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Abstract

The Lexis class in the R package Epi provides tools for creation, manipulation and dis-
play of data from multi-state models. Transitions between states are described by rates
(intensities); Lexis objects represent this kind of data and provide tools to show states
and transitions annotated by relevant summary numbers. Data can be transformed to a
form that allows modelling of several transition rates with common parameters.
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1. Introduction

Multi-state data arise from epidemiological follow-up studies in which a participant may
go through different disease states during follow-up. The most common examples are the
illness-death model and the competing risks model. Illness-death models are used in studies
of mortality when an intermediate state (“ill”) may occur between the entry state (“healthy”)
and the mortality endpoint (“dead”). The competing risk model is a model with one “healthy”
state and a number of mutually exclusive absorbing disease endpoints (causes of death, for
example).

The Lexis class in the Epi package (Carstensen, Plummer, Laara, and Hills 2010), for R
(R Development Core Team 2010), which is introduced in a companion paper (Plummer
and Carstensen 2011), is designed to facilitate long-term follow-up studies. It includes the
following extensions to handle multi-state data:

� Allowing the use of factors for states, as well as numeric codes. This allows the states
to have descriptive labels.

� Taking account of the ordering of disease states when splitting follow-up time.

� Creating new time scale variables to describe the time spent in a state.

http://www.jstatsoft.org/
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These capabilities are described in the current paper. In this paper we are only looking at
multi-state data for which the transition between states is known exactly. Panel studies, for
which the disease state is only known at certain dates and transition times are not known
exactly, are not covered in this paper.

2. The example data

The dataset we shall use for illustration is the ebmt3 dataset from the R package mstate
(de Wreede, Fiocco, and Putter 2010, 2011). It shows the clinical course of bone marrow
transplant for 2204 patients. A more detailed introduction to the dataset is given in a tutorial
paper by Putter, Fiocco, and Geskus (2007).

id prtime prstat rfstime rfsstat dissub age drmatch tcd

1 1 23 1 744 0 CML >40 Gender mismatch No TCD

2 2 35 1 360 1 CML >40 No gender mismatch No TCD

3 3 26 1 135 1 CML >40 No gender mismatch No TCD

4 4 22 1 995 0 AML 20-40 No gender mismatch No TCD

5 5 29 1 422 1 AML 20-40 No gender mismatch No TCD

6 6 38 1 119 1 ALL >40 No gender mismatch No TCD

The major event of interest is “relapse or death”, and an intermediate event is “platelet
recovery”. The time variables in the embt3 dataset are given in days since transplant, they
are time to relapse or death in the variable rfstime, and time to platelet recovery in the
variable prtime. It is of interest to compare the rates of relapse or death between the states
“transplant” and “platelet recovery”, but also to model the transition rate from “transplant”
to “platelet recovery”. The structure of the multi-state model is illustrated in Figure 1.

3. Statistical model

For each transition between two states (an “event”), we can describe the process by the
transition rate:

λ(t) = lim
h→0

P{event in (t, t+ h)|at risk at t}/h

If transition rates are known for all possible transitions in a multi-state set-up, we have a
complete probability model, that is a model that would allow simulation of data of the same
structure as the observed.

If rates are assumed constant, the likelihood for the model will be proportional to a Poisson
likelihood using the number of transitions as Poisson variate and the log person-years as offset
in a log-link.

If we assume that rates are merely constant in smaller time-intervals, the likelihood will still
be proportional to a Poisson likelihood, but now with one 0/1 contribution from each person
and interval as response, and the log of the interval length as offset (Carstensen 2006).

If we make no assumptions at all for the transition rates we can fit a model for the cumulative
rates:

Λ(t) =

∫ t

0
λ(s) ds
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using e.g. the Nelson-Aalen estimator or using a Cox model to incorporate covariate effects.

An extensive overview of these issues is given in Andersen and Keiding (2002).

The purpose of setting up a Lexis object is to facilitate required manipulations of data for
these types of models.

4. A Lexis object

The required data for this type of analysis is for each person the starting time and state
and the transitions and -times and the state and time of end of observation. Depending
on availability of covariates, further timescales can be defined (current age, current disease
duration, etc.). Essentially what is needed is the allocation of follow-up time to states, and
timescales.

ebmt3 is merely a data frame with two time-variables in it, one for each of the events “platelet
recovery” and “relapse or death”. So if we want to put the follow-up recorded in the embt3

data frame into a Lexis object, we must decide on the timescale(s) we want to use (in this
case only one). The first thing we do is to only consider the transition from “transplant” to
“relapse or death”, and then later incorporate the “platelet recovery”.

The data frame ebmt3 is converted to a Lexis object (which is also a dataframe) as follows:

R> bmt <- Lexis(exit = list(tft = rfstime/365.25),

+ exit.status = factor(rfsstat, labels = c("Tx", "RD")), data = ebmt3)

NOTE: entry.status has been set to "Tx" for all.

NOTE: entry is assumed to be 0 on the tft timescale.

This example illustrates the use of a factor to represent the states in the model. The numeric
codes 0,1 of the rfsstat variable are given informative labels “Tx” and “RD”. If no entry
state is given, then the Lexis function assumes that everyone starts in the first factor level,
which is Tx in this case. This is noted by the Lexis function.

The Lexis object has a single time scale — tft — measuring time from transplant in years.
If no entry time is given by the argument entry, the Lexis function assumes a default entry
time of 0. Since follow-up time begins on the day of transplant, this is the correct entry time
on the tft scale. This is also noted by the Lexis function.

So far we have only defined a simple two-state model with transition from Tx to RD:

R> summary(bmt)

Transitions:

To

From Tx RD Records: Events: Risk time: Persons:

Tx 1363 841 2204 841 5612 2204

Rates:

To

From Tx RD Total

Tx 0 0.15 0.15
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Figure 1: Three different representations of the ebmt3 data: (a) the simple survival type model
ignoring the platelet recovery state, (b) the illness-death-type model where platelet recovery
is an intermediate state, (c) the extension of the illness-death model where the absorbing
state is subdivided by previous occurrence of platelet recovery.

Thus, among the 2204 persons we have 841 events during 5612 person-years, corresponding
to a rate of 0.15 events per year. Now we introduce the state state “platelet recovery” (PR)
by dividing the follow-up time at the time of platelet recovery using the cutLexis function.
This transforms the model from panel (a) to panel (b) of Figure 1.

R> bmtr <- cutLexis(bmt, cut = bmt$prtime/365.25, precursor.states = "Tx",

+ new.state = "PR")

R> summary(bmtr)

Transitions:

To

From Tx PR RD Records: Events: Risk time: Persons:

Tx 577 1169 458 2204 1627 2439 2204

PR 0 786 383 1169 383 3173 1169

Sum 577 1955 841 3373 2010 5612 2204

Rates:

To

From Tx PR RD Total

Tx 0 0.48 0.19 0.67

PR 0 0.00 0.12 0.12

We now have 3373 records instead of 2204, because of the 1169 transitions to PR. We still
have the same amount of risk time (5612 person-years) and deaths (841) in total, but now
subdivided by state (Tx and PR).

When creating a new state with the cutLexis function, it is necessary to specify which of the
existing states in the model are precursor states. Precursor states will be overridden by the
new state in the newly created Lexis object. In this example, if a person originally exited
the study in state Tx (a precursor state), then an entry to the new state (PR) will mean
that the person exits in the new state, whereas if the person exited the study in state RD (a
non-precursor state) the exit from the study will still be to this (original) state.

In order to understand which states are precursor states, it is helpful to draw a graph of
the multi-state model, such as the examples in Figure 1. Most multi-state disease models are
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progressive models, in which the disease can only increase in severity and never regresses. Such
models are represented by directed acyclic graphs, which determine a partial ordering among
the states. A state A is a precursor of state B if there is a path from A to B in the graph.
Absorbing states, such as RD in Figure 1(b) are never precursor states. By default the newly
created state is placed after the precursor states nominated, and before all non-precursor
states in the ordering of the levels of the factor describing the states.

4.1. Duration as a timescale

So far we have only used one common timescale for follow-up, but often we are interested in
the effect of the duration of platelet recovery as timescale. This timescale can be generated
using the new.scale argument. If set to TRUE a new timescale will be generated, named
PR.dur; alternatively we can set the argument to the name of the new timescale:

R> bmtr <- cutLexis(bmt, cut = bmt$prtime/365.25, precursor.states = "Tx",

+ new.state = "PR", new.scale = "tfPR")

R> timeScales(bmtr)

[1] "tft" "tfPR"

This representation retains the total amount of risk time in the study; it merely adds an extra
timescale to the follow-up time after transition to the PR state. Since this timescale is 0 at
the entry of the new state this is sometimes referred to as the “clock back” approach.

Since we now have two timescales we can make a two-dimensional Lexis diagram, as shown
in Figure 2. The diagram only shows follow-up after PR, since one of the timescales is time
since PR, which obviously is not defined before the event.

R> plot(bmtr, xlab = "Time since transplant",

+ ylab = "Time since platelet recovery")

From the plot we see that most platelet recoveries occur within the first year after transplant.

4.2. Subdividing states

We may also be interested in subdividing the states subsequent to PR according to whether
this event has occurred or not; this is done with the argument split.states:

R> bmtr <- cutLexis(bmt, cut = bmt$prtime/365.25, precursor.states = "Tx",

+ new.state = "PR", new.scale = "tfPR", split.states = TRUE)

R> summary(bmtr)

Transitions:

To

From Tx PR RD RD(PR) Records: Events: Risk time: Persons:

Tx 577 1169 458 0 2204 1627 2439 2204

PR 0 786 0 383 1169 383 3173 1169

Sum 577 1955 458 383 3373 2010 5612 2204
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Figure 2: Two-dimensional Lexis diagram of the bone-marrow transplant data from ebmt3.
Note that this diagram only shows follow-up after PR, as the timescale tfPR is undefined
(=missing) for follow-up prior to PR.

Rates:

To

From Tx PR RD RD(PR) Total

Tx 0 0.48 0.19 0.00 0.67

PR 0 0.00 0.00 0.12 0.12

This creates a Lexis object for the model represented in Figure 1(c).

Subdividing states is useful when drawing multi-state models as box-diagrams as shown in the
next section. It can also be of interest if simulation-based inference on occupation probabilities
for various states are of interest.

5. Illustrating the model structure

The model structure can be illustrated in a box diagram as shown in Figure 1 using the
interactive function boxes.Lexis, which will prompt you for a click for the position of each
of the states, and subsequently draws arrows between those states where transitions occur.
If we put boxpos = TRUE (the default is FALSE), the states are put in a circular arrangement
which usually is not very nice:
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Figure 3: Illustration of the transitions between defined states for the ebmt3 data, using the
default layout (left) and a hand-tailored using point-and-click. The numbers on the arrows
are the number of transitions, and the numbers in the boxes are person-years.

R> boxes(bmtr, boxpos = TRUE)

That can be improved by using the interactive facility, using the default boxpos = FALSE,
which will prompt you to click on the screen to place the various boxes.

Frequently one would need the exact same plot with slight modifications, for example with
one or more of the arrows in a different color. To this end it is possible to use the argument
file to specify an output file that will contain code generating the display. The code in this
file can then be modified.

R> boxes(bmtr, file = "bmt-boxes.r")

This is the resulting code, where we modified the coordinates of the boxes to make them
nicely aligned.

R> boxes.Lexis(bmtr, boxpos = list(x = c(20, 20, 80, 80),

+ y = c(80, 20, 80, 20)), cex = 1.5, wmult = 1.5, hmult = 2.25,

+ eq.wd = TRUE, eq.ht = TRUE, show.Y = TRUE, scale.Y = 1, digits.Y = 1,

+ show.D = TRUE, scale.D = FALSE, digits.D = 0)

The first argument to the boxes function is a Lexis object, and so the default behaviour is to
show the risk time (person-years) in those boxes where they are accumulated, and the number
of transitions along the arrows. The function has arguments for scaling the person-years and
putting rates instead of number of transitions on the arrows.

The first argument to boxes may also be a transition matrix, in which case only the boxes
and arrows are drawn, and requires an explicit call of the function boxes.Lexis.
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6. Analysis of transition rates

Traditionally a Cox model is used for the analysis of rates. We can analyse transitions between
boxes separately by selecting the appropriate rows and choosing the right event-type.

There is minimal difference in the code for the models for the different transitions; it is only
the failure type (using lex.Xst) and the subset (using lex.Cst) that is different:

R> m.Tx.PR <- coxph(Surv(tft, tft + lex.dur, lex.Xst == "PR") ~ dissub +

+ age + drmatch + tcd, data = subset(bmtr, lex.Cst == "Tx"),

+ method = "breslow")

R> m.Tx.RD <- coxph(Surv(tft, tft + lex.dur, lex.Xst == "RD") ~ dissub +

+ age + drmatch + tcd, data = subset(bmtr, lex.Cst == "Tx"),

+ method = "breslow")

R> m.PR.RD <- coxph(Surv(tft, tft + lex.dur, lex.Xst == "RD(PR)") ~ dissub +

+ age + drmatch + tcd, data = subset(bmtr, lex.Cst == "PR"),

+ method = "breslow")

R> rbind(summary(m.Tx.PR)$coef, summary(m.Tx.RD)$coef, summary(m.PR.RD)$coef)

coef exp(coef) se(coef) z Pr(>|z|)

dissubALL -0.0436 0.957 0.0779 -0.560 5.76e-01

dissubCML -0.2972 0.743 0.0680 -4.371 1.23e-05

age20-40 -0.1646 0.848 0.0791 -2.082 3.73e-02

age>40 -0.0898 0.914 0.0865 -1.038 2.99e-01

drmatchGender mismatch 0.0458 1.047 0.0666 0.687 4.92e-01

tcdTCD 0.4291 1.536 0.0804 5.335 9.57e-08

dissubALL 0.2559 1.292 0.1352 1.893 5.84e-02

dissubCML 0.0167 1.017 0.1084 0.155 8.77e-01

age20-40 0.2552 1.291 0.1510 1.689 9.11e-02

age>40 0.5265 1.693 0.1579 3.334 8.55e-04

drmatchGender mismatch -0.0753 0.928 0.1103 -0.682 4.95e-01

tcdTCD 0.2967 1.345 0.1501 1.977 4.80e-02

dissubALL 0.1366 1.146 0.1480 0.923 3.56e-01

dissubCML 0.2471 1.280 0.1169 2.115 3.44e-02

age20-40 0.0614 1.063 0.1534 0.400 6.89e-01

age>40 0.5809 1.788 0.1601 3.627 2.86e-04

drmatchGender mismatch 0.1729 1.189 0.1145 1.510 1.31e-01

tcdTCD 0.2007 1.222 0.1264 1.589 1.12e-01

These are exactly the same estimates as those obtained in Table III of Putter et al. (2007).

If some parameters are assumed to be common between (some of the) transitions, the analysis
must be based on a dataset that is made by stacking the subsets of the data frame we used
in the three separate analyses above. The stacked dataset must have a common failure
indicator and a factor classifying the transitions. This dataset can be constructed by using
the stack.Lexis function. The effect of stacking the dataset is illustrated by printing the
records for person 2 from the Lexis object and the stacked object:

R> bmts <- stack(bmtr)

R> bmtr[bmtr$lex.id == 2, 1:6]
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tft tfPR lex.dur lex.Cst lex.Xst lex.id

2 0.0000 NA 0.0958 Tx PR 2

2206 0.0958 0 0.8898 PR RD(PR) 2

R> bmts[bmts$lex.id == 2, 1:8]

tft tfPR lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id

2 0.0000 NA 0.0958 Tx PR Tx->PR TRUE 2

2206 0.0000 NA 0.0958 Tx PR Tx->RD FALSE 2

22061 0.0958 0 0.8898 PR RD(PR) PR->RD(PR) TRUE 2

Two extra variables lex.Tr and lex.Fail have been added; lex.Tr is a factor indicating
the transition, and lex.Fail is the (logical) failure indicator for the transition. Since the
variables lex.Cst and lex.Xst have lost their original meaning, the resulting object is not a
Lexis object.

We will not be interested in modelling the Tx->PR transition jointly with the two transitions
into the RD state. The main interest is a joint model for the two transitions to RD. We can
reproduce the results from above for these two transitions by using the stacked dataset and
the interactions with lex.Tr — note that the interaction with time is given in the strata()

argument in the model formula:

R> bmts <- bmts[grep("->RD", bmts$lex.Tr), ]

R> bmts$lex.Tr <- factor(bmts$lex.Tr)

R> c1 <- coxph(Surv(tft, tft+lex.dur, lex.Fail) ~ lex.Tr:(dissub + age +

+ drmatch + tcd) + strata(lex.Tr), data = bmts, method = "breslow")

The default model matrix set-up for interactions generates interactions assuming an intercept
in the model. But there is none in a Cox model (it is relegated to the baseline hazard), so we
get aliased parameters when all three levels of dissub have interaction columns with lex.Tr

generated. It gives the correct model fit, but the reference level for the factor dissub is the
last rather than the first. This can be remedied by explicitly tampering with the model matrix
before fitting the model; we just generate the model matrix and then remove the columns
relating to the reference level. This has the advantage that we maintain the annotation of
the parameters:

R> mm <- model.matrix(~ lex.Tr:(dissub + age + drmatch + tcd), data = bmts)

R> rm <- grep("AML", colnames(mm))

R> mm <- mm[, -c(1, rm)]

R> cx <- coxph(Surv(tft, tft + lex.dur, lex.Fail) ~ mm + strata(lex.Tr),

+ data = cbind(bmts, mm), method = "breslow")

6.1. Joint parameters between transitions

Of course it is not of much interest to make a joint model which gives the same results as
the models fitted separately to each transition. The point comes from reducing this model to
one which is more parsimonious yet sensible. One such reduction would be to assume that
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the two mortality rates, Tx->RD and PR->RD are proportional — or, in plain words, covariate
effects are the same for both sets of mortality rates. This means that the Cox model should
be changed so that the baseline hazard is the same for the two transitions, which just means
that no strata argument is needed. However to avoid a model where we assume that the
rates are identical (which would be nonsensical), we must introduce an indicator of being in
state PR, but that is just the variable lex.Cst:

R> c2 <- coxph(Surv(tft, tft + lex.dur, lex.Fail) ~ dissub + age +

+ drmatch + tcd + I(lex.Cst == "PR"), data = bmts, method = "breslow")

Note that the logical expression identifying platelet recovery is wrapped in an “I()” in order
to make coxph create an extra column adjacent to the supplied model matrix (if not the
model formula will be interpreted as (tcd + lex.Cst)=="PR", which will cause a crash.

We now get one set of rate ratio parameters as before, plus a rate-ratio between the two
transitions to death, replacing the two separate baseline hazards with a pair of proportional
ones with proportionality factor:

R> ci.lin(c2, subset = "PR", Exp = TRUE)

Estimate StdErr z P exp(Est.) 2.5% 97.5%

I(lex.Cst == "PR")TRUE -0.314 0.0725 -4.33 1.51e-05 0.731 0.634 0.842

We cannot use the usual anova machinery to make a test of proportionality by comparing the
two Cox models, because the likelihoods from the stacked datasets only are concerned with
the regression parameters and the baseline is profiled out. So for this purpose we must resort
to fully parametric models to make a formal likelihood ratio test for this.

7. Analyzing proportionality of rates by Poisson modeling

It is of course of interest to test whether the two transition rates actually are proportional or
not, i.e. whether the dependency on time (since transplant) is the same pre and post platelet
recovery. This is an interaction, and can be formulated as such in a Poisson model where we
assume that rates are constant in (small) intervals, and then invoke a model for the rates in
these intervals that assumes the rates are constant in each interval, but that the magnitude
of the rates follow some smooth function. This is a slightly different approach from the one
taken in the companion paper (Plummer and Carstensen 2011), where the functional form
was assumed piecewise constant in larger intervals.

The Epi package provides the time-splitting function for Lexis objects that facilitates this
operation:

R> bmtx <- splitLexis(bmtr, time.scale = "tft",

+ breaks = c(0:19/10, seq(2, 10, 1)))

R> summary(bmtx)

Transitions:

To
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From Tx PR RD RD(PR) Records: Events: Risk time: Persons:

Tx 14628 1169 458 0 16255 1627 2439 2204

PR 0 18873 0 383 19256 383 3173 1169

Sum 14628 20042 458 383 35511 2010 5612 2204

Rates:

To

From Tx PR RD RD(PR) Total

Tx 0 0.48 0.19 0.00 0.67

PR 0 0.00 0.00 0.12 0.12

Note that the intervals that we use are not equally long. We see that the number of events
and amount of risk time is unchanged in bmtx; the only difference is that it is distributed
across many more records than in bmtr.

As before we can stack the dataset using stack.Lexis. Note that we cannot use splitLexis

on a stacked dataset because it is no longer a Lexis object. Hence stacking must be done
after splitting data. Finally we are only interested in the two transitions to the relapse/dead
(RD) state, and hence use factor to produce a factor with only those levels that actually do
occur.

R> bmtxs <- stack(bmtx)

R> bmtxs <- bmtxs[grep("->RD", bmtxs$lex.Tr), ]

R> bmtxs$lex.Tr <- factor(bmtxs$lex.Tr)

We can now repeat the analysis of the two rates and also get a formal test for the proportion-
ality of the two mortality rates as a simple likelihood-ratio test by fitting the model with and
without a time×state interaction. There is also an intermediate model that in the Cox model
literature is known as the “stratified model” where there is an interaction with time but not
with other covariates.

We fit these three models and compare them by the usual asymptotic likelihood ratio test:

R> i.kn <- c(0.2, 0.5, 1, 1.5, 2, 4, 6)

R> b.kn <- c(0, 7)

R> mi <- glm(as.numeric(lex.Fail) ~ lex.Tr +

+ lex.Tr:ns(tft, knots = i.kn, Bo = b.kn) +

+ lex.Tr:(dissub + age + drmatch + tcd),

+ family = poisson, offset = log(lex.dur), data = bmtxs)

R> ms <- glm(as.numeric(lex.Fail) ~ lex.Tr +

+ lex.Tr:ns(tft, knots=i.kn, Bo=b.kn) + dissub + age + drmatch + tcd,

+ family = poisson, offset = log(lex.dur), data = bmtxs)

R> mp <- glm(as.numeric(lex.Fail) ~ lex.Tr +

+ ns(tft, knots = i.kn, Bo = b.kn) + dissub + age + drmatch + tcd,

+ family = poisson, offset = log(lex.dur), data = bmtxs)

R> anova(mi, ms, mp, mi, test = "Chisq")

Analysis of Deviance Table
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Model 1: as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft, knots = i.kn,

Bo = b.kn) + lex.Tr:(dissub + age + drmatch + tcd)

Model 2: as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft, knots = i.kn,

Bo = b.kn) + dissub + age + drmatch + tcd

Model 3: as.numeric(lex.Fail) ~ lex.Tr + ns(tft, knots = i.kn, Bo = b.kn) +

dissub + age + drmatch + tcd

Model 4: as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft, knots = i.kn,

Bo = b.kn) + lex.Tr:(dissub + age + drmatch + tcd)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 35481 7439

2 35487 7450 -6 -10.4 0.109

3 35495 7468 -8 -18.4 0.018

4 35481 7439 14 28.8 0.011

There is no significant difference between the two first models, so we may assume that covariate
effects are the same for both transitions, but the underlying hazards seem to have a different
shape.

If we for a moment forget the interaction we can compare the estimated rate-ratio associated
with platelet recovery as estimated from the Poisson model and the Cox model:

R> rbind(ci.lin(mp, subset = "lex.Tr", Exp = TRUE),

+ ci.lin(c2, subset = "lex.Cst", Exp = TRUE))

Estimate StdErr z P exp(Est.) 2.5% 97.5%

lex.TrPR->RD(PR) -0.296 0.0727 -4.07 4.74e-05 0.744 0.645 0.858

I(lex.Cst == "PR")TRUE -0.314 0.0725 -4.33 1.51e-05 0.731 0.634 0.842

We see that the difference in estimates is negligible (1/4 of the estimated s.e.). The advantage
of the Poisson-modeling over the Cox model is that we get direct estimates of the baseline
rates, and that visual comparison of them is quite straightforward, so that we can inspect the
clinical relevance and not only the statistical significance of the interaction (“non-proportional
rates”).

In order to fish out the estimated log-rates from the model we must multiply the parameters
from the ns-term in the model with a matrix so that the estimated log-rates at some pre-
specified times are recovered.

To this end we construct a “contrast” matrix to multiply with the relevant spline parameters,
by setting up the splines for a predefined set of times. We compare to the rates in the Tx

state at 1 year after platelet recovery:

R> p.pt <- seq(0, 5, 0.02)

R> CM <- ns(p.pt, knots = i.kn, Bo = b.kn)

R> C1 <- ns(rep(1, length(p.pt)), knots = i.kn, Bo = b.kn)

Note that the matrix C1 has all rows identical to the row in CM which corresponds to p.pt

== 1:

R> round(cbind(p.pt, CM)[48:52,], 3)
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p.pt 1 2 3 4 5 6 7 8

[1,] 0.94 0.269 0.617 0.114 0 0 0 0 0

[2,] 0.96 0.242 0.628 0.130 0 0 0 0 0

[3,] 0.98 0.216 0.636 0.147 0 0 0 0 0

[4,] 1.00 0.192 0.641 0.167 0 0 0 0 0

[5,] 1.02 0.170 0.642 0.187 0 0 0 0 0

R> head(C1)

1 2 3 4 5 6 7 8

[1,] 0.192 0.641 0.167 0 0 0 0 0

[2,] 0.192 0.641 0.167 0 0 0 0 0

[3,] 0.192 0.641 0.167 0 0 0 0 0

[4,] 0.192 0.641 0.167 0 0 0 0 0

[5,] 0.192 0.641 0.167 0 0 0 0 0

[6,] 0.192 0.641 0.167 0 0 0 0 0

This matrix can now be applied to the estimates for the splines for the two transitions. The
relevant parameters are selected using the subset argument to ci.lin, which both selects
and sorts the parameters of interest. First we use ci.lin to show the total set of parameters:

R> ci.lin(ms)[, 1:2]

Estimate StdErr

(Intercept) -1.3768 0.1486

lex.TrPR->RD(PR) -1.2373 0.3848

dissubALL 0.2047 0.0997

dissubCML 0.1279 0.0797

age20-40 0.1589 0.1073

age>40 0.5419 0.1123

drmatchGender mismatch 0.0359 0.0792

tcdTCD 0.2403 0.0967

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)1 -0.7007 0.2593

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)1 0.5402 0.3577

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)2 -0.3748 0.3551

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)2 0.8434 0.5199

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)3 -2.1909 0.3908

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)3 -0.8464 0.4617

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)4 -1.7264 0.6125

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)4 -0.8431 0.6550

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)5 -2.5504 0.9128

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)5 -1.3821 0.8260

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)6 -1.4513 1.1050

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)6 -1.1546 0.9026

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)7 -0.6390 1.4207

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)7 1.7567 1.1066

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)8 -1.9564 2.0909

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)8 -0.3233 1.1258
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Then we can use it to show the subset and the ordering of this we get when using the subset

argument:

R> ci.lin(ms, subset = c("PR", "Tx"))[, 1:2]

Estimate StdErr

lex.TrPR->RD(PR) -1.237 0.385

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)1 0.540 0.358

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)2 0.843 0.520

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)3 -0.846 0.462

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)4 -0.843 0.655

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)5 -1.382 0.826

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)6 -1.155 0.903

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)7 1.757 1.107

lex.TrPR->RD(PR):ns(tft, knots = i.kn, Bo = b.kn)8 -0.323 1.126

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)1 -0.701 0.259

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)2 -0.375 0.355

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)3 -2.191 0.391

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)4 -1.726 0.612

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)5 -2.550 0.913

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)6 -1.451 1.105

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)7 -0.639 1.421

lex.TrTx->RD:ns(tft, knots = i.kn, Bo = b.kn)8 -1.956 2.091

For the state (Tx) we just use the spline parameters and subtract the value at the reference
point, thus giving the rate-ratio (RR) relative to time tft==1:

R> rr.Tx <- ci.lin(ms, subset = "Tx", ctr.mat = CM - C1, Exp = TRUE)[, 5:7]

Note that we should formally also have included the intercept among the parameters, but in
this case it would just cancel out.

The argument Exp=TRUE to ci.lin computes the exponential of the resulting parameter
functions with 95% confidence intervals and puts them in columns 5 to 7 of the result:

R> head(rr.Tx)

exp(Est.) 2.5% 97.5%

[1,] 2.10 1.43 3.08

[2,] 2.26 1.57 3.26

[3,] 2.44 1.72 3.46

[4,] 2.62 1.88 3.67

[5,] 2.81 2.03 3.90

[6,] 2.99 2.17 4.13

For the state PR level we want the RR relative to time tft==1 for state Tx. Thus we want
both the parameters for each of the transitions, but also the parameter giving the extra
contribution for the Pr->RD transition relative to the Tx->RD transition: These must be
multiplied by columns that give the RR relative to the rates from Tx at time 1:



Journal of Statistical Software 15

0 1 2 3 4 5

0.1

0.2

0.5

1.0

2.0

5.0

Time since transplant

R
at

e 
ra

tio

●

Figure 4: RR relative to year 1 after transplant for persons in states Tx (red) and PR (blue),
as well as the RR between the mortality rates in PR and Tx (gray). Thin lines are estimated
95% confidence intervals.

R> rr.PR <- ci.lin(ms, subset = c("PR", "Tx"), ctr.mat = cbind(1, CM, -C1),

+ Exp = TRUE)[, 5:7]

The estimated rate-ratio between these two RRs is found by subtracting the two sets of
parameter functions just derived. This means multiplying the PR parameters by cbind(1,

CM), and the Tx parameters by -C1 - (CM - C1) = -CM:

R> RR <- ci.lin(ms, subset = c("PR", "Tx"), ctr.mat = cbind(1, CM, -CM),

+ Exp = TRUE)[, 5:7]

We can now plot all three sets of curves (estimates with c.i.s):

R> matplot(p.pt, cbind(rr.Tx, rr.PR, RR), log = "y", ylim = c(0.1, 5),

+ type = "l", lty = 1, lwd = c(3, 1, 1), las = 1,

+ col = rep(c("red", "blue", "black"), each = 3),

+ xlab = "Time since transplant", ylab = "Rate ratio")

R> points(1, 1, pch = 16, col = "red")

R> abline(h = 1)
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Clearly, the difference between the rates is confined to the first year, where the RR relative
to year 1 in the Tx group is higher than in the PR group. After the first year there is no
discernible non-proportionality of rates between the groups.

8. Connecting to the mstate package

The Epi package has a function that transforms a Lexis object to a msdata object which can
be used in the mstate package (de Wreede et al. 2010, 2011). Essentially it is a renaming of
the variables from a stacked.Lexis object as illustrated here:

R> bmtr[bmtr$id==13, 1:6]

tft tfPR lex.dur lex.Cst lex.Xst lex.id

13 0.0000 NA 0.0903 Tx PR 13

13100 0.0903 0 3.8166 PR PR 13

R> subset(stack(bmtr), id == 1)

tft tfPR lex.dur lex.Cst lex.Xst lex.Tr lex.Fail lex.id id prtime

1 0.000 NA 0.063 Tx PR Tx->PR TRUE 1 1 23

1893 0.000 NA 0.063 Tx PR Tx->RD FALSE 1 1 23

18931 0.063 0 1.974 PR PR PR->RD(PR) FALSE 1 1 23

prstat rfstime rfsstat dissub age drmatch tcd

1 1 744 0 CML >40 Gender mismatch No TCD

1893 1 744 0 CML >40 Gender mismatch No TCD

18931 1 744 0 CML >40 Gender mismatch No TCD

R> ms <- msdata(bmtr)

R> ms[ms$id == 13, 1:8]

id from to trans Tstart Tstop time status

13 13 1 2 1 0.0000 0.0903 0.0903 1

13100 13 1 2 2 0.0000 0.0903 0.0903 0

131001 13 2 2 3 0.0903 3.9069 3.8166 0

9. Conclusion

The Lexis objects in the Epi package come with a range of facilities to make the modelling
of multi-state data easier. Lexis objects simplify the initial exploration of the data structure
by displaying the states and transitions, and by showing the follow-up time along different
timescales. They also allow simplification and structuring of the code for analysis of rates
that may be analysed separately or jointly.
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