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1 Introduction

The following exposition of multistate manipulations follows (parts of) the exposition by
Hein Putter which in turn is a computational companion for R to the tutorial by Putter et
al. [?] from Stat. Med. 2007.

2 The example data

The dataset used is about the clinical course of bone-marrow transplant patients. The
major event of interest is relapse or death (RD), and an intermediate event is platelet
recovery (PR).

We first show the current version and then load the Epi and the mstate packages:

> options( "width" )

$width
[1] 80

> options( width=120 )
> R.version[c("platform","version.string")]

_
platform i386-pc-mingw32
version.string R version 2.9.2 (2009-08-24)

> installed.packages()[c("Epi","mstate"),c("Version","Built")]

Version Built
Epi "1.1.7" "2.9.2"
mstate "0.2.1" "2.9.1"

> library(Epi)
> library(mstate)

From the mstate package we get the ebmt3 dataset:

> data( ebmt3 )
> str( ebmt3 )

'data.frame': 2204 obs. of 9 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ prtime : num 23 35 26 22 29 ...
$ prstat : int 1 1 1 1 1 1 1 1 0 0 ...
$ rfstime: num 744 360 135 995 422 ...
$ rfsstat: int 0 1 1 0 1 1 0 0 0 1 ...
$ dissub : Factor w/ 3 levels "AML","ALL","CML": 3 3 3 1 1 2 3 2 1 3 ...
$ age : Factor w/ 3 levels "<=20","20-40",..: 3 3 3 2 2 3 2 1 2 3 ...
$ drmatch: Factor w/ 2 levels "No gender mismatch",..: 2 1 1 1 1 1 2 1 1 1 ...
$ tcd : Factor w/ 2 levels "No TCD","TCD": 1 1 1 1 1 1 1 1 1 1 ...

> head( ebmt3 )



4 Multistate models in Epi

id prtime prstat rfstime rfsstat dissub age drmatch tcd
1 1 23 1 744 0 CML >40 Gender mismatch No TCD
2 2 35 1 360 1 CML >40 No gender mismatch No TCD
3 3 26 1 135 1 CML >40 No gender mismatch No TCD
4 4 22 1 995 0 AML 20-40 No gender mismatch No TCD
5 5 29 1 422 1 AML 20-40 No gender mismatch No TCD
6 6 38 1 119 1 ALL >40 No gender mismatch No TCD

The times are in days since transplant (Tx), they are time to relapse or death (RD) in the
variable rfstime, and time to platelet recovery (PR) in the variable prtime. PR is
considered an intermediate state.

Some of the platelet recovery times are larger than the recurrence times; these are
(supposedly) instances where platelet recovery occurs after a relapse. However death and
relapse are not distinguished in the available dataset.

> with(ebmt3,plot(prtime,rfstime,pch=16,col=c("gray","red")[prstat+1]))
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Figure 1: The two time variables, color coded by the value of prstat, 0 is gray, 1 is red.

3 A Lexis object

A convenient way of storing the information on the multistate structure is a Lexis object
as supported by the Epi package. A Lexis object is basically a data frame with some extra
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columns added. Each row represents a piece of follow-up, with indication of starting point
on the timescale(s) and length of follow-up. The former are variables for each timescale,
the latter (which is common on all time scales) in the variable (lex.dur (duration). The
state in which the follow-up takes place is called lex.Cst (Current state) and the state
occupied immediately after the follow-up lex.Xst (Xit state). This type of object is
constructed using the Lexis function.

The entry and exit times are given as named lists with times on the timescales of
interest. For one of these, only one timescale need be specified, since the duration (length
of follow-up) is the same on all timescales. One of these can optionally be replaced by
duration.

In this study everyone enters at time 0, so we need not specify the argument entry to
the Lexis function (it is by default set to 0 of only either exit or duration is given).
Moreover, since everyone starts in state Tx, we just need to specify this state as the first
level of the state factor, in order to have everyone assigned this as entry state by default:

> bmt <- Lexis( exit = list(tft=rfstime/365.25),
+ exit.status = factor(rfsstat,labels=c("Tx","RD")),
+ data = ebmt3 )

NOTE: entry.status has been set to "Tx" for all.
NOTE: entry is assumed to be 0 on the tft timescale.

> str( bmt )

Classes 'Lexis' and 'data.frame': 2204 obs. of 14 variables:
$ tft : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur: num 2.037 0.986 0.37 2.724 1.155 ...
$ lex.Cst: Factor w/ 2 levels "Tx","RD": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 2 levels "Tx","RD": 1 2 2 1 2 2 1 1 1 2 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ prtime : num 23 35 26 22 29 ...
$ prstat : int 1 1 1 1 1 1 1 1 0 0 ...
$ rfstime: num 744 360 135 995 422 ...
$ rfsstat: int 0 1 1 0 1 1 0 0 0 1 ...
$ dissub : Factor w/ 3 levels "AML","ALL","CML": 3 3 3 1 1 2 3 2 1 3 ...
$ age : Factor w/ 3 levels "<=20","20-40",..: 3 3 3 2 2 3 2 1 2 3 ...
$ drmatch: Factor w/ 2 levels "No gender mismatch",..: 2 1 1 1 1 1 2 1 1 1 ...
$ tcd : Factor w/ 2 levels "No TCD","TCD": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "time.scales")= chr "tft"
- attr(*, "breaks")=List of 1
..$ tft: NULL

The time scaling was redefined to years on the fly, but we only defined the two-state model
with transition from Tx to RD. This simple structure is shown by the summary command:

> summary( bmt )

Transitions:
To

From Tx RD Records: Events: Risk time: Persons:
Tx 1363 841 2204 841 5612.46 2204

Rates:
To

From Tx RD Total
Tx 0 0.15 0.15
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Thus we have 841 events during 5612 person-years, corresponding to a rate of 0.15 events
per year.

We have only one timescale in operation, so the default plot is a so-called 1-dimensional
Lexis diagram:

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( bmt )
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Figure 2: One-dimensional Lexis diagram of the bone-marrow transplant data from ebmt3.

Now we want to introduce the intermediate event platelet recovery, PR. We have the date of
recovery in the variable prtime. Since all the censored values for prtime are after the
relapse/death time, we could just use this variable. However, for the sake of the argument
we first set the censored values of prtime to NA:

> bmt$prtime[bmt$prstat==0] <- NA

Now we can introduce the new state, and subdivide the follow-up time of the patients
according to platelet recovery. We must of course specify the name of the new state in
which patients enter at prtime, but also the so called precursor states, that is states that
are overridden by the new state. This is only Tx because the RD state is absorbing. In
practice it means that if a person exits the study in state Tx (any precursor state), then an
entry to the new state (PR) will mean that the person exits in the new state, whereas if the
person exits the study to state RD (any non-precursor state) the exit from the study will still
be to this (original) state, regardless of whether the intermediate event has occurred or not:
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> bmtr <- cutLexis( bmt, cut=bmt$prtime/365.25,
+ pre="Tx",
+ new.state="PR" )
> str( bmtr )

Classes 'Lexis' and 'data.frame': 3373 obs. of 14 variables:
$ tft : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.dur: num 0.063 0.0958 0.0712 0.0602 0.0794 ...
$ lex.Cst: Factor w/ 3 levels "Tx","PR","RD": 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst: Factor w/ 3 levels "Tx","PR","RD": 2 2 2 2 2 2 2 2 1 3 ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ prtime : num 23 35 26 22 29 38 30 35 NA NA ...
$ prstat : int 1 1 1 1 1 1 1 1 0 0 ...
$ rfstime: num 744 360 135 995 422 ...
$ rfsstat: int 0 1 1 0 1 1 0 0 0 1 ...
$ dissub : Factor w/ 3 levels "AML","ALL","CML": 3 3 3 1 1 2 3 2 1 3 ...
$ age : Factor w/ 3 levels "<=20","20-40",..: 3 3 3 2 2 3 2 1 2 3 ...
$ drmatch: Factor w/ 2 levels "No gender mismatch",..: 2 1 1 1 1 1 2 1 1 1 ...
$ tcd : Factor w/ 2 levels "No TCD","TCD": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "time.scales")= chr "tft"
- attr(*, "breaks")=List of 1
..$ tft: NULL

> summary( bmtr )

Transitions:
To

From Tx PR RD Records: Events: Risk time: Persons:
Tx 577 1169 458 2204 1627 2439.43 2204
PR 0 786 383 1169 383 3173.03 1169
Sum 577 1955 841 3373 2010 5612.46 2204

Rates:
To

From Tx PR RD Total
Tx 0 0.48 0.19 0.67
PR 0 0.00 0.12 0.12

We see that we now have 3373 records instead of 2204, because of the 1169 transitions to
PR. We still have the same amount of risk time (5612 person-years) and deaths (841) in
total.

By default the newly created state is placed after the precursor states nominated, and
before all non-procursor states.

3.1 Clock-back approach

We may be interested in the ”clock back” approach, that is using the duration of platelet
recovery as timescale. This can be accomplished by the new.scale argument to cutLexis.
If set to TRUE a new timescale will generated, named PR.dur; alternatively we can set the
argument to the name of the new timescale:

> bmtr <- cutLexis( bmt, cut=bmt$prtime/365.25,
+ pre="Tx",
+ new.state="PR", new.scale="tfPR" )
> str( bmtr )
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Classes 'Lexis' and 'data.frame': 3373 obs. of 15 variables:
$ tft : num 0 0.063 0 0.0958 0 ...
$ tfPR : num NA 0 NA 0 NA 0 NA 0 NA 0 ...
$ lex.dur: num 0.063 1.974 0.0958 0.8898 0.0712 ...
$ lex.Cst: Factor w/ 3 levels "Tx","PR","RD": 1 2 1 2 1 2 1 2 1 2 ...
$ lex.Xst: Factor w/ 3 levels "Tx","PR","RD": 2 2 2 3 2 3 2 2 2 3 ...
$ lex.id : int 1 1 2 2 3 3 4 4 5 5 ...
$ id : int 1 1 2 2 3 3 4 4 5 5 ...
$ prtime : num 23 23 35 35 26 26 22 22 29 29 ...
$ prstat : int 1 1 1 1 1 1 1 1 1 1 ...
$ rfstime: num 744 744 360 360 135 135 995 995 422 422 ...
$ rfsstat: int 0 0 1 1 1 1 0 0 1 1 ...
$ dissub : Factor w/ 3 levels "AML","ALL","CML": 3 3 3 3 3 3 1 1 1 1 ...
$ age : Factor w/ 3 levels "<=20","20-40",..: 3 3 3 3 3 3 2 2 2 2 ...
$ drmatch: Factor w/ 2 levels "No gender mismatch",..: 2 2 1 1 1 1 1 1 1 1 ...
$ tcd : Factor w/ 2 levels "No TCD","TCD": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "time.scales")= chr "tft" "tfPR"
- attr(*, "breaks")=List of 2
..$ tft : NULL
..$ tfPR: NULL

> summary( bmtr )

Transitions:
To

From Tx PR RD Records: Events: Risk time: Persons:
Tx 577 1169 458 2204 1627 2439.43 2204
PR 0 786 383 1169 383 3173.03 1169
Sum 577 1955 841 3373 2010 5612.46 2204

Rates:
To

From Tx PR RD Total
Tx 0 0.48 0.19 0.67
PR 0 0.00 0.12 0.12

It is seen that this representation retains the total amount of risk time in the study; it
merely subdivides it by state. It is seen that the output of the summary.Lexis function is
pretty similar to the output from the events function from the mstate package.

Moreover, since we now have two timescales we can make a two-dimensional Lexis
diagram, as shown in figure 1. The diagram only shows follow-up after PR, since one of the
timescales is time since PR, which obviously is not defined before the event.

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> plot( bmtr )

3.2 Subdividing states

We may also be interested in subdividing the states subsequent to PR according to whether
this event has occurred or not. In this example only RD is subsequent to the event PR:

> bmtr <- cutLexis( bmt, cut=bmt$prtime/365.25,
+ pre="Tx",
+ new.state="PR", new.scale="tfPR",
+ split.states=TRUE )
> summary( bmtr )
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Figure 3: Two-dimensional Lexis diagram of the bone-marrow transplant data from ebmt3.
Note that this diagram only shows follow-up after PR, as the timescale tfPR is undefined
(=missing) for follow-up prior to PR.

Transitions:
To

From Tx PR RD RD(PR) Records: Events: Risk time: Persons:
Tx 577 1169 458 0 2204 1627 2439.43 2204
PR 0 786 0 383 1169 383 3173.03 1169
Sum 577 1955 458 383 3373 2010 5612.46 2204

Rates:
To

From Tx PR RD RD(PR) Total
Tx 0 0.48 0.19 0.00 0.67
PR 0 0.00 0.00 0.12 0.12

In practical analyses this will have no effect, but it is useful in the drawing of multistate
models as box-diagrams as shown in the next section. It can also be of interest if
simulation-based inference on occupation probabilities for various states are of interest.
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4 Illustrating the model

In order to illustrate the model in a box diagram, we can use the interactive function
boxes.Lexis, which will prompt you for a click for the position of each of the states, and
subsequently draw arrows between those states where transitions occur. If we put
boxpos=TRUE (the default is FALSE), the states are put in a circular arrangement which
usually is not very nice:

> boxes( bmtr, boxpos=TRUE )

Tx
2,439.4

PR
3,173.0

RDRD(PR)

1169

458
383

Tx
2,439.4

PR
3,173.0

RDRD(PR)

Figure 4: Illustration of the transitions between defined states for the ebmt3 data, using the
defualt layout.

That can be improved by using the interactive facility, using the default boxpos=FALSE,
which will prompt you to click on the screen to place the various boxes.

Frequently one would need the exact same plot with slight modifications, for example
with one or more of the arrows in a different color. To this end it is possible to use the
argument file= to specify a file for the code generating the display. This can then be
modified:

> boxes( bmtr, file="bmt-boxes.r" )

The following is the content of the file bmt-boxes.r, generated interactively (the annotaion
of the code comes from the boxes.Lexis function), and below the resulting plot:
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> obj <- bmtr
> if( inherits(obj,"Lexis") ) tm <- tmat.Lexis( obj ) else tm <- obj
> ### Position of the boxes:
> xx <- c( 16, 75, 24, 82 )
> yy <- c( 71, 78, 21, 26 )
> cex <- 1.5 # How should text and numbers be scaled
> wmult <- 1.5 # Extra box-width relative to string width
> hmult <- 2.25 # Extra box-height relative to string height
> eq.wd <- TRUE # All boxes the same width
> eq.ht <- TRUE # All boxes the same height
> show.Y <- TRUE # Show number of person-years in boxes
> scale.Y <- 1 # How should person-years be scaled
> digits.Y <- 1 # How should person-years be printed
> show.D <- TRUE # Show number of events on arrows
> scale.D <- FALSE # How should rates be scaled
> digits.D <- 0 # How should rates be printed
> st.nam <- colnames( tm )
> if( is.null(st.nam) ) st.nam <- paste(1:ncol(tm))
> pl.nam <- st.nam
> n.st <- length( st.nam )
> # If we want to show person-years and events / rates
> SM <- summary(obj,simplify=FALSE,scale=scale.Y)
> Y <- SM[[1]][-n.st-1,"Risk time:"]
> D <- SM[[1+as.logical(scale.D)]][1:n.st,1:n.st] * ifelse(scale.D,scale.D,1)
> # No extra line with person-years when they are NA
> # and adjust the printing of the person-Years
> if( show.Y )
+ {
+ pl.nam <- gsub( "\\\nNA", "",
+ paste( st.nam,
+ formatC( Y, format="f", digits= 1 ,
+ big.mark=","),
+ sep="\n" ) )
+ }
> #################################################################
> # Here comes the plot
> par( mar=c(0,0,0,0), cex=cex )
> plot( NA, bty="n",
+ xlim=0:1*100, ylim=0:1*100, xaxt="n", yaxt="n", xlab="", ylab="" )
> # String height and width only meaningful after a plot has been called
> ht <- strheight( pl.nam ) * hmult
> wd <- strwidth( pl.nam ) * wmult
> # Should all boxes be of same height / width:
> if( eq.ht ) ht <- rep( max(ht), length(ht) )
> if( eq.wd ) wd <- rep( max(wd), length(wd) )
> # Plot the boxes
> b <- list()
> for( i in 1:n.st )
+ b[[i]] <- tbox( pl.nam[i], xx[i], yy[i], wd[i], ht[i] )
> # Plot the arrows and the text along them
> for( i in 1:n.st ) for( j in 1:n.st )
+ {
+ if( !is.na(tm[i,j]) )
+ {
+ arr <- boxarr( b[[i]], b[[j]], offset=!is.na(tm[j,i]) )
+ if( show.D ) text( arr$x-arr$d[2], arr$y+arr$d[1],
+ formatC( D[i,j], format="f", digits=digits.D ),
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+ adj=as.numeric(c(arr$d[2]>0,arr$d[1]<0)),
+ font=2, col="black" )
+ }
+ }
> # Redraw the boxes with white background to move the arrows behind them
> for( i in 1:n.st ) tbox( pl.nam[i], xx[i], yy[i], wd[i], ht[i], col="white" )

Tx
2,439.4

PR
3,173.0

RD
RD(PR)

1169

458
383

Tx
2,439.4

PR
3,173.0

RD
RD(PR)

Figure 5: Illustration of the transitions between defined states for the ebmt3 data.

The first argument to the boxes function is a Lexis object, and so the defult behaviour is
to show the risk time (person-years) in those boxes where they are accumulated, and the
number of transitions along the arrows. The first argument may also be a transition
matrix, in which case only the boxes and arrows are drawn.

5 Analysis of rates

In the first instance we use a Cox-model for the analysis of the three rates. We can either
analyse the transitions separately by selecting the appropriate rows and choosing the right
event-type. We see that there is minimal difference between the codes; it is only the failure
type (from lex.Xst) and the subset (from lex.Cst) that is different:

> m.Tx.PR <- coxph( Surv( tft, tft+lex.dur, lex.Xst=="PR" ) ~
+ dissub + age + drmatch + tcd,
+ data = subset(bmtr, lex.Cst=="Tx"), method="breslow" )
> m.Tx.RD <- coxph( Surv( tft, tft+lex.dur, lex.Xst=="RD" ) ~
+ dissub + age + drmatch + tcd,
+ data = subset(bmtr, lex.Cst=="Tx"), method="breslow" )
> m.PR.RD <- coxph( Surv( tft, tft+lex.dur, lex.Xst=="RD(PR)" ) ~
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+ dissub + age + drmatch + tcd,
+ data = subset(bmtr, lex.Cst=="PR"), method="breslow" )

We can stack these sets of parameters nicely if we want, using the facilities in ci.lin:

> round( rbind( ci.lin( m.Tx.PR, E=T ),
+ ci.lin( m.Tx.RD, E=T ),
+ ci.lin( m.PR.RD, E=T ) ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
dissubALL -0.044 0.078 -0.560 0.576 0.957 0.822 1.115
dissubCML -0.297 0.068 -4.371 0.000 0.743 0.650 0.849
age20-40 -0.165 0.079 -2.082 0.037 0.848 0.726 0.990
age>40 -0.090 0.086 -1.038 0.299 0.914 0.772 1.083
drmatchGender mismatch 0.046 0.067 0.687 0.492 1.047 0.919 1.193
tcdTCD 0.429 0.080 5.335 0.000 1.536 1.312 1.798
dissubALL 0.256 0.135 1.893 0.058 1.292 0.991 1.684
dissubCML 0.017 0.108 0.155 0.877 1.017 0.822 1.258
age20-40 0.255 0.151 1.689 0.091 1.291 0.960 1.735
age>40 0.526 0.158 3.334 0.001 1.693 1.242 2.307
drmatchGender mismatch -0.075 0.110 -0.682 0.495 0.928 0.747 1.151
tcdTCD 0.297 0.150 1.977 0.048 1.345 1.003 1.806
dissubALL 0.137 0.148 0.923 0.356 1.146 0.858 1.532
dissubCML 0.247 0.117 2.115 0.034 1.280 1.018 1.610
age20-40 0.061 0.153 0.400 0.689 1.063 0.787 1.436
age>40 0.581 0.160 3.627 0.000 1.788 1.306 2.447
drmatchGender mismatch 0.173 0.115 1.510 0.131 1.189 0.950 1.488
tcdTCD 0.201 0.126 1.589 0.112 1.222 0.954 1.566

However, in order to analyse the transition rates using joint parameters between
transitions, we must do the analyses based on a stacked dataset; that is a dataset which is
made by stacking the three subsets we used in the three separate analyses above. Note that
these three sets are not disjoint subsets, and moreover the response variable (event
indicator) is not the same in all three.

This can conveniently be constructed by using the stack.Lexis function:

> bmts <- stack( bmtr )
> str( bmts )

Classes 'stacked.Lexis' and 'data.frame': 5577 obs. of 17 variables:
$ tft : num 0 0 0 0 0 0 0 0 0 0 ...
$ tfPR : num NA NA NA NA NA NA NA NA NA NA ...
$ lex.dur : num 0.063 0.0958 0.0712 0.0602 0.0794 ...
$ lex.Cst : Factor w/ 4 levels "Tx","PR","RD",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 4 levels "Tx","PR","RD",..: 2 2 2 2 2 2 2 2 1 3 ...
$ lex.Tr : Factor w/ 3 levels "Tx->PR","Tx->RD",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi TRUE TRUE TRUE TRUE TRUE TRUE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ prtime : num 23 35 26 22 29 38 30 35 NA NA ...
$ prstat : int 1 1 1 1 1 1 1 1 0 0 ...
$ rfstime : num 744 360 135 995 422 ...
$ rfsstat : int 0 1 1 0 1 1 0 0 0 1 ...
$ dissub : Factor w/ 3 levels "AML","ALL","CML": 3 3 3 1 1 2 3 2 1 3 ...
$ age : Factor w/ 3 levels "<=20","20-40",..: 3 3 3 2 2 3 2 1 2 3 ...
$ drmatch : Factor w/ 2 levels "No gender mismatch",..: 2 1 1 1 1 1 2 1 1 1 ...
$ tcd : Factor w/ 2 levels "No TCD","TCD": 1 1 1 1 1 1 1 1 1 1 ...
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We see that two extra variables lex.Tr and lex.Fail have been added. The lex.Tr is a
factor indicating the transition, and lex.Fail is the (logical) failure indicator for the
transition.

Since the variables lex.Cst and lex.Xst have lost their meaning, the resulting object is
not a Lexis object.

We can now reproduce the results from above by using the stacked dataset and the
interactions with lex.Tr — note that the interaction with time is given in the strata()

argument in the model formula:

> c1 <- coxph( Surv(tft,tft+lex.dur,lex.Fail) ~
+ lex.Tr:( dissub + age + drmatch + tcd ) +
+ strata( lex.Tr ),
+ data=bmts, method="breslow" )
> c1

Call:
coxph(formula = Surv(tft, tft + lex.dur, lex.Fail) ~ lex.Tr:(dissub +

age + drmatch + tcd) + strata(lex.Tr), data = bmts, method = "breslow")

coef exp(coef) se(coef) z p
lex.TrTx->PR:dissubAML 0.2972 1.346 0.0680 4.371 1.2e-05
lex.TrTx->RD:dissubAML -0.0167 0.983 0.1084 -0.155 8.8e-01
lex.TrPR->RD(PR):dissubAML -0.2471 0.781 0.1169 -2.115 3.4e-02
lex.TrTx->PR:dissubALL 0.2536 1.289 0.0830 3.057 2.2e-03
lex.TrTx->RD:dissubALL 0.2391 1.270 0.1313 1.821 6.9e-02
lex.TrPR->RD(PR):dissubALL -0.1105 0.895 0.1491 -0.741 4.6e-01
lex.TrTx->PR:dissubCML NA NA 0.0000 NA NA
lex.TrTx->RD:dissubCML NA NA 0.0000 NA NA
lex.TrPR->RD(PR):dissubCML NA NA 0.0000 NA NA
lex.TrTx->PR:age20-40 -0.1646 0.848 0.0791 -2.082 3.7e-02
lex.TrTx->RD:age20-40 0.2552 1.291 0.1510 1.689 9.1e-02
lex.TrPR->RD(PR):age20-40 0.0614 1.063 0.1534 0.400 6.9e-01
lex.TrTx->PR:age>40 -0.0898 0.914 0.0865 -1.038 3.0e-01
lex.TrTx->RD:age>40 0.5265 1.693 0.1579 3.334 8.6e-04
lex.TrPR->RD(PR):age>40 0.5809 1.788 0.1601 3.627 2.9e-04
lex.TrTx->PR:drmatchGender mismatch 0.0458 1.047 0.0666 0.687 4.9e-01
lex.TrTx->RD:drmatchGender mismatch -0.0753 0.928 0.1103 -0.682 5.0e-01
lex.TrPR->RD(PR):drmatchGender mismatch 0.1729 1.189 0.1145 1.510 1.3e-01
lex.TrTx->PR:tcdTCD 0.4291 1.536 0.0804 5.335 9.6e-08
lex.TrTx->RD:tcdTCD 0.2967 1.345 0.1501 1.977 4.8e-02
lex.TrPR->RD(PR):tcdTCD 0.2007 1.222 0.1264 1.589 1.1e-01

Likelihood ratio test=118 on 18 df, p=1.11e-16 n= 5577

We see that the default model matrix set-up for interactions generates an interaction
assuming that there is an intercept. Which there indeed is not in a Cox-model. Hence we
get aliased parameters when all three levels of dissub have interaction columns with
lex.Tr generated.

It gives the correct model, but the reference level for the factor dissub is the last rather
than the first. This can be remedied by explicitly tampering with the model matrix before
fitting the model; we just generate the model matrix and then remove the columns relating
to the reference level. This has the advantage that we maintain the annotation of the
parameters:
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> mm <- model.matrix( ~ lex.Tr:( dissub + age + drmatch + tcd ), bmts )
> rm <- grep( "AML", colnames(mm) )
> mm <- mm[,-c(1,rm)]
> c1 <- coxph( Surv(tft,tft+lex.dur,lex.Fail) ~
+ mm +
+ strata( lex.Tr ),
+ data=cbind(bmts,mm), method="breslow" )
> c1

Call:
coxph(formula = Surv(tft, tft + lex.dur, lex.Fail) ~ mm + strata(lex.Tr),

data = cbind(bmts, mm), method = "breslow")

coef exp(coef) se(coef) z p
mmlex.TrTx->PR:dissubALL -0.0436 0.957 0.0779 -0.560 5.8e-01
mmlex.TrTx->RD:dissubALL 0.2559 1.292 0.1352 1.893 5.8e-02
mmlex.TrPR->RD(PR):dissubALL 0.1366 1.146 0.1480 0.923 3.6e-01
mmlex.TrTx->PR:dissubCML -0.2972 0.743 0.0680 -4.371 1.2e-05
mmlex.TrTx->RD:dissubCML 0.0167 1.017 0.1084 0.155 8.8e-01
mmlex.TrPR->RD(PR):dissubCML 0.2471 1.280 0.1169 2.115 3.4e-02
mmlex.TrTx->PR:age20-40 -0.1646 0.848 0.0791 -2.082 3.7e-02
mmlex.TrTx->RD:age20-40 0.2552 1.291 0.1510 1.689 9.1e-02
mmlex.TrPR->RD(PR):age20-40 0.0614 1.063 0.1534 0.400 6.9e-01
mmlex.TrTx->PR:age>40 -0.0898 0.914 0.0865 -1.038 3.0e-01
mmlex.TrTx->RD:age>40 0.5265 1.693 0.1579 3.334 8.6e-04
mmlex.TrPR->RD(PR):age>40 0.5809 1.788 0.1601 3.627 2.9e-04
mmlex.TrTx->PR:drmatchGender mismatch 0.0458 1.047 0.0666 0.687 4.9e-01
mmlex.TrTx->RD:drmatchGender mismatch -0.0753 0.928 0.1103 -0.682 5.0e-01
mmlex.TrPR->RD(PR):drmatchGender mismatch 0.1729 1.189 0.1145 1.510 1.3e-01
mmlex.TrTx->PR:tcdTCD 0.4291 1.536 0.0804 5.335 9.6e-08
mmlex.TrTx->RD:tcdTCD 0.2967 1.345 0.1501 1.977 4.8e-02
mmlex.TrPR->RD(PR):tcdTCD 0.2007 1.222 0.1264 1.589 1.1e-01

Likelihood ratio test=118 on 18 df, p=1.11e-16 n= 5577

Comparison with the estimates from the 3 separate analyses and from the mstate paper we
can just use ci.lin to extract estimates, and the reshuffle the rows:

> round( ci.lin( c1, E=T )[c(0:5*3+1,0:5*3+2,0:5*3+3),-(3:4)], 3 )

Estimate StdErr exp(Est.) 2.5% 97.5%
mmlex.TrTx->PR:dissubALL -0.044 0.078 0.957 0.822 1.115
mmlex.TrTx->PR:dissubCML -0.297 0.068 0.743 0.650 0.849
mmlex.TrTx->PR:age20-40 -0.165 0.079 0.848 0.726 0.990
mmlex.TrTx->PR:age>40 -0.090 0.086 0.914 0.772 1.083
mmlex.TrTx->PR:drmatchGender mismatch 0.046 0.067 1.047 0.919 1.193
mmlex.TrTx->PR:tcdTCD 0.429 0.080 1.536 1.312 1.798
mmlex.TrTx->RD:dissubALL 0.256 0.135 1.292 0.991 1.684
mmlex.TrTx->RD:dissubCML 0.017 0.108 1.017 0.822 1.258
mmlex.TrTx->RD:age20-40 0.255 0.151 1.291 0.960 1.735
mmlex.TrTx->RD:age>40 0.526 0.158 1.693 1.242 2.307
mmlex.TrTx->RD:drmatchGender mismatch -0.075 0.110 0.928 0.747 1.151
mmlex.TrTx->RD:tcdTCD 0.297 0.150 1.345 1.003 1.806
mmlex.TrPR->RD(PR):dissubALL 0.137 0.148 1.146 0.858 1.532
mmlex.TrPR->RD(PR):dissubCML 0.247 0.117 1.280 1.018 1.610
mmlex.TrPR->RD(PR):age20-40 0.061 0.153 1.063 0.787 1.436
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mmlex.TrPR->RD(PR):age>40 0.581 0.160 1.788 1.306 2.447
mmlex.TrPR->RD(PR):drmatchGender mismatch 0.173 0.115 1.189 0.950 1.488
mmlex.TrPR->RD(PR):tcdTCD 0.201 0.126 1.222 0.954 1.566

5.1 Joint parameters between transitions

Of course it is not of much interest to make a joint model which gives the same results as
the three separate ones. The point comes from reducing this model to one which is more
parsimonious yet sensible. One such reduction would be to assume that the two
relapse/mortality rates, Tx->RD and PR->RD are proportional. This means that the Cox
model should be changed so that the stratum variable only has two levels, but at the same
time we should introduce an indicator of being in state PR. We use the Relevel command
from Epi that allows grouping of factor levels, and repeat the tampering with the model
matrix:

> bmts$inc.mort <- Relevel( bmts$lex.Tr, list(1,2:3), coll=" & " )
> with( bmts, table(lex.Tr,inc.mort) )

inc.mort
lex.Tr Tx->PR Tx->RD & PR->RD(PR)
Tx->PR 2204 0
Tx->RD 0 2204
PR->RD(PR) 0 1169

> mm <- model.matrix( ~ lex.Tr:( dissub + age + drmatch + tcd ), bmts )
> rm <- grep( "AML", colnames(mm) )
> mm <- mm[,-c(1,rm)]
> c2 <- coxph( Surv(tft,tft+lex.dur,lex.Fail) ~
+ mm + I(lex.Cst=="PR") +
+ strata( inc.mort ),
+ data=cbind(bmts,mm), method="breslow" )

Note that the logical expression identifying platelet recovery is wrapped in an “I()” in
order to make coxph create an extra column adjacent to the supplied model matrix (if not
coxph will crash):

> c2

Call:
coxph(formula = Surv(tft, tft + lex.dur, lex.Fail) ~ mm + I(lex.Cst ==

"PR") + strata(inc.mort), data = cbind(bmts, mm), method = "breslow")

coef exp(coef) se(coef) z p
mmlex.TrTx->PR:dissubALL -0.04359 0.957 0.0779 -0.5597 5.8e-01
mmlex.TrTx->RD:dissubALL 0.26100 1.298 0.1352 1.9308 5.4e-02
mmlex.TrPR->RD(PR):dissubALL 0.13993 1.150 0.1480 0.9456 3.4e-01
mmlex.TrTx->PR:dissubCML -0.29724 0.743 0.0680 -4.3714 1.2e-05
mmlex.TrTx->RD:dissubCML 0.00351 1.004 0.1084 0.0324 9.7e-01
mmlex.TrPR->RD(PR):dissubCML 0.25051 1.285 0.1168 2.1450 3.2e-02
mmlex.TrTx->PR:age20-40 -0.16461 0.848 0.0791 -2.0823 3.7e-02
mmlex.TrTx->RD:age20-40 0.25083 1.285 0.1511 1.6605 9.7e-02
mmlex.TrPR->RD(PR):age20-40 0.05554 1.057 0.1534 0.3621 7.2e-01
mmlex.TrTx->PR:age>40 -0.08979 0.914 0.0865 -1.0384 3.0e-01
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mmlex.TrTx->RD:age>40 0.52577 1.692 0.1579 3.3299 8.7e-04
mmlex.TrPR->RD(PR):age>40 0.56267 1.755 0.1600 3.5173 4.4e-04
mmlex.TrTx->PR:drmatchGender mismatch 0.04575 1.047 0.0666 0.6869 4.9e-01
mmlex.TrTx->RD:drmatchGender mismatch -0.07205 0.930 0.1103 -0.6535 5.1e-01
mmlex.TrPR->RD(PR):drmatchGender mismatch 0.16939 1.185 0.1144 1.4801 1.4e-01
mmlex.TrTx->PR:tcdTCD 0.42907 1.536 0.0804 5.3346 9.6e-08
mmlex.TrTx->RD:tcdTCD 0.31886 1.376 0.1500 2.1262 3.3e-02
mmlex.TrPR->RD(PR):tcdTCD 0.21103 1.235 0.1262 1.6722 9.4e-02
I(lex.Cst == "PR")TRUE -0.38036 0.684 0.2115 -1.7982 7.2e-02

Likelihood ratio test=136 on 19 df, p=0 n= 5577

6 Connecting to the mstate package

Alternatively we may throw away some of the state annotation and convenience in
parameter labeling and use the mstate package:

> ms <- mstate( bmt )
> head( bmt )

tft lex.dur lex.Cst lex.Xst lex.id id prtime prstat rfstime rfsstat dissub age drmatch tcd
1 0 2.0369610 Tx Tx 1 1 23 1 744 0 CML >40 Gender mismatch No TCD
2 0 0.9856263 Tx RD 2 2 35 1 360 1 CML >40 No gender mismatch No TCD
3 0 0.3696099 Tx RD 3 3 26 1 135 1 CML >40 No gender mismatch No TCD
4 0 2.7241615 Tx Tx 4 4 22 1 995 0 AML 20-40 No gender mismatch No TCD
5 0 1.1553730 Tx RD 5 5 29 1 422 1 AML 20-40 No gender mismatch No TCD
6 0 0.3258042 Tx RD 6 6 38 1 119 1 ALL >40 No gender mismatch No TCD

> head( ms )

id Tstart Tstop from to trans status id.1 prtime prstat rfstime rfsstat dissub age drmatch tcd
1 1 0 2.0369610 1 1 1 FALSE 1 23 1 744 0 CML >40 Gender mismatch No TCD
2 2 0 0.9856263 1 1 1 TRUE 2 35 1 360 1 CML >40 No gender mismatch No TCD
3 3 0 0.3696099 1 1 1 TRUE 3 26 1 135 1 CML >40 No gender mismatch No TCD
4 4 0 2.7241615 1 1 1 FALSE 4 22 1 995 0 AML 20-40 No gender mismatch No TCD
5 5 0 1.1553730 1 1 1 TRUE 5 29 1 422 1 AML 20-40 No gender mismatch No TCD
6 6 0 0.3258042 1 1 1 TRUE 6 38 1 119 1 ALL >40 No gender mismatch No TCD

7 Poisson modeling

An alternative to the Cox-modeling of the rates is to use a Poisson model; i.e. to assume
that rates are constant in (small) intervals, and then invoke a model for the rates in these
intervals that assume that the rates are constant in each interval, but that the magnitude
of the rates follow some smooth function.

In order for this to make sense we must split the data along one or more of the
timescales of relevance. We split along the timescale tft (time from transplant). This is
accomplished by the function splitLexis (note that it is not called split.Lexis):

> bmtx <- splitLexis( bmtr, time.scale="tft", breaks=c(0:19/10,seq(2,10,0.5)) )
> summary( bmtx )
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Transitions:
To

From Tx PR RD RD(PR) Records: Events: Risk time: Persons:
Tx 15645 1169 458 0 17272 1627 2439.43 2204
PR 0 20405 0 383 20788 383 3173.03 1169
Sum 15645 21574 458 383 38060 2010 5612.46 2204

Rates:
To

From Tx PR RD RD(PR) Total
Tx 0 0.48 0.19 0.00 0.67
PR 0 0.00 0.00 0.12 0.12

We see that the number of events and amount of risk time is unchanged in bmtx; the only
difference is that it is distributed across many more records than in bmtr:

> summary( bmtr )

Transitions:
To

From Tx PR RD RD(PR) Records: Events: Risk time: Persons:
Tx 577 1169 458 0 2204 1627 2439.43 2204
PR 0 786 0 383 1169 383 3173.03 1169
Sum 577 1955 458 383 3373 2010 5612.46 2204

Rates:
To

From Tx PR RD RD(PR) Total
Tx 0 0.48 0.19 0.00 0.67
PR 0 0.00 0.00 0.12 0.12

We can now redo the rate-modeling above by using a Poisson model with a suitable smooth
version of the time-effect.

> library( splines )
> p.Tx.PR <- glm( as.numeric( lex.Xst=="PR" ) ~
+ ns( tft, knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) ) +
+ dissub + age + drmatch + tcd,
+ family=poisson,
+ data = subset(bmtx, lex.Cst=="Tx") )
> p.Tx.RD <- glm( as.numeric( lex.Xst=="RD" ) ~
+ ns( tft, knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) ) +
+ dissub + age + drmatch + tcd,
+ family=poisson,
+ data = subset(bmtx, lex.Cst=="Tx") )
> p.PR.RD <- glm( as.numeric( lex.Xst=="RD(PR)" ) ~
+ ns( tft, knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) ) +
+ dissub + age + drmatch + tcd,
+ family=poisson,
+ data = subset(bmtx, lex.Cst=="PR") )

We then compare the results for the regression parameters from the Poisson-model with
those from the Cox-model:

> sb <- c("dissub","age","drmatch","tcd")
> round( rbind( ci.lin( p.Tx.PR, subset=sb, E=T ),
+ ci.lin( p.Tx.RD, subset=sb, E=T ),
+ ci.lin( p.PR.RD, subset=sb, E=T ) ), 3 )
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Estimate StdErr z P exp(Est.) 2.5% 97.5%
dissubALL -0.013 0.078 -0.165 0.869 0.987 0.847 1.150
dissubCML -0.242 0.068 -3.557 0.000 0.785 0.687 0.897
age20-40 -0.158 0.079 -2.001 0.045 0.854 0.731 0.997
age>40 -0.110 0.087 -1.269 0.204 0.896 0.756 1.062
drmatchGender mismatch 0.059 0.067 0.884 0.376 1.061 0.931 1.209
tcdTCD 0.394 0.080 4.913 0.000 1.483 1.267 1.735
dissubALL 0.255 0.135 1.889 0.059 1.291 0.990 1.683
dissubCML 0.036 0.108 0.330 0.742 1.036 0.838 1.282
age20-40 0.267 0.151 1.767 0.077 1.306 0.971 1.755
age>40 0.528 0.158 3.346 0.001 1.696 1.245 2.311
drmatchGender mismatch -0.072 0.110 -0.655 0.512 0.930 0.749 1.155
tcdTCD 0.256 0.150 1.707 0.088 1.292 0.963 1.734
dissubALL 0.132 0.148 0.893 0.372 1.141 0.854 1.525
dissubCML 0.256 0.117 2.193 0.028 1.292 1.028 1.624
age20-40 0.066 0.153 0.430 0.667 1.068 0.791 1.442
age>40 0.578 0.160 3.612 0.000 1.782 1.303 2.439
drmatchGender mismatch 0.164 0.115 1.436 0.151 1.179 0.942 1.475
tcdTCD 0.206 0.126 1.631 0.103 1.229 0.959 1.574

It gives a better impression if we divide the two sets of regression estimates to see the
relative differences in RR estimates (the last 3 columns):

> round( rbind( ci.lin( m.Tx.PR, E=T ),
+ ci.lin( m.Tx.RD, E=T ),
+ ci.lin( m.PR.RD, E=T ) ) /
+ rbind( ci.lin( p.Tx.PR, subset=sb, E=T ),
+ ci.lin( p.Tx.RD, subset=sb, E=T ),
+ ci.lin( p.PR.RD, subset=sb, E=T ) ), 3 )

Estimate StdErr z P exp(Est.) 2.5% 97.5%
dissubALL 3.386 0.998 3.392 0.663 0.970 0.970 0.970
dissubCML 1.229 1.000 1.229 0.033 0.946 0.946 0.946
age20-40 1.042 1.001 1.041 0.822 0.993 0.993 0.994
age>40 0.815 0.996 0.818 1.463 1.021 1.021 1.020
drmatchGender mismatch 0.777 1.000 0.777 1.307 0.987 0.987 0.987
tcdTCD 1.089 1.003 1.086 0.107 1.036 1.035 1.036
dissubALL 1.002 1.000 1.002 0.991 1.000 1.001 1.000
dissubCML 0.469 1.000 0.469 1.183 0.981 0.981 0.981
age20-40 0.956 1.000 0.956 1.179 0.988 0.988 0.989
age>40 0.997 1.000 0.997 1.042 0.998 0.998 0.998
drmatchGender mismatch 1.041 1.000 1.041 0.966 0.997 0.997 0.997
tcdTCD 1.158 1.000 1.158 0.547 1.041 1.041 1.041
dissubALL 1.034 1.001 1.033 0.958 1.005 1.004 1.005
dissubCML 0.965 1.000 0.965 1.216 0.991 0.991 0.991
age20-40 0.933 1.001 0.932 1.032 0.996 0.995 0.996
age>40 1.005 1.001 1.004 0.944 1.003 1.003 1.003
drmatchGender mismatch 1.052 1.000 1.052 0.868 1.009 1.009 1.009
tcdTCD 0.974 1.000 0.974 1.089 0.995 0.995 0.995

As before we can model this in one go by stacking the dataset using stack.Lexis. Note
that it is impossible to try and use splitLexis on a stacked dataset because it is no longer
a Lexis object. Hence stacking must be done after splitting data.

> bmtxs <- stack( bmtx )
> str( bmts )
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Classes 'stacked.Lexis' and 'data.frame': 5577 obs. of 18 variables:
$ tft : num 0 0 0 0 0 0 0 0 0 0 ...
$ tfPR : num NA NA NA NA NA NA NA NA NA NA ...
$ lex.dur : num 0.063 0.0958 0.0712 0.0602 0.0794 ...
$ lex.Cst : Factor w/ 4 levels "Tx","PR","RD",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Xst : Factor w/ 4 levels "Tx","PR","RD",..: 2 2 2 2 2 2 2 2 1 3 ...
$ lex.Tr : Factor w/ 3 levels "Tx->PR","Tx->RD",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lex.Fail: logi TRUE TRUE TRUE TRUE TRUE TRUE ...
$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ prtime : num 23 35 26 22 29 38 30 35 NA NA ...
$ prstat : int 1 1 1 1 1 1 1 1 0 0 ...
$ rfstime : num 744 360 135 995 422 ...
$ rfsstat : int 0 1 1 0 1 1 0 0 0 1 ...
$ dissub : Factor w/ 3 levels "AML","ALL","CML": 3 3 3 1 1 2 3 2 1 3 ...
$ age : Factor w/ 3 levels "<=20","20-40",..: 3 3 3 2 2 3 2 1 2 3 ...
$ drmatch : Factor w/ 2 levels "No gender mismatch",..: 2 1 1 1 1 1 2 1 1 1 ...
$ tcd : Factor w/ 2 levels "No TCD","TCD": 1 1 1 1 1 1 1 1 1 1 ...
$ inc.mort: Factor w/ 2 levels "Tx->PR","Tx->RD & PR->RD(PR)": 1 1 1 1 1 1 1 1 1 1 ...

We can now redo the analysis with in one step. Moreover we can now get a global test for
the proportionality of the two mortality rates as a simple likelihood-ratio test. Note that in
order to test for proportionality of rates between the two mortality rates, we must have an
interaction between the timescale (ns(tft,...) and a factor where the two mortalities are
grouped together. But we must still have a main effect of lex.Tr, the type of transition:

> p1 <- glm( as.numeric(lex.Fail) ~
+ lex.Tr +
+ lex.Tr:( ns( tft, knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) ) +
+ dissub + age + drmatch + tcd ),
+ family=poisson,
+ data=bmtxs )

To fit a model with proportional mortality rates (from Tx and from PR) we must group the
two transitions into one level, but in order to avaoid a model that assumes identical
mortalities, we still include the three level factor lex.Tr as a main effect:

> bmtxs$inc.mort <- Relevel( bmtxs$lex.Tr, list(1,2:3), coll=" & " )
> p2 <- glm( as.numeric(lex.Fail) ~
+ lex.Tr +
+ inc.mort:ns( tft, knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) ) +
+ lex.Tr:( dissub + age + drmatch + tcd ),
+ family=poisson,
+ data=bmtxs )
> round( ci.lin( p2, subset=sb, E=T ), 3 )[,5:7]

exp(Est.) 2.5% 97.5%
lex.TrTx->PR:dissubALL 0.987 0.847 1.150
lex.TrTx->RD:dissubALL 1.297 0.995 1.691
lex.TrPR->RD(PR):dissubALL 1.142 0.855 1.526
lex.TrTx->PR:dissubCML 0.785 0.687 0.897
lex.TrTx->RD:dissubCML 1.021 0.826 1.263
lex.TrPR->RD(PR):dissubCML 1.295 1.030 1.628
lex.TrTx->PR:age20-40 0.854 0.731 0.997
lex.TrTx->RD:age20-40 1.297 0.965 1.744
lex.TrPR->RD(PR):age20-40 1.059 0.785 1.430
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lex.TrTx->PR:age>40 0.896 0.756 1.062
lex.TrTx->RD:age>40 1.695 1.243 2.309
lex.TrPR->RD(PR):age>40 1.741 1.273 2.382
lex.TrTx->PR:drmatchGender mismatch 1.061 0.931 1.209
lex.TrTx->RD:drmatchGender mismatch 0.932 0.751 1.157
lex.TrPR->RD(PR):drmatchGender mismatch 1.174 0.938 1.469
lex.TrTx->PR:tcdTCD 1.483 1.267 1.735
lex.TrTx->RD:tcdTCD 1.332 0.993 1.786
lex.TrPR->RD(PR):tcdTCD 1.243 0.971 1.592

> anova( p1, p2, test="Chisq" )

Analysis of Deviance Table

Model 1: as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:(ns(tft, knots = c(seq(0.2,
2, 0.2), 3:6), Bo = c(0, 7)) + dissub + age + drmatch + tcd)

Model 2: as.numeric(lex.Fail) ~ lex.Tr + inc.mort:ns(tft, knots = c(seq(0.2,
2, 0.2), 3:6), Bo = c(0, 7)) + lex.Tr:(dissub + age + drmatch +
tcd)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 55266 9125.4
2 55281 9164.1 -15 -38.7 0.000703

The test is highly significant, but it would be relevant to see what the actual differences in
shape between the two mortality rates were.

Hence we extract the effect of tft from the model p1 for the transitions Tx→RD and
PR→RD.

To this end we construct a contrast matrix to multiply with the relevant spline
parameters, by setting up the splines for a predefined set of times. Since we are mainly
interested in the relative behaviour of the rates, we compute the RR relative to the
mortality 1 year after entry:

> p.pt <- seq(0,8,,200)
> CM <- ns( p.pt , knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) )
> C1 <- ns( rep(1,length(p.pt)), knots=c(seq(0.2,2,0.2),3:6), Bo=c(0,7) )

This matrix can now be applied to the estimates for the splines for the two transitions.
The relevant parameters are selected using the subset argument to ci.lin. The Exp=TRUE

gives the exponential of the computed parameter functions with c.i. i columns 5 to 7 of the
result:

> rr.Tx <- ci.lin( p1, subset="Tx->RD:ns", ctr.mat=CM-C1, Exp=TRUE )[,5:7]
> rr.PR <- ci.lin( p1, subset="PR->RD\\(PR\\):ns", ctr.mat=CM-C1, Exp=TRUE )[,5:7]

Note the use of “\\” in the subset argument — it is because “(“ and “)” have special
meanings in regular expressions, so the characters need to be escaped in order to work
properly. However, we would like the see the estimated rate-ratio between the two
transitions as well. This is done by extracting the two sets of parameters and them
multiplying them by a contrast matrix which is made by joining the contrast matrix by the
negative of the same:

> RR <- ci.lin( p1, subset=c("Tx->RD:ns","PR->RD\\(PR\\):ns"),
+ ctr.mat=cbind(CM,-CM), Exp=TRUE )[,5:7]
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> matplot( p.pt, cbind( rr.Tx, rr.PR ),
+ log="y", ylim=c(0.1,10)/2,
+ type="l", lty=1, lwd=c(3,1,1), col=rep(c("red","blue"),each=3) )
> points( 1, 1, pch=16 )
> matlines( p.pt, RR, type="l", lty=1, lwd=c(3,1,1), col="black" )

Clearly the underlying rates are over-modeled (although not to the extent as in the
Cox-model), but also it is pretty clear that despite the overmodeling there is a tendency
that the mortality rates for those in platelet recovery (PR, blue line) do not decrease so
rapidly the first two years. Apparently the entire difference takes place during the first
year.
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Figure 6: RR relative to year 1 after transplant for persons in states Tx (red) and PR (blue),
as well as the RR between the mortality rates in Tx and PR (black). Thin lines are estimated
95% confidence intervals.

8 Competing risks

The special case of a multistate model with only one initial state (“alive”) and a number of
absorbing states (“causes of death”), we can get away with setting up a Lexis object
particularly simple. There are two defaults that are used in the setup of the object for the
aidssi data:



, September 2009 23

1. If only the entry argument is omitted, all entries are assumed to be at 0 at the only
timescale — it is non-sensical to have more timescales in this instance.

2. If no entry.state is specified is by default assumed that all entires are in the state
which is the first level of the exit.state.

Thus we must make sure that the “event-free” is the first level of the status factor:

> data(aidssi)
> LA <- Lexis( exit = list(zeit=time),
+ exit.status = factor(cause,levels=c("event-free","AIDS","SI")),
+ data = aidssi )

NOTE: entry.status has been set to "event-free" for all.
NOTE: entry is assumed to be 0 on the zeit timescale.

> summary( LA )

Transitions:
To

From event-free AIDS SI Records: Events: Risk time: Persons:
event-free 107 114 108 329 222 2274.55 329

Rates:
To

From event-free AIDS SI Total
event-free 0 0.05 0.05 0.1

Figure 7 is the result of using the default layout of boxes.Lexis:

> boxes( LA, boxpos=TRUE )
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Figure 7: Illustration of the transitions in the competing risks model for the aidssi data.
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