Demography of Diabetes in Denmark or: How to put real probabilities in your transition matrix and use them

Bendix Carstensen Steno Diabetes Center Gentofte, Denmark http://BendixCarstensen.com

CDC, NCCDPHP, DDT, Atlanta, USA

16 June 2015

http://BendixCarstensen.com/DMreg

Demography of diabetes in DK

How does diabetes spread in the population?

Demography of diabetes in DK

- How does diabetes spread in the population?
- Life time risk of DM

Demography of diabetes in DK

- How does diabetes spread in the population?
- Life time risk of DM
- ... and complications

Prevalence of diabetes has been increasing, while

- Prevalence of diabetes has been increasing, while
- Incidence rates have been increasing (4% / year)

- Prevalence of diabetes has been increasing, while
- Incidence rates have been increasing (4% / year)
- ▶ Mortality rates have been **de**creasing (2% / year)

- Prevalence of diabetes has been increasing, while
- Incidence rates have been increasing (4% / year)
- ▶ Mortality rates have been **de**creasing (2% / year)
- What is the relative contribution of each?

Demographic scenario

Demographic scenario

► Cancer is about 15% higher in DM ptt

- ▶ Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%

- ▶ Cancer is about 15% higher in DM ptt
- ▶ Life-time risk of cancer and DM both in the range 30–40%
- Assess:

- ▶ Cancer is about 15% higher in DM ptt
- \blacktriangleright Life-time risk of cancer and DM both in the range 30–40%
- Assess:
 - Lifetime risk of DM and Cancer (and both) in DK

- ▶ Cancer is about 15% higher in DM ptt
- \blacktriangleright Life-time risk of cancer and DM both in the range 30–40%
- Assess:
 - Lifetime risk of DM and Cancer (and both) in DK
 - Changes in these 1995–2012

- ▶ Cancer is about 15% higher in DM ptt
- \blacktriangleright Life-time risk of cancer and DM both in the range 30–40%
- Assess:
 - Lifetime risk of DM and Cancer (and both) in DK
 - Changes in these 1995–2012
 - Impact of the DM vs noDM cancer incidence RR

Demographic scenario

• Distribution across boxes (states) is completely determined by:

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- > 2) Transition intensities

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- > 2) Transition intensities
- ► Time scale?

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- > 2) Transition intensities
- ► Time scale?
- ▶ ... or rather, what shall we call it?

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- > 2) Transition intensities
- ► Time scale?
- ▶ ... or rather, what shall we call it?
- Age-specific transition rates

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- > 2) Transition intensities
- ► Time scale?
- ▶ ... or rather, what shall we call it?
- Age-specific transition rates
- ... as continuous functions of age

- Distribution across boxes (states) is completely determined by:
- ▶ 1) Initial state distribution
- > 2) Transition intensities
- ► Time scale?
- ▶ ... or rather, what shall we call it?
- Age-specific transition rates
- ... as continuous functions of age
- ... and possibly other time scales

Transition rates between states as function of a and p:

 $\lambda(a, p), \qquad \mu_{\rm ND}(a, p), \qquad \mu_{\rm DM}(a, p)$

Transition rates between states as function of a and p:

$$\lambda(a, p), \qquad \mu_{\rm ND}(a, p), \qquad \mu_{\rm DM}(a, p)$$

Transition probabilities for an interval of length ℓ :

 $P_{\mathsf{ND},\mathsf{DM}}(\ell) = P \left\{ \mathsf{DM} \text{ at } (a + \ell, p + \ell) \mid \mathsf{No} \mathsf{DM} \text{ at } (a, p) \right\}$

Transition rates between states as function of a and p:

$$\lambda(a, p), \qquad \mu_{\rm ND}(a, p), \qquad \mu_{\rm DM}(a, p)$$

Transition probabilities for an interval of length ℓ :

 $P_{\text{ND,DM}}(\ell) = P \{ \text{DM at } (a + \ell, p + \ell) \mid \text{No DM at } (a, p) \}$ $P_{\text{ND,ND}}(\ell) = \exp(-(\lambda + \mu_{\text{ND}})\ell)$ $P_{\text{ND,Dead}}(\ell) = \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \Big(1 - \exp(-(\lambda + \mu_{\text{ND}})\ell) \Big)$ $P_{\text{ND,DM}}(\ell) = \frac{\lambda}{\lambda + \mu_{\text{ND}}} \Big(1 - \exp(-(\lambda + \mu_{\text{ND}})\ell) \Big)$ $P_{\mathsf{DM},\mathsf{Dead}}(\ell) = 1 - \exp(-\mu_{\mathsf{DM}}\ell)$

Where do we get the rates from?

Where do we get the rates from?

Why are the formulae wrong? and how do we rectify that?

$$P_{\text{ND,ND}}(\ell) = \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)$$
$$P_{\text{ND,Dead}}(\ell) = \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \mu_{\text{ND}}\ell$$
$$P_{\text{ND,DM}}(\ell) = \frac{\lambda}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \lambda\ell$$
$$P_{\text{DM,Dead}}(\ell) = 1 - \exp(-\mu_{\text{DM}}\ell)$$

$$P_{\text{ND,ND}}(\ell) = \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)$$
$$P_{\text{ND,Dead}}(\ell) = \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \mu_{\text{ND}}\ell$$
$$P_{\text{ND,DM}}(\ell) = \frac{\lambda}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \lambda\ell$$
$$P_{\text{DM,Dead}}(\ell) = 1 - \exp(-\mu_{\text{DM}}\ell)$$

$$P_{\text{ND,ND}}(\ell) = \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)$$
$$P_{\text{ND,Dead}}(\ell) = \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \mu_{\text{ND}}\ell$$
$$P_{\text{ND,DM}}(\ell) = \frac{\lambda}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \lambda\ell$$
$$P_{\text{DM,Dead}}(\ell) = 1 - \exp(-\mu_{\text{DM}}\ell)$$

Assumes that ℓ is so small so that:

the approximations are valid

$$\begin{split} P_{\text{ND,ND}}(\ell) &= \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right) \\ P_{\text{ND,Dead}}(\ell) &= \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \Big(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\Big) \approx \mu_{\text{ND}}\ell \\ P_{\text{ND,DM}}(\ell) &= \frac{\lambda}{\lambda + \mu_{\text{ND}}} \Big(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\Big) \approx \lambda\ell \\ P_{\text{DM,Dead}}(\ell) &= 1 - \exp(-\mu_{\text{DM}}\ell) \end{split}$$

- the approximations are valid
- the probability of **2** or more transitions during ℓ is negligible.

$$\begin{split} P_{\text{ND,ND}}(\ell) &= \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right) \\ P_{\text{ND,Dead}}(\ell) &= \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \Big(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\Big) \approx \mu_{\text{ND}}\ell \\ P_{\text{ND,DM}}(\ell) &= \frac{\lambda}{\lambda + \mu_{\text{ND}}} \Big(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\Big) \approx \lambda\ell \\ P_{\text{DM,Dead}}(\ell) &= 1 - \exp(-\mu_{\text{DM}}\ell) \end{split}$$

- the approximations are valid
- the probability of **2** or more transitions during ℓ is negligible.
- ightarrow
 ightarrow 1-year intervals usually too long

$$\begin{split} P_{\text{ND,ND}}(\ell) &= \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right) \\ P_{\text{ND,Dead}}(\ell) &= \frac{\mu_{\text{ND}}}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \mu_{\text{ND}}\ell \\ P_{\text{ND,DM}}(\ell) &= \frac{\lambda}{\lambda + \mu_{\text{ND}}} \left(1 - \exp\left(-(\lambda + \mu_{\text{ND}})\ell\right)\right) \approx \lambda\ell \\ P_{\text{DM,Dead}}(\ell) &= 1 - \exp(-\mu_{\text{DM}}\ell) \end{split}$$

- the approximations are valid
- the probability of **2** or more transitions during ℓ is negligible.
- ${\scriptstyle \blacktriangleright} \, \Rightarrow$ 1-year intervals usually too long
- ${\scriptstyle \blacktriangleright}$ \Rightarrow rates only assumed constant in intervals of length ℓ

Accuracy of multistate calculations

Transition probabilities in DM-Ca study, from age $70 \to 75$, based on 1, 3 and 6-month intervals respectively

Accuracy of multistate calculations

a . .

. . .

Transition probabilities in DM-Ca study, from age $70 \rightarrow 75$: based on 1, 3 and 6-month intervals respectively:

1.	10										
from Well	Well 7306	DM 600	DM-Ca 33	Ca 813	Ca-DM 42	D-W 722	D-DM 67	D-Ca 388	D-DC 20	D-CD 10	Sum 10001
DM DM	•	6867	653	•	•	•	1783	•	697	•	10000
DM-Ca	•	•	2146			•	•		7854		10000
Ca	•	•	•	4182	463	•	•	5174	•	181	10000
Ca-DM	•	•	•	•	5242	•	•	•	•	4758	10000
3:	to										
from	Well	DM	DM-Ca	Ca	Ca-DM	D-W	D-DM	D-Ca	D-DC	D-CD	Sum
Well	7306	604	33	825	41	722	65	378	18	9	10001
DM		6867	670				1783		680		10000
DM-Ca			2146						7854		10000
Ca				4182	468			5174		176	10000
Ca-DM					5242					4758	10000
6:	to										
from	Well	DM	DM-Ca	Ca	Ca-DM	D-W	D-DM	D-Ca	D-DC	D-CD	Sum
Well	7313	610	33	841	40	718	62	360	16	8	10001
DM		6874	695				1777		653		9999
DM-Ca			2149						7851		10000
Ca				4187	477			5167		169	10000
Ca-DM	i .				5248					4752	10000

Accuracy of multistate calculations

Differences in transition probabilities, from age $70 \rightarrow 75$: based on 3, 6 and 12-month vs. 1 month intervals:

3 vs. 1: to										
from Well	DM	DM-Ca	Ca	Ca-DM	D-W	D-DM	D-Ca	D-DC	D-CD	Sum
Well .	4		12			-2	-11	-2	-1	
DM .		17						-17		
DM-Ca .										
Ca .				5					-5	
Ca-DM .	•	•	•		•		•	•	•	•
6 ws 1. to										
from Woll	БΜ	DM-Co	Co	Co-DM	D_U		D-Co			Gum
Uell Vell	10	DH-Ca	20		D-w				D-CD	Sum 1
well /	10		29	-1	-4	-0	-20	-4	-2	1
DM .	(42	•	•	•	-6	•	-44	•	-1
DM-Ca .	•	3	•	•	•	•	•	-3	•	•
Ca .			5	14			-6		-13	
Ca-DM .				6					-6	
12 vg 1: to										
from Woll	рм	DM-Ca	Ca	Co-DM	D-W	м _п	D-Ca		D-CD	Gum
U-11 WEIL	01	Dri Ga	co	Ca Dri		-10				Juii
well .	21		60	-3	-1	-12	-60	-9	-4	;
DM .	1	98	•	•	•	-1	•	-97	•	1
DM-Ca .	•	1	•	•	•	•	•	-1	•	•
Ca .				29			-1		-29	-1
Ca-DM .	•			1					-1	

Transition probabilities over each interval should be less than 2%,

- Transition probabilities over each interval should be less than 2%,
- if they exceed that, use **shorter** intervals for calculations,

- Transition probabilities over each interval should be less than 2%,
- ▶ if they exceed that, use **shorter** intervals for calculations,
- consider whether you should use a model with rates varying continuously (smoothly) with age, date, ...

- Transition probabilities over each interval should be less than 2%,
- ▶ if they exceed that, use **shorter** intervals for calculations,
- consider whether you should use a model with rates varying continuously (smoothly) with age, date, ...
- ▶ it will actually make life easier

► National Diabetes Register, 1995–2011

- ► National Diabetes Register, 1995–2011
- Danish Cancer Register, 1943–2011

- National Diabetes Register, 1995–2011
- Danish Cancer Register, 1943–2011
- Mortality, Statistics Denmark

- ▶ National Diabetes Register, 1995–2011
- Danish Cancer Register, 1943–2011
- Mortality, Statistics Denmark
- Population, Statistics Denmark

Example: state No DM

► Time at risk:

- ► Time at risk:
 - from date of birth or start of study

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead (or end of study)

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead (or end of study)
- Events (transitions)

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead (or end of study)
- Events (transitions)
 - DM

Example: state $\ensuremath{\text{No}}\xspace$ DM

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead (or end of study)
- Events (transitions)
 - DM
 - Dead

Example: state $\ensuremath{\text{No}}\xspace$ DM

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead (or end of study)
- Events (transitions)
 - DM
 - Dead
 - ►

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead (or end of study)
- Events (transitions)
 - DM
 - Dead
 - ►
- Classification of follow-up (time and events) by age (0-100), calendar time (1995-2011) and date of birth (1-year classes) (Lexis triangles)

- ► Time at risk:
 - from date of birth or start of study
 - to date of DM or Dead or Ca (or end of study)
- Events (transitions)
 - DM
 - Dead
 - Ca
- Classification of follow-up (time and events) by age (0-100), calendar time (1995-2011) and date of birth (1-year classes) (Lexis triangles)
- Similary for the study with cancer states

Incident cases / deaths from each state

- Incident cases / deaths from each state
- Person-years in each state

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes
- Age-Period-Cohort Poisson-model with smooth effects of A, P & C

- Incident cases / deaths from each state
- Person-years in each state
- Classifed by age / date / birth in 1-year classes
- Age-Period-Cohort Poisson-model with smooth effects of A, P & C
- Note: Only use the predictions from the models
Events and risk time

Incidence and mortality rates

Women

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( vy in dimnames(PR)[[4]] )
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(vv), Y=int )
+
+ PR["Well", "DM", yy, "M"] <- ci.pred(M.w2dm$model, newdata=nd)[,1]
+ PR["Well", "Ca", yy, "M"] <- ci.pred(M.w2ca$model, newdata=nd)[,1]
+ PR["Well" ,"D-W"
                    ,,yy,"M"] <- ci.pred( M.w2dd$model , newdata=nd )[.1]
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd )[,1]
+ PR["DM" , "D-DM" , yy, "M"] <- ci.pred( M.dm2dd$model, newdata=nd )[,1]
+ PR["Ca" , "Ca-DM", yy, "M"] <- ci.pred( M.ca2dm$model, newdata=nd )[,1]
+ PR["Ca" ,"D-Ca" ,,vv,"M"] <- ci.pred(M.ca2dd$model, newdata=nd)[,1]
+ PR["DM-Ca", "D-DC", , yy, "M"] <- ci.pred(M.dc2dd$model, newdata=nd)[,1]
+ PR["Ca-DM", "D-CD", vy, "M"] <- ci.pred(M.cd2dd$model, newdata=nd)[,1]
```

Transition matrices

Use the rates to generate the 1 month transition probabilities:

1	50										
from	Well	DM	DM-Ca	Ca	Ca-DM	D-W	D-DM	D-Ca	D-DC	D-CD	\mathtt{Sum}
Well	9963	8		12		17					10000
DM		9943	16				40				10000
DM-Ca			9578						422		10000
Ca				9815	9			175			10000
Ca-DM					9865					135	10000
D-W						10000					10000
D-DM							10000				10000
D-Ca								10000			10000
D-DC									10000		10000
D-CD								•		10000	10000

State occupancy probabilites

```
> PV <- PR[1,,,]*0
> for( sc in dimnames(PRp)[["per"]] )
+ for( sx in dimnames(PRp)[["sex"]] )
+
     # Initialize to all well at age 0:
+
+
     PV[,1,sc,sx] <- c(1,rep(0,9))
     # Compute distribution at endpoint of each age-interval
+
+
     for( ag in 1:dim(PRp)[3] ) PV[,ag,sc,sx] <- PV[ ,max(ag-1,1),sc,sx] %*%
                                                PRp[,, ag ,sc,sx]
+
+
     }
```

Start all in age 0 in state "Well"

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month
- Compute fraction in each state at each age

- Start all in age 0 in state "Well"
- Use rates to predict how many transfer to "DM", "Ca", "Dead" during a small interval
- Transfer to next possible states in next interval
- Interval length: 1 month
- Compute fraction in each state at each age
- Different scenarios using estimated (cross-sectional) rates at 1 January 1995, 1996, ..., 2012

Cancer rates among DM-ptt inflated 20%

Cancer rates among DM-ptt inflated 50%

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( vy in dimnames(PR)[[4]] )
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(vv), Y=int )
+
+ PR["Well", "DM", yy, "M"] <- ci.pred(M.w2dm$model, newdata=nd)[,1]
+ PR["Well", "Ca", yy, "M"] <- ci.pred(M.w2ca$model, newdata=nd)[,1]
+ PR["Well" ,"D-W"
                    ,,yy,"M"] <- ci.pred( M.w2dd$model , newdata=nd )[.1]
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd )[,1]
+ PR["DM" , "D-DM" , yy, "M"] <- ci.pred( M.dm2dd$model, newdata=nd )[,1]
+ PR["Ca" , "Ca-DM", yy, "M"] <- ci.pred( M.ca2dm$model, newdata=nd )[,1]
+ PR["Ca" ,"D-Ca" ,,vv,"M"] <- ci.pred(M.ca2dd$model, newdata=nd)[,1]
+ PR["DM-Ca", "D-DC", yy, "M"] <- ci.pred(M.dc2dd$model, newdata=nd)[,1]
+ PR["Ca-DM", "D-CD", vy, "M"] <- ci.pred(M.cd2dd$model, newdata=nd)[,1]
```

Transition rates

```
> int <- 1/12
> a.pt <- seq(int,102,int) - int/2
> system.time(
+ for( vy in dimnames(PR)[[4]] )
+ {
+ nd <- data.frame( A=a.pt, P=as.numeric(vv), Y=int )
+
+ PR["Well", "DM", vy, "M"] <- ci.pred(M.w2dm$model, newdata=nd)[,1]
+ PR["Well", "Ca", yy, "M"] <- ci.pred(M.w2ca$model, newdata=nd)[,1]
+ PR["Well" ,"D-W"
                    ,,yy,"M"] <- ci.pred( M.w2dd$model , newdata=nd )[.1]
+ PR["DM" ,"DM-Ca",,yy,"M"] <- ci.pred( M.dm2ca$model, newdata=nd )[,1] * 1.5
+ PR["DM" , "D-DM" , yy, "M"] <- ci.pred( M.dm2dd$model, newdata=nd )[,1]
+ PR["Ca" , "Ca-DM", yy, "M"] <- ci.pred( M.ca2dm$model, newdata=nd )[,1]
+ PR["Ca" ,"D-Ca" ,,vv,"M"] <- ci.pred(M.ca2dd$model, newdata=nd)[,1]
+ PR["DM-Ca", "D-DC", yy, "M"] <- ci.pred(M.dc2dd$model, newdata=nd)[,1]
+ PR["Ca-DM", "D-CD", vy, "M"] <- ci.pred(M.cd2dd$model, newdata=nd)[,1]
```

Lifetime risks

Lifetime risks - RR inflated 20%

Lifetime risks - RR inflated 50%

Demographic changes in DM & Cancer 1995–2012

► Changing **rates** in period 1995–2012:

Diabetes incidence	4% /year
Cancer incidence	2% /year
Mortality	-4% /year

Demographic changes in DM & Cancer 1995–2012

► Changing **rates** in period 1995–2012:

Diabetes incidence	4% /year
Cancer incidence	2% /year
Mortality	-4% /year

• Changing **life-time risk** 1995–2012:

		$+20\%$ Ca \mid DM	$+50\%$ Ca \mid DM
Diabetes	20% to 42%	20% to 42%	20% to 42%
Cancer	35% to 51%	36% to 52%	36% to 55%
DM + Ca	6% to 20%	6% to 21%	7% to 23%

Conclusion — DM & Cancer

 Increasing incidence rates of DM and Cancer is what matters for (changes in) lifetime risk...

Conclusion — DM & Cancer

- Increasing incidence rates of DM and Cancer is what matters for (changes in) lifetime risk...
- not the (slightly) elevated risk of Cancer among DM paitents.

Prevalence of DM — updating

Start with age-specific prevalences 1995

Prevalence of DM — updating

- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- 1-month intervals for updating

- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- 1-month intervals for updating
- Assume:

- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- 1-month intervals for updating
- Assume:
 - Incidence rates had remained at 1995 level

- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- 1-month intervals for updating
- Assume:
 - Incidence rates had remained at 1995 level
 - Mortality rates had remained at 1995 level

- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- 1-month intervals for updating
- Assume:
 - Incidence rates had remained at 1995 level
 - Mortality rates had remained at 1995 level
 - Both had remained at 1995 level

- Start with age-specific prevalences 1995
- Use fitted models for incidence and mortality as function of age and calendar time — to predict prevalences 2012
- 1-month intervals for updating
- Assume:
 - Incidence rates had remained at 1995 level
 - Mortality rates had remained at 1995 level
 - Both had remained at 1995 level
- Differences between predicted prevalences gives the contribution from incidence rate changes, mortality rate changes and 1995 disequilibrium.

Componets of prevalent cases

Prevalent cases

Components of prevalent cases

Thanks for your attention

EINLEITUNG IN DIE THEORIE DER BEVÖLKERUNGSSTATISTIK

STRASSBURG KARLJ. TRÜBNER 1875.

40/40