Demography of Diabetes in Denmark or: How to put real probabilities in your transition matrix and use them

Bendix Carstensen Steno Diabetes Center
Gentofte, Denmark
http://BendixCarstensen.com

Mathematical Sciences, University of Tartu
May 2015
http://BendixCarstensen.com/DMreg

Demography of diabetes in DK

- How does diabetes spread in the population?

Demography of diabetes in DK

- How does diabetes spread in the population?
- Life time risk of DM

Demography of diabetes in DK

- How does diabetes spread in the population?
- Life time risk of DM
-and complications

Prevalence of diabetes

- Prevalence of diabetes has been increasing, while

Prevalence of diabetes

- Prevalence of diabetes has been increasing, while
- Incidence rates have been increasing (4\% / year)

Prevalence of diabetes

- Prevalence of diabetes has been increasing, while
- Incidence rates have been increasing (4\% / year)
- Mortality rates have been decreasing (2% / year)

Prevalence of diabetes

- Prevalence of diabetes has been increasing, while
- Incidence rates have been increasing (4\% / year)
- Mortality rates have been decreasing ($2 \% /$ year)
- What is the relative contribution of each?

Demographic scenario

Demographic scenario

Cancer among diabetes patients

Cancer among diabetes patients

- Cancer is about 15% higher in DM ptt

Cancer among diabetes patients

- Cancer is about 15% higher in DM ptt
- Life-time risk of cancer and DM both in the range 30-40\%

Cancer among diabetes patients

- Cancer is about 15% higher in DM ptt
- Life-time risk of cancer and DM both in the range 30-40\%
- Assess:

Cancer among diabetes patients

- Cancer is about 15% higher in DM ptt
- Life-time risk of cancer and DM both in the range 30-40\%
- Assess:
- Lifetime risk of DM and Cancer (and both) in DK

Cancer among diabetes patients

- Cancer is about 15% higher in DM ptt
- Life-time risk of cancer and DM both in the range 30-40\%
- Assess:
- Lifetime risk of DM and Cancer (and both) in DK
- Changes in these 1995-2012

Cancer among diabetes patients

- Cancer is about 15% higher in DM ptt
- Life-time risk of cancer and DM both in the range 30-40\%
- Assess:
- Lifetime risk of DM and Cancer (and both) in DK
- Changes in these 1995-2012
- Impact of the DM vs noDM cancer incidence RR

Demographic scenario

Multistate models

- Distribution across boxes (states) is completely determined by:

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution
- 2) Transition intensities

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution
- 2) Transition intensities
- Time scale?

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution
- 2) Transition intensities
- Time scale?
- ... or rather, what shall we call it?

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution
- 2) Transition intensities
- Time scale?
- ... or rather, what shall we call it?
- Age-specific transition rates

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution
- 2) Transition intensities
- Time scale?
- ... or rather, what shall we call it?
- Age-specific transition rates
- ... as continuous functions of age

Multistate models

- Distribution across boxes (states) is completely determined by:
- 1) Initial state distribution
- 2) Transition intensities
- Time scale?
- ... or rather, what shall we call it?
- Age-specific transition rates
- ... as continuous functions of age
-and possibly other time scales

Prevalence of DM - updating

Transition rates between states as function of a and p :

$$
\lambda(a, p), \quad \mu_{\mathrm{ND}}(a, p), \quad \mu_{\mathrm{DM}}(a, p)
$$

Prevalence of DM - updating

Transition rates between states as function of a and p :

$$
\lambda(a, p), \quad \mu_{\mathrm{ND}}(a, p), \quad \mu_{\mathrm{DM}}(a, p)
$$

Transition probabilities for an interval of length ℓ : $P\{$ No DM at $(a+\ell, p+\ell) \mid$ No DM at $(a, p)\}=P_{\mathrm{ND}, \mathrm{ND}}(\ell)$:

Prevalence of DM - updating

Transition rates between states as function of a and p :

$$
\lambda(a, p), \quad \mu_{\mathrm{ND}}(a, p), \quad \mu_{\mathrm{DM}}(a, p)
$$

Transition probabilities for an interval of length ℓ :
$P\{$ No DM at $(a+\ell, p+\ell) \mid$ No DM at $(a, p)\}=P_{\mathrm{ND}, \mathrm{ND}}(\ell)$:

$$
\begin{aligned}
P_{\mathrm{ND}, \mathrm{ND}}(\ell) & =\exp \left(-\left(\lambda+\mu_{\mathrm{ND}}\right) \ell\right) \\
P_{\mathrm{ND}, \text { Dead }}(\ell) & =\frac{\mu_{\mathrm{ND}}}{\lambda+\mu_{\mathrm{ND}}}\left(1-\exp \left(-\left(\lambda+\mu_{\mathrm{ND}}\right) \ell\right)\right) \\
P_{\mathrm{ND}, \mathrm{DM}}(\ell) & =\frac{\lambda}{\lambda+\mu_{\mathrm{ND}}}\left(1-\exp \left(-\left(\lambda+\mu_{\mathrm{ND}}\right) \ell\right)\right) \\
P_{\mathrm{DM}, \text { Dead }}(\ell) & =1-\exp \left(-\mu_{\mathrm{DM}} \ell\right)
\end{aligned}
$$

Prevalence of DM - updating

But where do we get the rates from?

Data base (both studies)

- National Diabetes Register, 1995-2011

Data base (both studies)

- National Diabetes Register, 1995-2011
- Danish Cancer Register, 1943-2011

Data base (both studies)

- National Diabetes Register, 1995-2011
- Danish Cancer Register, 1943-2011
- Mortality, Statistics Denmark

Data base (both studies)

- National Diabetes Register, 1995-2011
- Danish Cancer Register, 1943-2011
- Mortality, Statistics Denmark
- Population, Statistics Denmark

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead (or end of study)

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead (or end of study)
- Events (transitions)

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead (or end of study)
- Events (transitions)
- DM

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead (or end of study)
- Events (transitions)
- DM
- Dead

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead (or end of study)
- Events (transitions)
- DM
- Dead

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead (or end of study)
- Events (transitions)
- DM
- Dead
- Classification of follow-up (time and events) by age (0-100), calendar time (1995-2011) and date of birth (1-year classes) (Lexis triangles)

Incidence and mortality rates: Data

Example: state No DM

- Time at risk:
- from date of birth or start of study
- to date of DM or Dead or Ca (or end of study)
- Events (transitions)
- DM
- Dead
- Ca
- Classification of follow-up (time and events) by age (0-100), calendar time (1995-2011) and date of birth (1-year classes) (Lexis triangles)
- Similary for the study with cancer states

Incidence and mortality rates: Models

- Incident cases / deaths from each state

Incidence and mortality rates: Models

- Incident cases / deaths from each state
- Person-years in each state

Incidence and mortality rates: Models

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes

Incidence and mortality rates: Models

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes
- Age-Period-Cohort Poisson-model with smooth effects of A, P \& C

Incidence and mortality rates: Models

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes
- Age-Period-Cohort Poisson-model with smooth effects of A, P \& C
- Note: Only use the predictions from the models

Events and risk time

```
> cbind(
+ xtabs( cbind( D.ca, D.dm, D.dd ) ~ state, data=dcd ), round(
+ xtabs( Y/1000 ~ state, data=dcd ), 1 ) )
```

	D.ca	D.dm	D.dd	Y
Well	447419	345400	628705	87502.9
DM	35145	0	73480	2031.3
DM-Ca	0	0	24153	89.1
Ca	0	23508	222966	1973.6
Ca-DM	0	0	14703	117.0
Dead	0	0	0	0.0

Incidence and mortality rates

Men

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( yy in dimnames(PR)[[4]] )
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(yy), Y=int )
+
+ PR["Well" ,"DM" ,,yy,"M"] <- ci.pred( M.w2dm$model , newdata=nd ) [,1]
+ PR["Well" ,"Ca" ,,yy,"M"] <- ci.pred( M.w2ca$model , newdata=nd ) [,1]
+ PR["Well" ,"D-W" ,,yy,"M"] <- ci.pred( M.w2dd$model , newdata=nd ) [,1]
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd ) [,1]
+ PR["DM" ,"D-DM" ,,yy,"M"] <- ci.pred( M.dm2dd$model, newdata=nd ) [,1]
+ PR["Ca" ,"Ca-DM",,yy,"M"] <- ci.pred( M.ca2dm$model, newdata=nd ) [,1]
+ PR["Ca" ,"D-Ca" ,,yy,"M"] <- ci.pred( M.ca2dd$model, newdata=nd ) [,1]
+ PR["DM-Ca","D-DC" ,,yy,"M"] <- ci.pred( M.dc2dd$model, newdata=nd ) [,1]
+ PR["Ca-DM","D-CD" ,,yy,"M"] <- ci.pred( M.cd2dd$model, newdata=nd ) [,1]
```


Transition matrices

Use the rates to generate the transition probabilities:

State occupancy probabilites

```
> PV <- PR[1, , ,]*0
> for( sc in dimnames(PRp)[["per"]] )
+ for( sx in dimnames(PRp)[["sex"]] )
+ {
+ # Initialize to all well at age 0:
+ PV[,1,sc,sx] <- c(1,rep(0,9))
+ # Compute distribution at endpoint of each age-interval
+ for( ag in 1:dim(PRp)[3] ) PV[,ag,sc,sx] <- PV [ ,max(ag-1,1),sc,sx] %*%
+
PRp[,, ag ,sc,sx]
+ }
```


Prediction methods

- Start all in age 0 in state "Well"

Prediction methods

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval

Prediction methods

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval

Prediction methods

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month

Prediction methods

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month
- Compute fraction in each state at each age

Prediction methods

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month
- Compute fraction in each state at each age
- Different scenarios using estimated (cross-sectional) rates at 1 January 1995, 1996, ... , 2012

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( yy in dimnames(PR)[[4]] )
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(yy), Y=int )
+
+ PR["Well" ,"DM" ,,yy,"M"] <- ci.pred( M.w2dm$model , newdata=nd ) [,1]
+ PR["Well" ,"Ca" ,,yy,"M"] <- ci.pred( M.w2ca$model , newdata=nd ) [,1]
+ PR["Well" ,"D-W" ,,yy,"M"] <- ci.pred( M.w2dd$model , newdata=nd ) [,1]
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd ) [,1]
+ PR["DM" ,"D-DM" ,,yy,"M"] <- ci.pred( M.dm2dd$model, newdata=nd ) [,1]
+ PR["Ca" ,"Ca-DM",,yy,"M"] <- ci.pred( M.ca2dm$model, newdata=nd ) [,1]
+ PR["Ca" ,"D-Ca" ,,yy,"M"] <- ci.pred( M.ca2dd$model, newdata=nd ) [,1]
+ PR["DM-Ca","D-DC" ,,yy,"M"] <- ci.pred( M.dc2dd$model, newdata=nd ) [,1]
+ PR["Ca-DM","D-CD" ,,yy,"M"] <- ci.pred( M.cd2dd$model, newdata=nd ) [,1]
```


Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( yy in dimnames(PR)[[4]] )
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(yy), Y=int )
+
+ PR["Well" ,"DM" ,,yy,"M"] <- ci.pred( M.w2dm$model , newdata=nd ) [,1]
+ PR["Well" ,"Ca" ,,yy,"M"] <- ci.pred( M.w2ca$model , newdata=nd ) [,1]
+ PR["Well" ,"D-W" ,,yy,"M"] <- ci.pred( M.w2dd$model , newdata=nd ) [,1]
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd ) [,1]
+ PR["DM" ,"D-DM" ,,yy,"M"] <- ci.pred( M.dm2dd$model, newdata=nd ) [,1]
+ PR["Ca" ,"Ca-DM",,yy,"M"] <- ci.pred( M.ca2dm$model, newdata=nd ) [,1]
+ PR["Ca" ,"D-Ca" ,,yy,"M"] <- ci.pred( M.ca2dd$model, newdata=nd ) [,1]
+ PR["DM-Ca","D-DC" ,,yy,"M"] <- ci.pred( M.dc2dd$model, newdata=nd ) [,1]
+ PR["Ca-DM","D-CD" ,,yy,"M"] <- ci.pred( M.cd2dd$model, newdata=nd ) [,1]

\section*{Lifetime risks}


\footnotetext{
Date of rate evaluation
}

\section*{Lifetime risks - RR inflated 20\%}


\section*{Lifetime risks - RR inflated 50\%}


\section*{Demographic changes in DM \& Cancer 1995-2012}
- Changing rates in period 1995-2012:
\begin{tabular}{lr} 
Diabetes incidence & \(\mathbf{4 \%}\) /year \\
Cancer incidence & \(\mathbf{2 \%} /\) year \\
Mortality & \(\mathbf{- 4 \% / y e a r}\) \\
\hline
\end{tabular}

\section*{Demographic changes in DM \& Cancer 1995-2012}
- Changing rates in period 1995-2012:
\begin{tabular}{lr} 
Diabetes incidence & \(\mathbf{4 \%} /\) year \\
Cancer incidence & \(\mathbf{2 \%} /\) year \\
Mortality & \(\mathbf{- 4 \% / \text { year }}\) \\
\hline
\end{tabular}
- Changing life-time risk 1995-2012:
\begin{tabular}{lrrr} 
& & \(+20 \%\) Ca \(\mid\) DM & \(+50 \%\) Ca \(\mid\) DM \\
\hline Diabetes & \(\mathbf{1 9 \%}\) to \(\mathbf{3 8 \%}\) & \(\mathbf{1 9 \%}\) to \(38 \%\) & \(19 \%\) to \(38 \%\) \\
Cancer & \(\mathbf{3 2 \%}\) to \(\mathbf{4 6 \%}\) & \(33 \%\) to \(48 \%\) & \(34 \%\) to \(50 \%\) \\
DM + Ca & \(\mathbf{6 \%}\) to \(\mathbf{1 8 \%}\) & \(6 \%\) to \(20 \%\) & \(7 \%\) to \(22 \%\)
\end{tabular}

\section*{Conclusion - DM \& Cancer}
- Increasing incidence rates of DM and Cancer is what matters for (changes in) lifetime risk...

\section*{Conclusion - DM \& Cancer}
- Increasing incidence rates of DM and Cancer is what matters for (changes in) lifetime risk...
- not the (slightly) elevated risk of

Cancer among DM paitents.

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality - as function of ge and calendar time - to predict prevalences 2012

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality - as function of ge and calendar time - to predict prevalences 2012
- Assume:

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality - as function of ge and calendar time - to predict prevalences 2012
- Assume:
- Incidence rates had remained at 1995 level

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality - as function of ge and calendar time - to predict prevalences 2012
- Assume:
- Incidence rates had remained at 1995 level
- Mortality rates had remained at 1995 level

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality - as function of ge and calendar time - to predict prevalences 2012
- Assume:
- Incidence rates had remained at 1995 level
- Mortality rates had remained at 1995 level
- Both had remained at 1995 level

\section*{Prevalence of DM - updating}
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality - as function of ge and calendar time - to predict prevalences 2012
- Assume:
- Incidence rates had remained at 1995 level
- Mortality rates had remained at 1995 level
- Both had remained at 1995 level
- Differences between predicted prevalences gives the contribution from incidence rate changes, mortality rate changes and 1995 disequilibrium.

\section*{Prevalence of DM - updating}


\section*{Componets of prevalent cases}


\section*{Prevalent cases}


\section*{Components of prevalent cases}
2012 Mort \begin{tabular}{cccccccccccc} 
Inc & Imbal & Org & All & & All & Org & Imbal & Inc & Mort \\
& 12,273 & 47,282 & 40,568 & 61,510 & 161,632 & N & 152,001 & 55,939 & 38,232 & 46,486 & 11,344 \\
& 7.6 & 29.3 & 25.1 & 38.1 & & \(\%\) & & 36.8 & 25.2 & 30.6 & 7.5
\end{tabular}


\section*{Thanks for your attention}
```

