period is the residual
- Inner product for trend extraction
- ... or sequential fitting of models (different model)

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}
- Period is the residual
- Inner product for trend extraction
- ... or sequential fitting of models (different model)
- There is no magical fix that allows you to escape this, it comes from using variables a, p and $p-a$

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}
- Period is the residual
- Inner product for trend extraction
- ... or sequential fitting of models (different model)
- There is no magical fix that allows you to escape this, it comes from using variables a, p and $p-a$
- Any fix has some (hidden) assumption(s)

Parametrization of the APC model is arbitrary

- Separation of the three effects relies on arbitrary principles, e.g.:
- Age is the primary effect
- Cohort the secondary, reference c_{0}
- Period is the residual
- Inner product for trend extraction
- ... or sequential fitting of models (different model)
- There is no magical fix that allows you to escape this, it comes from using variables a, p and $p-a$
- Any fix has some (hidden) assumption(s)
- ... but the fitted values are the same (except for the sequential method).

APC-models for DM in Denmark

Bendix Carstensen

An APC Analytic Approach to Analyzing and Predicting National Trends in Diabetes Incidence over Time
CDC, Atlanta,June 2019
http://BendixCarstensen/APC

Age-Period-Cohort analysis of DM in Denmark

Age-Period-Cohort analysis of DM in Denmark

Incidence rates

- T1D:

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: -3.5% /year

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: $-3.5 \% /$ year
- T2D:

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: $-3.5 \% /$ year
- T2D:
- peaks ages 65-80

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: $-3.5 \% /$ year
- T2D:
- peaks ages 65-80
- decrease after 80

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: $-3.5 \% /$ year
- T2D:
- peaks ages 65-80
- decrease after 80
- peak rates at 7-10 cases per 1000 PY (2015)

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: $-3.5 \% /$ year
- T2D:
- peaks ages 65-80
- decrease after 80
- peak rates at 7-10 cases per 1000 PY (2015)
- change by calendar time: 3.3% /year

Incidence rates

- T1D:
- peaks ages 15-40, weak increase for men, weak decrease for women.
- decrease after age 40
- peak rates at 10-20 cases per 100,000 PY (2015)
- change by calendar time: $-3.5 \% /$ year
- T2D:
- peaks ages 65-80
- decrease after 80
- peak rates at 7-10 cases per 1000 PY (2015)
- change by calendar time: 3.3% /year
- very irregular calendar time pattern

Age-Period-Cohort analysis of DM in Denmark

- Alternative to showing the (arbitrarily fixed) age-, period- and cohort-components, is to show the predicted rates

Age-Period-Cohort analysis of DM in Denmark

- Alternative to showing the (arbitrarily fixed) age-, period- and cohort-components, is to show the predicted rates
- ... for a fixed age (50 years, say) as a function of calendar time

Age-Period-Cohort analysis of DM in Denmark

- Alternative to showing the (arbitrarily fixed) age-, period- and cohort-components, is to show the predicted rates
- ... for a fixed age (50 years, say) as a function of calendar time
- The natural splines constrain P and C components to be linear at the end, so easy to extrapolate rates at any desired age into the future

Age-Period-Cohort analysis of DM in Denmark

- Alternative to showing the (arbitrarily fixed) age-, period- and cohort-components, is to show the predicted rates
- ... for a fixed age (50 years, say) as a function of calendar time
- The natural splines constrain P and C components to be linear at the end, so easy to extrapolate rates at any desired age into the future
- ... but may overshoot

Age-Period-Cohort analysis of DM in Denmark

Predictions for total DM

Incidence of total DM

Mortality in total DM
Mortality in no DM

Ages 20, 30,. . ., 90 (strong to weak color)

Future rates for total DM

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

- Simple linear increase in incidence rates 2017-2030: 0\%/year, $2 \% /$ year, $4 \% /$ year, $6 \% /$ year,

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

- Simple linear increase in incidence rates 2017-2030: $0 \% /$ year, $2 \% /$ year, $4 \% /$ year, $6 \% /$ year,
- Mortality rates (3 scenarios)

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

- Simple linear increase in incidence rates 2017-2030:
$0 \% /$ year, $2 \% /$ year, $4 \% /$ year, $6 \% /$ year,
- Mortality rates (3 scenarios)
- Simple linear projection of period and cohort effects

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

- Simple linear increase in incidence rates 2017-2030:
$0 \% /$ year, $2 \% /$ year, $4 \% /$ year, $6 \% /$ year,
- Mortality rates (3 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

Projection scenarios for incidence rates

- Incidence rates (6 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

- Simple linear increase in incidence rates 2017-2030:
$0 \% /$ year, $2 \% /$ year, $4 \% /$ year, $6 \% /$ year,
- Mortality rates (3 scenarios)
- Simple linear projection of period and cohort effects
- Attenuation of slopes of age-specific rates:

Every 5 years the slope is halved

- Constant rates as of 2017

Future number of prevalent cases

1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)

Future number of prevalent cases

1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)
2. Use incidence rates to predict the fraction of non-DM that will be DM one month later (and one month older)

Future number of prevalent cases

1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)
2. Use incidence rates to predict the fraction of non-DM that will be DM one month later (and one month older)
3. Use mortality for DM to predict the fraction of the prevalent cases that will survive one month (and be one month older)

Future number of prevalent cases

1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)
2. Use incidence rates to predict the fraction of non-DM that will be DM one month later (and one month older)
3. Use mortality for DM to predict the fraction of the prevalent cases that will survive one month (and be one month older)
4. Use mortality for non-DM to predict how many of the non-DM will survive one month (and be one month older)

Future number of prevalent cases

1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)
2. Use incidence rates to predict the fraction of non-DM that will be DM one month later (and one month older)
3. Use mortality for DM to predict the fraction of the prevalent cases that will survive one month (and be one month older)
4. Use mortality for non-DM to predict how many of the non-DM will survive one month (and be one month older)
5. From this we know the prevalence of DM as of 2017-02-01, in one month older age

Future number of prevalent cases

1. Start with prevalence as of 2017-01-01:

The predicted prevalences for each month of age (1200 classes)
2. Use incidence rates to predict the fraction of non-DM that will be DM one month later (and one month older)
3. Use mortality for DM to predict the fraction of the prevalent cases that will survive one month (and be one month older)
4. Use mortality for non-DM to predict how many of the non-DM will survive one month (and be one month older)
5. From this we know the prevalence of DM as of 2017-02-01, in one month older age
6. Multiply with population forecast from Statistics Denmark to get the number of prevalent cases at any future time

Future number of prevalent cases (M/W)

Future number of prevalent cases (M / W)

- Total no. prevalent cases increase from 287,000 in 2017 to 467,000 in 2030.

Future number of prevalent cases (M / W)

- Total no. prevalent cases increase from 287,000 in 2017 to 467,000 in 2030.
- The population of DM cases will be older - the over-80 will increase from 13 to 20%

Future number of prevalent cases (M / W)

- Total no. prevalent cases increase from 287,000 in 2017 to 467,000 in 2030.
- The population of DM cases will be older - the over-80 will increase from 13 to 20%
- The incidence raes are erratic toward the end of the observation period, so prediction to 2040 is not feasible

Future number of prevalent cases (M / W)

- Total no. prevalent cases increase from 287,000 in 2017 to 467,000 in 2030.
- The population of DM cases will be older - the over-80 will increase from 13 to 20%
- The incidence raes are erratic toward the end of the observation period, so prediction to 2040 is not feasible
- Scenarios with 2%, resp. 4% annual increase from 2017 level of incidence gives predictions of 445,000 and 482,000 prevalent cases.

Mehodological points

- Incidence and mortality in tables by age, period and cohort in 1 -year classes (Lexis triangles)

Mehodological points

- Incidence and mortality in tables by age, period and cohort in 1-year classes (Lexis triangles)
- Score the correct mean age, period and cohort in each

Mehodological points

- Incidence and mortality in tables by age, period and cohort in 1 -year classes (Lexis triangles)
- Score the correct mean age, period and cohort in each
- Model with smooth functions for age, period and cohort - a kind of parametric smoothing of the rates over the Lexis diagram

Mehodological points

- Incidence and mortality in tables by age, period and cohort in 1-year classes (Lexis triangles)
- Score the correct mean age, period and cohort in each
- Model with smooth functions for age, period and cohort - a kind of parametric smoothing of the rates over the Lexis diagram
- Use the predicted rates in 1-month steps to project future prevalence

Mehodological points

- Incidence and mortality in tables by age, period and cohort in 1-year classes (Lexis triangles)
- Score the correct mean age, period and cohort in each
- Model with smooth functions for age, period and cohort - a kind of parametric smoothing of the rates over the Lexis diagram
- Use the predicted rates in 1-month steps to project future prevalence
- Small steps important - we assume that DM and death cannot occur in the same interval. 1 year intervals rendes this too probable

Mehodological points

- Incidence and mortality in tables by age, period and cohort in 1-year classes (Lexis triangles)
- Score the correct mean age, period and cohort in each
- Model with smooth functions for age, period and cohort - a kind of parametric smoothing of the rates over the Lexis diagram
- Use the predicted rates in 1-month steps to project future prevalence
- Small steps important - we assume that DM and death cannot occur in the same interval. 1 year intervals rendes this too probable
- The parametric compnent of age, period and cohort can only APC-modes for obeoderived) using explicit constraints (3 of them to be precise)

More

A complete account of all analyses is in: http://bendixcarstensen.com/DMreg/NewAna.pdf

A more complete account of APC-modeling can be found in the course material from the European Doctoral School of Demography: http://bendixcarstensen.com/APC/EDSD-2019/

