Demography of Diabetes in Denmark or: How to put real probabilities in your transition matrix and use them

Bendix Carstensen Steno Diabetes Center

Gentofte, Denmark

http://BendixCarstensen.com

Mathematical Sciences, University of Tartu

May 2015

http://BendixCarstensen.com/DMreg

Demography of diabetes in DK

▶ How does diabetes spread in the population?

Demography of diabetes in DK

- How does diabetes spread in the population?
- ▶ Life time risk of DM

Demography of diabetes in DK

- ▶ How does diabetes spread in the population?
- Life time risk of DM
- ...and complications

▶ Prevalence of diabetes has been increasing, while

- Prevalence of diabetes has been increasing, while
- ▶ Incidence rates have been **in**creasing (4% / year)

- Prevalence of diabetes has been increasing, while
- ▶ Incidence rates have been **in**creasing (4% / year)
- ► Mortality rates have been **de**creasing (2% / year)

- Prevalence of diabetes has been increasing, while
- ► Incidence rates have been **in**creasing (4% / year)
- Mortality rates have been decreasing (2% / year)
- ▶ What is the relative contribution of each?

Demographic scenario

Demographic scenario

► Cancer is about 15% higher in DM ptt

- ▶ Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%

- ► Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%
- Assess:

- ► Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%
- Assess:
 - Lifetime risk of DM and Cancer (and both) in DK

- Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%
- Assess:
 - Lifetime risk of DM and Cancer (and both) in DK
 - ► Changes in these 1995–2012

- Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%
- Assess:
 - Lifetime risk of DM and Cancer (and both) in DK
 - ► Changes in these 1995–2012
 - ▶ Impact of the DM vs noDM cancer incidence RR

Demographic scenario

▶ Distribution across boxes (states) is completely determined by:

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- 2) Transition intensities

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- 2) Transition intensities
- ► Time scale?

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- 2) Transition intensities
- ► Time scale?
- ...or rather, what shall we call it?

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- 2) Transition intensities
- ► Time scale?
- ...or rather, what shall we call it?
- Age-specific transition rates

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- 2) Transition intensities
- ► Time scale?
- ...or rather, what shall we call it?
- Age-specific transition rates
- ...as continuous functions of age

- ▶ Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- 2) Transition intensities
- ► Time scale?
- ...or rather, what shall we call it?
- Age-specific transition rates
- ...as continuous functions of age
- ...and possibly other time scales

Transition rates between states as function of a and p:

$$\lambda(a, p), \qquad \mu_{ND}(a, p), \qquad \mu_{DM}(a, p)$$

Transition rates between states as function of a and p:

$$\lambda(a,p), \qquad \mu_{\text{ND}}(a,p), \qquad \mu_{\text{DM}}(a,p)$$

Transition probabilities for an interval of length ℓ :

$$P \{ \mathsf{No} \ \mathsf{DM} \ \mathsf{at} \ (a+\ell,p+\ell) \mid \mathsf{No} \ \mathsf{DM} \ \mathsf{at} \ (a,p) \} = P_{\mathsf{ND},\mathsf{ND}}(\ell)$$
:

Transition rates between states as function of a and p:

$$\lambda(a, p), \qquad \mu_{ND}(a, p), \qquad \mu_{DM}(a, p)$$

Transition probabilities for an interval of length ℓ :

$$P \{ \mathsf{No} \ \mathsf{DM} \ \mathsf{at} \ (a+\ell,p+\ell) \mid \mathsf{No} \ \mathsf{DM} \ \mathsf{at} \ (a,p) \} = P_{\mathsf{ND},\mathsf{ND}}(\ell)$$
:

$$P_{\mathsf{ND},\mathsf{ND}}(\ell) = \exp(-(\lambda + \mu_{\mathsf{ND}})\ell)$$

$$P_{\mathsf{ND},\mathsf{Dead}}(\ell) = \frac{\mu_{\mathsf{ND}}}{\lambda + \mu_{\mathsf{ND}}} \Big(1 - \exp(-(\lambda + \mu_{\mathsf{ND}})\ell) \Big)$$

$$P_{\mathsf{ND},\mathsf{DM}}(\ell) = \frac{\lambda}{\lambda + \mu_{\mathsf{ND}}} \Big(1 - \exp(-(\lambda + \mu_{\mathsf{ND}})\ell) \Big)$$

$$P_{\rm DM,Dead}(\ell) = 1 - \exp(-\mu_{\rm DM}\ell)$$

Prevalence of DM — updating

Prevalence of DM — updating

But where do we get the rates from?

▶ National Diabetes Register, 1995–2011

- ▶ National Diabetes Register, 1995–2011
- ▶ Danish Cancer Register, 1943–2011

- ▶ National Diabetes Register, 1995–2011
- ▶ Danish Cancer Register, 1943–2011
- Mortality, Statistics Denmark

- ▶ National Diabetes Register, 1995–2011
- ▶ Danish Cancer Register, 1943–2011
- Mortality, Statistics Denmark
- Population, Statistics Denmark

Example: state No DM

▶ Time at risk:

- ▶ Time at risk:
 - from date of birth or start of study

- ▶ Time at risk:
 - from date of birth or start of study
 - ► to date of DM or Dead (or end of study)

- ▶ Time at risk:
 - from date of birth or start of study
 - ▶ to date of DM or Dead (or end of study)
- Events (transitions)

- ▶ Time at risk:
 - from date of birth or start of study
 - ▶ to date of DM or Dead (or end of study)
- Events (transitions)
 - DM

- ▶ Time at risk:
 - from date of birth or start of study
 - ▶ to date of DM or Dead (or end of study)
- Events (transitions)
 - DM
 - Dead

- ▶ Time at risk:
 - from date of birth or start of study
 - ▶ to date of DM or Dead (or end of study)
- Events (transitions)
 - DM
 - Dead

Example: state No DM

- ▶ Time at risk:
 - from date of birth or start of study
 - ▶ to date of DM or Dead (or end of study)
- Events (transitions)
 - DM
 - Dead

.

► Classification of follow-up (time and events) by age (0-100), calendar time (1995-2011) and date of birth (1-year classes) (Lexis triangles)

- ▶ Time at risk:
 - from date of birth or start of study
 - ▶ to date of DM or Dead or Ca (or end of study)
- Events (transitions)
 - DM
 - Dead
 - ▶ Ca
- ► Classification of follow-up (time and events) by age (0-100), calendar time (1995-2011) and date of birth (1-year classes) (Lexis triangles)
- Similary for the study with cancer states

▶ Incident cases / deaths from each state

- ▶ Incident cases / deaths from each state
- ▶ Person-years in each state

- ▶ Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes
- Age-Period-Cohort Poisson-model with smooth effects of A, P & C

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes
- Age-Period-Cohort Poisson-model with smooth effects of A, P & C
- Note: Only use the predictions from the models

Events and risk time

```
> cbind(
+ xtabs(cbind(D.ca, D.dm, D.dd) ~ state, data=dcd), round(
+ xtabs( Y/1000 ~ state, data=dcd ), 1 ) )
        D.ca D.dm D.dd
      447419 345400 628705 87502.9
Well
DM
       35145
                   0 73480
                            2031.3
                            89.1
DM-Ca
                      24153
                                              DM-Ca
                                                           Dead (DM-Ca)
Ca
             23508 222966 1973.6
                      14703
                            117.0
Ca-DM
                                                            Dead (DM)
                                          DM
Dead
                          0
                              0.0
                                                            Dead (Well)
                                     Well
                                           Ca
                                                            Dead (Ca)
                                                          Dead (Ca-DM)
                                              Ca-DM
```


Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( vv in dimnames(PR)[[4]])
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(yy), Y=int )
+ PR["Well" ,"DM" ,,yy,"M"] <- ci.pred( M.w2dm$model , newdata=nd )[,1]
+ PR["Well" , "Ca" ,,yy,"M"] <- ci.pred( M.w2ca$model , newdata=nd )[,1]
+ PR["Well" ."D-W"
                    ,,vy,"M"] <- ci.pred( M.w2dd$model , newdata=nd )[,1]</pre>
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd )[,1]
+ PR["DM" ,"D-DM" ,,yy,"M"] <- ci.pred( M.dm2dd$model, newdata=nd )[,1]
+ PR["Ca" ,"Ca-DM",,yy,"M"] <- ci.pred( M.ca2dm$model, newdata=nd )[,1]
+ PR["Ca" , "D-Ca" , , yy, "M"] <- ci.pred( M.ca2dd$model, newdata=nd )[,1]
+ PR["DM-Ca", "D-DC",,yy, "M"] <- ci.pred( M.dc2dd$model, newdata=nd )[,1]
+ PR["Ca-DM", "D-CD" ,,yy, "M"] <- ci.pred( M.cd2dd$model, newdata=nd )[,1]
```

Transition matrices

Use the rates to generate the transition **probabilities**:

```
> print.table( round( addmargins( ci2pr( PR[,.800,1,1] )*10^4,
                                    margin=2)).
                zero.print="." )
       to
from
         Well
                  DM DM-Ca
                               Ca Ca-DM
                                           D-W
                                                D-DM
                                                             D-DC
                                                                           Siim
  Well
         9963
                   8
                               12
                                            17
                                                                         10000
  DM
               9943
                        16
                                                  40
                                                                         10000
                                                              422
                                                                         10000
  DM-Ca
                      9578
                             9815
                                                        175
                                                                         10000
  Ca
  Ca-DM
                                   9865
                                                                     135 10000
  D-W
                                       . 10000
                                                                         10000
                                               10000
  D-DM
                                                                         10000
  D-Ca
                                                     10000
                                                                         10000
  D-DC
                                                            10000
                                                                         10000
  D-CD
                                                                  10000 10000
```

State occupancy probabilites

```
> PV <- PR[1,,,,]*0
> for( sc in dimnames(PRp)[["per"]] )
+ for( sx in dimnames(PRp)[["sex"]] )
+ {
+ # Initialize to all well at age 0:
+ PV[,1,sc,sx] <- c(1,rep(0,9))
+ # Compute distribution at endpoint of each age-interval
+ for( ag in 1:dim(PRp)[3] ) PV[,ag,sc,sx] <- PV[ ,max(ag-1,1),sc,sx] %*%
+ PRp[,, ag ,sc,sx]
+ PRp[,, ag ,sc,sx]</pre>
```

▶ Start all in age 0 in state "Well"

- ▶ Start all in age 0 in state "Well"
- ▶ Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month

- ▶ Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month
- Compute fraction in each state at each age

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month
- Compute fraction in each state at each age
- Different scenarios using estimated (cross-sectional) rates at 1 January 1995, 1996, ..., 2012

Cancer rates among DM-ptt inflated 20%

Cancer rates among DM-ptt inflated

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( vv in dimnames(PR)[[4]])
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(yy), Y=int )
+ PR["Well" ,"DM" ,,yy,"M"] <- ci.pred( M.w2dm$model , newdata=nd )[,1]
+ PR["Well" , "Ca" ,,yy,"M"] <- ci.pred( M.w2ca$model , newdata=nd )[,1]
+ PR["Well" ."D-W"
                    ,,vy,"M"] <- ci.pred( M.w2dd$model , newdata=nd )[,1]</pre>
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd )[,1]
+ PR["DM" ,"D-DM" ,,yy,"M"] <- ci.pred( M.dm2dd$model, newdata=nd )[,1]
+ PR["Ca" ,"Ca-DM",,yy,"M"] <- ci.pred( M.ca2dm$model, newdata=nd )[,1]
+ PR["Ca" , "D-Ca" , , yy, "M"] <- ci.pred( M.ca2dd$model, newdata=nd )[,1]
+ PR["DM-Ca", "D-DC",,yy, "M"] <- ci.pred( M.dc2dd$model, newdata=nd )[,1]
+ PR["Ca-DM", "D-CD" ,,yy, "M"] <- ci.pred( M.cd2dd$model, newdata=nd )[,1]
```

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( vv in dimnames(PR)[[4]])
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(yy), Y=int )
+ PR["Well" ,"DM" ,,yy,"M"] <- ci.pred( M.w2dm$model , newdata=nd )[,1]
+ PR["Well" , "Ca" , , yy, "M"] <- ci.pred( M.w2ca$model , newdata=nd )[,1]
+ PR["Well" ."D-W"
                    ,,vy,"M"] <- ci.pred( M.w2dd$model , newdata=nd )[,1]</pre>
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd )[,1] * 1.5
+ PR["DM" ,"D-DM" ,,yy,"M"] <- ci.pred( M.dm2dd$model, newdata=nd )[,1]
+ PR["Ca" ,"Ca-DM",,yy,"M"] <- ci.pred( M.ca2dm$model, newdata=nd )[,1]
+ PR["Ca" , "D-Ca" , , yy, "M"] <- ci.pred( M.ca2dd$model, newdata=nd )[,1]
+ PR["DM-Ca", "D-DC",,yy, "M"] <- ci.pred( M.dc2dd$model, newdata=nd )[,1]
+ PR["Ca-DM"."D-CD" ..vv."M"] <- ci.pred( M.cd2dd$model, newdata=nd )[.1]
```

Lifetime risks

Lifetime risks - RR inflated 20%

Lifetime risks - RR inflated 50%

Demographic changes in DM & Cancer 1995–2012

► Changing **rates** in period 1995–2012:

Diabetes incidence	4% /year
Cancer incidence	2% /year
Mortality	–4% /year

Demographic changes in DM & Cancer 1995–2012

► Changing rates in period 1995–2012:

Diabetes incidence	4% /year
Cancer incidence	2% /year
Mortality	–4% /year

► Changing **life-time risk** 1995–2012:

		+20% Ca DM	+50% Ca DM
Diabetes	19% to 38%	19% to 38%	19% to 38%
Cancer	32% to 46%	33% to 48%	34% to 50%
DM + Ca	6% to 18%	6% to 20%	7% to 22%

Conclusion — DM & Cancer

Increasing incidence rates of DM and Cancer is what matters for (changes in) lifetime risk...

Conclusion — DM & Cancer

- Increasing incidence rates of DM and Cancer is what matters for (changes in) lifetime risk...
- not the (slightly) elevated risk of Cancer among DM paitents.

▶ Start with age-specific prevalences 1995

- Start with age-specific prevalences 1995
- ▶ Use fitted models for incidence and mortality as function of ge and calendar time — to predict prevalences 2012

- Start with age-specific prevalences 1995
- ▶ Use fitted models for incidence and mortality as function of ge and calendar time — to predict prevalences 2012
- Assume:

- Start with age-specific prevalences 1995
- ▶ Use fitted models for incidence and mortality as function of ge and calendar time — to predict prevalences 2012
- Assume:
 - Incidence rates had remained at 1995 level

- Start with age-specific prevalences 1995
- ▶ Use fitted models for incidence and mortality as function of ge and calendar time — to predict prevalences 2012
- Assume:
 - ▶ Incidence rates had remained at 1995 level
 - Mortality rates had remained at 1995 level

- Start with age-specific prevalences 1995
- ▶ Use fitted models for incidence and mortality as function of ge and calendar time — to predict prevalences 2012
- Assume:
 - ▶ Incidence rates had remained at 1995 level
 - Mortality rates had remained at 1995 level
 - Both had remained at 1995 level

- Start with age-specific prevalences 1995
- ▶ Use fitted models for incidence and mortality as function of ge and calendar time — to predict prevalences 2012
- Assume:
 - Incidence rates had remained at 1995 level
 - Mortality rates had remained at 1995 level
 - Both had remained at 1995 level
- ▶ Differences between predicted prevalences gives the contribution from incidence rate changes, mortality rate changes and 1995 disequilibrium.

Componets of prevalent cases

Prevalent cases

Components of prevalent cases

Thanks for your attention

